ON THE PROJECTIVE NORMALITY OF SOME VARIETIES OF DEGREE 5

Akira Ohbuchi

Abstract

We give some sufficient conditions for projective normality of complete non-singular varieties of degree five. And we prove that every complete non-singular surfaces of degree five embedded by a complete linear system is projectively normal.

Introduction. Let X be a complete non-singular variety over an algebraically closed field, and let L be an ample line bundle on X. The classification of some (X, L) is found in Fugita's papers (Fujita [1], [2], [3], [4]). In this paper, we consider the projective normality of (X, L) and the defining equations. This problem is trivial in the case of $\left(D^{n}\right)=1,2$ where $n=\operatorname{dim} X$ and $\mathscr{L}=\mathscr{O}(D)$. If $\left(D^{n}\right)=3$, then (X, L) is projectively normal and the ideal is generated by degree 2 and 3 (X.X.X. [11]). If $\left(D^{n}\right)=4$, then (X, L) is projectively normal and the ideal is generated by degree 2 and 3 (Swinnerton-Dyer [10]). So we consider the case of $\left(D^{n}\right)=5$. In this paper we give some sufficient conditions for projective normality of varieties of degree 5 and give the generator of the defining ideal. The main part of this paper is the case of $\left(D^{n}\right)=5$ and $\Delta(X, L)=2$ (other cases are clearly obtained by Fujita's theory). This is a non-degenerate and non-singular variety of codimension 2 in some projective space \mathbb{P}^{N}. On the other hand, the following conjecture is known as a conjecture of Hartshorne.

Conjecture (cf. Hartshorne [6]). If $X \subset \mathbb{P}^{N}$ is a non-singular closed subvariety and $\operatorname{dim} X>2 N / 3$, then X is a complete intersection.

If this conjecture is true, then we obtain that every non-degenerate and non-singular variety which is degree 5 and codimension 2 is not contained in \mathbb{P}^{N} for $N \geq 7$. As every non-singular variety is projectively normal if it is a complete intersection, therefore the results in this paper are recognized as a step to prove the above conjecture. Throughout this paper, variety means a complete non-singular variety.

Notations.

$\left(D_{1} \cdots \cdot D_{n}\right)$: The intersection number of divisors D_{1}, \ldots, D_{n} on a variety X where $n=\operatorname{dim} X$.
O_{X} : The structure sheaf of a variety X.
L_{Y} : The restriction of a line bundle L to a subscheme Y.
$H^{i}(X, \mathscr{F})$: The i th cohomology group of a sheaf F.
$h^{i}(X, \mathscr{F})$: The dimension of $H^{i}(X, \mathscr{F})$ as a vector space.
$|D|$: The complete linear system defined by a divisor D.
$\phi_{|D|}$: The rational map defined by $|D|$.
\mathscr{L} : The invertible sheaf associated to a line bundle L.
$\mathcal{O}(D)$: The invertible sheaf associated to a divisor D.
$\mathbb{P}(E)$: The projective bundle defined by a vector bundle E.
K_{X} : The canonical divisor on a non-singular variety X.
$\mathscr{O}_{X}(k)$: The sheaf $\mathscr{O}_{X} \otimes \mathscr{O}_{\mathbb{P}} n(k)$ for a projective variety X embedded in \mathbb{P}^{n}.

1. Preliminary. We give several theorems from Fujita's theory.

Definition ([2]). Let X be a non-singular variety and let L be an ample line bundle. We define a Δ-genus of (X, L) by

$$
\Delta(X, L)=\left(D^{n}\right)+n-h^{0}(X, L)
$$

where $n=\operatorname{dim} X$ and $L=\mathscr{O}(D)$.
The above pair (X, L) is called a polarized non-singular variety.
Definition ([8]). Let (X, L) be a polarized non-singular variety. We say that L is normally generated if

$$
H^{0}(X, \mathscr{L})^{\otimes k} \rightarrow H^{0}\left(X, \mathscr{L}^{\otimes k}\right)
$$

is surjective for any positive integer k. And in this case, we call (X, L) projectively normal.

