AN ESTIMATE OF THE VOLUME OF A COMPACT SET IN TERMS OF ITS INTEGRAL OF MEAN CURVATURE

Y. D. Chai

Abstract

A geometric inequality for a compact set in euclidean 3 space is obtained. The inequality involves volume and integral of mean curvature. Also some property of the compact set is studied. The method of outer parallel bodies is used in the proof.

I. Introduction. For a planar compact set K with area A and perimeter L the classical isoperimetric inequality states:

$$
L^{2}-4 \pi A \geq 0 .
$$

Equality in above inequality holds for regular disk. For proof of the inequality above see Guggenheimer [10].

The volume and surface area of the compact set W in euclidean 3 space, R^{3}, will be represented by the functionals $V(W)$ and $S(W)$. The functional $M(W)$ is the integral of the mean curvature and $|M|(W)$ is the integral of absolute mean curvature [3].

Geometric inequality involving integral of absolute mean curvature $|M|(W)$ and surface area $S(W)$ in euclidean 3 space has been founded by Russia mathematician I. A. Danelich.

He found the following facts:
(1) $|M|\left(W_{2}\right) \leq|M|\left(W_{1}\right)$ if W_{1} and W_{2} are compact sets and W_{2} is a convex set contained in W_{1} [4].
(2) If W is a compact set with bounded integral of absolute mean curvature, then

$$
S(W) \leq 2 / \pi^{2}|M|^{2}
$$

The gist both of Danelich's result (2) and the classical geometric inequality $36 \pi\left[V(W)^{2}\right] \leq S(W)^{3}$, [12], involving volume $V(W)$ and surface area $S(W)$ is contained in the following inequality:
(3) $V(W) \leq \sqrt{2} /\left[3 \pi^{3} \sqrt{\pi}\right]|M|^{3}(W)$.

In this paper we will derive a new upper bound for $V(W)$ with compact set W having somewhat restricted conditions. It will be a sharper inequality than (3) in the previous paragraph and equality will hold for regular balls in R^{3}. It should be noted that Danelich's inequality
never decides when equality holds. We also improve Danelich's first result (1). In proving our results we will actually establish a bound for the volume of the outer parallel bodies of a given body.
II. Geometric inequality for a compact set and its properties. If the motion is determined by the position of the moving frame (Q, e_{1}, e_{2}, e_{3}), the kinematic density has the form

$$
d K=d P \wedge d \sigma \wedge d \pi
$$

where $d P$ is the volume element of R^{3} at the origin Q of the moving frame, $d \pi$ is the area element of the unit sphere corresponding to the end point of e_{3}, and $d \pi$ is the element of rotation about e_{3}. For a compact set W parallel body of W at the distance r is defined to be set

$$
W_{r}=\left\{x \in R^{3}| | x-y \mid \leq r, y \in W\right\} .
$$

Now we state the kinematic fundamental formula in R^{3} without proof which is the work of Blaschke.

Proposition 2.1. Let D_{0} and D_{1} be two domains of R^{3} bounded respectively by the surface Σ_{0} and Σ_{1} which we assume to be of class C^{2}. Let V_{i}, χ_{i} be the volume and the euler characteristic of D_{i} and let F_{i}, M_{i} be the area and the integral of the mean curvature of Σ_{i} $(i=0,1)$ respectively. Suppose D_{0} is fixed and D_{1} is moving and let $d K$ be the kinematic density for D_{1}. If $\chi\left(D_{0} \cap D_{1}\right)$ denotes the euler characteristic of the intersection $D_{0} \cap D_{1}$, then

$$
\int_{D_{0} \cap D_{1} \neq \varnothing} \chi\left(D_{0} \cap D_{1}\right) d k=8 \pi^{2}\left(V_{0} \chi_{1}+V_{1} \chi_{0}\right)+2 \pi\left(F_{0}, M_{1}+F_{1} M_{0}\right) .
$$

Proof. See [1].
Federer considered sets with positive reach in his article Curvature Measure [6]. The reach of subset A of R^{3} is the largest number ε such that if point x is in R^{3} and the distance, $\delta(x)$, from x to A is smaller than ε, then A contains the unique point $\xi(x)$, nearest to x. It can be easily checked that compact set in R^{3} with C^{2} surface as its boundary has positive reach. Assuming that reach of $A, \operatorname{reach}(A)$, is positive, the Steiner's formula is established in the following form; for each topological ball A with C^{2}-boundary in R^{3} and for $r, 0 \leq r<$ $\operatorname{reach}(A)$, volume of the parallel body A_{r} of $A, A_{r}=\left\{x \in R^{3} \mid\right.$ $|x-a| \leq r, a \in A\}$, is given by a polynomial of degree 3 in r :

$$
V\left(A_{r}\right)=V(A)+S(A) \cdot r+M(A) \cdot r^{2}+(4 / 3) \pi \cdot r^{3}
$$

where V is volume, M is integral of mean curvature.

