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ON THE PROJECTIVE NORMALITY OF
SOME VARIETIES OF DEGREE 5

AKIRA OHBUCHI

We give some sufficient conditions for projective normality of com-
plete non-singular varieties of degree five. And we prove that every
complete non-singular surfaces of degree five embedded by a complete
linear system is projectively normal.

Introduction. Let X be a complete non-singular variety over an al-
gebraically closed field, and let L be an ample line bundle on X. The
classification of some (X, L) is found in Fugita's papers (Fujita [1],
[2], [3], [4]). In this paper, we consider the projective normality of
(X, L) and the defining equations. This problem is trivial in the case
of (Dn) = 1,2 where n = dimX and S> = <9{D). If (Dn) = 3, then
(X, L) is projectively normal and the ideal is generated by degree 2
and 3 (X.X.X. [11]). If (Dn) = 4, then (X, L) is projectively nor-
mal and the ideal is generated by degree 2 and 3 (Swinnerton-Dyer
[10]). So we consider the case of (Dn) = 5. In this paper we give
some sufficient conditions for projective normality of varieties of de-
gree 5 and give the generator of the defining ideal. The main part
of this paper is the case of (Dn) = 5 and A(X, L) = 2 (other cases
are clearly obtained by Fujita's theory). This is a non-degenerate and
non-singular variety of codimension 2 in some projective space ΨN.
On the other hand, the following conjecture is known as a conjecture
of Hartshorne.

Conjecture (cf. Hartshorne [6]). If X c P^ is a non-singular closed
subvariety and dimX > 27V/3, then X is a complete intersection.

If this conjecture is true, then we obtain that every non-degenerate
and non-singular variety which is degree 5 and codimension 2 is not
contained in P^ for N > 7. As every non-singular variety is pro-
jectively normal if it is a complete intersection, therefore the results
in this paper are recognized as a step to prove the above conjecture.
Throughout this paper, variety means a complete non-singular variety.
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Notations.
(D\ Dn): The intersection number of divisors D\9 ... , Dn on
a variety X where n = d i m Z .
Oχ: The structure sheaf of a variety X .
Lγ: The restriction of a line bundle L to a subscheme Y.
Hl{X, 9~): The / th cohomology group of a sheaf F.
λ'(X, ^ ) : The dimension of Hl(X ,9~) as a vector space.
\D\: The complete linear system defined by a divisor D.
φ\D\: The rational map defined by \D\.
&: The invertible sheaf associated to a line bundle L.
0{D): The invertible sheaf associated to a divisor D.
Ψ(E): The projective bundle defined by a vector bundle E.
^ : The canonical divisor on a non-singular variety X.
#x(k): The sheaf ^ ® ̂ /i(fc) for a projective variety Λf embedded
in P Λ .

1. Preliminary. We give several theorems from Fujita's theory.

DEFINITION ([2]). Let X be a non-singular variety and let L be an
ample line bundle. We define a Δ-genus of (X, L) by

where n = dimX and L =

The above pair (X, JL) is called a polarized non-singular variety.

DEFINITION ([8]). Let (X, L) be a polarized non-singular variety.
We say that L is normally generated if

is surjective for any positive integer k. And in this case, we call
(X, L) projectively normal.

DEFINITION ([2]). Let (X, L) be a polarized non-singular variety
and set L = *?(/)). Let V be a reduced irreducible non-singular
member of \D\ (if there exists). We call V a regular member if

is surjective.

DEFINITION ([2]). Let (X, L) be a polarized non-singular variety.
We define g(X, L) by

2^(X, L) - 2 = ((AT* + (Λ - I)!))./)"-1)

where L = ^(D) and n = d i m Z . We call this g(X 9 L) a sectional
genus of (X, L).
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If L is very ample, then this g(X 9 L) is the genus of the generic
curve section of X in the projective embedding defined by L.

THEOREM A ([2]). Let (X, L) be a polarized non-singular variety.
If V is a reduced irreducible non-singular member of \D\ where & =
@(D), then Δ(F, Lγ) < A(X, L). Moreover the following conditions
are equivalent

(a) A(X,L)=A(V,LV),
(b) V is a regular member.

Proof. As 0 -> <9X -* & -> 2γ -> 0 is exact, therefore

Hence Δ ( I , L)-Δ(F, L κ ) = λ°(K, . S ^ ) - * 0 ^ , -2*)+l > 0, because
(Dn) = (Z)|κι.-i) where & = 0(D). By the above equation, the last
part of this theorem is clear.

