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AN ALGEBRAICALLY DERIVED ^-ANALOGUE OF A
CHARACTER SUM ASSOCIATED WITH A CLASS

OF SEMIREGULAR PERMUTATIONS

G. E. ANDREWS AND D. M. JACKSON

The group algebra of the symmetric group can be used to determine
the cycle structure of permutations which are obtained as products of
designated conjugacy classes. Such matters arise, for example, in
certain topological questions and in the embedding of graphs on ori-
entable surfaces. We consider a set of permutations restricted by cycle
structure, and use basic hypergeometric series to derive g-analogues
associated with the generating functions for the numbers of such per-
mutations. The expressions which are derived pose a number of com-
binatorial questions about their connexion with the Hecke algebra of
the symmetric group.

1. Introduction and background to the problem. A permutation is
said to be p-semiregular if all of its cycles have the same length p.
In this paper we derive a ^-analogue for the number e(k, p) of p-
semiregular permutations, with k cycles, which are the product of a
designated full-cycle and a fixed point free involution. Such permuta-
tions occur in several areas of combinatorial theory ([7], [8]).

The g-analogue involves a new summable almost poised terminating
3^2 , discovered independently by Bressoud [4]. This (see (9)) is given
in §2, together with other known basic hypergeometric summation
theorems included for completeness. In §§3, 4 and 5 we consider
the cases p = 3, 4, 6, respectively. In a sense to be explained in
§6, these are the most interesting cases. Of the expressions we give
for ^-analogues, namely, Mq in Theorem 3.1, Jq in Theorem 4.1,
Gq in Theorem 4.2 and Lq in Theorem 5.1, the one which specialises
precisely when q = 1 to the correct expression (1) is given in Theorem
4.2.

For permutation problems, ^-analogues of generating series often
appear when a set of permutations is enumerated with respect to the
inversion number or the major index (see [6]), marked by q. Since
these are not class functions for the symmetric group, they cannot be
used in conjunction with the group algebra of Sn to derive our re-
sult. However, the group algebra of the symmetric group is abstractly
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isomorphic to the Hecke algebra associated with Sn , and explicit (in-
equivalent) isomorphisms have been given by Wenzl [12] and Lusztig
[10]. The latter involves the Kazhdan-Lusztig polynomials. Our result
indicates that combinatorial information may be preserved by one or
the other of these explicit isomorphisms.

If θ is a partition of N we write θ f- N, and the corresponding
conjugacy class if SN is denoted by %. This is the set of all per-
mutations in *SV with ij 7-cycles, 7 = 1, . . . , where θ = [I*i2*2...].
The size of Wβ is denoted by hθ . The irreducible (ordinary) character
associated with % is denoted by χθ, its value at any element of %
where a h TV is denoted by χ% , and its degree is denoted by fθ .

To derive an expression for e(k, p), we use the following combina-
torial facts which can be deduced from the group algebra CSV over
C. The proofs are given in [8] where use is made of the fact that
Kθ = Σgetf 8 € C^H c a n ̂ e expressed as a linear combination of
orthogonal idempotents in the centre of CSn since the latter is semi-
simple [11]. Explicit use is also made of properties of χθ at g e ζ£\kp\ >
g e % Ί , and g e W[2±kP].

PROPOSITION 1.1. Let

1 A f) f)
T(k,p)=

θhkp

Then

(k) h ^ ^ h l ^ ^ ^ . D

LEMMA 1.2.

(1) T(k,p)

Explicit expressions for e(k,p) can be deduced from (1). For
example

(2)
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Our purpose now is to derive a ^-analogue of the expression for
T(k9 p). We shall see that Theorem 5.2 is an exact ^-analogue of
Lemma 2.2. For this, the basic hypergeometric summation theorems
given in §2 are needed.

