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ON SOME TOTALLY ERGODIC FUNCTIONS

WOJCIECH CHOJNACKI

Dedicated to Dagmara Klim and Nina Tomaszewska

We study some classes of totally ergodic functions on locally com-
pact Abelian groups. Among other things, we establish the following
result: If R is a locally compact commutative ring, 3ί is the additive
group of R, χ is a continuous character of 3$ , and p is the function
from 3ln (n e N) into 3% induced by a polynomial of n variables
with coefficients in R, then the function χ o p either is a trigono-
metric polynomial on 3ίn or all of its Fourier-Bohr coefficients with
respect to any Banach mean on L°°{^n) vanish.

1. Introduction. Let G be a locally compact Abelian group, XQ be
the Haar measure in G, and L°°(G) be the space of all classes of
complex-valued ^-measurable ^-essentially bounded functions on
G endowed with the /^-essential supremum norm.

A linear continuous functional m on L°°(G) is called a Banach
mean on L°°(G) if it satisfies the following conditions:

(i) m(l) = l = \\m\\9

(ii) m(Taf) = m(f) for each a e G and each / e L°°(G), where
Tafφ) = f(a + b) for any b e G.

When G is finite, there is precisely one Banach mean on L°°{G).
When G is infinite, then the set of all Banach means on L°°{G) has
at least the cardinality of the continuum (cf. [6, Propositions 22.26
and 22.41]).

Let G be the dual group of G. Given / e L°°(G), / eG, and a
Banach mean m on L°°(G), let ^mf{x) stand for the Fourier-Bohr
coefficient of / at χ with respect to m, defined to be m(fχ).

A function / in L°°(G) is said to be ergodic if its mean value m(f)
is independent of the choice of the Banach mean m on L°°{G). A
function / in L°°(G) is said to be totally ergodic if, for every / e G,
the function fχ is ergodic (cf. [7, 8]). Let E{G) be the space of
all ergodic functions in L°°(G), TE(G) be the space of all totally
ergodic functions in L°°(G), and TEQ(G) be the subspace of TE(G)
consisting of those / e L°°(G) for which ^mfix) = 0 for any χ eG
and any Banach mean m on L°°(G). Let P(G) be the space of all
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functions in L°°(G) which, to within modification on a λ^-null set,
are trigonometric polynomials on G. It is readily verified that

P{G) c TE{G)

and that
P(G) Π TE0(G) = {0}.

The chief aim of the present paper is to show that certain subsets
of L°°(G), determined by conditions formulated with use of some
coboundary operator, are contained in P(G)U TEQ(G) . One conse-
quence of the main result about those subsets reads as follows: If R is
a locally compact commutative ring, 31 is the additive group of R, χ
is an element of 31, and p is the function from 3ίn (n e N) into 31
induced by a polynomial of n variables with coefficients in R, then
the function χop is an element either of P(βn) or of TE§{βn).

2. Preliminaries. Given a set A, #A denotes the cardinality of A.
If A is subset of a larger set, then lA stands for the characteristic
function of A.

Given a eG and a subset A of G, let

a + A = {beG:b-aeA}.

A complex-valued function f on G with values of unit modulus
will be called unitary. A function in L°°(G) which, to within modi-
fication on a Λ,G-mill set, is unitary will be called almost unitary. We
denote by U(G) the set of all almost unitary functions in L°°(G)9

and write U0(G) for U(G)nP(G).
Let / be function in U(G). For each aeG, put

and, for any a\, . . . , an e G, set inductively

For each 1 < p < +oo, let LP(G) be the p th Lebesgue space based
on λG.

Given / € Lι(G), let &f denote the Fourier transform of / ,
defined by

= ί f{a){a, -χ)dλG(a) (χ e G)
JG

here (α, —/) stands for the value of the character —/ at α. Let σ(f)
denote the spectrum of / , that is, the support of
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If / G P(G) is A^-essentially equal to a trigonometric polynomial
Σχeό ax%>then t h e s e t ix e&: ax ¥"0} will also be denoted as σ(f)
and referred to as the spectrum of / .

For each n G N, let

= {feP(G):#σ(f)<n}

and

Un(G) = {fe U{G): δa...aJ e P(G) for a{, ... , an e G}.

For each m G N, let

and, for any n, m G N, let

C/ϋ.ifiίG) = { / € U(G): δar.aΛfePm(G) for au ... ,ane G}.

Given a probability triple (Ω, <%, P) and a σ-subalgebra sf of άS 9

we write E^ for the conditional expectation operator relative to sf .
For a subset ^ of a vector space, the linear span of A is denoted

by span A.
For a subset 4̂ of a set 5 with a topology, we denote by A the

closure of 4̂ in B.

