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ELLIPTIC CURVES WITH TRIVIAL CONDUCTOR
OVER QUADRATIC FIELDS

SALVADOR COMALADA

This paper concerns elliptic curves defined over quadratic fields and
having good reduction at all primes. All those real fields admitting
such curves having a 2-division point defined over the field and a
global minimal model are characterized. The number of isomorphism
classes, over the ground field, of these curves is also determined. If
the number of divisor classes of the field is odd, all the mentioned
curves without a global minimal model are classified and counted as
well. It is shown that there are only eight elliptic curves defined over
a quadratic field having good reduction everywhere and four 2-division
points defined over the field.

Introduction. The existence of elliptic curves with good reduction
everywhere over quadratic fields was first observed by Tate, by the
way of his result about the non-existence of such curves over Q. As
far as the classification of these curves is concerned we can mention
the following works:

1. Stroeker in [6] proves that there is no such curve admitting a
global minimal model over an imaginary quadratic field.

2. Setzer in [4] characterizes all the admissible elliptic curves de-
fined over imaginary quadratic fields. We recall that an admissible
elliptic curve over a number field K is an elliptic curve defined over
K, having good reduction everywhere and with a non-trivial 2-division
point rational over K.

3. Setzer in [5] characterizes all elliptic curves over a quadratic field
with good reduction everywhere and having a rational j-invariant.
In this paper, we extend some of those results to the case of a real
quadratic field and without any assumptions on the y-invariant. Like
the referred authors we follow the way of diophantine approach to
classify all elliptic curves with a given conductor. In our case, we shall
deal with certain diophantine equations in units of the real quadratic
field.

Let K be a quadratic field. An elliptic curve defined over K will
be called " ^-admissible" if it is admissible and has a global minimal
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model. By a result of Setzer [4], if 6 does not divide the number of
divisor classes of K all admissible curves are ^-admissible.

In § 1 we characterize the real quadratic fields admitting ^-admis-
sible curves in terms of the solvability of certain diophantine equations
over Z. We also give an effective procedure for finding them all ex-
plicitly for each given K. The number of such curves is determined
in §3. The set of j-invariants of these curves is seen to be infinite
(Corollary of Theorem 3) unlike the case with rational j-invariant [5,
Th. 4]. In §2 we prove that there are only eight elliptic curves defined
over a quadratic field K having good reduction everywhere and four
2-division ^-rational points. There is no such curve if K is imag-
inary and there are two curves in Q(λ/7) and in Q(>/41) and four
curves in Q(\/65). These curves are explicitly given in Theorem 2. In
§4 we characterize the real quadratic fields with odd number of divi-
sor classes admitting admissible curves. Finally in §5 we give a table
containing models of all admissible curves defined over K = Q(\/d)
for 2<d< 100.

1. ^-admissible elliptic curves. Throughout this paper—except in
§2—K will stand for the real quadratic field Q{\fd), where d is a
square-free positive integer. The symbols Oκ 9 &K > hχ;, N, tr will
always denote the ring of integers, the group of units, the number of
divisor classes, the norm and trace, respectively. We shall also use the
notation x for the conjugate of x e K. The aim of this section is to
determine all the quadratic fields K admitting a ^-admissible elliptic
curve. They are characterized in the following way:

THEOREM 1. The following conditions are equivalent
(i) There exists a g-admissible elliptic curve defined over K.

(ii) Either of the following equations has a solution in integers u, v e
UK, X,YeDκ:

(1.1) u + 6Av = X2, X a square {modulo 4),
(1.2) u + v = X2, UΞΞV = 1 +2\/d (mod 4) and d = 2 (mod 4),

(1.3) 47 + uΫ2 = X2, 2\ Y, N(Y) = ±16, N(X) =-2 (mod 8)
and d = 1 (mod 8).

(iii) d — 1023 or either of these sets of diophantine equations has a
solution9.

(1.4) x2-4dy2 = -7, Ί\d,
(1.5) x2-4dy2 = 65, 65 \d,
(1.6) x2-dy2 = -2, d = -2 (mod 8),
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(1.7)

x2 - dy2 = -8 1
r*-ds2 = ±256 f

(1.8)

= -163841 r = 3 (mod 4), (m,r) = 1
m2 - d«2 = 8r J 128π = 5m (mod r), d = 1 (mod 8).

Every ^-admissible curve is has a model:

(1.9) y2 = x3+Ax2 + Bx, A = 2nw, A,BeOκ, weίlκ.

For primes φ dividing 2, we shall make constant use of the criterion
for good reduction given in [4]. For quadratic fields, these conditions
can be reformulated as follows:

LEMMA (Setzer). (a) Let ty be an unramifiedprime dividing 2. Then
an elliptic curve with model (1.9) has good reduction at <p if and only
if A and B satisfy either of these sets of congruences:

A = - 2 α 2 (mod φ 3 ) , B = a4 (mod φ 3 ) ,

A = a2 (mod φ 2 ) , B = 0 (mod φ 4 )

a is integral and prime to φ .
(b) An elliptic curve with model (1.9) has good reduction at a ramified

prime dividing 2 if and only if A and B satisfy either the congruences
of (a) with Vβ = 2 or they satisfy:

A = 4(fli + a2\ίd), ax = 0 (mod 2),

B = 4(bx + b2Vd), bx = \ (mod 4), b2 = 2 (mod 4)

and

d = 2 (mod 4), a2 = 1 (mod 2),

fei - 62 + 1 = ^(ΛI - CL2 - 1) (mod 8),

or

rf = 3 (mod 4), a2 = 0 (mod 2),

2(22 - b\ = d (mod 8).

Let £ be an elliptic curve defined over K and having a model
(1.9). Then, if Setzer's conditions are satisfied, we can find a suit-
able transformation to obtain a global minimal model for E. More
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precisely,

LEMMA 1. Let E be an admissible elliptic curve defined over K.
Then E is g-admissible if and only if it has a model (1.9).