In fact the above equality follows from Proposition 2.1 and the fact that $A \cap D_{r}$ is contractible for all the positions of regular ball D_{r} of radius r which is shown in [6]. This suggests how we get geometric inequality involving volume and integral of mean curvature for special kind of compact sets by the usage of the estimate of volume of parallel bodies and the well known Minkowski inequality [11]. So we define a concept which generalizes the definition of compact convex sets in R^{3}.

Definition 2.2. A topological 3-ball W in R^{3} with C^{2}-surface as its boundary is called an $M(t)$-compact set if each point in its boundary has at most one negative principal normal curvature with respect to the inward normal vector which is less than $-1 / t$ where $t>$ diameter of W.

Remark 2.3. (1) Every $M(s)$-compact set is an $M(t)$-compact set if $s \geq t$.
(2) Every compact convex set with C^{2}-surface is an $M(\infty)$-compact set.
(3) Every topological 3-ball with 2-convex surface, [14], is an $M(\infty)$ compact set.
(4) Every topological ball with next-to-convex surface, [9], is an $M(\infty)$-compact set.

Lemma 2.4. Let W be an $M(t)$-compact set and G be the set of all motions in R^{3}. Then for any $g \in G$ and $r<t-\operatorname{diam}(W)$,

$$
\chi\left(W \cap g D_{r}\right) \geq 1 \quad \text { if } W \cap g D_{r} \text { is nonempty }
$$

where D_{r} is a solid regular ball with radius r and $g D_{r}$ is the image of D_{r} by the motion g.

Proof. We will prove that $\beta_{i}\left(W \cap g D_{r}\right)=0$ for $i \geq 1$ where β_{i} is the i th Betti number. For then $\chi\left(W \cap g D_{r}\right)=\beta_{0}\left(W \cap g D_{r}\right) \geq 1$ if $W \cap g D_{r}$ is nonempty. But we will show even stronger facts that $H_{i}\left(W \cap g D_{r}\right)=0$ for $i \geq 2$.

Consider the Mayer-Vietoris homology sequence with W and $g D_{r}$ for any $g \in G$ and $r<t-\operatorname{diam}(W)$ where $W \cap g D_{r}$ is nonempty. Then we have the following exact homology sequence:

$$
\begin{aligned}
& \rightarrow H_{l+1}(W) \oplus H_{i+1}\left(g D_{r}\right) \rightarrow H_{i+1}\left(W \cup g D_{r}\right) \rightarrow H_{i}\left(W \cap g D_{r}\right) \\
& \rightarrow H_{i}(W) \oplus H_{i}\left(g D_{r}\right) \rightarrow
\end{aligned}
$$

Since $H_{i+1}(W)=H_{i+1}\left(g D_{r}\right)=H_{i}(W)=H_{i}\left(g D_{r}\right)=0$ for $i \geq 2$, $H_{i}\left(W \cap g D_{r}\right) \cong H_{i+1}\left(W \cup g D_{r}\right)=0$ for $i \geq 2$.

Now suppose $\chi\left(W \cap g D_{r}\right)<1$ for some $g \in G$ and $r<t-$ $\operatorname{diam}(W)$. Then $r>0$ and $\beta_{1}\left(W \cap g D_{r}\right)>0$ since $\beta_{i}\left(W \cap g D_{r}\right)=0$ for $i \geq 2$. So $H_{1}\left(W \cap g D_{r}\right) \neq 0$. Now we consider the following Mayer-Vietoris exact homology sequence with W and $g D_{r}$:

$$
\begin{aligned}
& \rightarrow H_{2}(W) \oplus H_{2}\left(g D_{r}\right) \rightarrow H_{2}\left(W \cup g D_{r}\right) \\
& \rightarrow H_{1}\left(W \cap g D_{r}\right) \rightarrow H_{1}(W) \oplus H_{1}\left(g D_{r}\right) .
\end{aligned}
$$

Since

$$
\begin{gathered}
H_{2}(W)=H_{2}\left(g D_{r}\right)=H_{1}(W)=H_{1}\left(g D_{r}\right)=0, \\
H_{2}\left(W \cup g D_{r}\right) \cong H_{1}\left(W \cap g D_{r}\right) .
\end{gathered}
$$

Therefore

$$
H_{2}\left(W \cup g D_{r}\right) \neq 0 \quad \text { and so } \quad H^{2}\left(W \cup g D_{r}\right) \neq 0
$$

By the Alexander duality theorem,

$$
H^{2}\left(W \cup g D_{r}\right) \cong H_{0}^{*}\left(R^{3}-W \cup g D_{r}\right) .
$$

So $R^{3}-\left(W \cup g D_{r}\right)$ has at least two open components. In fact $R^{3}-$ ($W \cup g D_{r}$) contains at least one bounded component whose boundary is the union of the subset of the boundary of $g D_{r}$ and subset of the boundary of W. Let A be such a bounded component and g be the center of $g D_{r}$.