THEOREM B. If X is a variety and L is a very ample line bundle,
then Δ ( X , L ) > 0 .

Proof. It is a well-known fact (see Fujita [1]).

THEOREM C. Let (X, L) be a polarized non-singular variety. If
Δ(X, L) = 0, then (X, L) isisomorphicto (Ψ(E),HE)or (P2, Hψi{2))
where E is a vector bundle on P 1 , HE is a tautological bundle on Ψ(E)
and Hψi(i) = &{ϊ) on P2 (/ e Z).

Proof. This is a well-known classical theorem (see Fujita [1]).

THEOREM D ([2]). Let (X, L) be a polarized non-singular variety.
If g(X9 L) = 0 and L is very ample, then Δ(X, L) = 0.

Proof. We prove this theorem by the induction on n = dimX. If
n = 1, then this theorem is trivial. We may assume that n > 2.
Let V be a reduced irreducible non-singular member of |D| where
3> = (9{ϋ). By the induction hypothesis, we assume Δ(F, Lγ) = 0
because # ( F , L κ ) = £(Λ\ L) = 0. Hence Hι(V, £f{~ή) = 0 for
every t > 0 by Theorem C. Therefore the long exact sequence

says that A 1 ^ , ^ Θ ( " ( ί + 1 ) ) ) > Λ 1 ^ , ^ Θ ( " ° ) for any t > 0. As
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for sufficiently large s, we obtain Hι(X,#χ) = Q. Therefore V is a
regular member. Hence we obtain this theorem.

THEOREM E. Let (X, L) be a polarized non-singular variety and let
d = (Dn) where 3* = &{p) and n = dimX. Moreover we assume that
A(X, L) < g(X, L) and L is very ample. In this case, the following
are true:

(a) if d > 2Δ(X, L)—2, then every reduced irreducible non-singular
member V e \D\ is a regular member;

(b) if d > 2Δ(X, L) + 1, then (X, L) is projectively normal and

(c) if d> 2Δ(X ,L) + 2, /Λ̂ n ί/ẑ  ideal of (X, L) is generated by
degree 2.

Proof. See Fujita [2]. As L is very ample, the proof is the same in
the case of characteristic p > 0.

THEOREM F. Let I c P ^ be a closed non-singular subvariety which
is not contained in any hyperplane. If the degree of X is 4, then X
is of the following type:

(a) hypersurface,
(b) (2, 2) complete intersection,
(c) Segre variety P1 x P3 in P 7 ,
(d) Veronese surface P2 in P 5 ,
(e) the variety obtained by hyperplane section or projection of (a),

(b), (c), (d), (e).

Proof. See Swinnerton-Dyer [10].

By the above theorems, we obtain that (X, L) is projectively nor-
mal for (Dn) = 3, 4 where & = ^(D) and n = dimX. Moreover
(X, L) is also projectively normal if (Dn) = 5 and the codimension
of Φ\D\(X) is 1, 3, 4. So we consider the case that (Dn) = 5 and the
codimension of φ\D\(X) is 2.

2. Codimension 2 case. Throughout §2, we assume that h°(X, S?)
= n + 3 where n = dimX, & = <?(/>), (Dn) = 5 and I is very
ample. In this case, g(X, L) = 1 or 2 because #(X, L) = 0 implies
that Δ(ΛΓ, L) = 0 by the Theorem D. This contradicts (D") = 5 and
h°(X9 L) = n + 3. If g(X, L) > 2, then g(X9 L) = 2 by Theorem
E i n § l .
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THEOREM 1. If g(X, L) = 2, then (X, L) is projectively normal
and the defining ideal of (X, L) is generated by degree 2 and 3.

To prove this theorem, we prepare two lemmas.

LEMMA 1. Let (X, L) be as above. Let V be a reduced irreducible
non-singular member of \D\. If the homogeneous ideal of (V, Lγ) is
generated by degree 2 and 3, then the homogeneous ideal of (X, L)
is generated by degree 2 and 3.