Proof. If E has such a model we shall be able to obtain a global
minimal equation for it by means of a transformation:

ΛΌ) X — U X + K, )

i?,S, TeK, UeK\

The reader can check [7] for the explicit transformation formulae
for the coefficients of an elliptic curve having a Weierstrass normal
form. If A, B satisfy (a) of Setzer's lemma, we set in (1.10): U = 2,
S = a, T = B/2, R = -A/2, 0 depending on whether the first or the
second congruences are respectively satisfied by φ = 2. Otherwise,
we set: U = 2, 5 = 1 , i? = ^ 4 - l , Γ = 4(m + nω) where

Γ0 ifvq

I I if ̂ q

0 if %(.4 - I) = 2 and m — \

or ^m(v4 - I) > 2 and m = 0,

" = < I if υψ(A - I) = 2 and m = 0

or fe(^4 - 1) > 2 and m = 1.

φ is a prime dividing 2 such that φ | ( ^ + 2, ω), ω = (1 ± Vd)/2.
Finally, if the congruences of (b) are satisfied, we set:

£/ = 2, Γ = 4, S = π,

_ ( -π2 iΐπ2A-B = π4 + π4 (mod 32)
R " \ - (4 + π 2) if π 2 ^ - 5 = 5π 4 + 4π 5 + π 6 (mod 32)

where π = λ/d?, 1 + Vd if ί/ = 2, 3 (mod 4), respectively. D

Before the proof of Theorem 1 we solve the diophantine equations
of(ii).

PROPOSITION 1. Let ε e ίlκ denote either the fundamental unit of
K or its conjugate. The equation:

(1.11) u + 64v=X2, u,veilκ,
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has a solution if and only if u = ±v and X2Dχ = 63D# or 65Dκ,
respectively, or in the following exceptional cases:

= 7,

= 41,

= 65,

= 1023,

u

u

u
-u

=

Hi,
Hi,

πi,
Hi

w

= 82U,

= eu,

— ε3u,

= -εu X = εv^w.

Proof. We consider first the cases u = ±1 or v = ± 1 . If X2 =
w + 64 then we have that X - 8, X + 8 e il# , and taking norms we
get the solutions:

rf = 7, X = ±3\/7, w = - l and d = 65, X

Similarly, from X2 = 1 + 64Ϊ; we have:

} or {φ.φ 5

? φ 5 .φ},
where 2Dχ = 9β ψ in the last case. Taking norms we get the solutions:

rf = 7, Z = ± ( 2 ε 2 + 1 ) , v = β 3 ; rf = 41, JΓ = ± e , v = β,

rf = 65, X = ±>/65, ϋ = 1 d = 65, X = ±(2ε2 - 1), v = ε3.

In the case X2 + 1 = 64v setting X = (r + sVd)/2, r = s (mod 2),
a — s2d, and taking norms we get:

a 2 + 2(4 - r2)α + (4 + r 2 ) 2 - 167V(64t;) = 0.

Let 6462 be the discriminant of this quadratic equation. From the
equality iV(64^) = b2 + r2 , we find that all the solutions of X2 + 1 =
64υ are:

, , ; , X = dzε, v = ε.

In the case X2 + 64 = u, proceeding as above we find that there are
no solutions. Since every solution of (1.11) with ±u or ±υ G il^ leads
up to the preceding cases, we can assume that ±u, ±v ^ H^ . In this
case we have that uv = ± w 2 , w e U# . Setting uw = (r + s\[d)j2,
r = s (mod 2), taking norms and having in mind that N(u) = N(v)
we have:

N{X)2 = N(u){ί + 2 1 2 ± 26 tv{{uw)2))

= N(u)(l + 2 1 2 =F 2ΊN(w) ± 26r2).

Taking into account all possible signs for N(u) and N(w) we find
in any case a finite number of possibilities for r and N(X), from
which only the following ones provide effective solutions to (1.11):

r = ± 2 , N(X) = ±63 or ± 6 5 ,



242 SALVADOR COMALADA

and they lead to X2Dχ = 63Dχ or 65£>A: , respectively. On the other
hand, it is clear that this last condition ensures the existence of a
solution to (1.11). D

PROPOSITION 2. Let ε e ilκ denote either the fundamental unit of
K or its conjugate. The equation:

(1.12) u + v=X2, u,veίlκ, XeOκ, XφO,

has a solution if and only ifu = v and 2Dχ = X2Oκ or u = w2uo,
v = w2Uo, Uo, w G ίlκ > tr(wo) a square or in the following exceptional
cases:

d = 2, ugίljζ, uε < 0, v = -ε2u, X = y/—2εu,

d = 5, uettχ> v=εu, X — ε\fΰ,

d = 6, 0<ugίl2

κ, v = ε4u, X = 7ε\/2u.

Proof. Let u, v G UK be a solution of (1.12) and let us assume first
that N(uυ) = 1. Multiplying by ΰv both sides of (1.12) we get:

X2 = u + v = N(u)X2ΰv.

Hence, N(ύ)uv = w2, w G ίlκw > 0. From (1.12) we have:

χ2w = uw + vw = uw + N(w)ΰw = tv(uw),

since N(w) = -1 would lead to a contradiction. Now, every odd
prime dividing tτ(uw) is unramified in K; hence, either tτ(uw) or
j tr(uw) is a rational square. In the first case, taking w0 = uw we have
u — W~1UQ, v = w~~ιtto and w~ι G il^. If \\r(uw) = r 2, r G Z,
then the prime 2 is ramified in ΛΓ and the prime ideal dividing 2 is
principal. If N(u) = JV(v) = 1 we have a solution to r4 - ds2 = 1
and by a theorem of Cohn [1] we have uw = ± 1 , that is u = v , with
the exceptional case d = 6, when there is the possibility wu> = ±ε2,
leading to v = ε4u. If iV(w) = N(v) = - 1 , w is a square; hence,
2 G O^ and d = 2. Now, the equation r4 - 2s2 = -1 has only one
solution in positive integers, namely r = s = 1 [3, D24-31]; hence we
have uw = ε, v = —ε2w.