Definition ([2]). Let (X, L) be a polarized non-singular variety and set $L=\mathscr{O}(D)$. Let V be a reduced irreducible non-singular member of $|D|$ (if there exists). We call V a regular member if

$$
H^{0}(X, \mathscr{L}) \rightarrow H^{0}\left(V, \mathscr{L}_{V}\right)
$$

is surjective.
Definition ([2]). Let (X, L) be a polarized non-singular variety. We define $g(X, L)$ by

$$
2 g(X, L)-2=\left(\left(K_{X}+(n-1) D\right) \cdot D^{n-1}\right)
$$

where $L=\mathscr{O}(D)$ and $n=\operatorname{dim} X$. We call this $g(X, L)$ a sectional genus of (X, L).

If L is very ample, then this $g(X, L)$ is the genus of the generic curve section of X in the projective embedding defined by L.

Theorem A ([2]). Let (X, L) be a polarized non-singular variety. If V is a reduced irreducible non-singular member of $|D|$ where $\mathscr{L}=$ $\mathcal{O}(D)$, then $\Delta\left(V, L_{V}\right) \leq \Delta(X, L)$. Moreover the following conditions are equivalent:
(a) $\Delta(X, L)=\Delta\left(V, L_{V}\right)$,
(b) V is a regular member.

Proof. As $0 \rightarrow \mathscr{O}_{X} \rightarrow \mathscr{L} \rightarrow \mathscr{L}_{V} \rightarrow 0$ is exact, therefore

$$
h^{0}\left(V, \mathscr{L}_{V}\right) \geq h^{0}(X, \mathscr{L})-1
$$

Hence $\Delta(X, L)-\Delta\left(V, L_{V}\right)=h^{0}\left(V, \mathscr{L}_{V}\right)-h^{0}(X, \mathscr{L})+1 \geq 0$, because $\left(D^{n}\right)=\left(\left.D\right|_{V^{n-1}}\right)$ where $\mathscr{L}=\mathscr{O}(D)$. By the above equation, the last part of this theorem is clear.

Theorem B. If X is a variety and L is a very ample line bundle, then $\Delta(X, L) \geq 0$.

Proof. It is a well-known fact (see Fujita [1]).
Theorem C. Let (X, L) be a polarized non-singular variety. If $\Delta(X, L)=0$, then (X, L) is isomorphic to $\left(\mathbb{P}(E), H_{E}\right)$ or $\left(\mathbb{P}^{2}, H_{\mathbb{P}^{2}}(2)\right)$ where E is a vector bundle on \mathbb{P}^{1}, H_{E} is a tautological bundle on $\mathbb{P}(E)$ and $H_{\mathbb{P}^{2}}(i)=\mathscr{O}(i)$ on $\mathbb{P}^{2} \quad(i \in \mathbb{Z})$.

Proof. This is a well-known classical theorem (see Fujita [1]).
Theorem D ([2]). Let (X, L) be a polarized non-singular variety. If $g(X, L)=0$ and L is very ample, then $\Delta(X, L)=0$.

Proof. We prove this theorem by the induction on $n=\operatorname{dim} X$. If $n=1$, then this theorem is trivial. We may assume that $n \geq 2$. Let V be a reduced irreducible non-singular member of $|D|$ where $\mathscr{L}=\mathscr{O}(D)$. By the induction hypothesis, we assume $\Delta\left(V, L_{V}\right)=0$ because $g\left(V, L_{V}\right)=g(X, L)=0$. Hence $H^{1}\left(V, \mathscr{L}_{V}^{\otimes(-t)}\right)=0$ for every $t \geq 0$ by Theorem C. Therefore the long exact sequence

$$
\cdots \rightarrow H^{1}\left(X, \mathscr{L}^{\otimes(-(t+1))}\right) \rightarrow H^{1}\left(X, \mathscr{L}^{\otimes(-t)}\right) \rightarrow H^{1}\left(V, \mathscr{L}_{V}^{\otimes(-t)}\right)
$$

says that $h^{1}\left(X, \mathscr{L}^{\otimes(-(t+1))}\right) \geq h^{1}\left(X, \mathscr{L}^{\otimes(-t)}\right)$ for any $t \geq 0$. As

$$
H^{1}\left(X, \mathscr{L}^{\otimes(-s)}\right)=0
$$

for sufficiently large s, we obtain $H^{1}\left(X, \mathcal{O}_{X}\right)=0$. Therefore V is a regular member. Hence we obtain this theorem.

