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APPROXIMATING EQUIVARIANT MAPPING SPACES

S. R. COSTENOBLE, S. WANER, AND G. S. WELLS

Let SV and Sv be the unit sphere and one-point compactifϊca-
tion of the unitary representation V of the finite group G. One
has the associated self-mapping G-spaces %/(SV, SV) and Ω.VSV

respectively, the first consisting of unbased maps and the second of
based maps. It is the goal of this paper to describe homotopy approx-
imations of these loop spaces (as examples of a more general class of
6"-spaces), along the lines of the group completion approximations of
Segal, McDuff and Hauschild. We then apply these approximations
to obtain splittings and Hopf space structures for several spaces.

Introduction. Let G be a finite group and let V be a finite di-
mensional unitary representation of G with unit sphere SV. Let
W(SV, SV) be the G-space of unbased maps SV -+ SV, where G
acts by conjugation. If Sv is the one point compactification of V,
denote the G-space of based maps Sv -> Sv by ΩVSV. It is the
goal of this paper to describe properties of these loop spaces, viewed
as examples of a more general class of G-spaces, through the use of
G-homotopy approximations.

May [Ml] first used configurations of "little cubes" to obtain a
nonequivariant homotopy approximation of ΩnΣnZ for a connected
based CW complex Z . He also showed that the little cubes construc-
tion can be replaced by an analogous configuration space construction.
Segal [S] then showed that ΩnSn (= ΩnΣnS°) is the group completion
of the space of configurations of points in the unit disc Dn . Formally,
a group completion is a map a: X —• Y from a Hopf space to a group-
like Hopf space such that a coincides with localization at πo(X) in
homology with field coefficients. May's use of configurations of lit-
tle cubes rather than points had the effect of greatly simplifying the
arguments, although the corresponding approximating spaces are ho-
motopy equivalent. McDuff [M2] generalized Segal's result to obtain
approximations up to group completion of spaces of sections of cer-
tain sphere bundles over a compact manifold M. Generalizing May's
result, Caruso and Waner [CW1] showed that ΩnΣnZ is homotopy
equivalent to a space of configurations of "positive and negative little
cubes" in the ft-disc Dn, whether or not Z is connected. (McDuff
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had shown in [M2] that the space of configurations of positive and
negative particles is not homotopy equivalent to ΩnSn.)

Hauschild [H] obtained an equivariant analogue of McDufFs re-
sults: If the real orthogonal representation V has a trivial summand,
then ΩVSV is an equivariant group completion of the space of config-
urations of points in the unit disc of V. Here, an equivariant group
completion is a G-map of Hopf spaces that respects structure and re-
stricts to a group completion on each fixed subset. The Hopf space
structure in ΩVSV is defined using addition of maps in the standard
way.

When the representation V possesses no trivial summand, the cor-
responding unbased G-space %{SV, SV) possesses no Hopf space
structure corresponding to addition, and the notion of a group com-
pletion makes no sense. However, one may still ask whether this space
admits a homotopy approximation by a simpler G-space.

As indicated above, the results in this paper provide G-homotopy
approximations for the unbased spaces %(SV, SV) when V is a uni-
tary representation of G, and for ΩVSV when V is a real orthogo-
nal representation with a trivial summand. We give two applications.
First, we obtain splittings in unstable based and unbased equivari-
ant homotopy, along the lines of torn Dieck [D], Second, we prove
that co l imj/^SF, SV) possesses an equivariant Hopf space struc-
ture compatible with addition of homotopy classes, the colimit being
taken over a suitable collection of unitary representations V with
VG = 0. In addition, we show that this Hopf-space structure comes
from an equivariant infinite loop space structure.

Our approximation results occur as special cases of a more general
result along the lines of McDufPs work (as generalized by Hauschild),
but without any assumption that the G-manifolds in question have
boundaries, and providing approximations up to homotopy rather
than up to group completion. Specifically, let M be a compact G-
manifold with or without boundary, let N be a closed codimension-
zero submanifold of dM, and let F(TM) be the fiberwise one-point
compactification of the tangent bundle of M. Denoting fiberwise
smash product by Λ^, let Γ(M, N; X) be the space of all sections
of F(τM) Λ̂ - X -> M which coincide with the trivial section
on c\(dM - N). The spaces we construct are approximations of
Γ(M, N X) up to G-homotopy when X is a G-CW complex; these
are spaces of configurations of " PL-arcs" in M lying along a speci-
fied "direction". To make sense of the idea of a specified direction, we
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assume that M is fibered by oriented 1-manifolds. The precise con-
struction of the approximationg spaces and the statement of the main
theorem are given in §1. §2 gives the applications, and the remaining
sections are devoted to the proof of our main result.

The authors are indebted to Hofstra University and to the Univer-
sity of the Witwatersrand for having provided released time.

1. PL-arcs. We shall be considering smooth compact G-manifolds
whose components are either principal (G, S^-bundles, or of the
form M' x I with trivial G-action on / . These can be consid-
ered together as essentially the only examples of smooth compact G-
manifolds that are PL-bundled by oriented 1-manifolds. Precisely,
we assume given an equivariant PL-bundle π:M —• M' with fiber a
1-manifold Y and structure group reduced to PLnDiίf. We also as-
sume given a trivialization of the bundle of tangents along the fibers,
and we assume that the action of G preserves this orientation of the
fibers. These restrictions are needed to make sense of the geometric
constructions we consider. Possibly changing M', we may conclude
that M —• M' is a union of components, each of which is either of
the form Mn x / —• M", or is a principal (G, S1)-bundle.

We shall also assume given G-invariant Riemannian metrics on M
and M', with the following relation: If M = M' x / , then the metric
on M should be the product of the metric on M' and the standard
metric on / . On the other hand, if M is a principal (G, Sx)-bundle,
so that G x Sι acts on M with the action of Sx being free, then we
assume that M has a G x S^invariant metric and that M9 = M/Sι

has the G-invariant metric given in the tangents perpendicular to the
fibers in M. In general, M will be a union of components with
metrics of this kind.

Two examples to bear in mind are the projection SV —• SV/S1

for a unitary G-module V, and the projection M' x / —> Mr for any
smooth G-manifόld M'. The first of these will lead to the desired
approximations of spaces of self-maps of SV, while the second will
be required in the induction arguments involved in analyzing the first
case. Although it would perhaps be convenient to concentrate on one
case only, the way in which the cases interlock in the induction, as
well as the fundamental ways in which the arguments for the two
cases differ, make this unfeasible.

In view of the very restricted structure, it makes sense to talk about
a PL-map from a fiber of π into Sι, and to talk about the sign of
the slope of any of the linear segments of such a map. Also, for any
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component Y of any fiber, there is a unique orientation-preserving
linear diffeomorphism of Y with either / or Sι. Unless otherwise
specified we let / = [-1, 1], and Sι = //{—I, 1} with basepoint
e = { - l , l } .

DEFINITIONS 1.1. A PL-arc in the G-manifold M is a PL-map from
one of its fibers into Sι, so that each of its nontrivial linear segments
(that is, segments whose value is not constant at the basepoint e)
has nonzero slope. The support, supp v, of a PL-arc v in M is
ί/""1^1—e); two PL-arcs v and μ in M are disjoint if their supports
are disjoint. If two disjoint PL-arcs ^ and μ are defined on the same
fiber, we define v Θ μ to be their pointwise product in Sι (i.e., their
superposition). An indecomposable PL-arc in M is an arc that cannot
be expressed as a sum of two nontrivial PL-arcs. Finally, we refer to
a PL-arc v in M as closed if v\dM is trivial.

We topologize the set Arc(Aί) of PL-arcs in M as a G-bundle
over M1 with fiber the space PL(Γ, Sx) of PL-maps Y -> S 1 . For
?z > 0, let L(M)(n) be the G-space of π-tuples of pairwise disjoint
closed PL-arcs in M, topologized as a subspace of arc(M)w . Note
that L(M)(n) is acted on freely by the symmetric troup Σn, this
action commuting with the G-action.