If N(tt) = 1 and N(v) = - 1 , then w > 0; otherwise either of
the sums u + v , w + £ would be negative and (1.12) would lead to a
contradiction. Hence, wGil^ and (1.12) furnishes an integer Yeθκ
such that y - 1, Y + 1 G U# . Taking norms we easily see that d = 5
and the solutions to (1.12) must be those given in the statement. D
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PROPOSITION 3. Let e e ίlχ denote either the fundamental unit of
K = Q(Vd), d = 1 (mod 8), or its conjugate, and let φ be a prime
dividing 2 such that φ 4 is principal.

Then, the equation:

(1.13) 4Y + UΫ2 =X2

has a solution with X, Y eDκ, ueίlκ, YOK = Φ 4 , if and only if:
(i) φ is principal and there exists a generator of φ6 whose trace

is a square. In this case, if φ = HOχ, the solutions 0/(1.13) are:

X = rΉ, Y = υH4, u = υN(υ),

where r e Z, v e il# satisfy tr(vHβ) = r2.
(ii) φ 2 is not principal and the following equations have an integral

solution:

r4-ds2 = -16384, r odd

\m2-dn2 = 8r\ ( m , r ) = l , \2Sn = sm (mod r).

In this case, the solutions 0/(1.13) are: X = (m + ny/d)/2, Y, w

(2/ wT = (r2 + sy/d)/2, where m, n, r, s are a solution of

(1.14).
have the following exceptional cases:

= 4\, X=t 1 Q Jy/v, γ=\—-\v9 u = e5v, v€ίl2

κ,

^ \ fL±\ Vi u = Vi veii2

K,

9 u = ε'v, veίl2

κ.

Proof. Suppose that there exists a solution to (1.13) with N(uY) =
16. Multiplying by UY both sides of the equation we get:

X2ΰY = 4UY2 + 167 = 4X2.

Hence, φ2 is principal generated by G = 2X/X. Replacing Y =
N{u)uG2 in (1.13) we obtain:

χ2 = 4N(u)uG2 + uU2G4 = N(u)Gtr(uG3).

Since (d, tτ(uG3)) = 1 we conclude that G is a square in DA: and
Xr(N(u)uG3) is a square in Z . Thus, (i) is satisfied. If we have a
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solution of (1.13) with N(uY) = -16, taking norms directly from
(1.13) we get:

N(X)2 = 4tr(uΫ3).

Hence, if C = uY , we have:

- 2 1 2 , tr(C) = r 2 , N(X) = 2r, r e Z ,

so that the equations of (1.14) are satisfied, and from:

C - 64N(u) = uΫ3 + 4YΫ = ΎX2,

we have that X divides C ± 64 in Dκ, which is equivalent to the
congruence, l2Sn = sm (mod r). To see that the solutions given in
(ii) do satisfy (1.13) we write:

(C + 64)O* = φ62l, 7V(2l) = r2,

since N(C + 64) = 64r2 . If r = p*1 pa

k

k, from the first equation in
(1.14) we have that all pi decompose in Q(Vd) and 21 = ψx

ax - φ2

k

ak

where each φ, is one of the two prime ideals dividing p, . Now,
since X divides C + 64, we deduce that X2O/C = ψ 21. Hence,
C + 64 = y χ 2 w , K; G il/ς: and equation (1.13) is easily obtained.
We have only to check that if φ 2 is principal then we fall in the
exceptional cases. We set φ2 = GOκ and Y = G2υ, v e ίlκ - If
N(u) = 1, N(Y) = -16, we have N(v) = - 1 . Hence, u = ±w2,
u> G il^ but u = —w2 never occurs since we would have from (1.13)
the congruence X2 = — 1 (mod φ2), which is impossible. Thus, the
equation becomes:

47 = (X-wT)(X + wΫ)9

and

{(X - wΫ)Oκ, (X + w7)Dκ} = {2O*, (2D*)φ4}.

Taking norms it can easily be deduced that d = 41 or 65 and the
first and the third exceptional cases can be obtained. If N(u) = — 1,
N(Y) = 16, we have that υ = ±w2 , w eίlκ, but Y < 0 implies w >
0, so that Ύ < 0, w < 0 which is impossible since 4Y + ϊiY2 =~X .
Hence, 7 is a square and setting Y = H2, the equation becomes:

and we proceed as above to get the two remaining exceptional
cases. D
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Proof of Theorem 1. Let's see first the equivalence between (i) and
(ii): If E is a #-admissible elliptic curve defined over K, having a
model (1.9), then from the equation of the discriminant:

and the conditions of Setzer's lemma, we have the following possibil-
ities:

(1.15) B = 24u, A2 -26u = v , u,v eίlκ and A = a2 (mod 4 ) ,
(1.16) B = u, A2-4u = 2sυ , u,v eίlκ a n d A = -2a2 ( m o d 8 ) ,
(1.17) B = 4 M , A2-24u = 24υ, u,v e ίlκ and A = 4 v ^

(mod 8 ) , 5 Ξ 4 + 8V^ (mod 16) if </ = 2 (mod 4),

(1.18) B = 4u, A2 -24u = 24v, u, v e ilκ and A = 0 (mod 8 ) ,
(mod 16) if </ = 3 (mod 4),

(1.19) BOK = φ 4 , φ a prime dividing 2, Λ2 - 45 = wϊ?2 , WE ii*
and _

ί A = -2 (mod ψ)
[A=l (mod ψ)

iϊ d=\ (mod 8).
The equation (1.1) follows immediately from (1.15) and (1.16).

