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SMALL SUBSET OF THE PLANE
WHICH ALMOST CONTAINS
ALMOST ALL BOREL FUNCTIONS*

JANUSZ PAWLIKOWSKI

A Borel subset B of the plane is constructed which is small from
the Lebesgue measure point of view and large in the sense of the
Baire category. All vertical sections of B have measure zero, and for
each Borel function f: R — R for all but countably many y the set
{x € R:(x, f(x)+y) € B} is comeager.

1. Introduction. It is well known that the Fubini Theorem and the
Kuratowski-Ulam Theorem cannot be mixed together. It is easy to
find a Borel subset of the plane with all vertical sections having the
Lebesgue measure zero and almost all in the sense of the Baire category
horizontal sections being comeager. We can just take 4% where A is
the classical example of a measure zero dense Gs subset of the real
line.

In this paper we show that such antagonism between measure and
category is much stronger. We give an example of a G5 subset of the
plane such that all its vertical sections have the Lebesgue measure zero
and for each Borel function f: R — R all but countably many sections
parallel to f are comeager. We also indicate why there is no such
example in which the roles of measure and category are interchanged.

2. Notation. Throughout the paper / stands for the half open in-
terval [0, 1[, R for the reals, +, for the addition modulo a, and
A for the Lebesgue measure. For subsets 4 and B of the reals let
AF B ={aFb:a€ A and b € B}. Natural numbers are the sets
of smaller natural numbers, w is the set of all natural numbers, w<?
and w® are the sets of finite, resp. infinite, sequences of natural
numbers. [A]<* and [A]* denote the sets of all subsets of 4 of car-
dinality < s, resp. of cardinality ». For AC X xY and x € X let
Axr={yeY:(x,y) € 4}.

3. Erdos-Folklore Lemma. We start with the following Folklore
Lemma.

*The theorem of this paper was presented to the Abstract Analysis and Topology Conference,
Srni, Czechoslovakia, 1987.
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LEMMA 3.1. For any € > 0 there exists a natural number k with
the property that for each A € [I1* there is a finite union of rational
intervals B C I such that A+, B =1 and A(B)<e.

We don’t know whether the proof of this lemma was ever published.
For the sake of completeness let us show how it follows from a lemma
of Lorentz [L].

LEMMA 3.2 [Lorentz). For each natural number n and each non-
empty set A C n thereis a set B C n such that A+, B = n and
card(B) < nocard(4)~! o (1 + log(card(A))).

Proof of Lemma 3.1. We shall show that for any finite set 4 C /
there is a finite union of rational intervals B C I such that

A(B) < 2ocard(4)~! o (1 + log(card(A4)))

and A +; B = I. To see this find n so large that in each interval
[i/n, (i+ 1)/n[, i =0,...,n— 1, there is at most one point of
A. Let A4* = {i < n:[i/n,(i+1)/n[Nn A # &}. Then card(4) =
card(A4*). By the lemma there is B* C n such that 4* + B* = n and
card(B*) < n o card(4*)~! o (1 +log(card(4*))). Set

B' = J{1G-1)/n, (i+1)/n[:i€ B*} and
B ={xmod1:x € B'}.

It is easy to see that B works. O

4. The construction. The main step in our construction is the fol-
lowing lemma.

LEMMA 4.1. For any ¢ > 0 there exists an open set B C Rx I such
that each vertical section of B has measure less than ¢ and for any
infinite set T C I the set {x € R:T +, Bx = I} is comeager.

Proof. For any 7 € 0<% let [1] = {t € w®:7t C t}. The collec-
tion {[t]:T € w<“} is a basis for the standard topology on w®. w®
with this topology is homeomorphic to the irrationals. Thanks to this
homeomorphism it is enough to find a subset B of w® x I which
enjoys the properties stated in the lemma.

For each k € w let {IJ’.‘: J € w} be an enumeration of all finite

unions of open rational subintervals of I such that A(/ ]’-‘) < go2 k-1,
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Let

card(t)—1
B= ([1] x U If(k)) .
€W ® k=0

Clearly B is an open subset of w® xI which has all vertical sections of
measure less than &. Further, if we fix an infinite set 7 C I, then for
each 7 € w<“ we can find a natural number k such that the thesis of
Lemma 3.1 holds with ¢ replaced by go2~¢d(®)=! This means that
for each S € [T]* we can find an index j such that S+, Ifard(’) =1.
Therefore for each x which prolongs the concatenation 7*j we have
S +1 Bx = I. By the definition of B it follows that the set

{x e w?:3AS € [T]*? S+, B, =1}

is comeager. O
We are now ready to prove the main result.

THEOREM 4.2. There exists a G5 set B C R x I such that all its
vertical sections have measure zero and for each Borel function f:R —
I for all but countably many y the set {x € R: f(x)+,y € By} is
comeager.