Now let I b e a nondegenerately based G-space with stationary
basepoint *, and define

L(M, X) = [ ] L(M){n) x^ Xn j «

where |>i, . . . , vn xx, . . . , xn] « |> 2 , . . . , vn x 2 , . , *n] if either
v\ is trivial or X\ = *, and

if χx = χ2 and v\ 0 r/2 is defined. L(M \ X) is a G-space with the
diagonal G-action. Write L(M) for L{M\ S°).

For a relative version, let TV be a G-invariant codimension-zero
submanifold of dM, and define

L(Af, Λ^;X) = [ J L ( M , N)(n) xΣn Xn/ « .

Here L(A/, iV)(n) is defined in a way similar to L{M){n), except that
one allows PL-arcs with support in (M-dM)uN rather than only in
M - dM, and one uses the additional equivalence relation given by
identifying [vx, . . . , vn xx, . . . , xn] with f>2, . . . , vn x2, . . . , x«]
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if the support of v\ lies in N, so that PL-arcs in M "disappear"
when they enter N. We shall denote L(M, N; S°) by L(M, N).

We now impose a restriction on the submanifold N. First ob-
serve that dM decomposes as a union d M\ U dM2, where 5 Mi =
π~ι(ΘM') and <9M2 is the space of endpoints of the fibers. We as-
sume from now on that N = N\ U N2, where N\ = π~ι(Nf) for a
codimension-zero submanifold Nf c dMf and JV2 is a union of com-
ponents of dM2 . Thus, if TV contains any point of a fiber other than
an endpoint, it must contain the whole fiber.

We also need to use the classical configuration spaces (cf. [H]). For
n > 0 let C(M)(n) be the G-space of ^-tuples of distinct points in
M - dM, and if N c M define C(M, N)(n) as the configuration
space analogue of L(M, N)(n). The construction above then yields a
G-space C(M, N\ X). When discussing configuration space models,
we make no assumptions about any fiberings of M.

We can now state the main theorem. Let %M denote the tangent
bundle of M. Let F{ΊM) denote the fiberwise one-point compactifi-
cation of τM . If \gr is fiberwise smash product, let Γ(M, N X) be
the space of all sections of F{TM) Λ̂ - X -> M that coincide with the
basepoint section on cl(dM - N).

THEOREM 1.2. (a) If X is a nondegenerately based G-space, then
Γ(M, N\ X) is weakly G-equivalent to L(M, N\ X). Further, if X
has the G-homotopy type of a G-CW complex, then there exists a G-
homotopy equivalence

γ:L(M, N;X)-+Γ(M, N\X).

(b) IfX is a nondegenerately based G-space with connected fixed-sets,
then the conclusion of (a) continues to hold with L{M, N X) replaced
by C(M,N\X).

(c) For arbitrary X, there exists a map

δ: C(M, N; X) -+ L(M, N; X)

such that yδ ~ γ as G-maps.

Note that if X has the G-homotopy type of a G-CW complex,
then both spaces in question have the G-homotopy type of G-CW
complexes. Thus the conclusion that γ is a G-homotopy equivalence
follows by the equivariant Whitehead Theorem. (See, for example,
[W].)
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A consequence of the theorem is that it provides equivariant ho-
motopy approximations for the spaces &(SV, SV) discussed in the
introduction: Let V be any finite dimensional unitary representa-
tion of G with unit sphere SV. The G-space ^(SV, SV) is then
G-homeomorphic with T(SV, 0 ; S°), since F(τSv) is the trivial G-
bundle SV x SV -* SV. We now have

COROLLARY 1.3. With V as above, there exists a G-homotopy equiv-
alence

γ:L(SV)->&(SV,SV).

In fact we shall see that the approximations γ are natural in V up
to G-homotopy, as a consequence of the explicit constructions below.

In order to deduce approximations for mapping spaces of based
spheres along the lines of the group completion results of Hauschild
[H], we take M = DV x I = D(V ®R) for V any real orthogonal
representation of G, and N = dM. T(M, N; X) is then the equi-
variant loop space £1WΣWX of based maps Sw —> X Λ Sw where
W = F 0 R. We then obtain the following:

COROLLARY 1.4. If W contains a trivial summand, there exists a
G-homotopy equivalence

γ:L(DW, SW; X) -> ΩWΣWX.

2. Applications. Before proving Theorem 1.2, we give some appli-
cations.

Let M be a G-manifold, and let H be a subgroup of G. Let MH
be the complement in MH of a regular neighborhood of UΛP// MK .

Then Λ/// is a free compact W7// = NH/ //-manifold. Let Γ^ denote
the space of G-invariant sections.

THEOREM 2.1 (Splitting of Unstable Equivariant Mapping Spaces).
There is a weak equivalence

ΓG(M, N;X)~ l[Γ(EWH xWH MH, EWH xWH NH XH).

The product runs over all conjugacy classes of subgroups of G, and the
spaces appearing on the right are nonequivariant spaces of sections of
the bundles

EWH+ ΛWH F{τ~ ) Λ^ XH -> MH/WH.
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Proof. Denote the G-fixed subspace of L(M,N;X) by
LG(M, N\ X). Then Theorem 1.2 says that TG{M, TV; X) is equiv-
alent to LG(M, N ; X). If i/ is a subgroup of G with conjugacy
class (//), let LG(M, TV; ΛQ(//) be the subspace made up of arcs
with isotropy in (H). It is easy to see that we have a decomposition

LG(M, N; X) ~ Π

This is true because we are looking at the (/-invariant configura-
tions, and in these the orbit type is locally constant. Note further
that each factor LG(M, N; X)(H) is homotopy equivalent to

Again, LWH(MH, NH XH) ~ TWH{MH, Λfo XH). By well-known

arguments, the ff7/-invariant sections of F(τ~ ) /\<? XH —• A/// are

in 1-1 correspondence with the nonequivariant sections of

XH -+MH/WH,

and so the theorem follows. D

In the special case that each component of each fixed set of M
intersects TV, the methods of Hauschild [H] can be used to obtain the
splitting. This connectivity condition is necessary in order to apply
his methods, because, without it, his quasifibration arguments would
fail.

In view of Corollary 1.3, we obtain splittings of the space
%S(SV, SV)G of G-maps SV -+ SV when V is unitary. The splitting
of {ΩWΣWX)G that we get from Corollary 1.4 (where W is a real
representation with a trivial summand) was known to Hauschild [H],

If V is unitary with nontrivial G-fixed set, then πo(%S{SV, SV)G)
possesses a group structure given by addition of homotopy classes in
the usual way. When VG = 0, one may again obtain such a structure
by appealing to the general position arguments in [WW]. This addi-
tion does not arise from a Hopf space structure on %(SV, SV), since
such a structure fails to exist even in the nonequivariant case. Pass-
ing to the stable case nonequivariantly, one has colim^ %{Sn, Sn) ~
Qθ\imζlnSn , resulting in a Hopf space structure on the former. In the
equivariant case, we now have the following consequence of Theorem
1.2. Let U be a countably infinite direct sum of finite dimensional
unitary G-modules, such that U = U θ U we are particularly inter-
ested in the case UG — 0.
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THEOREM 2.2. The G-space co\imVcU^{SV, SV) has a homotopy
associative and commutative equivariant Hopf space structure such that
the restrictions

colimF c C / &(SV, SV)K -> colimF c C / %{SVK, ST*)

./or K c G agree with the additive Hopf space structure on
co\imn&(Sn

9S
n). In fact, co\imV(zU^{SV, SV) is G-homotopy

equivalent to an equivariant infinite loop space.

Proof. We first give the Hopf-space structure directly. By Corol-
lary 1.3 and naturality, we may replace co\imVcij%(SV, SV) by

coMmvcu L{SV) — L{co\imv^u SV) Here, L(colimκcc/'S'';0 is de-
fined in the same way as for finite dimensional G-manifolds. The
G-space E = co\imycu SV is in fact a model for the universal G-
space E^, where & is the family {K c G: Uκ Φ 0} however, we
do not use this fact explicitly. The desired Hopf space structure is a
composite

L(E) x L(E) -+ L(E UE)-+ L(E).

Here, the first arrow is the assembly map. The second arrow is induced
by the G-inclusion EUE —> E obtained from

uuu -^u®u = u,

where Δ takes the first copy of U into £/Θθ, and the second copy into
O θ t / . Since L is functorial on inclusions, this gives a well-defined
map L(EUE)-+L(E).