Possibility (1.18) never holds because it would imply the existence of
a unit u = 1 + 2\J~d (mod 4), which is impossible if d = 3 (mod 4).
The equation (1.2) can be easily deduced from (1.17) and so does
equation (1.3) from (1.19) together with the fact that the set of con-
gruences in (1.19) is seen to be equivalent to:

N(A) = - 2 (mod 8), tτ(A) = 3 (mod 4),

as it can be easily checked by taking norms. Conversely, if we are given
a solution of either (1.1) (1.2) or (1.3), following the possibilities listed
above, we can clearly construct an elliptic curve E with a model (1.9)
satisfying the conditions of Setzer's lemma, so that, by Lemma 1, E
is ^-admissible.

To prove the equivalence between (ii) and (iii), we first apply Propo-
sition 1 to equation (1.1). Hence, we may have N(X/3) = ± 7 , 7 | d
or N(X) = ±65, 65 | d. The condition of XOχ being a square
(mod 4) is seen to be equivalent in this case to Xw = Xw (mod 4),
w G !&κ. Thus, equations (1.4) and (1.5) are obtained. For d = 7,
65 these last equations are respectively satisfied. For d = 41 equa-
tions (1.7) and (1.8) are solvable and, finally, in the case d = 1023 a
solution to (1.1) can be found taking, for instance, u = — ε2 , υ = e,
X = 1, ε as in Proposition 1.
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Applying Proposition 2 to equation (1.2) we have that: X2 = 2w,
u = 1 + 2\fd (mod 4), so that (1.6) is seen to be satisfied. For the
exceptional case d = 6, this last equation has also a solution. At
last, Proposition 3 gives us the equivalence between the existence of
solutions to (1.3) and the solvability of (1.7) or (1.8). Condition
N(X) ΞΞ -2 (mod 8) is clearly equivalent to N(H) = - 2 , r = 3
(mod 4), respectively. Hence, Theorem 1 is proved. D

REMARKS. (1) We can find solutions to all the diophantine equa-
tions of (iii) taking, for example, d = 7, d = 65, d = 6, d = 41 or
d = 17867009, respectively.

(2) It is not difficult to check that every pair of diophantine equa-
tions of (iii) is not simultaneously solvable except for (1.7) and (1.8),
which can only have d = 41, 65 in common and (1.5) and (1.8),
which are both solvable for d = 65. I believe that this is the only
common d but I am not able to prove it.

(3) The proofs of Theorem 1 and Propositions 1, 2, 3 give, in fact,
a procedure for effectively constructing all ^-admissible curves for
a given K. This will be treated even more explicitly in Theorem 3
below.

2. Admissible elliptic curves with four 2-division A-rational points.
In this section, the set of the elliptic curves defined over any quadratic
field K = Q(Vd), with good reduction everywhere and all 2-division
points rational over K is completely determined (see [2]).

Let σ be the non-trivial Q-automorphism of K. We have:

THEOREM 2. Let K = Q(Vd). Let E be an elliptic curve defined
over K with good reduction everywhere and having four 2-division K-

E isrational points.
isomorphic to

Ei .)

Eι
E3

E5

E6

EΊ

E*

E2 = E°,

one

;2 =
d
7

41
65
65
65
65

E4

Then we must have d = 7,
' of the following eight curves:

χ 3 + A χ 2 + j

A
-(l+2ε 2)
(3ε-l)/2

2 ε 2 - l
10ε2 - 5
8ε+l

40ε + 5

8x, Δ =
B

16ε3

ε(ε - l)/2
16ε3

400ε3

16ε2

400ε2

= E%. In each case, ε

2nD,

D
ε6

ε4

ε6

(5ε)6

ε6

(5ε)6

41 or 65 a

1 < / < 8 ,

j
(255)3

(ε-16) 3 /ε
(257)3

(257)3

(17)3

(17)3

stands for the funt

unit, i.e., ε = 8 + 3\/7, 32 + 5\β\ or 8 + Λ/65 , respectively.
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Proof. Let E an elliptic curve with good reduction everywhere and
four 2-division ^-rational points. Then E has a model:

(2.1) E: y2 = x3 + Ax2 + Bx, A,Beΰκ,

with discriminant:

(2.2) Δ = 16B2{A2 -4B) = 2nD, DeO2

K, ( £ > , 2 ) = 1 .

By Setzer's conditions, given in [4], we have:

AOK = 2)22l, BOK = 2)403, DOK = Σ)12 ,

where a , 05, Σ) are ideals of Oκ and 03 = O^, 16D^, 4D^ or
φ 4 , the two last cases being only considered when 2 = φ 2 or φ φ
respectively. Let's assume 03 = φ 4 . Since 5 3 D Λ ; = Σ)1 2ίJ1 2 we have
that φ 1 2 is principal and from (2.2) we get the equation

N{X2 - 64) - ±212 , XeOκ, 2\X,

which ensures the principality of 03. In any case, since 03 is always
principal, we conclude that Σ)2 and 21 must be principal, too. Thus,
we may set:

21 - aθκ , 03 = bθκ , S 2 = cθκ, a,b,ceθκ,

(2.3) A = cau\, B = c2bιi2, D = c6u\, Uγ, u2, U3 eίlκ-

From (2.2) we have:

b2{a2u] - 4Z?w2) = 2su2

3u-2.

