A COMPARISON ALGEBRA ON A CYLINDER WITH SEMI-PERIODIC MULTIPLICATIONS

Abstract

Severino T. Melo

A necessary and sufficient Fredholm criterion is found for a C^{*} algebra of bounded operators on a cylinder, which contains operators of the form $L \Lambda^{M}$, where $\Lambda=(1-\Delta)^{-1 / 2}$ and L is an M th order differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Ω denote the cylinder $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} is a compact Riemannian manifold, Δ_{Ω} its Laplacian and \mathscr{H} the Hilbert space $L^{2}(\Omega)$. Cordes [3] found a necessary and sufficient Fredholm criterion for operators in the C^{*}-subalgebra of $\mathscr{L}(\mathscr{H})$ generated by: (i) multiplications by functions that extend continuously to $[-\infty,+\infty] \times \mathbb{B}$, (ii) $\Lambda=\left(1-\Delta_{\Omega}\right)^{-1 / 2}$ and (iii) operators of the form $D \Lambda$, where D is either $\partial / \partial t, t \in \mathbb{R}$, or a first order differential operator on \mathbb{B} with smooth coefficients. Here we extend this algebra by adjoining the multiplications by 2π-periodic continuous functions to the generators, and a similar Fredholm criterion is obtained.

The commutator ideal $\mathscr{C}_{\mathscr{P}}$ of the extended algebra $\mathscr{C}_{\mathscr{g}}$ is proven to be $*$-isomorphic to $\mathscr{S} \mathscr{L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}$, where $\mathscr{S L}$ denotes the algebra of singular integral operators on the circle and $\mathscr{K}_{\mathbb{Z}}$ and $\mathscr{K}_{\mathbb{B}}$ denote the algebras of compact operators on $L^{2}(\mathbb{Z})$ and $L^{2}(\mathbb{B})$, respectively. This allows us to define on $\mathscr{C}_{\mathscr{D}}$ an operator-valued symbol, the " γ symbol", such that $\operatorname{ker} \gamma \cap \operatorname{ker} \sigma$ equals the compact ideal of $\mathscr{L}(\mathscr{H})$. Here σ denotes the complex-valued symbol on $\mathscr{C}_{\mathscr{P}}$ that arises from the Gelfand map of the commutative C^{*}-algebra $\mathscr{C}_{\mathscr{P}} / \mathscr{C}_{\mathscr{P}}$. We prove that $A \in \mathscr{C}_{\mathscr{P}}$ is Fredholm if and only if γ_{A} and σ_{A} are invertible.

The simpler case when the compact manifold reduces to a point is considered in [5]. There, a unitary map W from $L^{2}(\mathbb{R})$ onto $L^{2}\left(S^{1}\right) \bar{\otimes} L^{2}(\mathbb{Z})$ is defined, such that the conjugate $W \mathscr{E} W^{-1}$ of the commutator ideal equals $\mathscr{S L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}}$. Here, we conjugate $\mathscr{E}_{\mathscr{D}}$ with $W \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^{2}(\mathbb{B})$, and obtain $\mathscr{S L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathrm{B}}$.

If L is a differential operator on Ω whose coefficients are continuous and approach periodic functions at infinity, the operator $A=$ $L \Lambda^{M}$ belongs to $\mathscr{C}_{\mathscr{D}}$, where M is the order of L. We can apply
the criterion above to A and prove that L is a Fredholm operator if and only if it is uniformly elliptic and a certain family of elliptic differential operators on the compact manifold $S^{1} \times \mathbb{B}$ is invertible. This applies also for matrices of such operators.

These results can be extended in a standard way to non-compact manifolds with cylindrical ends (cf. [2], VIII-3,4). Fredholm properties of elliptic-differential operators on such manifolds have been studied, for example, by Lockhart-McOwen [6] and Taubes [8]. The case where the coefficients are periodic on the ends is included in Taubes' results.