To show that L(E) is equivalent to an equivariant infinite loop
space, we appeal to [CW3]. To use the results from that paper, we
need only observe that the construction of the multiplication above
generalizes to an action by the equivariant linear isometries operad
(described in [CW3]). D

REMARKS 2.3. (a) Let % be as in Theorem 2.2. Then the approx-
imating map γ: colimycv C(SV) -+ co\imycι/^(SV, SV) ought to
be a group completion. Unfortunately, we do not have a rigorous
proof, although we believe that the following sketch could be made
rigorous with the addition of some long and tedious arguments.

Sketch of Proof By Theorem 1.2(c) one has a G-map δ: C(SV) -•
L(SV). By the proof of Theorem 2.1, the fixed-sets of both spaces
split as products^of nonequivariant configuration spaces or arc spaces
of manifolds M(V)H/NH. We shall see as a consequence of the
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constructions below that this splitting is compatible with the map δ .
Further, the constructions also show that on each factor, the restriction
of δ agrees with the classical approximation map of McDuίf [M2]
when we compose with the approximating map γ .

When M(V)H/NH has boundary, the corresponding map, although
not a map between Hopf-spaces, behaves formally like a group com-
pletion in the sense of [M2]. Explicitly, taking the colimit of the
configuration spaces under translation maps gives a homology equiv-
alence. (This idea is used again in [H].) This property is preserved by
the taking of colimits over V c %, and here the McDuff construc-
tion agrees in homology with group completion under the Hopf-space
structure given in Theorem 2.2.

When M(V)H/NH is closed, we must first pass to the colimit over
F c ^ , and replace co\imycu M(V)H/NH by a corresponding col-
imit obtained by deleting a small disc. This procedure causes no harm
to the argument, as the corresponding configurations and function
spaces fit into quasifibrations with common base space M(V)H/NH.
We can use the Serre spectral sequence to compare the homologies.

Finally, since group completion is preserved by products, the result
should follow.

(b) In the event that the manifolds M and N satisfy the connec-
tivity requirements of Hauschild [H], so that C(M, N; X) has any
hope at all of being a Hopf-space, his original arguments, which were
stated only for the case X = S° , easily generalize to show that

γ: C(M, N; X) -> Γ(M, N; X)

is a group completion when C(M, N\ X) and Γ(Af, N\ X) are
Hopf-spaces.

3. Construction of the approximating map. The approximating maps
γ are not defined directly on the spaces L(M9 N; X), but are defined
instead on certain equivalent spaces, which we now construct.

If v is a PL-arc in M and if ε > 0, then v determines associated
cylinders C{y, ε) and C{y, ε) of radius ε as follows. Say that two
points m and m' of M are normally equivalent if there is an arc
from m to mr covering a minimal geodesic in Mr and normal to
every fiber it intersects. Given the geodesic in Mι, such an arc is
unique. Denote π(suppz/) by [v]. With dM> the metric on M', set

C{y, ε) = {x e M x normally equivalent to some point

in suppz/ and dM>{π{x), [v]) < ε},
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and

C{y, ε) = {x G M; x normally equivalent to some point

incl(supp^) and dM>(π(x), [z/]) < ε},

For ε sufficiently small and supp v interior to M, these are diffeo-
morphic copies of the standard cylinders (Dn~ι)' x supp v and Dn~ι x
cl(suppz/) respectively. This will be discussed further below. We say
that the cylinder C{y, ε) overlaps the subspace N c M iΐ C{y, ε)Γ\N

Now define a subspace L(M, N; X)(ε) of L(M, N; X) by consid-
ering only those tuples of PL-arcs v whose associated open cylinders
of radius ε are pairwise non-overlapping and do not overlap dM-N.
Fix some εo > 0 and let

L(M,N;X)(ε)x{ε},
0<e<ε0

topologized as a subspace of L(M, TV X) x R.
Configuration space models are defined similarly and more simply;

take C(M, N ; X)(ε) to be the subspace of C(M, N; X) using con-
figurations of points at least 2ε apart and also at least a distance ε
from dλf — N. Then define ^{M, N\ X) in the analogous way. Re-
call that here we assume no fibered structure on M and N.

The following is one of the main technical results of the paper.

LEMMA 3.1. (a) The projection

p:&(M, N; X) -> L(M, N; X),

given by sending a pair {v, ε) to v, is a weak G-homotopy
equivalence.

(b) Similarly, the natural projection

p:&(M, N; X) -+ C(M, N; X)

is a weak G-homotopy equivalence.

Lemma 3.1 is proved in §6. We now construct G-maps

, N; X) -• Γ(Af, Λ ;̂ X) and

, N; X) -• Γ(M, N; X)

for an appropriate choice of εo.

Construction 3.2. We first give the construction for 2?. Let v be a
PL-arc appearing in an element of L(M, N; X)(ε). If ε < εo (which
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has yet to be specified), and if dM>([ιs], n(N\)) > ε, we think of v
as representing an inclusion of the standard cylinder C = Dn xY in
M , where y = cl(supp(i/)), with image the corresponding cylinder
C(i/, ε). Such an inclusion i is specified as follows. First embed Dn

into M1 via the exponential map e, so that the center of the disc
maps to [i/] and the image has radius ε. On Y we take / to be the
identity, and on a point (d, y) we take the unique lift of the path
t *-+ e{td) in M1 to a path in M starting at y and normal to the
fibers. (Although there is a rotational ambiguity in the construction
of i, our constructions below are invariant under rotation.) When
^M'd^L π(N\)) < ε, v may be represented by inclusion of Cn(PxY)
in M, where P is the half-space above some affine hyperplane in Rn .
The choice of εo is now determined by the requirement that the ε-
cylinders are difFeomorphic images of the standard cylinder. We shall
define the desired section a{v) by first specifying a non-zero section λ
of τ C ' = τ c θ l . This amounts to specifying a map Dn xY —• Sn+ι.

On Dn x [-1, 1], we have two norms: the usual Euclidean norm
| M | 2 and the norm \\v\\' = max{||(vi, . . . , υn)\\2, \vn+χ\}. Define
λ:Dnx[-l, 1 ] - ^ 5 Π + 1 by

The PL-map v determines a partition ao, a\, ... , an of Y into
intervals on which v is linear and does not cross the basepoint e, and
we define the section of τc< piecewise on subintervals [#,, <Z/+i] as
follows. The restriction of v to this subinterval determines an affine
isomorphism θ/:[α/,α/ +i] —• [&;,&/+i] c [-1,1] . The map θ~ι

extends to a smooth embedding φf.D" x [bi ,bi+\\->M whose image
is the cylinder C(i/|[α/, α / + i ] , ε). The derivative of φι now maps the
field λ to a non-zero section of T ^ S M defined on C(u\[at, α / + i ] , ε).
Continuing this process piecewise, we obtain a non-zero section of
XM ΘK defined on C{y, ε). Finally, a section defined on all of M is
obtained by extending via the constant section.

By combining sections defined in this way, we obtain a continuous
map

α(e):L(Af, N\ X)(e) -> Γ(Af, N\ X)

for each ε < εo, and these together determine the map a.
Turning to the configuration space models, we could do a similar

construction, or we can take the following shortcut: Regard
Ψ{M,N;X) as a subspace of &{M x / , N x I X) by identifying a
point p in M with the element [p, v\ e .^(Af x / , JV x / , X), where
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v\I -* Sι is the quotient / —> Sι = [-1, 1]/ « . By the construction
of α, its restriction to M x {0} takes values in T(M, N X) c
Γ ( ¥ x / , Nxl; X), and we take as the approximation map the restric-
tion, a\: &(M, N X) -> Γ(Af, TV X). It is a straightforward task to
check that this map agrees, up to homotopy, with the approximation
map of Hauschild [H].

One also has a natural map δ:&(M, N X) -^ &{M 9 N\ X) de-
fined as the union of maps δ(e): C(M, N; X)(ε) -> L(M, N; X)(ε)
δ(ε) takes a point in M to the PL-arc of degree 1 and length ε cen-
tered at that point. Further, one can check that a o δ ~ a as G-maps.