If ft = 1 or 16, this last equality leads to a solution of

(2.4) X2 = u + 64υ, XeOκ, u,veίlκ,

with V G U | or ueίijζ, respectively. If ft = 4 we have:

(2.5) X 2 = W + Ϊ ; , XeOκ, u,veίlKy

with ueίtfc. If ftθκ = φ 4 we obtain:

(2.6) X2 = 4Y + u¥2, 2\Y> ^ ( 7 ) = ± 1 6 ,

with w e i l | . Equations (2.4), (2.5) and (2.6) are completely studied
in Propositions 1, 2 and 3, respectively. In our particular case, where
one of the units u, υ is a square, it is easy to see that equation (2.4)
implies d = - 7 , 7, 41 or 65, equation (2.5) implies d = 2 and from
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equation (2.6) we have d = - 7 , 41 or 65. Finally, from its finite
number of solutions, we can construct all the desired curves. Notice
that for d = - 7 , by Stroeker's result in [6], no elliptic curves with
good reduction everywhere can be found. Also, for d = 2 we have
already shown in Theorem 1 that no admissible curves exist.

Clearly, by Lemma 1, all the curves obtained have a global minimal
model except for Eβ and E$, which cannot have it. Notice that these
last curves have been obtained by setting c = 5 in (2.3). In fact,
following Setzer in [4], it can be easily shown that two admissible
curves over Q(\/65) attached to a solution of (2.4) or (2.6) with C\,
C2 respectively, are isomorphic if and only if 2>i, Σ>2 are equivalent
ideals. O

3. Counting g-admissible curves.

THEOREM 3. Let K = Q(Vd), d φ 7, 41, 65, 1023 satisfy the
conditions of Theorem 1. Then the number of g-admissible elliptic
curves over K (up to isomorphism) is:

2 ι/(1.6) issolvablef d φ 6,
6 ifd = 6
8 if either (1.4) or (1.5) is solvable and d = 3 (mod 4),
4 if either (1.4) or (1.5) is solvable, (1.8) is unsolvable

and dφl (mod 4),
l^N if (1.8) is solvable and (1.5) is unsolvable,
4 + 2fN if both (1.5) and (1.8) are solvable,
2f+xM ι/(1.7) is solvable,

where M is the number of solutions in positive integers (r, s) of the
equation r4 - ds2 = ±256, 2 f r. ΛΓ w ίAe number of solutions in
integers (r, 5) o/7Ae equation r4 -ds2 = -16384, r = 3 (mod 4) for
which the whole set of equations (1.8) has also a solution. Let / = 0, 1
according to whether the norm of the fundamental unit is —I or I,
respectively. For d = 7, 41, 65, 1023, the number of g-admissible
elliptic curves w 8, 6, 6, 8 respectively.

Proof. Let (5 be the set of classes of isomorphic g-admissible el-
liptic curves. In each case, we shall consider different sets ft and we
shall establish a mapping Φ: & —> S) of & onto S). We shall obtain
the result about the cardinal of 0 in terms of the cardinal of 9) and
the fibres of Φ . Notice that two models: y2 = x 3 + A\X2 + B\X,
y2 = χ3 + A2X2 + B2X, belong to isomorphic elliptic curves if and
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only if they are related by a dilation:

A2 = AιU\ B2 = B{U\ Ueίίk.

In fact, if a transformation (1.15) changes one model into the other we
must have S = T = 0 and R3 + AXR

2 + BγR = 0, ReOκ and since
d Φ 7, 41, 65 (see Th. 2), R = 0. Using this argument we shall
have, in any case, that Φ does not depend on the particular choice of
the model.

Assume that (1.6) is solvable. We define:

1 / 2

, Ee<δ.

If A = AC, B = Au, C G D J ^ , K € % then C2 = u + v, υ e ίiκ

and Φ2(E) = uv . By Proposition 2, wu e il^ and Φ(E) eft. Let us
show that Φ is onto: Setting u = r2 + sy/d and taking C eDκ such
that N(C) = - 2 we have:

C 2 = 2v , v € it* , Ϊ ) Ξ 1 + 2y/d (mod 4), w + U = 2r2 = C2€r2

hence uv + Uv = (CV)2 with wv = 1 + 2\fd (mod 4).
Thus, uv , wτ;, Cr is a solution of equation (1.2) and a ^-admis-

sible curve E can be obtained by taking: A = ±ArC (sign determined
by (b) of Setzer's lemma), B = Auv, so that Φ(£) = w. Finally,
Φ(AX, 5 0 = Φ(Λ2, B2) if and only if (Aι/A2)

2 = 5 i / 5 2 and since
Bχ/B2 G il^: this is equivalent to: A2 = A\u\ B2 = B\U2, w e UA: , if
ueίljc the curves are isomoφhic and if u gίlj. we obtain two non-
isomorphic curves such that all curves with the same image by Φ must
be isomorphic to one of them. Therefore, in this case, the number
of ^-admissible elliptic curves defined over K (up to isomorphism)
is just twice the number of units in 9), i.e., the number of integral
solutions (r, s) of the diophantine equation:

Applying a theorem of Cohn ([1]), we get the first two cases (d Φ 6,
rf = 6 ) .

If (1.4) is solvable and E e& has a model (1.9) then we have:
A 2 = 2s~2ev + 2e+2u, B = 2eu, u,υ eUκ, wi th e = 0 or 4.

Let fj be the set of classes [C] of elements of the set: {C e
N(C) = - 7 , C is a square (mod 4)}, classified by the relation:

B~C iff CB'leil2

K.
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In this case we set:

Φ(A,B) = [-A/3] iie = 4,

if e = 0.