Proof. Let I(k) be the polynomials defined by

I(k) = ker[SkH°(X, &) -+ H°{X,5?®k)]

where Sk is a kth symmetric product and let Iy(k) be the polyno-
mials defined by

Iv{k) =

We prove this lemma by induction on L In the case of k = 2, 3,
this lemma is trivial. We assume that I(k) is generated by 7(2) and
7(3). By Theorem E (a) in §1, V is a regular member. Moreover
(X, L) and ( F , Ly) are projectively normal by Theorem E(b) in §1.
Therefore we obtain the following diagram:

0 - >

0 -+

0 - >

0
1

7(fc)
1 *—*•

SkH°(X,Jϊ?) -+
1 ^

H°(X9^®k) -*
ί
0

0
I

7(fc+ 1)

1

1

1
0

0
1

A 7r(fc+l)

4-

1
0

By the snake lemma, π is a surjective map. By the assumption,
Iv(k + 1) is generated by degree 2 and 3. Therefore I(k + 1) is
generated by degree 2 and 3.

LEMMA 2. / / C w a non-singular curve and L is a very ample line
bundle on C and Δ(C, L) = 2, then (C, L) is projectively normal
and its ideal is generated by degree 2 and 3.

Proof. See Saint-Donat [9].

Proof of Theorem 1. It is clear by Lemma 1 and Lemma 2.
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Next we prepare the following notation.

DEFINITION. Let (X, L) be a polarized non-singular variety and
let L be a very ample line bundle. We define c(X, L) by

c(X, L) = minimum{/ X = Xn D Xn_λ D o I / D O l i with

Xi being a reduced irreducible non-singular

member of |A+i | where L,χ = <9{JDi) and

W , LXn) = =

where n = d i m Z . In the case of A(X\, Lχ) = Δ(X, L), we put
c(X,L) = 0.

If Δ(X? L) = 2 and ^(X ? L) = 2, then c(X5 L) = 0. If Δ(JΓ, L)
= 2 and g(X, L) = 1, then 1 < c(X, L) < dimX - 1. Therefore
Theorem 1 is in the case of c(X, L) = 0.

THEOREM 2. If c(X, L) = 1, ίΛe« (X, L) w projectively normal
and the ideal defining (X, L) w generated by degree 3.

We prepare the following two lemmas.

LEMMA 3. If C c P3 is a non-singular elliptic curve of degree 5
which is not contained in any hyperplane, then

is surjective for every k > 2 .

Proof, Let #c(l) = &{D). We obtain the following diagram:

i projection

As (C, &(D)) is projectively normal, hence

H°(C, d?c(k)) ® H°(C, d?c(m)) -+ H°(C, <?c(fc + m))

is surjective for every k 9 m > 1. By the assumption, the canonical
map

H°(F\d

is injective. Now we show that
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is an isomorphism. As /*°(P3, ^ ( 2 ) ) = *°(C, t?c{2)) = 10, therefore
we may show that

is injective. If this is not true, then there exists some quadratic surface
Q in P3 with Q D C. If Q is non-singular, then the degree of
C = a + b and the genus of C = ab - a - b + 1 for some integers a,
b. This cannot occur because the degree of C = 5 and the genus of
c = 1. If Q is singular, then the genus of C = a2 - a for odd degree
2a + 1 of C. Hence degree of C = 5 and genus of C = 1 does not
occur. Therefore the above map is injective, hence is an isomorphism.
Next we show that /7°(P3, ^ ( 3 ) ) -> H°(C, ^(3)) is surjective. We
take the basis of H°(C, ^c(l)) with

* ! , X29X3],

where
space.

[Xθ, •

As

{Ψ=[x

.. , xχ\ means

.2 V 2 V 2 V 2
0 > -*1 > Λ 2 ' Λ 3 '

) ) =

that

X0Xl

are bases of a vector

and H°{¥\^(2)) = //°(C, ^ c ( 2 ) ) , therefore H°(C,0C(2)) has
the above basis. But X[X^ (i = 0 , . . . , 4 ) are contained in
H°(C 9 ^c(2)), and therefore we obtain the following relations:

where / = 0, 1, 2, 3, 4 and // (i = 1 , 2 , 3 , 4 ) are homogeneous
polynomials of degree 2. As ( C , ^ c ( l ) ) is projectively normal, hence

H°(C, ^ c ( l ) ) 0 3 -> ^ ° ( C , ^ c (3))

is surjective. Therefore we obtain the generators of H°(C, ^c(3)) as
follows,

(I)

V 3 V 3 V 3
0 ' 1 ' 2 '