3. A characterization of UQ(G) . In this section, we give a charac-
terization of the set UQ(G) for an arbitrary locally compact Abelian
group G. We start with the following.

PROPOSITION 3.1. Let G be a locally compact Abelian group such
that G is torsion-free. Then

Proof. Clearly, it suffices to show that U0(G) c t/0, \(G).
Let / be a function in UQ(G) and let Σ" = 1 α//, be the trigonomet-

ric polynomial on G A^-essentially equal to / , with σ{f) = {//: 1 <
i < n}. Suppose that n > 2. Let Γ be the subgroup of G gener-
ated by σ(f). Of course, Γ is countable and torsion-free. Hence there
exists a monomorphism h from Γ into the group of reals (cf. [9, The-
orem 8.1.2]). Changing, if necessary, the enumeration of the elements
of σ(f), we may assume that h{χ{) < h{χj) whenever 1 < / < j <n .
Since

h(XnXl) = KXn) ~ h(χι) > h{Xi) - h(Xj) = h{XiXj)
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whenever (i,j) φ (n9 1)(1 < i < n, 1 < j < ή), it follows that
the Fourier coefficient of Y%j=\ fyajXiXj at χnχ\ is equal to ana\.
Moreover, since

we see that χnχ\ is a non-trivial character of G. But

n

Σ
2

= 1,

so uniqueness of the Fourier expansion implies that ana\ = 0. This
contradiction shows that σ(f) is a singleton.

The proof is complete.

Passing to the characterization of UQ(G) in the general case, we first
show that the problem reduces to characterizing Uo(G) for a compact
Abelian group G such that the component of 0 in G (which is a
closed subgroup of G) has finite index.

With G an arbitrary locally compact Abelian group, let / be an
element of UQ(G) . Denote by (G)</ the group G furnished with
the discrete topology. Let Γ be the subgroup of (G)^ generated by
σ(f), Per(Γ) be the subgroup of Γ consisting of all elements of finite
order, and H be the component of 0 in Γ. Then the dual of T/H
coincides with Per(Γ) (cf. [5, Corollary 24.20]). Since Γ is finitely
generated, it follows that Per(Γ) is finite and hence H has finite
index. Let a be the canonical homomorphism from Γ into G. Then
the dual homomorphism a, defined by

(ά(g),χ) = (g,a(x)) (geG,χeΓ),

maps G onto a dense subgroup of f. Moreover, there exists a unique
p in Uo(Γ) such that f = poά. Thus it is clear that the passage from
f to p yields the desired reduction.

Now we may and do assume that G is a compact Abelian group such
that the component H of 0 in G has finite index. Let {αf: 1 < i < n}
be a subset of G such that the sets a\ + H (1 < / < ή) form the
collection of all cosets of H in G. We claim that

Uo(G) = {feτG: f{at + g) = ciXi(g) for g e H,

dET, XieH (I <i<n)},

where T denotes the circle group.
Indeed, if we let A denote the right-hand side set, the containment

of UQ(G) in A follows from Proposition 3.1 and the fact that the
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dual of a connected locally compact Abelian group is torsion-free (cf.
[5, Corollary 24.19]). Conversely, if / e A, then

span{Taf: a e G} c s p a n ^ / l ^ + # : l<i<n,l<j<n},

so span{7^: a e G} is finite dimensional, and hence / is a trigono-
metric polynomial on G (cf. [9, Theorem 7.8.3]). Thus A c U0(G)
and the claim follows.

4. The main results. The starting point of our main considerations
is the following.

THEOREM 4.1. Let G be a compact Abelian group. Then

Un(G) = U0(G)

for each n € N.

Proof. Clearly, it suffices to prove that Un(G) c U0(G) for each
« G N . A simple induction argument shows that in fact it suffices to
establish the containment of U\(G) in Uo(G).

Given / e U\{G), let Σ be the subgroup of G generated by σ ( / ) .
Clearly, Σ is countable. Let (σn)neN be a family of finite subsets of
Σ such that σn c σn+\ for each n e N, and

n=\

Given n e N, let

Fn = {aeG:σ(δaf)cσn}.

Each Fn is clearly closed. Since, for each a e G, σ(δaf) is a finite
subset of Σ, it follows that

oo

G=(jFn.

By Baire's theorem, there exist an open subset V of G and a positive
integer m such that V c Fm. By the compactness of G, there exists
a finite subset {α, : 1 < / < Λ:} of G such that

oo

G=\J(ai + V).
ι = l

For each a e G, if 1 < / < /c and v e V are such that <z = 0/ + v ,
then
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Thus

s p a n { Γ α / : a e G} c span{χTa f: χeσm,\<i<k}.

