POINCARE-SOBOLEV AND RELATED INEQUALITIES FOR SUBMANIFOLDS OF \mathbf{R}^{N}

John Hutchinson

Abstract

We prove Poincaré-Sobolev and related inequalities for rectifiable varifolds in \mathbf{R}^{N}. In particular, all our results apply to properly immersed submanifolds of \mathbf{R}^{N}.

Suppose $M \subset B_{R}=B_{R}(0) \subset \mathbf{R}^{N}=\mathbf{R}^{n+k}$ for some $R>0$, and $V=v(M, \theta)$ is a countably n-rectifiable varifold in B_{R} with generalised mean curvature vector H. μ is the weight measure defined by $\mu=\theta H^{n}\lfloor M . h: M \rightarrow R$ is a Lipschitz function.

In Theorem 1 we prove a Poincaré-Sobolev result for non-negative h in case $\mu\{\xi: h(\xi)>0\}<\omega_{n} R^{n}$ and $h \in W^{1, p}(\mu)$ for some $p<$ n. This generalises a Poincaré result of Leon Simon; but in addition the relevant constant here does not depend on $\mu\left(B_{R}\right)$. Theorem 2 is an Orlicz space result in case $p=n$.

The proofs of Theorems 1 and 2 use a covering argument to obtain weak L^{p} type estimates on $\mu\{\xi: h(\xi)>s\}$.

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case there is no restriction on $\mu\{\xi: h(\xi) \neq 0\}$ (again the constants in the estimates do not depend on $\left.\mu\left(B_{R}\right)\right)$. The conclusion of Theorem 4 is analogous to the conclusion of the John-Nirenberg theorem for functions of bounded mean oscillation.

We prove Poincaré-Sobolev and related inequalities for rectifiable varifolds in \mathbf{R}^{N}. In particular, all our results apply to properly immersed submanifolds of \mathbf{R}^{N}.

Theorem 1 is a refinement of a result due to Leon Simon. In [$\mathbf{S c} ; \mathbf{p}$. 70] and [\mathbf{S}; Theorem 18.4, p. 91] one has a similar Poincaré inequality in case $p=1$ and $|H|$ is bounded, but with a constant c depending on $\mathbf{M}\left(V\left\lfloor B_{R}\right)\right.$. In Theorem 1, c depends only on p and the dimension of V. This is important in case we have no a priori density bound for V at 0 (as in $[\mathbf{H}]$, which provided the motivation for the present paper).

We also remark that the Poincare result in Theorem 1 for $p>1$ does not seem to follow directly from the case $p=1$-the usual trick of replacing h by h^{r} does not work since the integrals in the inequality occur over balls of different radius. Nonetheless, one can use the Sobolev inequality for functions with compact support and
a cut-off function argument to "bootstrap" up from the $p=1$ case. However, the proof in Theorem 1 gives the Poincaré result directly for all p and with the constant dependence as noted above. The Sobolev result then follows immediately (as pointed out by Leon Simon) by a simple cut-off function argument from the result in the compact support case (this latter was first established in [A; Theorem 7.3] and [MS]).
In Theorem 2 we prove an Orlicz space result in case $h \in W^{1, n}(\mu)$, where n is the dimension of V and μ is the measure in \mathbf{R}^{N} induced by V.

The proofs of Theorems 1 and 2 use a covering argument to obtain weak L^{p} type estimates on $\mu\{\xi: h(\xi)>s\}$, and were motivated in part by the proof of the Sobolev inequality for functions with compact support in [\mathbf{S}; Theorem 18.6, p. 93].

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case there is no restriction on $\mu\{\xi: h(\xi) \neq 0\}$ (again the constants in the estimates do not depend on $\mathbf{M}\left(V\left\lfloor B_{R}\right)\right)$. They follow directly from Theorems 1 and 2, as was also realised by Leon Simon in the context of his Poincaré inequality discussed previously [private communication]. The conclusion of Theorem 4 is analogous to the conclusion of the John-Nirenberg theorem for functions of bounded mean oscillation.