X3 X

X 3 ^ ^ 0 X 3 X 1 , X3X2

^ , ΛΓ^XQ , X^X\ , X^^2 ? *^4«̂ 3

' X2 XX2 XX2 XX2
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The part (1) is clearly the image of //°(P3, ^ ( 1 ) ) . And the rela-
tion (*) says that the part (2) is also in the image of i7°(P3, <%>(3)).
Because

fi(x0,xι,x2, Xi)xj (i,jφ*),

fa{xo,x\,xi, Xz)Xi (i = 0 , 1 , 2 , 3 ) ,

by the relation (*) moreover the relation (*) says f^x^ is in the
image of i/°(P3, ^ ( 3 ) ) . Hence

is surjective. Finally we prove this lemma. If k = 2, 3, then this
lemma is true by the above argument. We consider the case in which
k > 4. First, we show this lemma in the case that k is even. Let
k = 2m. We show in this case by the induction on m. In this, we
give the following diagram:

p ) ) - H°(C,0c(2m))
ΐ - ΐ

H°(Ψ3, @{2(m - 1))) ® # ° ( P 3 , &{2)) -» H°(C, &{2(m - 1))) <8> i/°(

By the hypothesis of induction and projective normality of

? we obtain

H°(F3

is surjective. Next we consider the case in which k is odd and k > 5.
But this case is clear by the same argument. Therefore we obtain this
lemma.

LEMMA 4. If C c P3 w as m Lemma 3, ίλen ίλe homogeneous
ideal of C c P3 w generated by degree 3.

Proo/. Let 4 be the kernel of H°{ψ\ <%>{k)) -+ H°(C,
We show that

is surjective for every k > 3. We take a divisor D with
and support of D consists of 5 distinct points. As D c P 2 , we define
Γk ( f c = l , 2 , . . . ) by

0 -> Γk -> H^{Ψι,^{k)) -> IΓ(D, <fD{k)) = H"{D, <fD)
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If k>2, then we give the following diagram:
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0
I

0 -

0 -

0 -

By the

h

I
0

snake

f(k)) -

?(k)) -

lemma,

0

0
1

h+i
i

0
I

1))

I

I
0

i
0

is exact for every k > 2. Moreover we define A so the following
diagram commutes:

As Ik -> /[ is surjective if fc > 3 and //°(P3, ^ ( 1 ) ) -> //°(P2,
is surjective, therefore A is surjective for k > 3. Next we define
ψ: Ik-> Ik® H°(F3, ^p3(l)) with ^(j) = .s ® ̂  where (J is a section
of HΌ(¥3, ^p3(l)) which is defining P 2 . This shows that the following
diagram

is commutative for k > 2. Therefore if Γk ® ^ ° ( P 2 ,
is surjective for every A: > 3, then this lemma is proved. So we show
that

is surjective for k > 3. Let Γ = 7/°(P2

? ^ ( 1 ) ) and let Vk = the
image of H°(V2, ^(Z:)) -> H°(D,t?D(K)). As the support of 2) is
not collinear, V -> //°(/)? ^z>(l)) is injective. We show that Vk =
H°(D, ^b(fc)) for A: > 2. If V φ H°{D, ffiD(2)), then the dimension
of ker[//°(P2, ^p2(2)) -^ H°(D,0D(2))] is at least 2. Therefore there
exist distinct quadratics Q\ and (?2 with Qi D D (i = 1, 2). βi and
Q2 satisfy Q\Γ\Q2= finite points. Because if Q\ ΠQ2 has component,
then there exist distinct lines l\, /2, /3 with

1YΓ\D = 4 points
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and

β l = / l + / 2 , Ql = k+k-

Hence F3 -1\ —• P1 be a projection with center /j, and let C —• P1

be a restriction map to C. Let / : C -^Ϋι be an associated morphism
defined by the above map C —• P 1 . As /i nZ) = 4 points, therefore
/ is a bijective morphism. Hence the genus of C = the genus of
P1 = 0. This is a contradiction. So Q\V\Qι — finite points. As Q\ and
Q2 are conies, Q1ΠQ2 contains at most 4 points by Bezout's theorem.
But Q1ΠQ2 contains D with degree 5; this is a contradiction. Hence
V2 = H ° ( D , <?D(2)). W e t a k e s e V w i t h

H°(D,0D(k)) - ff°(Z),^)(A:+l)).