In view of Lemma 3.1, Theorem 1.2 now reduces to the following.

PROPOSITION 3.3. (a) a:£?(M, N X) -» Γ(M, N\ X) is a weak
homotopy equivalence.

(b) If each XH is connected and nonempty, then a:&(M, N; X) —•
Λ/, iV X) is weak homotopy equivalence.

Proposition 3.3 will be proved in §5, once we develop the necessary
inductive machinery in §4.

4. Inductive steps. Our proof of Proposition 3.3 will be an induction
on the dimension of M. At each stage of the induction, we shall
proceed by breaking up our manifolds into pieces in several ways.

Lemma 4.1 will be used in regarding M as decomposed in such
a way as to cover an equivariant handlebody decomposition of M'.
(This is analogous to the main inductive step in Hauschild's work
[H].) Lemma 4.2 is then used, in the case of circular fibers, to decom-
pose simple manifolds of the form G x # (D(V) x Sι) into copies of
GXH D(V) x I, where G acts trivially on / . Next, Lemmas 4.3 and
4.4 are used either to reduce arguments about the relative versions of
the approximations to the corresponding absolute versions or to re-
duce to the case of lower dimensional manifolds. The first of these
two lemmas refers to parts of the boundary consisting of whole fibers,
while the second to parts of the boundary on the ends of fibers. Fi-
nally, Lemma 4.8 is used in an orbit-type induction to reduce to the
free case.

First then, suppose that M[ and M'2 are G-invariant codimension-
zero submanifolds of M', with M' = M[ U Mf

2, joined along a codi-
mension-zero submanifold B' = ΘM[ n dM2 of their boundary. Let
Mi = n-x{M[) and B = n~l(Bf), so that M = Mx U M2 and B =
dM\ Γ\dM2.
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If TV is a codimension-zero submanifold of dM, then restriction
to M\ determines maps

p:L(M, TV; X) -> L(M{, (M{ ΓΊTV) U ΰ ; X),

r: ̂ ( M , TV X) -> &(Mλ, (M{ Π N)U B; X),

and

i?:Γ(M, TV; X) -+ Γ(JI/i, (M! Π TV) U JS X).
When discussing the analogous configuration space models, we take

M = M\ U M 2 , joined along a codimension-zero submanifold B =
0Λ/i Π dM2 of their boundary, and obtain similar restriction maps

p: C(M,N;X)^ C(MX, (M{ n TV) U 5 X),

and
r: ^(Λ/, TV X) ^ ^ ( M j , (JWTΊ n TV) U B X).

Recall [H] that a G-quasifibration is a G-map p:E —> B such that

p ^ : i s^ —• 2?^ is a quasifibration for each K c G.

LEMMA 4.1. (a) Wf/Λ C = d((Af2 n TV) - B), the maps p are G-
quasifibrations with fibers F = L(M2, C X) and C(M 2 , C X) re-
spectively.

(b) The sequences

, C X) - ΰ -S*(M, TV X) - ^ &{MX, (Afi Π TV) U B X)

, C X) Λ ^(Af, TV X) ^ ^(Afi, (Afi Π TV) U 5 X ) ,

/ the evident inclusions, are weak G-fibration sequences. {That
is, the inclusions i induce weak equivalences of their sources into the
homotopy-theoretic fibers of the maps r.)

(c) The map R is a fibration, with each fiber equivalent to
Γ(M2, C X). Moreover, the diagram

Γ(M2

Γ(M

,C;

1

I*

X)

X)

ΛOutf X) —2L_> T{Mlt {M: f] N) \J B X)

commutes, as does the similar diagram with the 21 's replaced by W 's.
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The proofs of Lemmas 4.1-4.4 are deferred to §6.
We now consider a situation similar to the one above, but where we

decompose M across fibers in a nice way. Specifically, let G act on Sι

via some group homomorphism G —• Sι, and let M = M1 x Sι with
the product G-action, where M1 is any G-manifold; let π:M —• M1

be the projection. Let Sι = (G/H x /) Ud (G/H x I) as a G-space,
where G/H is cyclic, and let Mx = M2 = Mf x (G/H x I) be the
corresponding submanifolds of M, so that M = M\ UM2 . As before,
let B = dM\ Π dM\ and let N be a codimension-zero submanifold
of dM. One again has restriction maps

p: L(M 9N\X)-> L{MX, (Mx Π N) U B X),

r: ̂ (Af ,N;X)-+ &(MX, (MxnN)UB; X),

and

i?:Γ(M, iV; X)

LEMMA 4.2. W7ίΛ Mx and M2 as above, and ignoring the configu-
ration space models, the conclusions (a), (b) and (c) of Lemma 4.1 are
true.

We next consider G-manifolds of the form M — DV x I with
N = N'xl, where N' is a codimension-zero submanifold of SV. In
this case the restriction we consider takes the form

9 N\X)-> L(N; ΣX).

p is defined by

, . . . , xn e] = K i , . -. , ξn [^i, ί i ] , . . , [xn,

where ίz = 0 unless i// is within ε of TV, in which case & is the radial
projection of z// into iV, and tj = rf(^/, iV)/e (here the suspensions
coordinates run from 0 to 1). We can also describe a map

r:&(M9 N; X) -> &(N\ ΣX)

by essentially the same formula

r[vx ,...9vn\xX9...9xn\έ\

= [ξ\,.--,ζn\[X\,tX]9...9[Xn9tn]\ e/2].

Dividing ε by 2 insures, by elementary geometry, that the resulting
cylinders do not overlap.
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Finally, there is a restriction

R:Γ(M9N\X)-+Γ(N'9ΣX).

For this, notice that τM\N = τN Θ R, so jF(τAf|ΛΓ) = F(τN) Λ^ Sι

and F(τM\N) A,?-X = F(τx)/\$r ΣX. i? is simply given by restriction
to N.

LEMMA 4.3. (a) With M = DV x I and N as above, the map

, N; X) -> L{N\ ΣX)

is a G-quasifibration with fiber F = J5?(M; X). With M = DV, and
N a codίmension-zero submanifold of SV, the corresponding state-
ment is true with 2? replaced by & and L replaced by C.

(b) The sequence

&(M; X)±>&(M, N; X) -^^{N\ ΣX)

is a weak G-fibration sequence, as is the corresponding sequence for &.
(c) The analogous map for Γ is afibration, and the map a induces

a map of fiber sequences, as in the previous lemmas.

For the next lemma, we again consider M — DV x / , but now let
N = DVx{-l}uN'xIuN" where N' c SV and N" c DVx 1 are
codimension-zero submanifolds. We have a restriction

p:L(M, N; X) -» C(DV, N' ΣX)

given by

, . . . , vn\ xu . . . , xn]

where it is now more convenient to think of the suspension coordinates
as running from - 1 to 1. We can define a map 2f[M, N\ X) —•
? ( D K , Λ̂ ; ΣJΓ) in the same way, except that we also remember ε.
Finally, there is an analog for the spaces of sections, defined as before
Lemma 4.3.

LEMMA 4.4. With M = DV x I and N as above, the map

p:L(M, N; X) -• C(DV, N' ΣX)
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is a G-quasifibration with fiber F = L(M, N' x I U N" X). If we
replace L with & and C with Ψ we obtain a weak G-fibration se-
quence. The corresponding sequence for Γ is a G-fibration, and a
induces a map of G-fiber sequences.

The next inductive sequence is essentially a variant of the main in-
ductive sequence in [CW2]. As in the proof of Theorem 2.1, if K c G
we denote the Λ -̂fixed subspace of L(M, N; X) by LK(M 9N\X),
and similarly for -S*(Λf, N; X). If & is a collection of subgroups
of G closed under conjugacy, define subspaces LG(M, N; X)$r c
LG(M, N; X) and &G{M 9 N; X)? C &G(M, N; X) by consider-
ing only PL-arcs of orbit type in y , i.e., the vι appearing as factors
have (Sty] G &. As in Theorem 2.1, we have

LG(M,N;X){H).

In particular, if S?{ c 3^ are two families (that is, collections closed
under subconjugacy), with &ί—&\ consisting of the single conjugacy
class (H), then we have a product bundle sequence

(4.5) LG(M, N X)^^ LG(M, N; X)^ - ^ LG(M, N; X\H).