1. Definition of the algebra $\mathscr{C}_{\mathscr{A}}$ and a description of its commutator

 ideal. Let Ω denote the Riemannian manifold $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} denotes an n-dimensional compact manifold with metric tensor locally given by $h_{j k}$, and let \mathscr{H} denote the Hilbert space $L^{2}(\Omega)$, with Ω being given the surface measure$$
d S=\sqrt{h} d t d x^{1} \cdots d x^{n}
$$

where h is the determinant of the $n \times n$-matrix $\left(\left(h_{j k}\right)\right)_{1 \leq j, k \leq n}$. The metric on Ω is given by $d s^{2}=d t^{2}+h_{j k} d x^{j} d x^{k}$, and the Laplace operator is locally given by

$$
\Delta_{\Omega}=\Delta_{\mathbb{R}}+\Delta_{\mathbb{B}}=\frac{d^{2}}{d t^{2}}+\frac{1}{\sqrt{h}} \frac{\partial}{\partial x^{j}} \sqrt{h} h^{j k} \frac{\partial}{\partial x^{k}},
$$

where $\left(\left(h^{j k}\right)\right)=\left(\left(h_{j k}\right)\right)^{-1}$, and the summation convention from 1 to n is being used.

The symmetric operator Δ_{Ω} with domain $\mathbf{C}_{0}^{\infty}(\Omega)$ is essentially selfadjoint, since Ω is complete (cf. [2], IV). We denote by H the closure of $1-\Delta_{\Omega}$ and by Λ its inverse square root, $\Lambda=H^{-1 / 2}$. Since $H \geq 1$, we have $\Lambda \in \mathscr{L}(\mathscr{H})$. The algebra $\mathscr{C}_{\mathscr{A}}$ is defined as the smallest C^{*} subalgebra of $\mathscr{L}(\mathscr{H})$ containing the following operators (or classes of operators):

$$
\begin{gather*}
a \in \mathbf{C}^{\infty}(\mathbb{B}) ; \quad b \in \mathbf{C S}(\mathbb{R}) ; \tag{1}\\
e^{i j t}, j \in \mathbb{Z} ; \quad \Lambda ; \quad \frac{1}{i} \frac{\partial}{\partial t} \Lambda \quad \text { and } \quad D_{x} \Lambda,
\end{gather*}
$$

D_{x} being a first order differential operator on \mathbb{B}, locally given by $-i b^{j}(x) \partial / \partial x^{j}$, where $b^{j}(x), j=1, \ldots, n$, are the components of a smooth vector field on \mathbb{B}. The operators $\frac{\partial}{\partial t} \Lambda$ and $D_{x} \Lambda$, defined on the dense subspace $\Lambda^{-1}\left(C_{0}^{\infty}(\Omega)\right)$, can be extended to bounded operators of $\mathscr{L}(\mathscr{H})$ (cf. [2], for example). Bounded functions on Ω
have been identified with the corresponding multiplication operators in $\mathscr{L}(\mathscr{H})$ and $\mathbf{C S}(\mathbb{R})$ denotes the class of continuous functions on \mathbb{R} with limits at $+\infty$ and $-\infty$.

Our first objective is to obtain a necessary and sufficient criterion for an operator in $\mathscr{C}_{\mathscr{g}}$ to be Fredholm. Such a criterion has been found by Cordes [3] for the algebra generated by the operators in (1) except $e^{i j t}, j \in \mathbb{Z}$.