Proof. Let B" satisfy the thesis of Lemma 4.1 with ¢ = 1/n. Set
B =(,B". Let f:R — I be agiven Borel function. Suppose that for
uncountably many y the set {x € R: f(x)+;y ¢ By} is nonmeager.
Then for some » and for uncountably many y the set W» = {x €
R: f(x)+,y ¢ B!} is nonmeager and has the Baire property (because
f is a Borel function). So each W?” is comeager in some rational
interval and since there are only countably many rational intervals,
there must be a rational interval J and an uncountable set 7 of y’s
such that WY is comeager in J foreach y e T. Let SC T be a
countable infinite set. Then the set (1,5 W7 is comeager in J, so the
set {x € R: f(x) ¢ B!—,S} isalso comeager in J, which contradicts
Lemma 4.1. o

To get the version of Theorem 4.2 stated in the abstract we just use
the following version of Lemma 3.1.

LEMMA 4.3. Foranyreals a<b, c <d, ¢ >0, there is a natural
number k with the property that for each k-element subset A of Ic, d[
there is a finite union of rational intervals B Cla—d, b —c[ such that
la,b[Cc A+ B and A(B) <e. O
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With this lemma we get

LEMMA 4.4. Foranyreals a<b,c<d, e >0, there exists an open
set BC R x la—d, b~ c[ such that each vertical section of B has
measure less than ¢ and for any infinite set T C |c, d[ the set

{xeRVy€la,bl (Bx+y)NT # T}
Is comeager. O
LEMMA 4.5. For any ¢ > 0 there exists an open set B C Rx R such

that each vertical section of B has measure less than & and for any set
T C R which is infinite in some interval the set

{xeRT+By=R}={x€RVyeR (B,+y)NT # T}
s comeager.
Proof. For each n € w we can find by Lemma 4.4 a set B" C

R x ]-2n, 2n[ such that each vertical section of B"” has measure
less than €027 "1 and for any infinite set 7 C ] — n, n[ the set

{xeRVyel-n,n[(B+y)NT #J}

is comeager. Let B =|J,, B”. Then A(Byx) < ¢ for each x € R and if
aset T C R is infinite in some interval ] — n, n[ then the set

{x€R:Vy€ER (Bx+y)NT # T}
= ({xeRVyel-m, m (Bx+y)nT # T}

m>n
2 ﬂ{xeR:Vye]—m,m[ (Bl +y)NT # T}
m>n
is comeager because each of the intersected sets is comeager. O

Using Lemma 4.5 as we have used Lemma 4.1 we finally get

THEOREM 4.6. There exists a Gs set B C R x R such that all its
vertical sections have measure zero and for each Borel function f>R —
R for all but countably many y the set {x € R: f(x)+y € By} is
comeager.

5. Applications. The above-constructed set B can be foreach ¢ > 0
covered by an open set with all vertical sections of measure less than ¢.
The collection of subsets of the plane with this property is a og-ideal.
In [CP] in an answer to a question of Mokobodzki it is shown that
there exist w; sets from this ideal with the union outside the ideal.
The example in [CP] is rather complicated. Theorem 4.6 provides a
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much easier example where all w; sets are just translates of a single
set. Precisely

THEOREM 5.1. Let B be a set claimed to exist by Theorem 4.6. For
any uncountable T C R, the union of sets B(t) = {(x, y):y € Bx—t},
t € T, cannot be covered by a Borel set with all vertical sections of
measure zero.

Proof (cf. [CP]). Otherwise we could choose a Borel selection f: R —
R such that f(x) ¢ B(f)x foreach 1€ T and x € R. Let Ty be
the countable set of exceptional reals associated with the function f
by Theorem 4.6. Let t € T \ T;. The set {x € R: f(x) € By —t} is
nonempty by Theorem 4.6, which contradicts the choice of f. O

It is well known that most statements about Borel functions and sets
which involve Baire category say something interesting about proper-
ties of the reals when a Cohen real is added to the universe. Proofs
of the following corollaries are obtained by taking sections at a Cohen
real of appropriate versions of Theorem 4.6 and Lemma 4.5 (cf. [CP]
and [P] for more results by this method).

COROLLARY 5.2. Let M be a transitive model of ZFC set theory
and let ¢ be a Cohen real over M .

(a) In M|c] forany & > 0 there is an open set B such that A(B) < &
and for any countable infinite set A € M such that AC M NI, there
is a finite set A' with the property that A' +, B = I N M][c]. (Thus for
any te INM[c] we have (B+t)NnA' #J.)

(b) [Carlson] In M|c] there is a measure zero set of reals B such
that for any t € RN M([c] the set (RN M) \ (B +t) is countable. DO

COROLLARY 5.3 (cf. [CP] Corollary 2 and [M] Problem 9). Suppose
that M C N are transitive models of ZFC such that there exists x €
RN(N\M). Let ¢ be a Cohen real over N. Then there exists a Borel
set B coded in M|c] such that RN M[c]C x + B. O

6. Note. The roles of measure and category in Theorem 4.6 cannot
be reversed. In fact for any Borel subset B of the plane which has
all vertical sections meager there is a Borel function f:R — R and
a meager set C such that the set {x € R: f(x) + ¢ 2 By} has full
measure. This is due to the fact that in AM[r], where M is a transitive
model of ZFC and r is a Solovay real over M , every meager set is
covered by a translation of a meager set coded in M .
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