By Proposition 1 together with (1.15), (1.16) we get that Φ(A, B) e 9).
Also, let us see that there are exactly two elements of 0 which map
to every class of # : Let left, I = [C], C eθκ . From C2 = Ίu,
u € ilκ , we can take the g-admissible curves E\, E2 given by:

Clearly, Φ{E{) = Φ(E2) = I. It is also clear that Ex, E2 are not
isomorphic and they are the only elements of <8 which map to / , for
if Φ(AX, Bx) = Φ(A2, B2), either A2e[A{] or -2A2 e[A{] and, in
any case, Bι, B2 are uniquely determined by equations:

Therefore, the cardinal of (S is twice the cardinal of fj and this is
four if d = 4 (mod 4), being [C], [-C]_, [C], [-C] all the classes,
and two if d ψ 3 (mod 4) being [C], [C] all the classes.

If (1.5) is solvable and (1.8) is unsolvable we take S) to be the set
of classes [C] of elements of the set:

{C e £>κ , N(C) = 65 , C is a square (mod4)}

classified as above. Now, we set:

Φ(A,B) = [A] if έ? = 4,

Φ(Λ,5) = [-Λ/2] if e = 0.

Arguing as in the preceding case we can show that Φ(A, B) eft.
Moreover, the proof of the existence of two elements of 0 mapping
to every / e S) is practically the same, but now, the curves E\, E2

are given by:

Aι=C, Bλ = 16u, A2 = -2C, B2 = u,

where / = [C], C e Oκ and C2 = 65u, u e ίίκ. Finally, the
cardinal of S) is the same as before. If (1.8) is solvable and (1.5) is
unsolvable then we take: S) = {C e£)κ , C = (r2 + sVd)/2, r, s e Z
where (r,s9m,n) satisfy (1.8) for m, n e Z}, and Φ(A, B) —
A2B - 4N(B). From (1.19) and the fact that the primes dividing 2
are not principal we get that A, B must satisfy equation (1.3) with
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N(uB) = -16 (see Prop. 3). Now, multiplying by B both sides of
this equation we get:

A2B = 4N(B) + uB3,

so that Φ(A, B) — uB , Φ(A, B) e f). We show that either one or
two elements of & map to every C e ft depending on whether the
norm of the fundamental unit is — 1 or 1, respectively. If C e $),
then from Proposition 3 and the last equality we have that:

A2B = 4N(B) + C,

where A = (m + nVd)/2, 2 \ B, N{B) = ±16, so that B can be
found and the elliptic curve with coefficients, A, B is ^-admissible.
Clearly, Φ{A, B) = C. If Φ(A{,B{) = Φ(A2,B2) from N(B{) =
N(B2) = ±16 we get that B2/Bχ = (A2/Ax)

2 . Now, since B2/Bx eiiκ

we have:
A2 = Axu, B2=Bxu

2, ueίίκ>

Hence, if u E il^ the curves are isomorphic, and if u 0 il^ we obtain
two non-isomorphic curves only when JV(w) = 1, i.e., when the norm
of the fundamental unit is 1, as we must have N{A\) = N(A2) = —2
(mod 8). If both (1.5) and (1.8) are solvable we fall simultaneously
in the two last cases, but, clearly, curves coming from different cases
are non-isomorphic, so that the cardinal is the sum of the two last
cardinals and the result follows.

If, at last, we assume that (1.7) is solvable we consider:

S) = {CeOκ; N(C) = ±256, tr(C) = r2, r G Z, (r, 2) = 1}

and Φ(A, B) = -2AB/A. To show that Φ(E) e ft we put by
Proposition 3: A = r/7, J5 = w//4, where u € ίlκ, N(H) = - 2 ,
tv(uH6) = r2. Hence, -2AB/A = -2A2B/N(A) = uHβ. Now we
show that either one or two elements of (S map to every C e S) de-
pending on whether the norm of the fundamental unit is - 1 or 1,
respectively. If C e ft with tr(C) = r2 , then from:

C = uH6, ueίiκ, N(H) = 2, He Oκ,

we have that the elliptic curve given by: A = ±rH (XvA = - 1
(mod 4))9B = uH\ is ^-admissible and Φ(A, B) = C. If
= Φ{A2, 5 2) since ΛΓ^j) = N{A2) we get

Bι/B2 = (Aι/A2)
2

9 Bι/B2eίlκ

Thus,
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and we argue as in the preceding case to get the result. For d = 7, 41,
65 and 1023 we construct all the ^-admissible curves directly from
the solutions of the diophantine equations in (iii) of Theorem 1. It is
straightforward to check that there are 8, 6, 6, 8 curves respectively.
In §5 we give explicit models for all these curves with d = 7, 41 and
65. D

REMARK. Assume that (1.7) is solvable. Then if the norm of the
fundamental unit is 1 we must have:

r4-ds2 = 256, (r,2) = l.

Otherwise, from (r2 + sVd)/2 = uH6, N(H) = - 2 , we should have
N(u) = - 1 . Also, if the norm of the fundamental unit is - 1 and
d φ 41 we must have:

r 4 - ^ 2 = -256, ( r , 2 ) = 1.

Otherwise, proceeding as above we would have N(ύ) = 1 and, hence,
ueίlχ so that the ^-admissible curve given by: A = rΉ, B = uH4 ,
should have all the 2-division points rational over K, and Theorem 2
would lead to contradiction.

Let Ji, Jr be the sets of ./-invariants of all ^-admissible elliptic
curves defined over imaginary or real quadratic fields, respectively.
Setzer ([4], [5]) has proved that /, and JrnZ are both finite. In fact,

// = {17 3,257 3},

Λ Π Z = {173, 2573, - 1 5 3 , 255 3, 203}.

On the other hand, as a consequence of Theorems 1 and 3, we can
state the following:

COROLLARY. Jr is not finite.

Proof. For any integer m = 13 (mod 32) let dm be the square-free
positive integer determined by:

(3.1) 7 m 6 + l = I6dmn2.