Taking advantage of the tensor product structure of \mathscr{H},

$$
\mathscr{H}=L^{2}(\mathbb{R}) \bar{\otimes} L^{2}(\mathbb{B}),
$$

we consider the conjugate of $\mathscr{C}_{\mathscr{P}}$ with respect to the unitary operator $F \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^{2}(\mathbb{B})$ and F the Fourier transform on $L^{2}(\mathbb{R})$,

$$
(F u)(\tau)=\frac{1}{\sqrt{2 \pi}} \int e^{-i \tau t} u(t) d t
$$

In order to simplify notation, $A \otimes I_{\mathbb{B}}$ is denoted by A and $I_{\mathbb{R}} \otimes B$ by B, whenever $A \in \mathscr{L}\left(L^{2}(\mathbb{R})\right)$ or $B \in \mathscr{L}\left(L^{2}(\mathbb{B})\right)$.

We seek to describe what are $B_{k}:=F^{-1} A_{k} F$, where $A_{k}, k=$ $1, \ldots, 6$, denote the operators listed in (1), in that order. The operatorvalued functions $\tilde{\Lambda}(\tau):=\left(1+\tau^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2}, \tau \tilde{\Lambda}(\tau)$ and $D_{x} \tilde{\Lambda}(\tau), \tau \in \mathbb{R}$, are all in $\mathbf{C B}\left(\mathbb{R}, \mathscr{L}_{\mathbb{B}}\right)$, as proven in [3], page 220 , and thus determine operators in $\mathscr{L}(\mathscr{H})$ by multiplication in the real variable. Here \mathscr{L}_{B} denotes the algebra of bounded operators on $L^{2}(\mathbb{B})$ and $\mathbf{C B}\left(\mathbb{R}, \mathscr{L}_{\mathbb{B}}\right)$ the bounded continuous $\mathscr{L}_{\mathbb{B}}$-valued functions on \mathbb{R}. With this interpretation, we get $B_{k}, k=1, \ldots, 6$, respectively given by

$$
\begin{array}{cl}
a \in \mathbf{C}^{\infty}(\mathbb{B}) ; & b(D), b \in \operatorname{CS}(\mathbb{R}) ; \quad T_{j}, j \in \mathbb{Z} ; \tag{2}\\
\tilde{\Lambda}(\tau) ; & -\tau \tilde{\Lambda}(\tau) \text { and } D_{x} \tilde{\Lambda}(\tau),
\end{array}
$$

where $b(D):=F^{-1} b F$ and T_{j} denotes the translation $\left(T_{j} u\right)(\tau)=$ $u(\tau+j)$.

Let $\mathscr{K}_{\mathbb{B}}$ denote the ideal of compact operators on $L^{2}(\mathbb{B})$ and $\mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ denote the $\mathscr{K}_{\mathbb{B}}$-valued continuous functions on \mathbb{R} that vanish at infinity. All commutators $\left[B_{k}, B_{l}\right], k, l \neq 3$, are contained in the algebra

$$
\mathscr{C H}:=\mathbf{C O}(\mathbb{R}, \mathscr{K} \mathbb{B})+\mathscr{K}(\mathscr{H}),
$$

where $\mathscr{K}(\mathscr{H})$ denotes the ideal of compact operators of $\mathscr{L}(\mathscr{H})$, as proven in [3], Proposition 1.2. Next we investigate what are the
commutators $\left[B_{3}, B_{k}\right], k=1, \ldots, 6$. We easily get $\left[B_{3}, B_{1}\right]=$ $\left[B_{3}, B_{2}\right]=0$. It is also clear that, for any $K(\tau) \in \mathbf{C B}\left(\mathbb{R}, \mathscr{L}_{\mathfrak{B}}\right)$, we have

$$
\begin{equation*}
\left[T_{k}, K(\tau)\right]=(K(\tau+k)-K(\tau)) T_{k}, \quad k \in \mathbb{Z} \tag{3}
\end{equation*}
$$

Proposition 1.1. The commutators of the generators in (2)—and of their adjoints-of the algebra $\widehat{C}_{\mathscr{A}}:=F^{-1} \mathscr{C}_{\mathscr{A}} F$ are contained in $\mathscr{C} \mathscr{K} \mathscr{G}=\left\{\sum_{j=-N}^{N} K_{j}(\tau) T_{j}+K ; N \in \mathbb{N}, K_{j} \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right), K \in \mathscr{K}(\mathscr{H})\right\}$.