Theorem E. Let (X, L) be a polarized non-singular variety and let $d=\left(D^{n}\right)$ where $\mathscr{L}=\mathscr{O}(D)$ and $n=\operatorname{dim} X$. Moreover we assume that $\Delta(X, L) \leq g(X, L)$ and L is very ample. In this case, the following are true:
(a) if $d \geq 2 \Delta(X, L)-2$, then every reduced irreducible non-singular member $V \in|D|$ is a regular member,
(b) if $d \geq 2 \Delta(X, L)+1$, then (X, L) is projectively normal and $\Delta(X, L)=g(X, L)$;
(c) if $d \geq 2 \Delta(X, L)+2$, then the ideal of (X, L) is generated by degree 2.

Proof. See Fujita [2]. As L is very ample, the proof is the same in the case of characteristic $p>0$.

Theorem F. Let $X \subset \mathbb{P}^{N}$ be a closed non-singular subvariety which is not contained in any hyperplane. If the degree of X is 4, then X is of the following type:
(a) hypersurface,
(b) $(2,2)$ complete intersection,
(c) Segre variety $\mathbb{P}^{1} \times \mathbb{P}^{3}$ in \mathbb{P}^{7},
(d) Veronese surface \mathbb{P}^{2} in \mathbb{P}^{5},
(e) the variety obtained by hyperplane section or projection of (a), (b), (c), (d), (e).

Proof. See Swinnerton-Dyer [10].
By the above theorems, we obtain that (X, L) is projectively normal for $\left(D^{n}\right)=3,4$ where $\mathscr{L}=\mathscr{O}(D)$ and $n=\operatorname{dim} X$. Moreover (X, L) is also projectively normal if $\left(D^{n}\right)=5$ and the codimension of $\phi_{|D|}(X)$ is $1,3,4$. So we consider the case that $\left(D^{n}\right)=5$ and the codimension of $\phi_{|D|}(X)$ is 2 .
2. Codimension 2 case. Throughout $\S 2$, we assume that $h^{0}(X, \mathscr{L})$ $=n+3$ where $n=\operatorname{dim} X, \mathscr{L}=\mathscr{O}(D),\left(D^{n}\right)=5$ and L is very ample. In this case, $g(X, L)=1$ or 2 because $g(X, L)=0$ implies that $\Delta(X, L)=0$ by the Theorem D. This contradicts $\left(D^{n}\right)=5$ and $h^{0}(X, L)=n+3$. If $g(X, L) \geq 2$, then $g(X, L)=2$ by Theorem E in $\S 1$.

Theorem 1. If $g(X, L)=2$, then (X, L) is projectively normal and the defining ideal of (X, L) is generated by degree 2 and 3 .

To prove this theorem, we prepare two lemmas.
Lemma 1. Let (X, L) be as above. Let V be a reduced irreducible non-singular member of $|D|$. If the homogeneous ideal of $\left(V, L_{V}\right)$ is generated by degree 2 and 3, then the homogeneous ideal of (X, L) is generated by degree 2 and 3.

Proof. Let $I(k)$ be the polynomials defined by

$$
I(k)=\operatorname{ker}\left[S^{k} H^{0}(X, \mathscr{L}) \rightarrow H^{0}\left(X, \mathscr{L}^{\otimes k}\right)\right]
$$

where S^{k} is a k th symmetric product and let $I_{V}(k)$ be the polynomials defined by

$$
I_{V}(k)=\operatorname{ker}\left[S^{k} H^{0}\left(V, \mathscr{L}_{V}\right) \rightarrow H^{0}\left(V, \mathscr{L}_{V}^{\otimes k}\right)\right] .
$$

We prove this lemma by induction on k. In the case of $k=2,3$, this lemma is trivial. We assume that $I(k)$ is generated by $I(2)$ and $I(3)$. By Theorem $\mathrm{E}(\mathrm{a})$ in $\S 1, V$ is a regular member. Moreover (X, L) and $\left(V, L_{V}\right)$ are projectively normal by Theorem $\mathrm{E}(\mathrm{b})$ in $\S 1$. Therefore we obtain the following diagram:

By the snake lemma, π is a surjective map. By the assumption, $I_{V}(k+1)$ is generated by degree 2 and 3 . Therefore $I(k+1)$ is generated by degree 2 and 3 .

Lemma 2. If C is a non-singular curve and L is a very ample line bundle on C and $\Delta(C, L)=2$, then (C, L) is projectively normal and its ideal is generated by degree 2 and 3.