Taking x = 7m 3 , y = In, d = ldm we obtain a solution to (1.4) with
d = 3 (mod 4). Since, (3.1) has only a finite number of solutions for a
given dm , we get in this way an infinite number of real quadratic fields
K = Q(y/d) admitting ^-admissible elliptic curves. By Theorem 3,
there are exactly 8 such curves for each K and by [5, Th. 3] not all
of them can have a rational y'-invariant. D
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4. Admissible curves. It seems very difficult to characterize all the
admissible curves defined over K by means of this diophantine ap-
proach. Nevertheless, in the case 2 \ h^ it is still possible to solve
it completely. In fact, under this assumption on h^, almost all the
admissible curves turn out to be ^-admissible and they are already
characterized by Theorem 1. More precisely,

THEOREM 4. Assume 2 \ h^. All admissible elliptic curves defined
over K are g-admissible except for the case:

d prime, d = 1 (mod 16) and φ not principal, where <p is a prime
dividing 2. In this latter case, the following conditions are equivalent:

(i) There exists an admissible elliptic curve defined over K.
(ii) The equation:

(4.1) uY4 + 6Av = X2 , 2\Y, N(Y) = ± 8 ,

has a solution in integers u, v e ίlκ, X, Y £ &κ
(iii) The following equation has an integral solution:

(4.2) r

4-ds2 = -256, r odd.

When these conditions are satisfied, the number of admissible elliptic
curves is twice the number of positive integral solutions of(4.2). None
of these curves is g-admissϊble.

Proceeding as in §1, we solve the equation (4.1) before the proof of
the theorem.

PROPOSITION 4. Let ε e ίlκ denote either the fundamental unit of
K = Q(Vd), d = 1 (mod 8), or its conjugate, and let φ be a prime
dividing 2 such that φ3 is principal. Then, the equation:

(4.3) uY4 + 64Ϊ; = X2

has a solution with X, Y e Oχ, u, v e ίlχ > Y&κ = Φ 3 if and only
if there exists a generator of φ6 whose trace is a square. The solution
is then given by: X = rY, v = U, where tτ(Y2u) = r2, r e Z, except
for d = 41, when there are also the solutions:

v l i e - 2 7 r- ΛZ ε- 17 ίί2

X=—20—vu> v=eu, Y = , ueίljc,

v ε - 1 5 Γ _ _ ε - 1 7 2

X=—j—y/ΰ, u = εv, Y = —^—, veίX2

κ.
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Proof. Let us assume that (4.3) has a solution. Then, multiplying

both sides of the equation by Ύ we get:

(4.4) V+M. , V, Λ. I _

If N(uv) = 1, multiplying both sides of (4.4) by ΰv we have:

(XY/S)2 = vY2 + aY2 = (XY/$)ϊwN(u).

Hence, ±ΰv G \X2

K. Setting ±uv = w2, w G ίlκ and multiplying
again (4.4) by w , we get:

tr(wti;Γ2) = wwΓ2 + N(w)ΰwΫ2 = (X7/8)2w ,

for we must have N(w) = 1. Now, since (d, tr(wti;72)) = 1, we con-
clude that tr(uwY2) must be a square in Z . Setting y7 = Y\Zw~ι,
u' = uw2 we have:

χ = r r ' , v = 8/, where tr((r) 2 w0 = ^ 2

5 ^ ^ Z .

If N(uv) = - 1 , we may assume N(u) = - 1 so that N(v) = 1 and
±ι; € i l^ . But from (4.4) v = 1 (mod φ 2 ) . Thus, i; G il^ and we
may write:

a n d

Taking norms we have d = 41 and the two exceptional solutions are
obtained. α

Proof of Theorem 4. Let E be an admissible elliptic curve with
model (2.1) and discriminant (2.2). Then, we also have:

AOK = Σ)22t, BOK = 2)4Q5, DOK = 2>12,

where 21, 55, S) are ideals of £)# and 55 = Dκ, 16O^, 40/^ or
φ 4 . Since S)12 is principal and 2 \ hk we conclude that Σ)3 and,
consequently, 2)05 are principal. If 2) is principal then by a dilation
we get an admissible curve isomorphic to E with a model (1.9) so that
by Lemma 1 a global minimal model for it can be obtained. Otherwise,
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the non-principality of 2) is equivalent to the non-principality of φ ,
where 9$ = φ 4 . In this latter case we may set:

From the discriminant we have:

2

Hence, equation (4.1) is satisfied. Now it suffices to apply Proposition
4 to get the equivalence between (ii) and (iii). It is well known that
for d = 1 (mod 4) condition 2 \ h^ is equivalent to ([8]):

d prime or

d = qqf, q = q* = 3 (mod 4).

In the last case, the norm of the fundamental unit is 1 and, by the
Remark at the end of §3, we have that only the plus sign is possible in
(4.2). Now, it is easy to see that this equation is not solvable for these
values of d. Hence, d must be a prime. In this case, the fundamental
unit has norm - 1 and only the minus sign is possible in (4.2). It is
clear that the solvability of (4.2) implies d = 1 (mod 16) so that the
first assertion of Theorem 4 is proved. Let's assume a solution X,
Y, w, v, of (4.1) such that N{Xu) = - 8 (mod 32). Let F e Dκ

be a uniformizing element for φ, where YOκ = φ 3 and let us set
G = F3/uY. Then, the elliptic curve given by:

B = u~ιF4, AB = 2XG2, D = vG4,

is admissible. It is not difficult to check Setzer's conditions (a) on
A, B, which are equivalent to the following ones:

N(A) ΞΞ - 2 (mod 8), tr(A) = 3 (mod 4),

N(B-l) = 0 (mod 8).