Proof. Let us first prove that $K(\tau+j)-K(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$, for $K(\tau)=\tilde{\Lambda}(\tau), \tau \tilde{\Lambda}(\tau)$ or $D_{x} \tilde{\Lambda}(\tau)$. It follows from the fact that $-\Delta_{\mathbb{B}}$ on $L^{2}(\mathbb{B})$ has an orthonormal basis of eigenfunctions, with eigenvalues $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, that, for each $\tau \in \mathbb{R}, \tilde{\Lambda}(\tau)$ is unitarily equivalent to the multiplication operator $\left(1+\tau^{2}+\lambda_{n}\right)^{-1 / 2}$ on $L^{2}(\mathbb{N})$. Hence: $\tilde{\Lambda}(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$,
$\|\tau[\tilde{\Lambda}(\tau+j)-\tilde{\Lambda}(\tau)]\|_{L^{2}(\mathbb{B})} \leq \max _{s \in[1, \infty)}\left|\tau\left[\left(s+(\tau+j)^{2}\right)^{-1 / 2}-\left(s+\tau^{2}\right)^{-1 / 2}\right]\right|$
and

$$
\left\|\tilde{\Lambda}(\tau)^{-1} \tilde{\Lambda}(\tau+j)-1\right\|_{L^{2}(\mathbb{R})} \leq \max _{s \in[1, \infty)}\left|\left(\tau^{2}+s\right)^{1 / 2}\left((\tau+j)^{2}+s\right)^{-1 / 2}-1\right| .
$$

Note that the right-hand sides of the two previous inequalities go to zero as $\tau \rightarrow \pm \infty$. Furthermore, as

$$
\lim _{n \rightarrow \infty}\left(1+\tau^{2}+\lambda_{n}\right)^{1 / 2}\left(1+(\tau+j)^{2}+\lambda_{n}\right)^{-1 / 2}-1=0
$$

we have that $\tilde{\Lambda}(\tau)^{-1} \tilde{\Lambda}(\tau+j)-1 \in \mathscr{K} \mathbb{B}$, for each $\tau \in \mathbb{R}$. We then get: $(\tau+j) \tilde{\Lambda}(\tau+j)-\tau \tilde{\Lambda}(\tau)=\tau(\tilde{\Lambda}(\tau+j)-\tilde{\Lambda}(\tau))+j \tilde{\Lambda}(\tau+j) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ and

$$
D_{x} \tilde{\Lambda}(\tau+j)-D_{x} \tilde{\Lambda}(\tau)=D_{x} \tilde{\Lambda}(\tau)\left[\tilde{\Lambda}(\tau)^{-1} \tilde{\Lambda}(\tau+j)-1\right] \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right) .
$$

By the remarks preceding the statement of the proposition, this proves that the commutators of the generators (2) are indeed contained in $\mathscr{C} \mathscr{G} \mathscr{G}$. Concerning the adjoints, let us note that the classes of B_{k} 's, $k=1, \ldots, 5$, are self-adjoint and that, as proven in [3], $D_{x} \tilde{\Lambda}-\tilde{\Lambda} D_{x} \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$. Hence

$$
\begin{equation*}
\left(D_{x} \tilde{\Lambda}\right)^{*}-D_{x}^{*} \tilde{\Lambda}=\tilde{\Lambda} D_{x}^{*}-D_{x}^{*} \tilde{\Lambda} \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right) \tag{4}
\end{equation*}
$$