Proof. See Saint-Donat [9].
Proof of Theorem 1. It is clear by Lemma 1 and Lemma 2.

Next we prepare the following notation.
Definition. Let (X, L) be a polarized non-singular variety and let L be a very ample line bundle. We define $c(X, L)$ by
$c(X, L)=\operatorname{minimum}\left\{i ; X=X_{n} \supset X_{n-1} \supset \cdots \supset X_{i} \supset \cdots \supset X_{1}\right.$ with X_{i} being a reduced irreducible non-singular member of $\left|D_{t+1}\right|$ where $L_{X_{T}}=\mathcal{O}\left(D_{t}\right)$ and $\left.\Delta\left(X_{n}, L_{X_{n}}\right)=\cdots=\Delta\left(X_{i+1}, L_{X_{t+1}}\right)>\Delta\left(X_{i}, L_{X_{i}}\right)\right\}$.
where $n=\operatorname{dim} X$. In the case of $\Delta\left(X_{1}, L_{X_{1}}\right)=\Delta(X, L)$, we put $c(X, L)=0$.

If $\Delta(X, L)=2$ and $g(X, L)=2$, then $c(X, L)=0$. If $\Delta(X, L)$ $=2$ and $g(X, L)=1$, then $1 \leq c(X, L) \leq \operatorname{dim} X-1$. Therefore Theorem 1 is in the case of $c(X, L)=0$.

Theorem 2. If $c(X, L)=1$, then (X, L) is projectively normal and the ideal defining (X, L) is generated by degree 3.

We prepare the following two lemmas.
Lemma 3. If $C \subset \mathbb{P}^{3}$ is a non-singular elliptic curve of degree 5 which is not contained in any hyperplane, then

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(k)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(k)\right)
$$

is surjective for every $k \geq 2$.
Proof. Let $\mathscr{O}_{C}(1)=\mathcal{O}(D)$. We obtain the following diagram:

As ($C, \mathscr{O}(D)$) is projectively normal, hence

$$
H^{0}\left(C, \mathscr{O}_{C}(k)\right) \otimes H^{0}\left(C, \mathscr{O}_{C}(m)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(k+m)\right)
$$

is surjective for every $k, m \geq 1$. By the assumption, the canonical map

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(1)\right)
$$

is injective. Now we show that

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(2)\right)
$$

is an isomorphism. As $h^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2)\right)=h^{0}\left(C, \mathscr{O}_{C}(2)\right)=10$, therefore we may show that

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(2)\right)
$$

is injective. If this is not true, then there exists some quadratic surface Q in \mathbb{P}^{3} with $Q \supset C$. If Q is non-singular, then the degree of $C=a+b$ and the genus of $C=a b-a-b+1$ for some integers a, b. This cannot occur because the degree of $C=5$ and the genus of $c=1$. If Q is singular, then the genus of $C=a^{2}-a$ for odd degree $2 a+1$ of C. Hence degree of $C=5$ and genus of $C=1$ does not occur. Therefore the above map is injective, hence is an isomorphism. Next we show that $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(3)\right) \rightarrow H^{0}(C, \mathscr{O}(3))$ is surjective. We take the basis of $H^{0}\left(C, \mathscr{O}_{C}(1)\right)$ with

$$
\begin{aligned}
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right) & =\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
H^{0}\left(C, \mathscr{O}_{C}(1)\right) & =\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]
\end{aligned}
$$

where $\left[x_{0}, \ldots, x_{N}\right]$ means that x_{1}, \ldots, x_{N} are bases of a vector space. As

$$
\begin{aligned}
& H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2)\right) \\
& \quad=\left[x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{0} x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right]
\end{aligned}
$$

and $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2)\right) \cong H^{0}\left(C, \mathscr{O}_{C}(2)\right)$, therefore $H^{0}\left(C, \mathscr{O}_{C}(2)\right)$ has the above basis. But $x_{i} x_{4}(i=0, \ldots, 4)$ are contained in $H^{0}\left(C, \mathscr{O}_{C}(2)\right)$, and therefore we obtain the following relations:

$$
\begin{equation*}
x_{i} x_{4}=f_{i}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \tag{*}
\end{equation*}
$$

where $i=0,1,2,3,4$ and $f_{i}(i=1,2,3,4)$ are homogeneous polynomials of degree 2 . As $\left(C, \mathscr{O}_{C}(1)\right)$ is projectively normal, hence

$$
H^{0}\left(C, \mathscr{O}_{C}(1)\right)^{\otimes 3} \rightarrow H^{0}\left(C, \mathscr{O}_{C}(3)\right)
$$

is surjective. Therefore we obtain the generators of $H^{0}\left(C, \mathscr{O}_{C}(3)\right)$ as follows,