Note further that LG(M, N; X)(H) is homeomorphic to

where 7// denotes YH - \JKDH YK . Recall that, if ίF is a regular

neighorhood of \JKDH YK , we denote M H - J^ by M//, and that

WH acts freely on MH and Λ///. There is a sequence analogous to
(4.5) using S* instead of L:

(4.6) &G(M9 N; X)^^J?G(M, TV; X)^ -*-+&G{M9 N; X){H).

In a similar vein, let ΓG(M, N; X)&- denote the space of sections σ e
TG(M, JV; X) (the space of G-invariant sections) such that σ(m) = *
unless m has orbit type in SF. We have a sequence

Γ G (M, TV; X ) ^ Λ ΓG(M9 N; X)^

where π is given by restriction to fixed sets. It is not difficult to see
that the space TNH(MH, NH \ XH)(H) is G-homotopy equivalent to
TιvH(MH, NH XH) via the map induced by inclusion. Further, the
simple argument in [CW2; Theorem 2.4] applies to show the following
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LEMMA 4.8. The sequence (4.6) is equivalent to (4.5), and the se-
quence (4.7) is a fiber sequence. Further, the maps a take the sequence
(4.6) into the sequence (4.7) via a homotopy commutative diagram of
maps. The corresponding statements are also true when 3* and L are
replaced by & and C.

Proof. The only part that needs comment is the fact that π maps
onto ΓNH(MH, NH

 XH)(H) \ this is true for dimensional reasons, as
in previous lemmas. D

5. Proof of Proposition 3.3. We first prove the case for Ψ (part (b)),
and then use this to prove the case for S? (part (a)). Both steps will
proceed by induction on the dimension n of M.

Part (b). The map a:^(M, TV; X) -+ Γ(Λ/, TV; X) is a G-equiv-
alence if each XH is connected.

The start of the induction is the case n = 0 which is trivial. The
inductive step proceeds by a consideration of various cases. Let n >
1.

Case 1. M = GxDn , vv/zere G αcte trivially on the disc Dn , N = 0 .
This easily reduces to the nonequivariant case. Indeed, if // c G,

then g//(Λ/ X) = Π # \ G ^ Φ " X), and similarly for the correspond-
ing space of sections, with the map a respecting the product struc-
tures. The result follows from the nonequivariant case, with M = Dn ,
proved in [Ml], since the map a and the approximating map de-
scribed by May are homotopic.

Alternatively, let K be a disc in the boundary of Dn . Then we can
use the following sequence from Lemma 4.3:

X) -• &(M ,GxK;X)-+ ^{G x K ΣX).

Applying a to compare this with the correspondence sequence of sec-
tions, we see that the total spaces are contractible and the base spaces
are equivalent by induction, so the fibers are equivalent.

Case Γ . M = GxDn , N arbitrary.
This follows from the fibration sequence of Lemma 4.3:

X) -> &(M, N; X) — W{N\ ΣX).

a is an equivalence on the fibers by Case 1, and on the base spaces
by induction.

Case!. M a free G-manifold of dimension n, N arbitrary.
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The result here is obtain by using a G-handlebody decomposition of
M. The handlebodies will be of the form Gx Dn , and the reduction
to the case of a single G-handle proceeds by induction on the number
of handles using Lemma 4.1. For the case of a single G-handlebody,
we appeal to Case 1'.

Case 3. dim V = n , M = DV, N arbitrary.
Here, we use Lemma 4.8 and induction on families, starting with

the family {e} and successively adding conjugacy classes of minimal
subgroups not yet in the family. At each step the approximating map
is a weak equivalence on base spaces by Case 2.

Case 4. M and N arbitrary.
Take a (/-handlebody decomposition of M , where the resulting

handles have the form G x# DV. Lemma 4.1 and induction on the
number of handles reduces us to proving that a is an equivalence on
these handles, and this follows from Case 3.

Part (a). The map a:&{M, N; X) -> Γ(Af, N; X) is a G-equiv-
alence.

The start of the induction, n = 1, requires some argument. If
M — G/H x / and N = 0 , then we use the sequence of Lemma 4.4:

&(M X) -> &{M, G/H x O I ) ^ &(G/H ΣX).

Comparing this to the corresponding sequence of sections, we see that
the total spaces are contractible and the base spaces are equivalent,
hence the fibers are equivalent. If instead N — G/H x {0, 1}, then
we use the sequence

-2"(Af, G/H xO I ) - ^ ̂ ( M , N; X) -> Ψ{G/H\ ΣX).

The other possibilities for N are trivial. The remaining case is M =
G XH Sι, where H acts by rotations on Sι (recall that the action
of G must preserve the chosen direction along Sι). In this case,
examination of the possible fixed-point sets shows that we can reduce
to considering G acting on Sι, and then we use Lemma 4.2 to reduce
to the cases above.

We now consider various cases as in the proof of part (b). Let
n>\.

Case 1. M = GxDn-{ x / , N = 0.
As in part (b), this is easily reduced to the nonequivariant case with

M = Dn~ι x / , and is then a variant of the result in [CW1]. To
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deduce it in this case, we use Lemma 4.4, with M = Dn~ι x / , and
N = Dn~ι x {0} . In the resulting diagram of quasifibrations the map
on base spaces is a weak equivalence by part (b), and both total spaces
are contractible, so the map on fibers is a weak equivalence.

Case Γ . M = Gx Dn~ι x / , N arbitrary.
Use Lemma 4.4 twice if necessary, and part (b), to reduce to the

case N = Nf x I. Then use Lemma 4.3 and induction to reduce to
Case 1.

Case 2. M = M1 x / , with M' a free G-manifold of dimension
n — 1, N arbitrary.

The result here is obtained by using a handlebody decomposition of
M' lifting such a decomposition to one of M gives G-handles of the
form G x Dn~x x / . The reduction to the case of a single G-handle
proceeds by induction using Lemma 4.1 as in part (b), and for the
case of a single G-handlebody, we appeal to Case V.

Case. 3. dim V = n - 1, M = DV x / , N arbitrary.
As in Case 3 of part (b), we use Lemma 4.8 and induction on fami-

lies. At each step the approximating map is again a weak equivalence
on base spaces by Case 2.

Case. 4. M and N arbitrary.
Take a G-handlebody decomposition of M', then lift to a decom-

position of M. The resulting handles have the form GXH DV x Y.
Lemma 4.1 and induction on the number of handles reduces us to
proving that a is an equivalence on these handles. We can use Lemma
4.2 to further reduce to the case where Y = I, and this follows from
Case 3. D

6. Proofs of some lemmas. Here we supply the technical proofs
of Lemmas 3.1, and 4.1-4.4. All proofs in this section will use the
Dold-Thom criterion [DT] for quasifibrations, in the form given by
May [Ml], which is this. Let p:E —• B be a G-map which we wish
to show is a quasifibration. If K c G9 call a subspace V of Bκ

distinguished if the restriction pκ\(pκ)~ι(V) is a quasifibration. The
criterion implies that pκ is a quasifibration if one is given a filtration

of Bκ such that:

(i) every open subset of C/z - C//_i is distinguished.
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(ii) there is a deformation h of a neighborhood U of £//_i in £//
and a covering homotopy H:(pκ)~ι(U) -» (pκ)~ι(U) such
that:

(1) /*o is the identity and hχ{U) c t//_i
(2) //Ό is the identity and for all t, pκHt = htp

κ

(3) for all z e [/, the map //1:(/7^)-1(z) -+ ( p * ) - 1 ^ ^ ) ) is a
homotopy equivalence.

In applying the criterion, we shall supply invariant nitrations and
equivariant deformations which will restrict to the above data on fixed
sets.

Before proving Lemma 3.1, we describe deformations of the space
PL(7, Sx) of PL-maps from a fiber Y of π:M -> M' to Sι. Let
p e [0, 1), and let Δp:S

ι —> S 1 be the piecewise linear map induced
by the map

{ - 1 ift<-l+p;

ί/(l -/?) i f — l - h p < ί < l — / ? ;

+ 1 if ί > 1 - p,
on / . Composition with Ap defines a deformation dp on the space
PL(F, Sι) preserving closure. Note that if / e PL(Γ, Sι) has the
property that f(Y) c (1 -/?, 1]U[-1, - 1 + p), then ^ maps / into
the basepoint.