Here, D_{x}^{*} denotes the formal adjoint of D_{x}. The commutators of any $K(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ with the generators $B_{k}, k=1,3,4,5,6$, are clearly contained in $\mathscr{C} \nsubseteq \mathscr{G}$. For $K(\tau)$ of the special form $K(\tau)=$ $a(\tau) \widetilde{K}, a \in \mathbf{C O}(\mathbb{R})$ and $\widetilde{K} \in \mathscr{K}_{\mathbb{B}}$, the commutator $[b(D), K(\tau)]=$ $[b(D), a(\tau)] \otimes \widetilde{K}$ is compact, since $[b(D), a(\tau)]$ is compact (cf. [4], Chapter III, for example), for $b \in \mathbf{C S}(\mathbb{R})$. The vector space generated by all $K(\tau)=a(\tau) \widetilde{K}$ as above is dense in $\mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ and thus we have

$$
\begin{equation*}
[b(D), K(\tau)] \in \mathscr{K}(\mathscr{H}), \quad \text { for } b \in \mathbf{C S}(\mathbb{R}), K(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right) \tag{5}
\end{equation*}
$$

This concludes the proof.
Denoting by $\mathscr{C}_{\mathscr{A}}$ the commutator ideal of $\mathscr{C}_{\mathscr{P}}$ and by $\mathscr{C}_{\mathscr{P}}$ the commutator ideal of $\hat{\mathscr{C}}_{\mathscr{P}}$, it is obvious that $\hat{\mathscr{C}}_{\mathscr{P}}=F^{-1} \mathscr{\mathscr { C }}_{\mathscr{P}} F$.

Proposition 1.2. The commutator ideal $\hat{\mathscr{E}}_{\mathscr{D}}$ of the algebra $\hat{\mathscr{C}}_{\mathscr{P}}$ is obtained by closing the set of operators:

$$
\begin{aligned}
\widehat{\mathscr{E}}_{P, 0}:=\{ & \sum_{j=-N}^{N} b_{j}(D) K_{j}(\tau) T_{j}+K
\end{aligned}, \quad \begin{aligned}
& \quad b_{j} \in \mathbf{C S}(\mathbb{R}), N \in \mathbb{N}, K_{j} \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}, K \in \mathscr{K}(\mathscr{H})\right\} .
\end{aligned}
$$

Proof. The algebra $\mathscr{C}_{\mathscr{A}}$ is a "Comparison Algebra", in the sense of [2], Chapter V, with "generating classes":

$$
\begin{equation*}
\mathscr{A}^{\sharp}:=\mathbf{C}_{0}^{\infty}(\boldsymbol{\Omega}) \cup \mathbf{C}^{\infty}(\mathbb{B}) \cup\left\{e^{i j t} ; j \in \mathbb{Z}\right\} \cup\left\{s(t)=t\left(1+t^{2}\right)^{-1 / 2}\right\} \tag{6}
\end{equation*}
$$

and \mathscr{D}^{\sharp} equal to the vector space generated by the first order linear partial differential expressions on \mathbb{B} with smooth coefficients and by the expression $\partial / \partial t$. Indeed, $\mathscr{C}_{\mathscr{g}}$ can alternatively be defined as the C^{*}-algebra generated by all multiplications by functions in \mathscr{A}^{\sharp} and by all $D \Lambda, D \in \mathscr{D}^{\sharp}$. It follows then from Lemma V-1-1 of [2] that $\mathscr{K}(\mathscr{H}) \subset \mathscr{C}_{\mathscr{P}}$ and therefore $\mathscr{K}(\mathscr{H}) \subset \widehat{\mathscr{C}}_{\mathscr{S}}$. Moreover, it was proven in [3], Proposition 1.5, that $\mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ is contained in the commutator ideal of the C^{*}-algebra generated by B_{4}, B_{5} and B_{6}. Thus we get $\widehat{\mathscr{E}}_{P, 0} \subset \widehat{\mathscr{E}}_{\mathscr{P}}$.