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{0}^{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3} \\
x_{0}^{2} x_{1}, x_{0}^{2} x_{2}, x_{0}^{2} x_{3}, x_{1}^{2} x_{0}, x_{1}^{2} x_{2}, x_{1}^{2} x_{3} \\
x_{2}^{2} x_{0}, x_{2}^{2} x_{1}, x_{2}^{2} x_{3}, x_{3}^{2} x_{0}, x_{3}^{2} x_{1}, x_{3}^{2} x_{2} \\
x_{0} x_{1} x_{2}, x_{0} x_{1} x_{3}, x_{0} x_{2} x_{3}, x_{1} x_{2} x_{3}
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{l}
x_{4}^{3}, x_{4}^{2} x_{0}, x_{4}^{2} x_{1}, x_{4}^{2} x_{2}, x_{4}^{2} x_{3} \\
x_{4} x_{0}^{2}, x_{4} x_{1}^{2}, x_{4} x_{2}^{2}, x_{4} x_{3}^{2} \\
x_{4} x_{0} x_{1}, x_{4} x_{0} x_{2}, x_{4} x_{0} x_{3}, x_{4} x_{1} x_{2}, x_{4} x_{1} x_{3}, x_{4} x_{2} x_{3}
\end{array}\right.
\end{align*}
$$

The part (1) is clearly the image of $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right)$. And the relation $(*)$ says that the part (2) is also in the image of $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(3)\right)$. Because

$$
\begin{aligned}
x_{4} x_{i} x_{j} & =f_{i}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) x_{j} \quad(i, j \neq 4), \\
x_{4}^{2} x_{i} & =f_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) x_{i} \quad(i=0,1,2,3), \\
x_{4}^{3} & =f_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) x_{4}
\end{aligned}
$$

by the relation $(*)$; moreover the relation (*) says $f_{4} x_{4}$ is in the image of $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(3)\right)$. Hence

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(3)\right) \rightarrow H^{0}\left(C, \mathscr{\sigma}_{C}(3)\right)
$$

is surjective. Finally we prove this lemma. If $k=2,3$, then this lemma is true by the above argument. We consider the case in which $k \geq 4$. First, we show this lemma in the case that k is even. Let $k=2 m$. We show in this case by the induction on m. In this, we give the following diagram:

$$
\begin{array}{ccc}
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2 m)\right) & \rightarrow & H^{0}\left(C, \mathscr{O}_{C}(2 m)\right) \\
\uparrow & \stackrel{\uparrow}{\hookrightarrow} & \left.{ }_{\uparrow}\right) \\
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}(2(m-1))\right) \otimes H^{0}\left(\mathbb{P}^{3}, \mathscr{O}(2)\right) & \xrightarrow{\rightarrow} & H^{0}(C, \mathscr{O}(2(m-1))) \otimes H^{0}(C, \mathscr{O}(2))
\end{array}
$$

By the hypothesis of induction and projective normality of (C, $\left.\mathscr{O}_{C}(1)\right)$, we obtain

$$
H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(2 m)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(2 m)\right)
$$

is surjective. Next we consider the case in which k is odd and $k \geq 5$. But this case is clear by the same argument. Therefore we obtain this lemma.

Lemma 4. If $C \subset \mathbb{P}^{3}$ is as in Lemma 3, then the homogeneous ideal of $C \subset \mathbb{P}^{3}$ is generated by degree 3 .