I would like to thank Gerhard Huisken, Neil Trudinger, Bill Ziemer, and particularly Leon Simon, for helpful comments and discussions.

Notation. Throughout this paper we use the notations and conventions of [S].

In each of the following theorems we take the following hypotheses:
$(\mathbf{H}): M \subset B_{R}=B_{R}(0) \subset \mathbf{R}^{N}=\mathbf{R}^{n+k}$ for some $R>0$, and $V=$ $\mathbf{v}(M, \theta)$ is a countably n-rectifiable varifold in B_{R} with generalised mean curvature vector $H . \mu$ is the weight measure defined by $\mu=$ $\theta H^{n}\lfloor M . h: M \rightarrow \mathbf{R}$ is a Lipschitz function.

Convention. All integrals are taken with respect to μ, unless otherwise clear from context.

Theorem 1. Suppose (H). Suppose also that $h(\xi) \geq 0$ for all $\xi \in M$ and that $\mu\{\xi: h(\xi)>0\} \leq \omega_{n} R^{n}(1-\alpha)$ for some $\alpha>0$.

Then there are constants $c=c(n, p)$ and $\beta=\beta(n, \alpha)>0$ such that

$$
\left[\int_{B_{\beta R}} h^{n p /(n-p)}\right]^{(n-p) / n p} \leq \frac{c}{\alpha}\left[\int_{B_{R}} h^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right]^{1 / p}
$$

whenever $1 \leq p<n$.

Remarks. (1) The hypothesis $\mu\{\xi: h(\xi)>0\} \leq \omega_{n} R^{n}(1-\alpha)$ for some $\alpha>0$ is clearly necessary, as one sees by letting $V=\mathbf{v}(M, 1)$ where M consists of two n-dimensional affine spaces passing through the origin, and setting $h=1,2$ respectively on the two spaces.

The necessity of taking the left integral in the theorem over $B_{\beta R}$, rather than over B_{R}, is clear if one considers a modification of the above example in which one of the affine spaces is displaced slightly from the origin.
(2) From Hölder's inequality one obtains under the same assumptions that

$$
\left[\int_{B_{\beta R}} h^{q}\right]^{1 / q} \leq c R^{1+n / q-n / p}\left[\int_{B_{R}} h^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right]^{1 / p}
$$

in case $1 \leq p<n$ and $1 \leq q \leq n p /(n-p)$, or in case $p \geq n$ and $1 \leq q<\infty$. In the first case $c=c(n, p)$ and in the second case $c=c(n, q)$.

Proof of Theorem. Our main goal is to prove the estimate (11). Without loss of generality assume $R=1$.

Fix $s>0$ and define

$$
\begin{equation*}
f(\xi)=\min \{h(\xi), s\} \tag{1}
\end{equation*}
$$

In the following suppose

$$
\begin{equation*}
0<\beta<1 / 2 \tag{2}
\end{equation*}
$$

We will later further restrict β.
Applying the monotonicity formula to f^{p}, we have for each $\xi \in B_{\beta}$ that

$$
\begin{equation*}
\frac{\partial}{\partial \rho}\left[\rho^{-n} \int_{B_{\rho}(\xi)} f^{p}\right] \geq-\rho^{-n} \int_{B_{\rho}(\xi)}\left[f^{p}|H|+\left|\nabla^{M} f^{p}\right|\right] \tag{3}
\end{equation*}
$$

(in the distributional sense in r) provided $0<\rho<1-\beta$. (See [S;
18.1, p. 89], where this result is stated for C^{1} functions. The extension to the Lipschitz case follows by first extending f to a Lipschitz function \underline{f} on \mathbf{R}^{n+k}, then mollifying in \mathbf{R}^{n+k}, recalling that up to a set of H^{n} measure zero M is a disjoint union of sets M_{i}, each of which is a subset of a C^{1} manifold N_{i}, and finally showing that for each i the integrals on each side of (3) (over $M_{i} \cap B_{\rho}(\xi)$ instead of $\left.M \cap B_{\rho}(\xi)\right)$ are the limit of corresponding integrals with f replaced by the mollified function $\underline{f}_{\varepsilon}$. This last step makes essential use of the fact that ∇^{M} is a tangential derivative.)