Consequently, span{ΓΛ/: a e G} is finite dimensional, and hence /
is in U0{G).

The proof is complete.

LEMMA 4.2. Let G be a compact Abelian group. Let f be an almost
unitary function in G, S be a dense subset of G, and n and m be
positive integers such that #σ(δSχ...s f)<m for any S\, . . . , sn e S.
Then feUo(G).

Proof. Suppose that for some a\, . . . , an e G, the spectrum of
δa a f contains m + 1 distinct elements χ\, . . . , χm+\. Then, in

1 n

view of the continuity of the functions

Gn 3 {bx, . . . , bn)^9-6hr.hJ{Xi) (1 < i < m+ 1)

and the denseness of S in G, there exist s\, . . . , sn e S such that

{/!,... ,χm+i}cσ(δar.snf),

a contradiction. Thus / e t/m,«(G), and hence, by the preceding
theorem, / e U0(G).

The proof is complete.

The next theorem is the main result of this section.

THEOREM 4.3. Let G be a locally compact Abelian group. Then

Un,m(G)cU0(G)UTE0(G)

for each n e N U {0} and each m e N.

Proof. We shall proceed by induction on n with m arbitrarily fixed.
The case n = 0 is obvious.
Assume the assertion for n-\. Suppose that f e Un,m(G)\TEo(G).

Then there exist χ € G and a Banach mean m on L°°{G) such that
gr

mf(χ) φ 0. Let h = fχ. Then, clearly, m(/z) ^ 0. Moreover, for
each a e G, δah e Un-\^m{G), and hence, by the inductive hypothe-
sis, either δah e C/QCG) or <JαA e TEQ(G) . Since, for each a eG,

δ-ah = T-aδJι

and, for any a, b eG,



TOTALLY ERGODIC FUNCTIONS 7

it follows that
G0 = {aeG:δaheU0(G)}

is a subgroup of G. We claim that the index of GQ is finite.
Suppose, on the contrary, that there exists an infinite subset {an\ n €

N} of G such that an-am g Go whenever nφm. Then, if nφm,
then δan-amh is in TE0(G), and hence

m{δa h δa h) = m{Ja δa -a h) = m(δa _α h) = 0.
n in in n in n in

We see that the image of {δah: n e N} by the canonical mapping
from L°°(G) onto the pre-Hilbert space

Hm(G) = L°°(G)/{f e L°°(G): m( |/ | 2 ) = 0}

is an orthonormal set. For each n e N, we have

m{h) = m(Γ^Λ) = w(Λ δah).

Thus the Fourier coefficients of the image of h in Hm(G) relative to
the image of {δajι\ n e N} in Hm(G) are equal to m(Λ), and hence,
by BesseΓs inequality, m{h) = 0. This contradiction establishes the
claim.

Let bG be the Bohr compactification of G and α: G ~*bG be the
canonical monomorphism from G into ^G. For each / e G, let χ be
the continuous character of bG such that ρ « = L As is known, the
Fourier transformation sets up a one-to-one correspondence between
L2(bG) and 12(G) (= L2((G),/)). Since by BesseΓs inequality, the
function

is in 12(G), there exists a unique element X in L2(bG) such that

(4.1) srχ{χ)^^mf{χ) (χed).

Since

it follows that for each aeGo, there exists a unique unitary trigono-
metric polynomial Pa on bG such that

(4.2) <5β/ = P α o α V a e.

If, for each a e Go, we let
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then, in view of (4.1), for each χ&G,

γeG

= Yiba
γeG

whence

(4.3) Ta(a)X =

Let {αz: 1 < k} be a subset of G such that the sets CLI + GQ (1 <
i <k) form the collection of all cosets of GQ in G. Since

A: k

bG D \J(a(ai) + a(G0)) D \J α(αf + Go) = bG9

i = l ι = l

the closures being taken in bG, it follows that the index of α(C?o) in
Z?G is no greater than k. Thus a(Go) is an open subgroup of bG and,
in particular, the Haar measure in a(Go) is, to within normalization,
the restriction to α((?o) of the Haar measure in bG.

Let {6/: 1 < j < 1} be a subset of {α,: 1 < / < k} such that the

sets a(bj) + α(Go) (1 < 7 < /) form the collection of all cosets of

α(Go) in bG. For each 1 < j < /, let X7 denote the restriction of

Taφ )X to a(Go). In view of (4.3), for each 1 < j < I and each

aeJG0,

Applying the Fourier transformation to both sides of the latter equal-

ity, we readily find that for 1 < j < /, \Xj\ is λ^y-essentially con-

stant. Choose 7o s o that

Xj φQ λ-77τT

Jo ~ a(G0)

and set
Y = \Xj \~ι

-a.e.