Proof of Lemma 3.1. For part (a), we consider the projection
p:£f(M, TV; X) -• L(M, TV; X). To prove the result it suffices to
show that p is a quasifibration with contractible fibers. That the fibers
of p are contractible is clear. The hard work comes in showing the
quasifibration property. Roughly, we filter the base space by counting
the number of fibers Y on which PL-arcs are defined. On the com-
plement of one filtration in the next, it is clear that p restricts to a
quasifibration. On the other hand, near points in the lower filtration,
we show that it is possible to lower filtration through a deformation
using parallel transport of arcs and deformations to degenerate points.

Precisely, the invariant filtration {£//} of L(M, N; X) we use in
applying the Dold-Thom criterion is given by taking an element
[v\, . . . , vn x\, . . . , xn] to be in U\ if the number of distinct points
i n {[^i] 5 9 [vn]} C Mr is < /. If V is an open subspace of (7/ -
C//-1, define σ: V -+ R by

.. . , vn xι, . . . , xn] =
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where the metric d is taken in M1. The map σ is continuous and
positive. We show that V is distinguished by showing that p\p~~ι(V)
is fiber homotopy equivalent to the identity fibration on V. Indeed,
define ψ:V->p~ι(V) by

ψ[vx, . . . , vn xι,... , xn] = ([vι, . . . , vn χι,... , χn], ε),

where ε = min{σ|>i, . . . , vn X\, . . . , xn], εo} The composite poψ
is the identity, while ψop is easily seen to be homotopic to the identity
through a map over V, showing the claim.

For the second requirement of the Dold-Thom criterion we show
that the pairs (£//, C//_i) are equivariant NDR pairs, and that the
associated homotopies lift to the total space level. With C/ denoting
/-fold configuration space, denote the subspace (M')l-Ci{M') c (M'y
by Δ, so that Δ is a stratified GxΣ/-submanifold of (M')1. It follows
that there exists a GxΣ/-homotopy / on {M')1 with J\A the identity,
Jo the identity on {M')1 and, for each t Φ 0, Jt restricting to a
retraction Wt —• Δ for some neighborhood Wt of Δ. Using parallel
transport normal to the fibers we lift the homotopy / to obtain an
equivariant homotopy / on Arc(Λf)' with JQ the identity and /
constant over Δ.

Since X has a nondegenerate basepoint, there is a G-map g: X —>
[0, 1] with g~ι(0) = *. Let / : Arc(M)/ c Γ - ^ 1 be given by

f((ι/j), (xj)) = min{min; diam(Im^ ), miny g(Xj)}.

With L(M, N)(i) c Arc(Af)/ as above, £/,- is a quotient of
L(M, N)(i)xXι. Define a G-map R:L(M, N){i)xXι -+ Arc(Mγ x
JΓ1" by

Recalling the map dp above, let DP:L(M, N)(i) -» L(M, iV)(/) (or
Z)^: Arc(Af)7 —̂  Arc(Af)') be the map obtained by applying dp to each
arc. Recalling the definition of N\ before Theorem 1.2, let Ef:Mf x
/ —• M' be a G-deformation which takes a neighborhood of π(ΛΓ

1)
into π(N\). Then £"' induces a corresponding deformation E on
Arc(M). Also, let B: X x / —• X be a based G-homotopy which
contracts a neighborhood of the basepoint. Now take

S:L(M, N)(i) x X[ -• Arc(Λf)1' x Z1"

as the composite R o (E\ x 1) o (D 1 / 2 x ί j ) . Let Wj c Arc(Λf)z x
X ; consist of all points in L(M, iV)(/) x Xz which map into £//
under the identification map υ. Then the restriction of υ o 5 to
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S~ι(Wi_\) factors continuously and equivariantly through the quo-
tient Q = S~ι(Wi-ι)/& c C/, . We claim that Q is an invariant
neighborhood of C//_i. Indeed, points p = [(VJ)9 (Xj)] close to, but
not in, £//_i possess one or more of the following features:

(a) One of the Vj is close to the trivial PL-arc;
(b) One of the Xj is close to the basepoint;
(c) One of the supp v\ is close to N
(d) There exist / and j so that i// and uj are close to disjoint arcs

on the same fiber. Thus in R(p), the /th and j th arcs ωz and ω7

will have supports that overlap only at points that they map close to
the basepoint.

In all these cases, the map (E[ x 1) o (D1 / 2 x B[) brings p into
R~~ι(Wj-ι)9 showing the assertion. A G-homotopy h from the iden-
tity on Q to S:Q —• C/, _i is given for parameter values of t in
[0, 1/3] by homotoping the identity to (D\β x B\) by means of the
given homotopies on the factors, by (Ei x 1) on [1/3, 2/3], and for
t e [2/3, 1] by applying the homotopy J.

We now describe a G-lift H of the restriction of h to a subspace
of the form V x /, where V is an invariant open subspace of Q
containing U^i. First define H'\p"ι{Q) x / -> L(M, A ^ ; I ) x l b y
the formula

mi \ rv ί (A(PW.0,β( l-3 ί/2)) if/< 1/3;
U ' M ; ~ l ( A ( p ( * ) , ί ) , e / 2 ) if ί > 1/3.

It remains to show that there exists a neighborhood V as above with
the restriction of H' to V taking values in J?(M, N\ X). Since
H' covers the deformation Dt:id ~ Z>1/2 during the first third of
the homotopy, and Dt does not decrease distances between supports,
one can take V = Q for this part. After this stage, distances be-
tween arcs may shrink to half their original values without leaving
-2%Λ/, N\X). Thus it is sufficient to observe that there is a neigh-
borhood Vx of each point x e ί/, _i over which the deformation H'
does not force cylinders of 1/2 the original radius to overlap. Indeed
we can choose Vx so that arc supports are moved at most a distance
that is small compared with the distances apart of arcs in x. Since
in addition H1 kills arcs of types (a), (b) and (c) above, there is no
problem for pairs of arcs in an element of Vx that do not merge to
a single fiber under H'. If, on the other hand, v and μ are dis-
joint PL-arcs sufficiently close to a pair of disjoint arcs on the same
fiber, then they will be carried under the second third of h to a pair
of arcs whose supports have disjoint closures under parallel transport
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and whose cylinders will not overlap at any stage of the homotopy.
Since the fibers are contractible, these lifts are automatically fiberwise
equivalences, showing the quasifibration property.

Turning to the proof of part (b) (for configuration space models),
one filters the base space by counting the number of points in a con-
figuration. Since there is no possibility of nearby points merging into
a single point, there is no need for a deformation onto Δ, and we can
easily adapt the remaining arguments to this case. (A detailed proof
in fact appears in [H].) D

Proof of Lemma 4.1. We deal with the more difficult case of PL-
arc models, the case of configuration space models being similar but
far simpler (and is in any case proved in [H]). In order to prove part
(a) we again use the Dold-Thom criterion for quasifibrations, with
the same filtration as in the proof of Lemma 3.1. Thus let U^ c
L[M\, (M\ Γ\N)uB; X) consist of those collections of arcs involving
at most k fibers. If V is an open subset of U^ - U^-i, then with
F = L(M2 ,C;X), define a map

t:VxF->p'l(V)

over V by the formula

t{\β\ ,...,μn χ\,..., *n], [v\,..., vm y\,..., ym])

= [μx, ... , μn, vx, . . . , vm xx, . . . , xn , yx, . . . , ym],

where none of the μf lie in B. We now claim that t is an equivariant
fiber homotopy equivalence, allowing us to conclude that V is distin-
guished. To define a G-homotopy inverse s:p~ι(V) —• V x F, first
choose a collar of B in M2 diffeomorphic to B x [0, 1), and use this
to define a diffeomorphism φ:M2 - B x [0, 1/2) —• M2 isotopic to
the identity. If [μ{ , . . . , / / „ , vx, . . . , vm xx, . . . , xn , y{, . . . , ym] e
P~X{V) 9 with the arcs /// in M\— B, and Vj in M2, let

s[μx, . . . , μn , v\, . . . , vm xx, . . . , xn , yx, . . . , ym]

= ([μΪ9 ...9μn;xι,...9xn],

5 is continuous because V c U^ - Ufc_x. It is easy to see that sot
and /o5 are homotopic to the respective identities over V.