I I

In this, we obtain the following commutative diagram:

- H°{D,d?D(k))

where σ , C, are defined by f v-> fs . Therefore we obtain

is surjective if k > 2. Hence

Vk = H°(D9<?D(k))

for every A: > 2. Let K(Vk, V) be ker[F^®F -> F^+ 1] and A:(K, 5)
be ker[F®5 —• F 5] where k and J are positive integers. We consider
the following commutative diagram:

0
4

K(Vk~ι, V)®V

4
F "̂"1 ®V®V

4

vk ®v
I
0

0

4
i : (F λ , K) ^ Λ

1 ^

1 ^

0

0

4

4

4

4
0
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where β{a®b®c) = ab®c, a is induced by β, ζ(f) = fs, p(f<S>g) =
fs®g, ξ is induced by p and s is an element of V defined as above.
If k > 3, p and ζ are isomorphisms. Hence we obtain that a is a
surjective map. Next we consider the following commutative diagram:

k)®VΛ K(V,k+l) A k

0
i

κ(v,k)a
id i

K(V,k)t

0

i
0

0
i

}F A K(V,k+l) Λ

^ β<Lθ ^

i
0

0
i

K(Vk

kl

i

0

K(V,k)®V ^ K(Vk~ι, V)®V^0

where u, v, v' and w are canonical maps and the surjectivity of
υ and υ' is induced by the following commutative diagram and the
snake lemma:

0 -> K(V,k)®V Λ #(F,fc+l) A tf(K*,F)

0 -

0 -+ 0 -* F * + 1 -^ F * + 1 -> 0

I 1
0 0 0

Therefore K(V9 k + 1) = im(^) + im(w) if k > 3. Hence we obtain
that /£ (g>i/°(P2, ^2(1)) -> / ( + 1 is surjective for A: > 3. Hence we
prove this lemma.

Proof of Theorem 2. First we show that
rrO/ Y G?\<8>k Jl/0/ y Q?®^\

AM. \A- 9 «*^ i • " \ ' / ^ ? " " ^ /

is surjective for k > 1. If k = 1, then this is clear. Now we can take

such that Xi is a reduced irreducible non-singular member of |A+il
where 2>χi = ^ ( A ) (1 = 1, 2, ... , n = dimX) and

2 = Δ(JΓΛ,LJrjι) = =Δ(JΓ2,^ 2 )>Δ(ΛΓ 1 ,L^) = l

because c(X, L) = 1. As Xi is an elliptic curve of degree 5 in P3,
therefore /7°(P3, ^(k)) -> /T°(Xi, Lf*) is surjective for A: > 2 by
Lemma 3. We consider the following diagram:

0 - fl°(P\<f(*-l)) -• #°(P 4 , <f(Λ)) -H. //0(P3,<^(fc)) -• 0

0 -
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By induction on k, Lχ2 is projective normal. So it is clear that

L is projectively normal because A(Xn, Lχn) = ••• = Δ(X2> A Y 2 ) .

The last part of this theorem is obtained by Lemma 4 and the same

argument.

COROLLARY. If (X, L) is a polarized non-singular surface, (D2) =
5 where £? — @(D) and L is very ample, then (X, L) is projectively
normal

To conclude this section, we give two examples of varieties of degree
5 and codimension 2.

EXAMPLE 1. Let f:S—>Ψ2 be a blowing up with center p\, . . . ,
p% G P2 where p\9 ... ,p* are in general position. We put f~ι(Pi) =
Ei (/ = 1 8) and D = /*(4/) - 2£i - E2 Es where / c P2

is a line. This D is very ample, (D2) = 5 and # ( 5 , 0{D)) = 2 (see
Hartshorne [5]). Therefore c(S, 0(D)) = 0.

EXAMPLE 2. Let f:S = P(ί?) -> C be a ruled surface over an
elliptic curve C where ί? is an indecomposable locally free sheaf of
rank 2 on C. Let deg(J?) = 1. Let Co be a section of / with
Pic(S) = ZCo Θ /* Pic(C). Let ΰ b e a divisor in Pic(S) with D =
Co + f*(T) and deg(Γ) = 2. This D is very ample (see Hartshorne
[5]). Let / be a fiber of / . As D is numerically equivalent to Co+2/,
therefore (D2) = 5 and (D.(D + KS)) = 0. Therefore g(S, 0(D)) =
1. This is an example of c(S, #(D)) = 1.
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