2. Basic hypergeometric formulas. To evaluate the sums considered
in the later sections, we require some observations on the basic hyper-
geometric series 2>Φi defined by

^a;g)n(b; q)n(c; q)nt
n

d,e ) ^ (q;q)n(d;q)n(e;q)n '

where

(5) (A;q)n = (A)n = (l-A)(l-Aq)...(l-Aq»-1).

We also require the ^-binomial theorem (Thm. 2.1, [3]);

(6)

where

U [j\r {1 - qJ') (1 - qU-V) • • • (I -

and we write just [" ] when r = 1.
Two 302 summations are needed. The first is the ^-analogue of

Dixon's Theorem ([5], [9], [2, eq. (5.7), p. 216]). If ./V is even and a
is 2 or 4 then

qι-N/b,qi-*r/c
qN(a-4)/4 (ql+N/2\

iv/z

The second result is due to Bressoud ([4]; eq. (1.4) for a = 1, eq.
(1.10) for a = 3). If N is odd and a is 1 or 3 then

The integer-valued functions (ε(n, /), λ(n, /), ψ{n, /), μ(n, /)),
which are introduced without further comment in §§3, 4 and 5, have
been constructed to be consistent with the application of whichever of
the above summation theorems is appropriate to the particular case.
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3. The modulus 3 case. We begin by considering ε(n, /) for integers
n > 1 and / > 0 which satisfy the following conditions: for all n > 1:

(10) ε(>2,3/ + 2) = ε ( r t , 3 ( t f - / - l ) ) +

for n even and positive

(11) β(/ι,3ι + l) = c(/ι

for « odd and positive with a = 1 or 3

(12) ε (Λ , 3/) = - 6 (Λ - 1) / - 6/ + 3/ (3/1-1)

= ^ ( α + / i ) ι - ί 2 J - 6 i ;

and for n odd and positive with β = 2 or 4

(13) e(/ ι ,3 ι + l ) = - 6 ( / ι - l ) / + ( 3 / + l ) ( 3 π - l )

= I (β + n - 1) i + 3Λ - 1 - P ^ M - 6/.

The first portion of each of (10)-( 13) is designed to facilitate our proof
of Theorem 3.1. We also note that (10) and (11) do not fully define
e(n, /) when n is even; indeed, when n is even the e(n, /) can take
any values which fulfill (10) and (11).

T H E O R E M 3 . 1 . Let α = l or 3, β = 2 or 4 and

where the ε(n, i) satisfy (10)—(13). Then, for n even

(15) Mq(n) = 0,
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and for n odd

(16) Mq(n)=

Proof. Clearly

3/1-1

(17) Λfβ(ιi)= E Γ3n-n

m 2

ι=0 L 3/+2 J

By (10), we see that when n is even the (n - / - 1) st term in the
third sum cancels the ith term in the first sum, while the ith and
(n - i - 1) st terms in the second sum cancel. Hence (15) is true.

On the other hand, when n is odd the first sum is identical with
the third. Furthermore, we may rewrite each sum in terms of rising
^-factorials since

and

(19) (A;q)3m+t=(A)t(Ag')3m

= (A)t (Aq* q3)m(Aqt+ι q3)m(Aqt+2 q2)
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Therefore, when n is odd

(l-«l-3π)

_ q(3μ)(n-l)β+2 μ _

by (9) and (8) respectively. D

4. The modulus 4 case. We begin by considering λ{n, /), which
may be arbitrary for / odd and is given by

(21) λ ( / ! , 4 ι ) = -

(22) A (/ι, 4/ + 2) = - 8/2 - 2/ + 2n/

for / even.