To show the neighborhood deformation property, the main point
of the argument is that we can take PL-arcs in Mx that are close
to B, and deform them through B and into M2 on the total space
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level, following this below in the base space. We use this procedure to
lower filtration, along with the expected deformations near degenerate
elements.

Precisely, choose a bicollar B x [-1, 1] c M with B x [-1, 0] c
Mλ . Let Δ c {M[)k be the union of the complement of the /c-fold
configuration space and the space of /c-tuples with at least one point
in B x [-1, 0]. Since Δ is a stratified submanifold there exists a
G x Σ^-homotopy / on (M[)k such that JQ is the identity, / |Δ is
constant, and for each tφ 0, Jt restricts to a retraction Wt -» Δ for
some neighborhood JVt of Δ. Using parallel transport, lift / to a
G x Σ^-homotopy J on Arc(M1)

/c, so that JQ is the identity, and
/ is constant over Δ. Using this / , we proceed as in the proof of
Lemma 3.1 to define a map

S:L{MU (MιΓ\N)\jB)(k)xXk ->Arc(Afi)* xX k

Further, choose an order preserving diίfeomorphism ( - 1 , 1) —• ( - 1 , 1)
taking (0, 1/2) to (-1/2, 1/2). Using the bicollar 5 x ( - l , 1), this
gives a diίfeomorphism ψ\M —• M isotopic to the identity. Restrict-
ing ψ to Mx gives a map ψ*\A.xc(M\) —> Arc(Afi). Finally, as in
Lemma 3.1, we can see that (ψ*)koS induces a map Q —> Όk-\, where
Q c Uk is an invariant neighborhood of Uk_{, and a G-homotopy h
from the identity on Q to this map, through maps into U^ .

h lifts to p~ι(Q) by an analogous construction: We extend / to
Arc(M)k by making it constant when at least one arc is in Mi, then
extend to Arc(M)/: x Arc(M2)/, / > 0, by making it the identity on
the second factor. Using the full definition of ψ then gives us the
desired lift of h to a homotopy H on p~ι(Q).

It remains to check that H\ is a homotopy equivalence on each
fiber. Fix a point z = [ (^) , (xz)] in Uk. The map H\\p~~ι(z) ->
p~ι(h[(z)) can be described as translation by a fixed configuration
Λ of arcs. Precisely, it is given by pushing a given collection of arcs
in Mi away from B (using ψ) and introducing Λ near B, these
being the arcs from z pushed across B by ψ. A homotopy inverse
to H\ is specified by first pushing away from B and then introducing
the inverses of the arcs in Λ near B in the same position as those
in Λ itself. Using any choice of homotopies cancelling the arcs in Λ
with their inverses, it is easy to see that the map just described is a
homotopy inverse to H\ .
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To show part (b) for the PL-arc case, consider the following dia-
gram:

<\ 1
S?{M, N X)

Ί
,(MιΠN)L)B;X)

1
^L(M,N; X)

UnN)uB• X).

The spaces F(r) and i^/p) are the homotopy fibers of r and p. As
a basepoint in L(M\, (Λfj Γ)N)UB X) we use the empty collection of
arcs; in J?(M\, (Mi n iV) U i? X) we use the empty collection paired
with some fixed ε\. The middle two squares of the diagram obviously
commute, and by Lemma 3.1 the three horizontal maps are all weak
(/-equivalences. To define the map &(Mι, C; X) —• F(r), we need
only specify a homotopy from roi to a map constant at the basepoint;
since the image of ro / is contained in the set {(0, e)|e £ (0, εo]}, we
take a homotopy that simply contracts this set to the chosen basepoint
in the obvious way. Writing down the maps explicitly, it is easy to see
that the very topmost square of the diagram also commutes. Since,
by part (a), the map L(M2, C X) —> F(p) is a weak G-equivalence,
we can now conclude that ^(Mi, C; X) —> F{r) is also a weak in-
equivalence.

Finally, to show part (c), it is easy to see that R satisfies the
homotopy-lifting property. Moreover, R maps onto every com-
ponent and the fibers over distinct components are equivalent to
Γ(M2, C X), because, for dimensional reasons, every section over
B is homotopic to a trivial section. That the diagram in (c) com-
mutes is obvious. D

Proof of Lemma 4.2. Here, for the Dold-Thom criterion, we use a
new filtration. Roughly speaking, this measures the total number of
"zigs and zags" comprising the PL-arcs. Precisely, if v is an indecom-
posable PL-arc, let λ{y) be the number of linear segments in v with
non-trivial slope. Now let £// c L(M\, (M\ Π N) U B X) consist of
all [{vj)\ (Xj)] with each uj indecomposable and Σ 7 λ(z/7 ) < /.

The idea of the proof that p is a quasifibration is now this: In
the complement of C//_i in C/, we can show that p is equivalent to
a trivial fibration, by extending arcs defined only on M\ to closed
arcs defined on M, using the "addition of tails" construction detailed
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below to obtain closed arcs. The deformation of a neighborhood of
C//_i in Ui into C/£ _i is then constructed combining the ways in
which arcs can deform in such a way as to lower the number of "zigs
and zags," with the usual deformations to singularities. This can be
followed in the total space level after providing enough extra "tail"
to arcs in M\ so that no nontrivial line segment need ever become
horizontal.

Fix any ί e ( 0 , 1/2) and let M[ = M' x (G/H x [-1 - δ, 1 + δ]),
considered as a submanifold of M containing M\. If v is a PL-arc
in M\, we describe an extension τ{y) of v to a closed arc in M\ by
means of the following "addition of tails" construction. Let y e Y
be an endpoint of Y. If v(y) = e we extend v by means of the
trivial tail in this direction. Otherwise, let s be the linear segment
of v whose domain contains y, and let s(y) = w. If s has slope
m, extend v by adding a segment of slope sgn(m)2/δ beginning at
(y9w) and ending when it first hits the basepoint. τ is continuous
in Ui-Ui-x.

With V an open subset of Ut - J7/_i and F = L(M29 C X),
define

r:VxF->p~l(V)

over V by the formula

r([μχ, ... , μn

m,X\, ... , X n ] , [ v \ > •-- > V m , y \ , ... , ym])

, . . . , τ ( μ n ) , v i o φ , ... , v m o φ ;

where φ maps each fiber G/H x / to itself by the formula

(gH,t/(l

(gH9-l)

( * , ) if ί > l - Λ

To define a map s: p~ι(V) -> F x i 7 , we need another tail construc-
tion: Suppose given an arc v in M. Let ẑ  and 1/2 be the restrictions
of v to Λfj and Af2 respectively. Let σ{v) be the closed arc in M2
defined by composing u2 with φ above, and then adding tails on ei-
ther end which are the opposites of the tails we would add to form
τ(v\). Precisely, these tails start at e at the endpoints, are constant
for a time, then proceed with slopes the negatives of those used in
forming τ{ι/\) until they connect with u2oφ . σ is then a continuous
map p~ι(V) —• F . Combining with the projection p gives s. In-
specting the composites ros and sor, it is not hard to see that both
are homotopy equivalences on fibers.
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Now we describe a deformation of a neighborhood of £//_i in ί/,-
into t//_i. Let L/ be the space of (2/ + l)-tuρles of linear segments
defined on subintervals of fibers of M\. This is a G x Σ/-space. An
element of this space is admissible if the supports of the segments are
mutually disjoint, and they assemble together to give a collection {v{)
of PL-arcs with Σjλ(yj) < i. The subspace A( of admissible /-tuples
is a G x Σ -invariant subspace, and is a stratified G x Σ/-manifold. An
element of A\ is degenerate if Σjλ{vj) < i; the subspace D[ of
the degenerate elements is a stratified G x Σ/-submanifold, and hence
an equivariant strong neighborhood deformation retract of At. Let
K: Wx x I -> Wibe a strong deformation of a neighborhood of Z), into
Z), , so that #|W^ x [0, /] is a strong deformation of a neighborhood
of D; into Di for all ί.