Xj.

For each a e Go, let i?α denote the restriction of Taib \Pa to α(G 0 ) .
V J0J

Since, by (4.3), for each aeG0,

(4.4) <5α(fl) Y = Ra λ-^ -a.e.,

it follows from Lemma 4.2 that Y e Uo(a(Go)). Hence in particular
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the set

Γ = {γ e (α((?o)Γ 7 = 7x72 for yx, γ2 e σ(Y)}

is finite.
Let (a(Go))1- be the annihilator of a(G0) in (bG)~, that is, the set

{γ e (bGΓ : (<*(a) , y) = 1 for α e Go}.

Being the dual of the quotient group bG/a(Go), the group (α(G!o))-L

is finite. Let π be the canonical homomorphism from (bG)* onto
(a(Go))*. Since the kernel of π coincides with (a(Go))1-, we see that
the set π" ! (Γ) is finite, and hence the set

Ξ={χeG: χ = γoa for γ e π

is also finite.
In view of (4.4), Γ contains the spectra of all the Ra {a € Go).

Consequently, π - 1 (Γ) contains the spectra of all the Taψ )Pa {a e
Go), and hence the spectra of all the Pa {a e Go). Now Eq. (4.2)
implies that

{Taf: α € Go} c span{χ/: χ e Ξ}

whence

[Taf: aeG}c sp3n{χTa/: χeΞ,l<i<k}.

We see that span{Γα/: a € G} is finite dimensional, and so / is in
Uo(G).

The proof is complete.

5. Applications. Let R be a locally compact commutative ring, 31
be the additive group of R, χ be an element of 31, and p be the
function from 3ίn (n e N) into 31 induced by a polynomial

{a = (αi, ... , an) e (N U {0})" , |α| = αi + + an)
\*\<k

of n variables with coefficients in R, of degree k. Then, of course,
χop is in Ukx(βn). Applying Theorem 4.3 to χ op , we obtain the
following.

T H E O R E M 5.1. The function χop is an element either of
orofTEQ{&»).

Let
(2) = {reR: r = st for s, teR}.
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THEOREM 5.2. Suppose that R = i? ( 2 ), that 31 is torsion-free, that
k is not less than 2, and that for some a with \a\ = k, the character
r —• χ(aar) of 3? is non-trivial Then χop is in TE$(3ln).

Proof, Suppose, on the contrary, that χ op is not in TE§{βn).
Let a = (αi, . . . , an) be a multi-index with |α| = k such that the
character r -* χ(aar) of 31 is non-trivial. Given r\, . . . , r^ e i?, put

fli=(Γ!,0,...,0),

aaχ = ( r α i , 0 , . . . , 0 ) ,

α Q | + i = ( 0 , r α i + 1 , . . . , 0 ) ,

^α,+α2 = ( 0 , f α | + α 2 , . . . , 0 ) ,

α* = ( 0 , . . . , 0,r*).

A straightforward calculation shows that

Sar-ak{X op) = x(a\aan " - rk) (α! = ar\ an\).

Now Proposition 3.1, Theorem 4.3, and the fact that 3ί is torsion-
free imply that χop is in U$9\{3ln). Since k > 2, it follows that
δar>ak{χ °p) = 1 and, consequently, that χ(a\aar\ --rk) = l for any
r\, ... ,rk e R. Taking into account that i? = i? ( 2 ) and that ^ is
torsion-free, we infer that χ(aar) = 1 for each r e i?, a contradiction.

The proof is complete.

As an immediate consequence of Theorem 5.2, we get the following
generalization of a result of [1]:

THEOREM 5.3. Let K be a locally compact commutative field, Jf be
the additive group of K, χ be an element of 3?, and p be the function
from 3£n (n e N) into 3? induced by a polynomial of n variables with
coefficients in K, of degree not less than 2. Then χop is in TE§{3?n).

6. A counter-example. In this section we show that Theorem 4.3
fails in general if in the statement the set Un m{G) is replaced by the
set t/Λ(G).