For μ a.e. ξ with $|\xi|<\beta$ and $h(\xi) \geq s$, we see from (2) that

$$
\begin{align*}
s^{p}= & f^{p}(\xi) \leq \sup _{0<\sigma<1-\beta} \omega_{n}^{-1} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{p} \tag{4}\\
\leq & \omega_{n}^{-1}(1-\beta)^{-n} \int_{B_{1-\beta}(\xi)} f^{p} \\
& +c \int_{0}^{1-\beta} \tau^{-n} \int_{B_{\tau}(\xi)}\left[f^{p}|H|+\left|\nabla^{M} f^{p}\right|\right] \\
\leq & \omega_{n}^{-1}(1-\beta)^{-n} \omega_{n}(1-\alpha) s^{p} \\
& +c \int_{0}^{1-\beta} \tau^{-n} \int_{B_{\tau}(\xi)}\left[f^{p}|H|+\left|\nabla^{M} f^{p}\right|\right] \\
\leq & (1-\alpha / 2) s^{p}+c \int_{0}^{1-\beta} \tau^{-n} \int_{B_{r}(\xi)}\left[f^{p}|H|+\left|\nabla^{M} f^{p}\right|\right]
\end{align*}
$$

for suitable $\beta=\beta(n, \alpha)$, which we now fix.
It follows

$$
\begin{aligned}
& \sup _{0<\sigma<1-\beta} \omega_{n}^{-1} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{p} \\
& \quad \leq \frac{c}{\alpha} \int_{0}^{1-\beta} \tau^{-n} \int_{B_{\tau}(\xi)}\left[f^{p}|H|+\left|\nabla^{M} f^{p}\right|\right] \\
& \quad \leq \frac{c}{\alpha} \int_{0}^{1-\beta} \tau^{-n} \int_{B_{\tau}(\xi)} f^{p-1}\left[f|H|+\left|\nabla^{M} f\right|\right] \\
& \quad \leq \frac{c}{\alpha}\left[\sup _{0<\sigma<1-\beta} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{p}\right]^{1-1 / p} \\
& \quad \times \int_{0}^{1-\beta}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p}
\end{aligned}
$$

Thus for any $0<\sigma<1-\beta$,

$$
\begin{align*}
& {\left[\sup _{0<\sigma<1-\beta} \omega_{n}^{-1} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{p}\right]^{1 / p}} \tag{5}\\
& \quad \leq \frac{c}{\alpha} \int_{0}^{1-\beta}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p} \\
& \quad \leq \frac{c}{\alpha} \int_{0}^{\rho_{0}}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p} \\
& \quad+\frac{c}{\alpha} \int_{\rho_{0}}^{1-\beta}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p} \\
& \quad \leq \frac{c}{\alpha} \int_{0}^{\rho_{0}}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p}+\frac{c_{1} \Gamma}{\alpha} \rho_{0}^{1-n / p}
\end{align*}
$$

where we set

$$
\begin{equation*}
\Gamma=\left[\int_{B_{1}(0)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p} \tag{6}
\end{equation*}
$$

Now choose s_{0} so that

$$
\begin{equation*}
\frac{c_{1} \Gamma}{\alpha}\left(\frac{1}{10}\right)^{1-n / p}=\frac{1}{2} s_{0} \tag{7}
\end{equation*}
$$

For each $s \geq s_{0}$ choose $\rho_{0}=\rho_{0}(s)$ such that

$$
\begin{equation*}
\frac{c_{1} \Gamma}{\alpha}\left(\rho_{0}^{1-n / p}\right)=\frac{1}{2} s \tag{8}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\rho_{0}=c_{2}\left(\frac{\Gamma}{\alpha S}\right)^{p /(n-p)} \tag{9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\rho_{0} \leq \frac{1}{10} . \tag{10}
\end{equation*}
$$