THEOREM 4.1. Let

4n~2

(23) j q {n) = Σ 4,21
1 = 0 I- i -I

77ẑ « /^(Λ) W z^ro // « w orflrf, α«(i if n is even

2a (a2n a4) ίaln+4 - a4)
(24) /,(«) = — i ; " / 2 V Λ " ' 2 ) / 2

Proof. The terms in Jq{ή) with i odd must be zero since each term
in braces is the / th coefficient of an even polynomial. Furthermore,
the final term in brackets has a different form depending on whether
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/ Ξ O or 2 (mod 4). Therefore

" - 1 , \n-l] \2n-i]

(25) / , ( H ) = Σ ; ( - I ) V ( > I ' 4 0 + 6 I ' - 4 I ' L ι ίlii 2

i=0 L 4/ J

Σ r _ 1 V nλ(n ' 4 / + 2 ) + 6 / 2 L / J 4 L 2 / + I J 2
^ x ' * \4n-2]

i=0 L 4/+2 J

Λ - 1 Γ « - Π Γ 2«— 1 1
τ\i ^2i(n-i-\) L / J4 L 2/ J2
i ; (/ Γ4/I-2Ί

/=0 L Ai J

Λ - 1 \n-\Λ Γ2/i —11

Σ / i V / T 2 / ( A I - / - 1 ) L / J4 L 2/4-1 J

^ ^ ^ Γ4«-21
/=0 L 4/+2 J

Now let us replace / by n — i — 1 in the second sum. Thus

Jq{n) = (1 - (- i )»- i )^(- l )V^- '-0U_J±L_2i_J2.
/=0 L 4/ J

Thus Jq(n) = 0 if rc is odd. If ^ is even,

/ 0 Q a3 - a4 a-2n

Jq («) = 2302 I q-4n+5 ^ q-4n+3

(q2n+ι • q Ά ,

by (8), and this establishes (24). D

While Theorem 4.1 relied only on the ^-analogue of Dixon's sum-
mation, Theorem 4.2 requires the additional summation theorem
given in (9).

Here we must define ψ(n, /) for n > 1, i > 0 by

(26) ψ {n, 4/) = 2/ (a + n - 4/ - 3) ,

(28) ψ {n, 4/ + 2) = 2/ QS + n - 4/ - 8) - (n - 1) (jί - 4) - 2,

(29) y/ (w , 4/ + 3) = 2/ (-α + n - 4/ - 5) + 2α (Λ - 1) - 2.

THEOREM 4.2. Let a be either 1 or 3, and β be either 2 or 4,
and let

(30) Gq{n) =
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Then Gq(n) = 0 if n is even, and if n is odd

(31) /~ /-λ — 0~ M ^n\ *" " ' ^ * - I ; / A * - - '(/i-l)/2

4 ( g2*+ i . g4
/(/i —1)/2 V* ' * /(/i+l)

Proof. Noting that

and

we see that we must split the sum for Gq{n) into four parts depending
on the residue of / (mod 4). Hence

[ Ul2i h( 3 2 ) G q { n ) = ^ ( - i y g ( ) _
L / J1=0 L 4/

n-\ \n-\λ Γ 2 n - Π
Y ^ / iM'^2/(~jg+yi-i+2)+(ig+2)(yi- l ) ί / J4L 2/ J2
Z - Λ X ' * Γ4«-21
ι=0 L4/+1J

i y f f 2 i ( β + n - i - 4 ) - ( n - \ ) ( β - S ) L / J 4 L 2 1 + I J 2
L' q

 Γ 4 Λ - 1 1
ι=0 L 4 i+2 J

1 \i' 2i(-α+/i-ι-l)+2α(fe-l) L / J4 L 2/+1 J2
^ ^ Γ 4Λ-1 1

/=0 I- 4/+3 J

If / is replaced by n - i - 1 in the second and fourth sums, then

n-\ Γ « — 1 "I Γ 2 / 1 - 1 "I

(33) Gβ (n) = ^ £ (-1)' g"(α+B-i-i)L / J4 2i h
1=0 L 4/ J

Λ-1 ΓΛ-Π Γ 2 "- 1 !
ί \γrf2i(β+n-i-4)-(n-l)(β-4)l i J 4 L 2 1 + 1 J 2

^"1^q 4 π

q r 4 « π
i=0 L 4ι+2

where δn = 1 + (-1)" " 1 . Therefore Cr^(^) is clearly 0 if n is even.