All commutators of the generators (2) and their adjoints are contained in $\widehat{\mathscr{E}}_{P, 0}$, by Proposition 1.1. Again using (3), (4) and (5), it is easy to verify that $\widehat{\mathscr{E}}_{P, 0}$ is invariant under right or left multiplication by the operators in (2) and their adjoints. Two facts then follow:
(i) all commutators of the algebra (finitely) generated by the operators in (2) and their adjoints are contained in $\widehat{\mathscr{E}}_{P, 0}$ and therefore all commutators of $\hat{\mathscr{C}}_{\mathscr{P}}$ are contained in the closure of $\widehat{\mathscr{E}}_{P, 0}$, and (ii) the closure of $\widehat{\mathscr{C}}_{P, 0}$ is an ideal of $\hat{\mathscr{C}}_{\mathscr{P}}$. By definition of commutator ideal, $\widehat{\mathscr{E}}_{\mathscr{A}}$ is contained in the closure of $\widehat{\mathscr{E}}_{P, 0}$.

Let $\mathbf{C O}(\mathbb{R})$ denote the set of continuous functions on \mathbb{R} vanishing at infinity and let $\hat{\mathscr{E}}_{0}$ denote the set of bounded operators on $L^{2}(\mathbb{R})$

$$
\begin{aligned}
\widehat{\mathscr{E}}_{0}:=\left\{\sum_{j=-N}^{N} b_{j}(D) a_{j}(\tau) T_{j}+K ; N \in \mathbb{N}, b_{j}\right. & \in \mathbf{C S}(\mathbb{R}), \\
& \left.a_{j} \in \mathbf{C O}(\mathbb{R}), K \in \mathscr{H}_{\mathbb{R}}\right\} .
\end{aligned}
$$

Corollary 1.3. With $\widehat{\mathscr{E}}$ denoting the closure of $\hat{\mathscr{E}}_{0}$ defined above, we have:

$$
\hat{\mathscr{E}}_{\mathscr{P}}=\hat{\mathscr{E}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}
$$

where $\bar{\otimes}$ denotes the operator-norm closure of the algebraic tensor product.

Proof. The vector-space generated by

$$
\begin{aligned}
&\left\{\left(b(D) a(\tau) T_{j}+K\right) \otimes \widetilde{K} ; b \in \mathbf{C S}(\mathbb{R}), a \in \mathbf{C O}(\mathbb{R}), j \in \mathbb{Z},\right. \\
&\left.K \in \mathscr{K}_{\mathbb{R}}, \widetilde{K} \in \mathscr{K}_{\mathbb{B}}\right\}
\end{aligned}
$$

is dense in $\widehat{\mathscr{E}}_{P, 0}$ and in $\hat{\mathscr{E}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}$.
In the rest of this section, we define a unitary map

$$
W: L^{2}(\mathbb{R}) \rightarrow L^{2}\left(\mathbb{S}^{1} ; L^{2}(\mathbb{Z})\right)
$$

and find a useful description for $\left(W \otimes I_{\mathbb{B}}\right) \hat{\mathscr{C}}_{\mathscr{P}}\left(W \otimes I_{\mathbb{B}}\right)^{-1}$.
Given $u \in L^{2}(\mathbb{R})$, denote:

$$
u^{\diamond}(\varphi):=(u(\varphi-j))_{j \in \mathbb{Z}},
$$

for each $\varphi \in \mathbb{R}$. The sequence $u^{\circ}(\varphi)$ belongs to $L^{2}(\mathbb{Z})$ for almost every φ, by Fubini's Theorem, since $L^{2}(\mathbb{R})$ can be identified with $L^{2}([0,1) \times \mathbb{Z})$. Let

$$
F_{d}: L^{2}\left(\mathbb{S}^{1}, d \theta\right) \rightarrow L^{2}(\mathbb{Z}), \quad \mathbb{S}^{1}=\left\{e^{i \theta} ; \theta \in \mathbb{R}\right\}
$$

denote the discrete Fourier transform:

$$
\begin{equation*}
\left(F_{d} u\right)_{j}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} u(\theta) e^{-i j \theta} d \theta, \quad j \in \mathbb{Z} \tag{7}
\end{equation*}
$$