From (5), (8), (10), (2), (4) we have for $s \geq s_{0}$ and ρ_{0} as in (9), that

$$
\begin{aligned}
& {\left[\sup _{0<\sigma<1-\beta} \omega_{n}^{-1} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{p}\right]^{1 / p}} \\
& \quad \leq \frac{c}{\alpha} \int_{0}^{\rho_{0}}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}\right]^{1 / p} .
\end{aligned}
$$

Hence

$$
\left[\sup _{0<\sigma<(1-\beta) / 5} \sigma^{-n} \int_{B_{5 \sigma}(\xi)} f^{p}\right]^{1 / p} \leq \frac{c}{\alpha} \rho_{0}\left[\tau^{-n} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left.\nabla^{M} f\right|^{p}\right]^{1 / p}
$$

for some $0<\tau=\tau(\xi)<\rho_{0}$.
Since $\rho_{0} \leq 1 / 10<(1-\beta) / 5$ from (10) and (2), it follows from (9) that for this particular $\tau=\tau(\xi)<\rho_{0}$ we have

$$
\int_{B_{5 \tau}(\xi)} f^{p} \leq \frac{c}{\alpha^{p}} \rho_{0}^{p} \int_{B_{\tau}(\xi)} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}
$$

where ρ_{0} is as in (9).
Since this is true for μ a.e. $\xi \in B_{\beta} \cap\{h \geq s\}$, it follows from (10), (2) and a standard covering argument (see [S: Theorem 3.3, p. 11]) that

$$
\int_{B_{\beta} \cap\{h \geq s\}} f^{p} \leq \frac{c}{\alpha^{p}} \rho_{0}^{p} \int_{B_{1}} f^{p}|H|^{p}+\left|\nabla^{M} f\right|^{p}
$$

and so for any $s \geq s_{0}$ we have (using (9)) that

$$
\begin{equation*}
\mu\left(B_{\beta} \cap\{h \geq s\}\right) \leq c\left(\frac{\Gamma \rho_{0}}{\alpha S}\right)^{p} \leq c\left(\frac{\Gamma}{\alpha s}\right)^{n p /(n-p)} \tag{11}
\end{equation*}
$$

(Since $\mu\left(B_{\rho} \cap\{h>0\}\right)<\omega_{n}$, this last inequality is true for all $s>0$.)
It follows from (11) and the fact $\mu\left(B_{\beta} \cap\{h \geq 0\}\right) \leq \omega_{n}$ that

$$
\begin{align*}
\int_{B_{\beta}} h^{p}= & p \int_{0}^{\infty} s^{p-1} \mu\left(B_{\beta} \cap\{h \geq s\}\right) \tag{12}\\
= & p \int_{0}^{\Gamma / \alpha} s^{p-1} \mu\left(B_{\beta} \cap\{h \geq s\}\right) \\
& +p \int_{\Gamma / \alpha}^{\infty} s^{p-1} \mu\left(B_{\beta} \cap\{h \geq s\}\right) \\
\leq & c\left(\frac{\Gamma}{\alpha}\right)^{p}+c \int_{\Gamma / \alpha}^{\infty} s^{p-1}\left(\frac{\Gamma}{\alpha s}\right)^{n p /(n-p)} \\
\leq & c\left(\frac{\Gamma}{\alpha}\right)^{p}+c\left(\frac{\Gamma}{\alpha}\right)^{p} \int_{1}^{\infty} t^{p-1} t^{-n p /(n-p)} d t \leq c\left(\frac{\Gamma}{\alpha}\right)^{p}
\end{align*}
$$

(Remarks. One can similarly estimate the integral of h^{q} for any $1 \leq$ $q<n p /(n-p)$.)