If n is odd,

(34)

Gq(ft)= 2302

2(

2(ί λ

2,(1

as desired.
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I ^-4/2+3 ^ - 4 ^ + 1 )

/ i 4^—jλ 3<r2 1 4/2_(_3 _4,2_|_5

i - β ) ( β ^ ; « V . ι / 2 <«2"+ ί: 94)(»-.)/2

"+ί:A.-Jί^:5)<.-.,/1(( -«2*tl)-(
( « 2 " + ί « 2 ) ,

215

1-3) \

1
J

D

5. The modulus 6 case. We now consider μ[n, / ) , which, for n,

/ > 0, satisfy the following requirements: if n is odd, then

(35) μ (ft, 6/) = μ (ft, 6 (ft - /)) + 15 (ft - ι ) 2 - 6 (ft - /) - 15/2 + 6/

= μ (ft, 6 (ft — /)) + 15ft2 — 6-

If ft is even then, for γ = 2 or 4 ,

THEOREM 5.1.

(37) L β (n) =

// /2 /.s1 odd, and, if n is even

(38) Lβ(/i) =
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Proof. We begin by observing that the /th term in (37) must be
zero unless / is a multiple of 6. Therefore

(39) ^(« )=ΣWF δ ' ' 1 ( y 3 ; ? 3 ) 2 » F
0 L 6ί J;=0

V ^ / n / ^(/ι, 6Q+15/2-6/ L 2/ J 3 L 3/ J2
~ Z - Λ * ' * Γ6κΊ

/=0 I- 6/ J

If /? is odd, then by (35), the / th terms and the (n- i) th terms cancel.
Therefore Lq(ή) = 0 if n is odd. If π is even, then by (36) and (39)

T (n\ - V M(y-n)/2-\) (^ n >4 )lι (fl "''Q )3i ( g)6i

LqW-^q (^;^)3 lte3;^)2 /(^ ) 6 |

= A (<Γ6* ^ 6 ) f (^" 6 n + 3 Q6)ι {Q~βn ^ 6 ) , ( ^ " 6 ^ 2 Q6), {d~βn+A ̂ 6 ) ,

χ 6

6n+4 • g 6 ) .

,q,q;
-6«-f5

= (3/2)n(y-4)
/ 3«+6. 6\ / 3/1+6 . 6\

n(y-4) V* ? g J«/2 W » ^
f/τ3n+l tf6\ f/,3n+5 /;6\
IV , H )n/2 \q -> q )n/2

by (8). Hence Theorem 5.1 has been established. D

6. Concluding remarks. The proofs of the theorems in §§3-5 rely
on the reduction of certain ^-binomial coefficient sums to τ>φ2 's using
the methods outlined in §5 of [1], and, in particular, the application
of Theorem 5.1. The summands which occur with index / in the
^-analogue of Lemma 2.2 have the form

\rn-s] \jn-u]
L ri-t ]/ L ji-υ J j'

[kn—w~\
L ki-y J

It is therefore clear that the simplest #-hypergeometric series are ob-
tained with rr1 = j f = k , to ensure the most extensive cancellation
of factors after normalisation. However, factors of the form (qa qk)ι
cannot be cancelled if {a, k) = 1, so there will be at least φ(k) (where
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φ is Euler's totient function) entries in the numerator of the result-
ing mΦm-\ corresponding to the reduced residue class modulo k.
Thus, the only ways the ^Φi summations of §2 can be applied is with
φ(k) < 4 , s o f c = l , 2 , 3 , 4 , 6. Examination of these shows that
the truly nontrivial cases occur for φ(k) = 2, in which case k = 3,
4 , 6 . These are indeed the instances of k we have considered. Other
examples for k = 3, 4, 6 can be derived following our methods, and
we have merely provided a sample.
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