Consider the smallest sphere S_{g} with its center at g which circumscribes $\bar{A} \cup g D_{r}$ where \bar{A} is the closure of A. Then the radius of S_{g} is greater than r and less than $r+\operatorname{diam}(W)$. Let q be a point in $S_{g} \cap\left(\bar{A} \cup g D_{r}\right)$. Then q must be a point in the boundary of W since S_{g} never intersects the boundary of $g D_{r}$.

This means that all the principal normal curvatures at q with respect to inward normal vector are less than $-1 /[r-\operatorname{diam}(W)]$. But it is a contradiction because t is greater than $r+\operatorname{diam}(W)$ and W is an $M(t)$-compact set.

Now we use Proposition 2.1 and Lemma 2.4 to estimate the volume of $W_{r}=\left\{x \in R^{3}| | x-y \mid \leq r, y \in W\right\}$ in terms of the volume $V(W)$ of W, area $S(W)$ of the boundary of W and the integral of mean curvature $M(W)$ defined by $\int_{\text {boundary of } W}\left[\left(k_{1}+k_{2}\right) / 2\right] d w$, where k_{1} and k_{2} are functions of principal normal curvatures on the boundary of W.

Lemma 2.5. Let W be an $M(t)$-compact set in R^{3}.
Then $V\left(W_{r}\right) \leq V(W)+S(W) \cdot r+M(W) \cdot r^{2}+(4 / 3) \pi \cdot r^{3}$ for $r, 0 \leq r<t-\operatorname{diam}(W)$.

Proof. Let W be fixed and D_{r} be moving by the motion g. So $W \cap g D_{r}$ is the intersection of W and D_{r} at position g.

After putting $\chi\left(W \cap g D_{r}\right)=0$ if $W \cap g D_{r}$ is empty if we apply Lemma 2.4, then we have for $r, 0 \leq r<t-\operatorname{diam}(W)$,

$$
\begin{align*}
\int_{g \in G} \chi\left(W \cap g D_{r}\right) d k & =\int_{W \cap g D_{r} \neq \varnothing} \chi\left(W \cap g D_{r}\right) d k \tag{1}\\
& \geq \int_{W \cap g D_{r} \neq \varnothing} d p \wedge d \sigma \wedge d \pi
\end{align*}
$$

On the other hand, $\chi\left(D_{r}\right)=\chi(W)=1, \quad V\left(D_{r}\right)=(4 / 3) \pi \cdot r^{3}$ and $M\left(D_{r}\right)=4 \pi r$. So by Proposition 2.1 we have
(2) $\int_{W \cap g D_{r} \neq \varnothing} \chi\left(W \cap g D_{r}\right) d k$

$$
=8 \pi^{2}\left[V(W)+(4 \pi / 3) r^{3}+S(W) \cdot r+M(W) \cdot r^{2}\right]
$$

By (1) and (2), we have for $r, 0 \leq r<t-\operatorname{diam}(W)$

$$
V\left(W_{r}\right) \leq V(W)+S(W) \cdot r+M(W) \cdot r^{2}+(4 \pi / 3) r^{3}
$$

Corollary 2.6. If W is an $M(\infty)$-compact set, then

$$
V\left(W_{r}\right) \leq V(W)+S(W) \cdot r+M(W) \cdot r^{2}+(4 \pi / 3) \cdot r^{3} \quad \text { for } r
$$

$0 \leq r<\infty$ and "=" holds if W is a compact convex subset in R^{3}.
Proof. Since W is a compact set $\operatorname{diam}(W)$ is finite. Now our corollary follows from Lemma 2.5. If W is a compact convex subset in R^{3}, (1) holds with equality since $\chi\left(W \cap g D_{r}\right)=1$ if $W \cap g D_{r}$ is nonempty. So this fact and (2) prove the second statement.

One of our goals in this paper is to estimate the volume of $M(\infty)$ compact sets in terms of the integral of the mean curvature of the boundary of the set. For this purpose we may need the following inequality which is an estimate of the volume of the sum of sets from below.