Finally suppose $\varphi \in C_{c}^{\infty}\left(B_{1}\right), 0 \leq \varphi \leq 1, \varphi \equiv 1$ on $B_{\beta / 2}, \varphi \equiv 0$ on $B_{1} \sim B_{\beta}$, and $|D \varphi| \leq c / \beta$. From the appropriate Sobolev inequality for functions with compact support (for example,
see [\mathbf{S}; Theorem 18.6, p. 93], replace h there with h^{r} where $r=$ $p(n-1) /(n-p)$, and use Hölder's inequality) it follows

$$
\begin{aligned}
{\left[\int_{B_{1}}(\varphi h)^{n p /(n-p)}\right]^{(n-p) / n} } & \leq c \int_{B_{1}} \varphi^{p} h^{p}|H|^{p}+\left|\nabla^{M}(\varphi h)\right|^{p} \\
& \leq \frac{c}{\alpha^{p}}\left[\int_{B_{1}} h^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right]
\end{aligned}
$$

using (12). Hence

$$
\left[\int_{B_{\beta / 2}} h^{n p /(n-p)}\right]^{(n-p) / n p} \leq \frac{c}{\alpha}\left[\int_{B_{1}} h^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right]^{1 / p} .
$$

This establishes the theorem.
Theorem 2. Under the same hypotheses as Theorem 1, there exist $\beta=\beta(n)>0, \gamma_{1}=\gamma_{1}(n)>0$, and $\gamma_{2}=\gamma_{2}(n)$, such that

$$
\int_{B_{\beta R}}\left(\frac{\alpha h}{\Gamma}\right)^{n} \exp \left(\frac{\gamma_{1} \alpha h}{\Gamma}\right) \leq \gamma_{2} R^{n},
$$

where

$$
\Gamma=\left[\int_{B_{R}} h^{n}|H|^{n}+\left|\nabla^{M} h\right|^{n}\right]^{1 / n} .
$$

Proof. Choosing $R=1$ and arguing exactly as in the proof of Theorem 1, with $p=n$, we obtain instead of (5) that

$$
\begin{align*}
& {\left[\sup _{0<\sigma<1-\beta} \omega_{n}^{-1} \sigma^{-n} \int_{B_{\sigma}(\xi)} f^{n}\right]^{1 / n}} \tag{5}\\
& \quad \leq \frac{c}{\alpha} \int_{0}^{\rho_{0}}\left[\tau^{-n} \int_{B_{z}(\xi)} f^{n}|H|^{n}+\left|\nabla^{M} f\right|^{n}\right]^{1 / n} \\
& \quad+\frac{\bar{c}_{1} \Gamma}{\alpha} \log \left(\rho_{0}^{-1}\right) .
\end{align*}
$$

Choose s_{0} so that

$$
\begin{equation*}
\frac{\bar{c}_{1} \Gamma}{\alpha} \log \left(\frac{1}{10}\right)^{-1}=\frac{1}{2} s_{0} . \tag{7}
\end{equation*}
$$

For each $s \geq s_{0}$ choose $\rho_{0}=\rho_{0}(s)$ such that

$$
\begin{equation*}
\frac{\bar{c}_{1} \Gamma}{\alpha} \log \rho_{0}^{-1}=\frac{1}{2} s, \tag{8}
\end{equation*}
$$

i.e.
$(9)^{\prime}$

$$
\rho_{0}=\exp \left(-\frac{\bar{c}_{2} \alpha s}{\Gamma}\right)
$$

Arguing again exactly as before, we obtain for any $s \geq s_{0}$ that

$$
\begin{equation*}
\mu\left(B_{\rho} \cap\{h \geq s\}\right) \leq c\left(\frac{\Gamma \rho_{0}}{\alpha s}\right)^{n} \leq c\left(\frac{\Gamma}{\alpha s}\right)^{n} \exp \left(-\frac{c_{3} \alpha s}{\Gamma}\right) \tag{11}
\end{equation*}
$$

(This is then true for any $s>0$ since $\mu\left(B_{\beta} \cap\{h \geq 0\}\right)<\omega_{n}$.)
By Fubini's theorem we see that if $\varphi(s)$ is a C^{1} increasing function of s for $s \geq 0$, and $\varphi(0)=0$, then (since $h \geq 0$ on $B_{\beta} \cap M$)

$$
\int_{B_{\beta}} \varphi(u)=\int_{0}^{\infty} \varphi^{\prime}(s) \mu\left(B_{\beta} \cap\{h \geq s\}\right) d s
$$