Proof. Let I_{k} be the kernel of $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(k)\right) \rightarrow H^{0}\left(C, \mathscr{O}_{C}(k)\right)$. We show that

$$
I_{k} \otimes H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right) \rightarrow I_{k+1}
$$

is surjective for every $k \geq 3$. We take a divisor D with $\mathscr{O}_{C}(1) \cong \mathscr{O}(D)$ and support of D consists of 5 distinct points. As $D \subset \mathbb{P}^{2}$, we define $I_{k}^{\prime}(k=1,2, \ldots)$ by

$$
0 \rightarrow I_{k}^{\prime} \rightarrow H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(k)\right) \rightarrow H^{0}\left(D, \mathscr{O}_{D}(k)\right) \cong H^{0}\left(D, \mathscr{O}_{D}\right)
$$

If $k \geq 2$, then we give the following diagram:

By the snake lemma,

$$
0 \rightarrow I_{k} \rightarrow I_{k+1} \rightarrow I_{k+1}^{\prime} \rightarrow 0
$$

is exact for every $k \geq 2$. Moreover we define λ so the following diagram commutes:

As $I_{k} \rightarrow I_{k}^{\prime}$ is surjective if $k \geq 3$ and $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{p}^{3}}(1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(1)\right)$ is surjective, therefore λ is surjective for $k \geq 3$. Next we define $\psi: I_{k} \rightarrow I_{k} \otimes H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right)$ with $\psi(s)=s \otimes \delta$ where δ is a section of $H^{0}\left(\mathbb{P}^{3}, \mathscr{O}_{\mathbb{P}^{3}}(1)\right)$ which is defining \mathbb{P}^{2}. This shows that the following diagram

is commutative for $k \geq 2$. Therefore if $I_{k}^{\prime} \otimes H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \rightarrow I_{k+1}^{\prime}$ is surjective for every $k \geq 3$, then this lemma is proved. So we show that

$$
I_{k}^{\prime} \otimes H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \rightarrow I_{k+1}^{\prime}
$$

is surjective for $k \geq 3$. Let $V=H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(1)\right)$ and let $V^{k}=$ the image of $H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(k)\right) \rightarrow H^{0}\left(D, \mathscr{O}_{D}(K)\right)$. As the support of D is not collinear, $V \rightarrow H^{0}\left(D, \mathscr{O}_{D}(1)\right)$ is injective. We show that $V^{k}=$ $H^{0}\left(D, \mathscr{O}_{D}(k)\right)$ for $k \geq 2$. If $V \neq H^{0}\left(D, \mathscr{O}_{D}(2)\right)$, then the dimension of $\operatorname{ker}\left[H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(2)\right) \rightarrow H^{0}\left(D, \mathscr{O}_{D}(2)\right)\right]$ is at least 2. Therefore there exist distinct quadratics Q_{1} and Q_{2} with $Q_{i} \supset D(i=1,2) . Q_{1}$ and Q_{2} satisfy $Q_{1} \cap Q_{2}=$ finite points. Because if $Q_{1} \cap Q_{2}$ has component, then there exist distinct lines l_{1}, l_{2}, l_{3} with

$$
l_{1} \cap D=4 \text { points }
$$

and

$$
Q_{1}=l_{1}+l_{2}, \quad Q_{2}=l_{1}+l_{3} .
$$

Hence $\mathbb{P}^{3}-l_{1} \rightarrow \mathbb{P}^{1}$ be a projection with center l_{1}, and let $C \cdots \rightarrow \mathbb{P}^{1}$ be a restriction map to C. Let $f: C \rightarrow \mathbb{P}^{1}$ be an associated morphism defined by the above map $C \cdots \rightarrow \mathbb{P}^{1}$. As $l_{1} \cap D=4$ points, therefore f is a bijective morphism. Hence the genus of $C=$ the genus of $\mathbb{P}^{1}=0$. This is a contradiction. So $Q_{1} \cap Q_{2}=$ finite points. As Q_{1} and Q_{2} are conics, $Q_{1} \cap Q_{2}$ contains at most 4 points by Bezout's theorem. But $Q_{1} \cap Q_{2}$ contains D with degree 5 ; this is a contradiction. Hence $V^{2}=H^{0}\left(D, \mathscr{O}_{D}(2)\right)$. We take $s \in V$ with

\[

\]