For each n e N, let Gn be a non-zero finite Abelian group with a
pair number of elements. Let G be the direct sum of the Gn (n e N),
and Σ be the direct product of the Gn (n e N). Endow G with
the discrete topology, and Σ with the product topology (of course,
each Gn is given the discrete topology). For each n e N, let πn be
the canonical projection from G onto Gn, and pn be the canonical
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projection from Σ onto Gn . Let a be the canonical monomorphism
from G into Σ. Given n G N, let en be a function from Gn onto
{-1, 1} such that

and

Let

and

put

neN be

<π/4

A(σ

a sequence
oo

Σ
for

, a)

\cιn\ <

each r

= exp

fn=*
) of real

: +00,

7n° Pn

numbers
oo

n=\

i EN. Given σ e
0 0

ifn(σ) - j

such that

Σ and a G G, set

1

J .
To see that the above definition makes sense, note that given a e G,
there exists m e N such that 7τw(α) = 0 whenever n > m, and so, for
each σ e Σ,

(6.1)
n=\

One verifies at once that the mapping A: (σ, a) —> A(σ, a) is a Borel
unitary function o n Σ x G satisfying

A(σ ,a + b)= A(σ, a)A(σ + a(a), b)

for all σ G Σ and all a, b e G. A is an example of what is called a
cocycle on Σ (cf. [2, 3, 4]).

Since, clearly, (fn)neN is a Bernoulli sequence on the probability
triple (Σ, ^ ( Σ ) , λj), where ^ ( Σ ) stands for the Borel σ-algebra of
Σ and λ^ is the normalized Haar measure in Σ, it follows that the
series Y%=\anfn{σ) converges for AΣ-almost all σ in Σ. Let Z be
a real Borel function on Σ Λ,χ-almost everywhere equal to the sum of
the above series. On putting

(6.2) r = exp(/Z),

we see that given a G G, the identity

(6.3)

holds for Aχ-almost all σ in Σ. The existence of a representation of
A as above is usually expressed as saying that A is a coboundary.
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Each function of the form a —• A(σ, a) (σ e Σ) is called a trajec-
tory of A. In view of (5.1), for each a e G, the function σ -+ ̂ ( σ , α)
is a unitary trigonometric polynomial on Σ. Hence, for each σ € Σ
and each b e G, the function α -• A(σ+a(a), b) is a unitary trigono-
metric polynomial on G. Taking into account the identity

A(σ, α ) Λ ( σ , a + b) = Λ ( σ + a ( a ) , 6 ) (σ e Σ , a,beG),

we thus see that each trajectory of 4̂ is in U\{G). On the other
hand, a modification of an argument used in the proof to [2, Theorem
2.4] shows that if some trajectory of A is totally ergodic, then A is
a so-called c-coboundary, that is, there exists a unitary continuous
function X on Σ such that

(6.4) A(σ, a) = X(σ)X(σ + a(a))

for each σ e Σ and each a e G. Below we shall show that A is not
a c-coboundary. Consequently, each trajectory of A will provide an
example of an element of U\(G) that is not in Uo(G)l) TEo(G).

To show that A is not a c-coboundary, suppose, contrariwise, that
there exists a unitary continuous function X on Σ satisfying (6.4).
Then in view of (6.3), given a e G, the identity

Y(σ + a(a))X(σ + a(a)) =

holds for A^-almost all σ in Σ. Applying the Fourier transformation
to both sides of the latter equality, we see that there exist c e T such
that

(6.5) Y(σ) = cΛΓ(σ)

for ^-almost all σ in Σ.
Let Λf be a positive number such that

(6.6) \z\<M\ez -\\

for each complex number z with \z\ < π. Since Σ is compact, it
follows that X is uniformly continuous, and so there exists k e N
such that if σ is in

Uk = {θ e Σ: πΛ(0) = 0 for n< k},

then

(6.7) | | Γ σ X ~ Z | | o o <
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where || ||oo denotes the supremum norm. For each n > k, let srfn

be the σ-subalgebra of ^ ( Σ ) generated by the fj with k < j < n.
Then, by (6.7), for each n > k and each σ e U^ ,

whence, in view of (6.2), (6.3), and (6.5),

(6.8) exp
m

- 1 < π/2M.

Proceeding by induction on n, we show now that for each n > k
and each σ G C4 ,

(6.9)

i=k

<π/2.

For n = k, the inequality follows from the estimates

Assume the validity of the inequality for n - 1 > k. Then

< π/2 + 2\an\ < π

j=k

and now (6.9) results from (6.6) and (6.8).
Choose θ in Σ so that the series ΣJL{ Ujfj{θ) converges. Then,

in view of (6.9), for each n > k and each a € U^ ,

j=k

< π/2+sup
m

j=k

:m>k\ .

On the other hand, it is easily seen that for each n>k,

sup
j=k

The last two relations show that (an)nen is summable, a contradiction.
Thus A is not a c-coboundary, as was to be shown.
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