If we let

$$
\varphi(s)=\left(\frac{\alpha s}{\Gamma}\right)^{n} \exp \left(\frac{\gamma_{1} \alpha s}{\Gamma}\right)
$$

where γ_{1} is yet to be chosen, it follows from (11)' and the fact $\mu\left(B_{\beta} \cap\{h \geq s\}\right)<\omega_{n}$ that

$$
\begin{aligned}
& \int_{B_{\beta}}\left(\frac{\alpha h}{\Gamma}\right)^{n} \exp \left(\frac{\gamma_{1} \alpha h}{\Gamma}\right) \\
& \leq \omega_{n} \int_{0}^{\Gamma / \alpha}\left[\frac{\alpha}{\Gamma}\left(\frac{\alpha S}{\Gamma}\right)^{n-1}+\gamma_{1}\left(\frac{\alpha S}{\Gamma}\right)^{n}\right] \exp \left(\frac{\gamma_{1} \alpha S}{\Gamma}\right) \\
&+c \int_{T / \alpha}^{\infty}\left[\frac{\alpha}{\Gamma}\left(\frac{\alpha S}{\Gamma}\right)^{n-1}+\gamma_{1} \frac{\alpha}{\Gamma}\left(\frac{\alpha S}{\Gamma}\right)^{n}\right] \\
& \times \exp \left(\frac{\gamma_{1} \alpha S}{\Gamma}\right)\left(\frac{\Gamma}{\alpha S}\right)^{n} \exp \left(-\frac{c_{3} \alpha S}{\Gamma}\right) \\
& \leq \gamma_{2}, \quad \text { say }
\end{aligned}
$$

where we choose $\gamma_{1}=c_{3} / 2$.
Theorem 3. Suppose (H). Suppose $\alpha>0$ and choose N such that $\mu(M) \leq N \omega_{n}(1-\alpha)$.

Choose any $\lambda_{1}<\cdots<\lambda_{M}$ such that

$$
\begin{aligned}
\mu\left\{h<\lambda_{1}\right\} & \leq \omega_{n}-\alpha, \\
\mu\left\{\lambda_{i}<h<\lambda_{i+1}\right\} & \leq \omega_{n}-\alpha \quad \text { for } i=1, \ldots, N, \\
\mu\left\{\lambda_{M}<h\right\} & \leq \omega_{n}-\alpha .
\end{aligned}
$$

This is clearly possible for some $M \leq N-1$.

Then if $1 \leq p<n$ and $p \leq q \leq n p /(n-p)$, there exist constants $c=c(n, p)$ and $\beta=\beta(n, \alpha)$ such that

$$
\begin{aligned}
& {\left[\int_{B_{\beta R}}\left(\inf _{i}\left|h-\lambda_{i}\right|\right)^{q}\right]^{1 / q}} \\
& \quad \leq \frac{c}{\alpha} R^{1+n / q-n / p}\left[\int_{B_{R}}\left[\left(\inf _{i}\left|h-\lambda_{i}\right|\right)^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right]\right]^{1 / p}
\end{aligned}
$$

The same result holds if $p \geq n$ and $p \leq q<\infty$, but with $c=c(n, q)$.

Remark. The necessity of allowing distinct values for the λ_{i} is clear if one considers examples where $V=\mathbf{v}(M, 1), M$ consists of distinct affine spaces, and h takes a distinct constant value on each affine space.

Proof of Theorem. Let

$$
\begin{aligned}
I_{0} & =\left(-\infty, \lambda_{1}\right] \\
I_{1} & =\left[\lambda_{i}, \lambda_{i+1}\right] \quad i=1, \ldots, M-1 \\
I_{M} & =\left[\lambda_{M}, \infty\right)
\end{aligned}
$$

Define

$$
h_{j}(\xi)= \begin{cases}\inf _{i}\left|h(\xi)-\lambda_{i}\right|, & h(\xi) \in I_{j} \\ 0, & h(\xi) \notin I_{j}\end{cases}
$$

Let

$$
\underline{h}(\xi)=\inf _{i}\left|h(\xi)-\lambda_{i}\right|=\sum_{j} h_{j}(\xi) .
$$

Then for each $\xi \in M$ there exists at most one j such that $h_{j}(\xi) \neq$ 0 . Moreover, each $h_{j}(\xi)$ is Lipschitz. Finally, for H^{n} a.e. $\xi \in$ $M \cap\left\{h \in I_{j}\right\}$ we have $\nabla^{M} h_{j}(\xi)=\nabla^{M} h(\xi)$, and so $\nabla^{M} \underline{h}(\xi)=\nabla^{M} h(\xi)$ for H^{n} a.e. $\xi \in M$.