To prove the last assertion of the theorem we count the number of
admissible curves proceeding as in §3. Now, 0 will stand for the set
of the isomorphic admissible elliptic curves. Notice that since d is a
prime, d = 1 (mod 16) and φ is not principal, none of the condi-
tions of Theorem 1 is satisfied. Hence, 0 will have no ^-admissible
curves.
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Assuming (4.2) solvable, we define:

S) = {C e Oκ C > 0, N(C) = -256,

We may set:

(4.5) = 2XG2, D = vG4,

where X, Y, w, v is a solution of (4.1) and
prime to 2 such that φ2t is principal. Hence,

= 2l3, 21 an ideal

D3

— = uv~ιY4 = N(v)uvY~ιY4

= (uwY2)2, tr = r 2 , r e Z ,

(4.6)

By Proposition 4,
so that Φ(E) G ft. To see that Φ is onto let's set C = (±r2+sVd)/2.
Then, C = uP2 where POK = φ 3 , N(P) = 8, ί / G ί l | . We get an
admissible elliptic curve by taking: B = u~ιF4, 1̂2? = ±2rPG2,
(sign determined by tr(J) = - 1 (mod 4)), where i 7 , G are taken as
above. Thus,

1/2

= C.
wG4

Finally, Φ ( ^ i , Bx) = Φ ( ^ 2 , # 2 ) i f f A / ^ 2 = (Bx/B2γ . Assume that
£/ is attached to the solution of (4.1) Xt, 7/, wz, ι;f , / = 1, 2, in
the way of (4.5). Clearly, we may assume by (4.6) that Y\ = Y2. Then
we have U\/u2 = V\/v2 and since Ŷ w/ + 64^/ G D^ for / = 1, 2
we conclude that W2 = U\W2, υ2 = V\W2, w G H#. Hence, £2 is
attached to the solution ±2wXi, Y, U\W2 , V\W2. If w G i l^, we
have from (4.5) and the fact that 2ti, Qί2 are equivalent, the relation:

G2

UeK*

Hence, 5i = B2U
4 and from AιBι/A2B2 = (Gι/G2)

2 we get
^2^ 2 > so that £Ί and E2 are isomorphic. The possibility w
never occurs since we must have N{Aχ) = N(A2) = - 2 (mod 8) D

REMARKS. (1)

Theorem 4.
= 257 is the first one to satisfy the conditions of
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(2) In case 2 \ h^ , the diophantine conditions (iii) of Theorem 1 for
the existence of ^-admissible models can be reformulated as follows.

d = 7, 41 or d — Iq, q = 3 (mod 4), x2 - 4dy2 = -7 solvable,

d = 2q, # ΞΞ 3 (mod 4), x2 - dy2 = -2 solvable,

d prime, d = 1 (mod 16), ψ principal, r4 — ds2 = —256 solvable.

We get solutions to all these equations taking, for instance, d = 77,
rf = 6, 22, 38, rf = 337, respectively.

5. A table of all admissible curves defined over K = Q(Vd), 0 <
d < 100. Let E be an admissible curve defined over K = Q(Vd)

) and

Ex
E3

E5

Ei

E9

En
E13

E\4

Eis

En
E19

E21

E23

E25

E21

E29

E30

E31

E32

E33

E35

En
E39
E41

E43

E45

E

E

d
6
6
6
7
7
7
7
7
14
14
22
38
41
41
41
65
65
65
65
65
65
65
65
77
77
86

is isomorphic to

•r.y
2 = χ3 + Ax2

A
- 2 ( ε - 1)

- 14(β - 1)
14(ε-l)ε
- ( l + 2ε2)
2(1+2ε2)

-2( l+2ε 2 )
8 ε - l

- ( 8 ε - 1)
- 3(ε- l)/2

3(ε - 1)
-2(ε - l)/7
2(ε-l)/3
(3ε-l)/2

(ε + 43)/10
-2ε 2

2 ε 2 - l
10ε2 - 5
8ε+l

40ε + 5
(ε + 3)/2

5(ε + 3)/2
- 2 ( 2 ε 2 - l )

-10(2ε 2 -l)
3(ε3-l)/10
-3(ε 3 - l )/5
2(ε- 1)/51

one of the following curves:

+ Bx, A = :
B
4ε
4ε
4ε

16ε3

1
1

16ε2

16ε2

16ε
- ε
4ε
4ε

ε(ε-l)/2
(ε+ l)/2

ε2

16ε3

400ε3

16ε2

400ε2

(ε+l)2/4
25(ε+l)2/4

1
25

16ε3

- ε 3

4ε

2l2D,

D
ε3

ε
ε7

ε6

ε3

ε3

- ε 6

- ε 6

- ε 3

ε3

ε3

ε3

ε4

- ε
ε7

ε6

(5ε)6

ε6

(5ε)6

- ε 3

- 5 6 ε 3

ε3

56ε3

- ε 9

ε9

ε3

1 < 1 < 46

j
(20)3

64(4ε4 + l) 3 /ε 4

64(4ε 4 +l) 3 /ε 4

(255)3

(256ε2 + ε) 3

(256ε2 + ε)3

(-15)3

(-15)3

(-15)3

(255)3

(20)3

(20)3

(ε-16) 3 /ε
(17)%

(256ε + l)3/ε
(257)3

(257)3

(17)3

(17)3

(8 + ε-)2

(8 + ε-)2

(256ε2 - ε) 3

(256ε2 - ε) 3

(-15)3

(255)3

(20)3
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Ei = Ef_{ for every missing /, 0 < / < 46, where σ is the non-
trivial automorphism of K. In each case, ε stands for the fundamen-
tal unit of the respective field.

All the curves listed above are ^-admissible except for d = 65,
where E$Q , £32 , £35, £36 ? £39 and £40 clearly cannot have a global
minimal model. This table has been computed using the results given
in this paper. Fields having an even number of divisor classes have
been treated in a straightforward way. None of them (excepting d =
65) supplies admissible elliptic curves.

Acknowledgment. The author wishes to express his gratitude to En-
ric Nart for his help, especially in the conception of Theorem 2.
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