For each $\varphi \in \mathbb{R}$, define

$$
\begin{equation*}
Y_{\varphi}:=F_{d} e^{-i \varphi \theta} F_{d}^{-1} \tag{8}
\end{equation*}
$$

The operators Y_{φ} define a smooth function on \mathbb{R}, taking values in the unitary operators on $L^{2}(\mathbb{Z})$ and satisfying $\left(Y_{k} u\right)_{j}=u_{j+k}$, for $k \in \mathbb{Z}$ and $u \in L^{2}(\mathbb{Z})$, and $Y_{\varphi} Y_{\omega}=Y_{\varphi+\omega}$, for $\varphi, \omega \in \mathbb{R}$.

We now define the map (with $\mathbb{S}^{1}=\left\{e^{2 \pi i \varphi} ; \varphi \in \mathbb{R}\right\}$)

$$
\begin{align*}
W: L^{2}(\mathbb{R}) & \rightarrow L^{2}\left(\mathbb{S}^{1}, d \varphi ; L^{2}(\mathbb{Z})\right) \tag{9}\\
u & \mapsto(W u)(\varphi)=Y_{\varphi} u^{\diamond}(\varphi)
\end{align*}
$$

Let $\mathbf{C S}(\mathbb{Z})$ denote the set of sequences $b(j), j \in \mathbb{Z}$, with limits as $j \rightarrow+\infty$ and $j \rightarrow-\infty$ and let $b\left(D_{\theta}\right)$ denote $F_{d}^{-1} b(M) F_{d}$, where $b(M)$ denotes the operator multiplication by b on $L^{2}(\mathbb{Z})$. We then denote by $\mathscr{S} \mathscr{L}$ the C^{*}-subalgebra of $\mathscr{L}_{\mathbb{S}^{1}}:=\mathscr{L}\left(L^{2}\left(\mathbb{S}^{1}\right)\right)$ generated by $b\left(D_{\theta}\right), b \in \mathscr{C S}(\mathbb{Z})$, and by the multiplications by smooth functions on \mathbb{S}^{1}. It is easy to check that, with $\Lambda_{\mathbb{S}^{1}}:=\left(1-\Delta_{\mathbb{S}^{1}}\right)^{-1 / 2}$,

$$
\frac{1}{i} \frac{d}{d \theta} \Lambda_{\mathbb{S}^{1}}=s\left(D_{\theta}\right), \quad s(j)=\left(1+j^{2}\right)^{-1 / 2}
$$

Since the polynomials in s are dense in $\mathbf{C S}(\mathbb{Z}), \mathscr{S} \mathscr{L}$ coincides with the C^{*}-subalgebra of $\mathscr{L}_{\mathbb{S}^{1}}$ generated by $-i \frac{d}{d \theta} \Lambda_{\mathbb{S}^{1}}$ and $\mathbf{C}^{\infty}\left(\mathbb{S}^{1}\right)$. In other words, $\mathscr{S} \mathscr{L}$ is the unique comparison algebra over \mathbb{S}^{1}. It therefore contains the compact ideal $\mathscr{K}_{\mathbb{S}^{1}}$ and all its commutators are compact (cf. [2], Chapters V and VI).

The following theorem was proven in [5] (Theorem 2.6). See also [7], Theorem 1.2.