Proposition 2.7. Let A and B be nonempty measurable sets in R^{3}. Then

$$
[V(A+B)]^{1 / 3} \geq[V(A)]^{1 / 3}+[V(B)]^{1 / 3}
$$

where $A+B=\{a+b \mid a \in A, b \in B\}$.
Proof. See [11].
Note that in the proposition above if B is a regular ball centered at the origin of radius r, then $A+B=A_{r}$.

Theorem 2.8. Let W be an $M(\infty)$-compact set in R^{3}. Then

$$
V(W) \leq\left(1 / 48 \pi^{2}\right)[M(W)]^{3} .
$$

Proof. By Proposition 2.7 we have for $r, 0 \leq r<\infty$

$$
\begin{align*}
V\left(W_{r}\right) \geq V(W) & +\left[3 \cdot(4 \pi / 3)^{1 / 3} \cdot(V(W))^{2 / 3}\right] r \tag{3}\\
& +\left[3(4 \pi / 3)^{2 / 3}(V(W))^{1 / 3}\right] r^{2}+(4 \pi / 3) r^{3} .
\end{align*}
$$

On the other hand, if W is an $M(\infty)$-compact set, by Corollary 2.6, we have

$$
\begin{array}{r}
V\left(W_{r}\right) \leq V(W)+S(W) r+M(W) r^{2}+(4 \pi / 3) r^{3} \tag{4}\\
\text { for } r, 0 \leq r<\infty .
\end{array}
$$

From (3) and (4) we have

$$
\begin{gather*}
{\left[3(4 \pi / 3)^{1 / 3}(V(W))^{2 / 3}\right] r+\left[3(4 \pi / 3)^{2 / 3}(V(W))^{1 / 3}\right] r^{2}} \tag{5}\\
\leq S(W) r+M(W) r^{2} \text { for } r, 0 \leq r<\infty .
\end{gather*}
$$

In (5) if we send r to ∞, then we have

$$
\begin{equation*}
\left[3(4 \pi / 3)^{2 / 3}(V(W))^{1 / 3}\right] \leq M(W) \tag{6}
\end{equation*}
$$

Equivalently we have

$$
V(W) \leq\left(1 / 48 \pi^{2}\right)[M(W)]^{3}
$$

Inequality (6) is sharper than Danelich's result [4] for the $M(\infty)$ compact sets and equality holds when W is a regular ball.

Corollary 2.9. If W is an $M(\infty)$-compact set and K is a convex subset of W, then

$$
M(K) \leq M(W)
$$

Proof. It follows from the fact that $V\left(K_{r}\right) \leq V\left(W_{r}\right)$ and Corollary 2.6 for $r \rightarrow \infty$.

References

[1] W. Blaschke, Vorlesungen über integralgeometrie, 3rd ed. Berlin, 1955.
[2] S. S. Chern, Studies in global geometry and analysis, M.A.A., 4 (1967), 16-56.
[3] I. A. Danelich, Surfaces of bounded absolute mean integral curvature and their plane sections, Sibirsk. Matem. Zh., 3 (1963), 519-538.
[4] __, An integral representation of the absolute mean integral curvature of a polyhedral surface and consequences of this representation, Sibirsk. Matem. Zh., 7 (1966), 954-959.
[5] __, An estimate for the area of a surface of bounded absolute mean integral curvature in terms of its absolute mean integral curvature and the sum of the boundary curve lengths, Sibirsk. Matem. Zh., 7 (1966), 1199-1203.
[6] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
[7] J. H. G. Fu, Tubular neighborhoods in euclidean spaces, Duke Math. J., 52 (1985), 1025-1046.
[8] M. J. Greenberg and J. R. Harper, Algebraic Topology, a first course, Mathematics Lecture Note Series, vol. 58, 1981.
[9] M. Gromov, Hyperbolic manifolds, groups and actions, Ann. of Math. Studies, 97 (1981), 183-213.
[10] H. W. Guggenheimer, Differential Geometry, Mc Graw-Hill, New York, 1963.
[11] H. L. Montgomery, The isoperimetric inequality and sum of sets, preprint, (1979).
[12] G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Ann. of Math., 27, Princeton Univ. Press, Princeton, N.J., (1951).
[13] L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., 1976.
[14] J. P. Sha, p-convex Riemmanian manifolds, Invent. Math., 83 (1986), 437-447.
Received September 13, 1988. This work was partially supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1988-89.

Sung Kyun Kwan University
300 Chun Chun Dong
Suwon, 440-746 Korea