Now, Ui is the surjective image of a certain subspace A\ C ̂ 4/ x
X2ι+X, where there are restrictions on the allowed JSΓ-coordinates, and
where A\ is a G x Σ/-subspace.

As in Lemma 3.1, since X has a nondegenerate basepoint, there
is a continuous G-equivariant function g:X —> [0, 1] such #(*) = 0
and ^(x) ̂  0 if x ^ *. Let / : Aι x X2i+X -+ R be given by

if fewer than / Vj are nonconstant

\{g(Xj): Vj is nonconstant} otherwise.

Although this function is not continuous, the function

is continuous, because K is constant on Di.
Let B and E be as in the proof of Lemma 3.1. Let the homotopy

be constant on [0, 1/3]; {E2i+λ x \)o(Ds x (B2s)
2M) on [1/3,2/3],

where s = 3(t- l/3)/2; and i? 5o(2) 1 / 2x( Jβ 1) 2 /+ 1) on [2/3, 1], where

Let Vj c A[ x X 2 / + 1 consist of all points in A\ that map into th-
under the identification map, which we call υ. The restriction of
v o S to Sf^ί^-i) factors continuously and equivariantly through
the quotient Q = Srj"1(J^ . i ) / « c C//- We claim that there is an
invariant neighborhood of V^\ contained in S~l(Vi-\) on which
S is a deformation taking values in A!i. In fact, the only thing that
would take us out of A\ is if two arcs on the same fiber indexed by two
different points of X were to be merged together by R. However, if
we have a point in the lower filtration V^\, there is a neighborhood
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T of the point in A\ in which the slopes of all line segments are
bounded. After the deformation Ds, we can conclude that there is
a nonzero lower bound on the distance between arcs on the same
fiber labeled with different points in X. Passing to a possibly smaller
neighborhood, we can also assume that no arc is moved more than
half this distance. Thus, the neighborhood T will be carried into A\
throughout the homotopy. The union of such neighborhoods over all
the points of F/_i is the neighborhood of Vχ-\ that we want. This
in turn gives a neighborhood of £//_i in [// and a deformation h of
this neighborhood into t//_i.

To lift this homotopy to a homotopy H on a neighborhood of
p-ι(Ui-i) C ρ~\Ui) c L(M9N\X) we do the following: Given
s e Sι, let ws be the arc on [0, δ] that starts at s, winds exactly once
around Sι in the positive direction, then winds around once the other
way, to end at s. There is then a deformation F of L(M, N; X)
that contracts the part of any arc in M2 using φ above, and in the
"gap" produced introduces the arc ws, where s is the value of the
arc at B. During the course of this deformation we introduce ws

in such a way that the slopes are never 0. F is the first third of the
deformation H, and clearly covers the first third of h . The remaining
part of H is given by deforming the parts of the arcs in M\ by the
homotopy h , and at the same time deforming the parts in M2 using
E. The arcs ws are modified by letting the endpoint in B move
according to h . Passing to a possibly smaller neighborhood of C//_i,
these endpoints will not wander far enough to force the large slope in
ws to 0. Thus H is well-defined, and covers h . Further, on any fiber
the action of H\ is translation by a fixed collection of arcs, so is a
homotopy equivalence.

The proofs of parts (b) and (c) are identical to the proofs given in
Lemma 4.1. D

Proof of Lemma 4.3. Again we shall concentrate on the case of the
PL-arc models, leaving the simpler configuration-space models. We
may assume that the number ε0

 u s e d in defining & is smaller than
1/2. We use the same filtration as in the proof of Lemma 3.1; £// is
the space of arcs involving / or fewer fibers in M.

To show that p is a quasifibration, we will do the following: In the
complement of £/,_ 1 in C/z, it is easy to see that p is equivalent to
a trivial bundle by pushing arcs inwards from N. To construct the
deformation of a neighborhood of C//_i into C//_i, we use the same
deformation that we used in proving Lemma 3.1. With a bit of care
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we see that we can follow this homotopy on the total space level by
separating the arcs that are close to N from those further away.

Let V be an invariant open subspace of [// - C//_i and define
σ: V —• R as in Lemma 3.1. Choose an equivariant diίfeomorphism
γ:M -> M u (SV x / x [0, ε0]), where SV x I x {ε0} is identified
with part of d M in the obvious way. We can choose γ so that
d(y(x), y{y)) < 2d(x9 y). If ^ is an arc in TV and 0 < t < 8Q,
let γ(v, t) be the arc in M given by considering the corresponding
arc in SV x I x [0, 8Q] on the fiber (|>], /), and then using γ to
consider this as an arc in M. Define ψ:V x F —+ p~ι(V) by

- , [*n, tn]]> [01, . . .

K > t n e ' ) 9 μ \ γ 9 ... ,

where ε' = min{σ[z/i, ... , vn; x\, ... , xn]/2, e/2}. A G-fiber ho-
motopy inverse to ψ is given by the product of projection to V and
the map ρ~ι{V) —> F given by taking those arcs whose ε-cylinders
do not meet N . This is continuous because K c [/,• - £//_ i .

We take as a (/-deformation h:Q x I —> Q of a neighborhood of
ί//_i in [// into C//_i the homotopy that is constant on [0, 1/2], and
on [1/2, 1] is the homotopy constructed in the proof of Lemma 3.1,
done at twice the speed. We describe a G-lift H of the restriction
of h to a subspace of the form V x I, where V is an invariant
open subspace of Q containing C//_i. First define H':p~ι(Q) x I'—>
L(M, N; X) x R as follows: A typical element of p~ι(Q) can be
written as (x, y, ε), where x is a configuration of arcs whose ε-
cylinders meet N, and y is a configuration of arcs whose ε-cylinders
do not meet N. Let yt be a homotopy from y0 = id to yi = y. Then
H' is given by

if ί < 1/2;

if f > 1/2.

By the same reasoning as in the proof of Lemma 3.1, this gives the
homotopy H over a possibly smaller neighborhood of C/, _ i . On any
fiber H is given by translation by a fixed configuration of arcs, so is
a homotopy equivalence.
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Part (b) follows because the diagram

—>L{N,ΣX)

commutes, which allows us to form a diagram analogous to the one
we used in the proof of Lemma 4.1, so that we may use the same
argument that we used there.

Finally, part (c) follows for the same reasons as in the previous
lemmas. D

Proof of Lemma 4.4. Start by filtering C(DV, N' ΣX) in the obvi-
ous way: £// consists of configurations with at most / points. Choose
a δ e (0, 1/2), and define φ:I -» / by the formula

f -
= \ -

Let V c Uι• - Ui-1 be an open set and define

r.VxF -+ p-{{V)

by

r ( [ v x , ... , υ n ; [ x x , t χ ] , ... , [ x m , t m ] ] , [ v x , ... , v n y { , ... , yn])

= [ τ { v ι , t ι ) , ... , τ ( υ m , t m ) , v x φ , ... , v n φ \

X\ , ••• , X m , y \ , ••• > y n ]

Here, τ(v, t) is the arc in M defined on the fiber v x I, and having

I 1 otherwise.

We define s:p~ι(V) —• V x F as the product of projection to V
and the map σ: p~ι(V) —• F defined by composing arcs with φ and
adding tails opposite to the tails τ above (cf. Lemma 4.2). It is now
easy to see that r o s and s o r are homotopy equivalences on fibers.

We can deform a neighborhood of t//_i into £/,_i by a homotopy
h that is constant on its first third, on its second third deforms a
neighborhood of N; into N', and on its last third deforms a neigh-
borhood of the basepoint in ΣX to the basepoint. We can lift this
to a deformation H that in its first third uses φ to deform the arcs,
while adding the arcs ws used in Lemma 4.2; on its second part it
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deforms a neighborhood of N' x / into Nf x / , and on its last third
follows the deformation h on the - 1 endpoints of the arcs, much as
in Lemma 4.2. It is not hard to see that on fibers H is a homotopy
equivalence.

The last statements of the lemma follow in the usual way. D
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