In this, we obtain the following commutative diagram:

$$
\begin{array}{ccc}
H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(k)\right) & \rightarrow & H^{0}\left(D, \mathscr{O}_{D}(k)\right) \\
H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(k+1)\right) & \longrightarrow & H^{0}\left(D, \mathscr{O}_{D}(k+1)\right)
\end{array}
$$

where σ, ζ, are defined by $f \mapsto f s$. Therefore we obtain

$$
H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(k)\right) \rightarrow H^{0}\left(D, \mathscr{O}_{D}(k)\right)
$$

is surjective if $k \geq 2$. Hence

$$
V^{k}=H^{0}\left(D, \mathscr{O}_{D}(k)\right)
$$

for every $k \geq 2$. Let $K\left(V^{k}, V\right)$ be $\operatorname{ker}\left[V^{k} \otimes V \rightarrow V^{k+1}\right]$ and $K(V, s)$ be $\operatorname{ker}\left[V^{\otimes s} \rightarrow V^{s}\right]$ where k and s are positive integers. We consider the following commutative diagram:

where $\beta(a \otimes b \otimes c)=a b \otimes c, \alpha$ is induced by $\beta, \zeta(f)=f s, \rho(f \otimes g)=$ $f s \otimes g, \xi$ is induced by ρ and s is an element of V defined as above. If $k \geq 3, \rho$ and ζ are isomorphisms. Hence we obtain that α is a surjective map. Next we consider the following commutative diagram:

$$
\begin{array}{rclc}
0 \rightarrow K(V, k) \otimes V \xrightarrow{u} & K(V, k+1) & \xrightarrow{v} & K\left(V^{k}, V\right) \rightarrow 0 \\
w \uparrow & \xrightarrow{\hookrightarrow} & \alpha \uparrow \\
K(V, k) \otimes V & \xrightarrow{v^{\prime}} & K\left(V^{k-1}, V\right) \otimes V \rightarrow 0
\end{array}
$$

where u, v, v^{\prime} and w are canonical maps and the surjectivity of v and v^{\prime} is induced by the following commutative diagram and the snake lemma:

	0		0		0	
	\downarrow		\downarrow		\downarrow	
$0 \rightarrow$	$K(V, k) \otimes V$	\xrightarrow{u}	$K(V, k+1)$	\xrightarrow{v}	$K\left(V^{k}, V\right)$	
	id \downarrow	\hookrightarrow	\downarrow	\hookrightarrow	\downarrow	
$0 \rightarrow$	$K(V, k) \otimes V$	\rightarrow	$V^{\otimes(k+1)}$	\rightarrow	$V^{k} \otimes V$	$\rightarrow 0$
	\downarrow	\hookrightarrow	\downarrow	\hookrightarrow	\downarrow	
$0 \rightarrow$	0	\rightarrow	V^{k+1}	$\xrightarrow{\text { id }}$	V^{k+1}	$\rightarrow 0$
	\downarrow		\downarrow			
	0		0		0	

Therefore $K(V, k+1)=\operatorname{im}(w)+\operatorname{im}(u)$ if $k \geq 3$. Hence we obtain that $I_{k}^{\prime} \otimes H^{0}\left(\mathbb{P}^{2}, \mathscr{O}_{\mathbb{P}^{2}}(1)\right) \rightarrow I_{k+1}^{\prime}$ is surjective for $k \geq 3$. Hence we prove this lemma.

Proof of Theorem 2. First we show that

$$
H^{0}(X, \mathscr{L})^{\otimes k} \rightarrow H^{0}\left(X, \mathscr{L}^{\otimes k}\right)
$$

is surjective for $k \geq 1$. If $k=1$, then this is clear. Now we can take

$$
X=X_{n} \supset X_{n-1} \supset \cdots \supset X_{2} \supset X_{1}
$$

such that X_{i} is a reduced irreducible non-singular member of $\left|D_{i+1}\right|$ where $\mathscr{L}_{X_{i}}=\mathcal{O}\left(D_{i}\right)(i=1,2, \ldots, n=\operatorname{dim} X)$ and

$$
2=\Delta\left(X_{n}, L_{X_{n}}\right)=\cdots=\Delta\left(X_{2}, L_{X_{2}}\right)>\Delta\left(X_{1}, L_{X_{1}}\right)=1
$$

because $c(X, L)=1$. As X_{1} is an elliptic curve of degree 5 in \mathbb{P}^{3}, therefore $H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(k)\right) \rightarrow H^{0}\left(X_{1}, L_{X_{1}}^{\otimes k}\right)$ is surjective for $k \geq 2$ by Lemma 3. We consider the following diagram:

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(\mathbb{P}^{4}, \mathscr{O}(k-1)\right) \\
\downarrow & \rightarrow H^{0}\left(\mathbb{P}^{4}, \mathscr{O}(k)\right) \\
\downarrow & \rightarrow H^{0}\left(\mathbb{P}^{3}, \mathscr{O}(k)\right) \\
\vdots & \rightarrow 0 \\
0 & \rightarrow H^{0}\left(X_{2}, \mathscr{L}_{X_{2}}^{\otimes(k-1)}\right)
\end{aligned} \rightarrow H^{0}\left(X_{2}, \mathscr{L}_{X_{2}}^{\otimes k}\right) \rightarrow H^{0}\left(X_{1}, \mathscr{L}_{X_{1}}^{\otimes k}\right)
$$

By induction on $k, L_{X_{2}}$ is projective normal. So it is clear that L is projectively normal because $\Delta\left(X_{n}, L_{X_{n}}\right)=\cdots=\Delta\left(X_{2}, L_{X_{2}}\right)$. The last part of this theorem is obtained by Lemma 4 and the same argument.

Corollary. If (X, L) is a polarized non-singular surface, $\left(D^{2}\right)=$ 5 where $\mathscr{L}=\mathcal{O}(D)$ and L is very ample, then (X, L) is projectively normal.

To conclude this section, we give two examples of varieties of degree 5 and codimension 2.

Example 1. Let $f: S \rightarrow \mathbb{P}^{2}$ be a blowing up with center p_{1}, \ldots, $p_{8} \in \mathbb{P}^{2}$ where p_{1}, \ldots, p_{8} are in general position. We put $f^{-1}\left(p_{i}\right)=$ $E_{i}(i=1, \ldots, 8)$ and $D=f^{*}(4 l)-2 E_{1}-E_{2}--E_{8}$ where $l \subset \mathbb{P}^{2}$ is a line. This D is very ample, $\left(D^{2}\right)=5$ and $g(S, \mathcal{O}(D))=2$ (see Hartshorne [5]). Therefore $c(S, \mathcal{O}(D))=0$.

Example 2. Let $f: S=\mathbb{P}(\mathscr{E}) \rightarrow C$ be a ruled surface over an elliptic curve C where \mathscr{E} is an indecomposable locally free sheaf of rank 2 on C. Let $\operatorname{deg}(\mathscr{E})=1$. Let C_{0} be a section of f with $\operatorname{Pic}(S)=\mathbb{Z} C_{0} \oplus f^{*} \operatorname{Pic}(C)$. Let D be a divisor in $\operatorname{Pic}(S)$ with $D=$ $C_{0}+f^{*}(T)$ and $\operatorname{deg}(T)=2$. This D is very ample (see Hartshorne [5]). Let l be a fiber of f. As D is numerically equivalent to $C_{0}+2 l$, therefore $\left(D^{2}\right)=5$ and $\left(D .\left(D+K_{S}\right)\right)=0$. Therefore $g(S, \mathcal{O}(D))=$ 1. This is an example of $c(S, \mathscr{O}(D))=1$.

References

[1] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115.
[2] _ Defining equations for certain types of polarized varieties, in Complex Analysis and Algebraic Geometry, Iwanami (1977), 165-173.
[3] __, On the structure of polarized manifolds with total deficiency one I, II and III, J. Math. Soc. Japan, 32 (1980), 709-725, 33 (1981), 415-434, 36 (1984), 75-89.
[4] _, On polarized manifold of Δ-genera two I, J. Math. Soc. Japan, 36 (1984), 709-730.
[5] R. Hartshorne, Algebraic Geometry, Springer-Verlag (1977).
[6] , Varieties of small codimension in projective space, Bull. Amer. Math. Soc., 80 (1974), 1017-1032.
[7] M. Homma, On the projective normality and defining equations of a projective curve of genus three embedded by a complete linear system, Tsukuba J. Math., 4 (1980), 269-279.
[8] D. Mumford, Varieties defined by quadratic equations, Questioni sulle varieta algebriche, Corsi dal C.I.M.E., Editoni Cremonese, Roma (1969), 29-100.
[9] B. Saint-Donat, Sur les équations definissant une courbe algébrique, C. R. Acad. Sci. Paris Sér. A, 274 (1972), 324-327.
[10] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4, Amer. J. Math., 95 (1973), 403-418.
[11] X. X. X., Correspondence, Amer. J. Math., 79 (1957), 951-952.
Received March 3, 1987.
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi, Japan