Taking β as in Theorem 1, it follows that

$$
\left[\int_{B_{\beta R}} \underline{h}^{q}\right]^{p / q}=\left[\int_{B_{\beta R}}\left(\sum_{j} h_{j}^{p}\right)^{q / p}\right]^{p / q} \leq \sum_{j}\left[\int_{B_{\beta R}}\left(h_{j}^{p}\right)^{q / p}\right]^{p / q}
$$

(by Minkowski's inequality, using $q \geq p$)

$$
\leq \sum_{j} \frac{c}{\alpha^{p}} R^{p+(n p / q)-n}\left[\int_{B_{R}} h_{j}^{p}|H|^{p}+\left|\nabla^{M} h_{j}\right|^{p}\right]
$$

(by Theorem 1 and the remark following it)

$$
=\frac{c}{\alpha^{p}} R^{p+(n p / q)-n}\left[\int_{B_{R}} \underline{h}^{p}|H|^{p}+\left|\nabla^{M} h\right|^{p}\right] .
$$

Remark. The restriction $q \geq p$ is required in order that the constant c not depend on $\mu\left(B_{R}\right)$.

Theorem 4. Suppose the same hypotheses hold as in the previous theorem.

Then there exist $\beta=\beta(n)>0, \gamma_{1}=\gamma_{1}(n)>0$, and $\gamma_{2}=\gamma_{2}(n)$, such that

$$
\int_{B_{\beta R}}\left(\frac{\alpha \underline{h}}{\underline{\Gamma}}\right)^{n} \exp \left(\frac{\gamma_{1} \alpha \underline{h}}{\underline{\Gamma}}\right) d \mu \leq \gamma_{2} R^{n}
$$

where

$$
\begin{aligned}
\underline{h}(\xi) & =\inf _{i}\left|h(\xi)-\lambda_{i}\right| \\
\underline{\Gamma} & =\left[\int_{B_{R}} \underline{h}^{n}|H|^{n}+\left|\nabla^{M} h\right|^{n}\right]^{1 / n}
\end{aligned}
$$

Proof. Define λ_{i} and h_{j} as in the proof of the previous theorem. Then

$$
\int_{B_{\beta R}}\left(\alpha h_{j}\right)^{n} \exp \left(\frac{\gamma_{1} \alpha h_{j}}{\Gamma_{j}}\right) \leq \gamma_{2} \Gamma_{j}^{n}
$$

where β, γ_{1} and γ_{2} are as in Theorem 2, and where

$$
\Gamma_{j}=\left[\int_{B_{R}} h_{j}^{n}|H|^{n}+\left|\nabla^{M} h_{j}\right|^{n}\right]^{1 / n}
$$

Replacing Γ_{j} by $\underline{\Gamma}$ on the left side (as $\Gamma_{j} \leq \underline{\Gamma}$), and then summing the inequality over j, we obtain the required result.

References

[A] W. K. Allard, On the first variation of a varifold, Annals of Math., 95 (1972), 417-492.
[H] J. E. Hutchinson, Some regularity theory for curvature varifolds, Proc. of the Centre for Mathematical Analysis, 12 (1987), 60-66.
[MS] J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of R^{n}, Comm. Pure and Appl. Math., 26 (1973), 361-379.
[S] L. M. Simon, Lectures on Geometric Measure Theory, Proc. of the Centre for Mathematical Analysis, 3 (1983).
[Sc] R. M. Schoen, Existence and regularity theorems for some geometric variational problems, Ph.D. thesis, Stanford, 1977.

Received October 10, 1988.

Australian National University
GPO Box 4
Canberra ACT 2601 Australia