Theorem 1.4. With the above notation, we have:

$$
\begin{equation*}
W \widehat{\mathscr{E}} W^{-1}=\mathscr{S} \mathscr{L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \tag{10}
\end{equation*}
$$

where $\mathscr{K}_{\mathbb{Z}}$ denotes the set of compact operators on $L^{2}(\mathbb{Z})$. Furthermore, for $b \in \mathbf{C S}(\mathbb{R}), a \in \mathbf{C O}(\mathbb{R})$ and $j \in \mathbb{Z}$, we have:

$$
A^{\diamond}\left(e^{2 \pi i \varphi}\right):=Y_{\varphi} a(\varphi-M) Y_{-\varphi} \in \mathbf{C}\left(\mathbb{S}^{1}, \mathscr{K}_{\mathbb{Z}}\right)
$$

and

$$
\begin{align*}
& W\left(b(D) a T_{j}\right) W^{-1}=b\left(D_{\theta}\right) Y_{\varphi} a(\varphi-M) Y_{-\varphi-j}+K \tag{11}\\
& K \in \mathscr{K}_{\mathbb{S}^{1} \times \mathbb{Z}}
\end{align*}
$$

Proposition 1.5. The map

$$
\begin{aligned}
\hat{\mathscr{E}}_{\mathscr{P}} & \rightarrow \mathscr{S} \mathscr{L}{\bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}}^{A}
\end{aligned}
$$

is an onto $*$-isomorphism. For $A \in \hat{\mathscr{E}}_{\mathscr{P}}$ of the form $A=b(D) K(\tau) T_{j}$, with $b \in \mathbf{C S}(\mathbb{R}), K(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ and $j \in \mathbb{Z}$, we have:
(12) $W A W^{-1}=b\left(D_{\theta}\right) Y_{\varphi} K(\varphi-M) Y_{-\varphi-j}+K, \quad$ with $K \in \mathscr{K}_{\mathbb{S}^{1} \times \mathbb{Z} \times \mathbb{B}}$.

For each $\varphi \in \mathbb{R}$ here, $K(\varphi-M)$ denotes the compact operator on $L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})$ defined by the sequence $K(\varphi-j) \in \mathscr{K}_{\mathbb{B}}, j \in \mathbb{Z}$. The first term of the right-hand side of (12) defines therefore a $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}^{-} \text {-valued }}$ continuous function on $\mathbb{S}^{1}=\left\{e^{2 \pi i \varphi} ; \varphi \in \mathbb{R}\right\}$.

Proof. By Corollary 1.3 and (10),

$$
W \widehat{\mathscr{C}}_{\mathscr{P}} W^{-1}=\mathscr{S} \mathscr{L} \bar{\otimes} \mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}
$$

and, by (11), formula (12) holds for $K(\tau)$ of the form $a(\tau) \otimes \tilde{K}$, $a \in \mathbf{C O}(\mathbb{R})$ and $\widetilde{K} \in \mathscr{K}_{\mathbb{B}}$. We can then find a sequence $K_{m}(\tau) \in$ $\mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ such that $K_{m}(\tau) \rightarrow K(\tau)$, uniformly in $\tau \in \mathbb{R}$, and (12) is valid for each $K_{m}(\tau)$. Then

$$
Y_{\varphi} K_{m}(\varphi-M) Y_{-\varphi-j} \rightarrow Y_{\varphi} K(\varphi-M) Y_{-\varphi-j}
$$

in $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$, uniformly in $e^{2 \pi i \varphi} \in \mathbb{S}^{1}$. Since the supremum-norm of a function on \mathbb{S}^{1} taking values in $\mathscr{L}\left(L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})\right)$ equals the norm of the corresponding multiplication operator on $L^{2}\left(\mathbb{S}^{1}\right) \bar{\otimes} L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})$, the convergence above also holds in $\mathscr{L}\left(L^{2}\left(\mathbb{S}^{1}\right) \bar{\otimes} L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})\right)$.

Let $\mathbf{M}_{S L}$ denote the maximal-ideal space of $\mathscr{S} \mathscr{L} / \mathscr{K}_{\mathbb{S}^{1}}$ and let

$$
\sigma^{S L}: \mathscr{S} \mathscr{L} / \mathscr{K}_{\mathbf{s}^{1}} \rightarrow \mathbf{C}\left(\mathbf{M}_{S L}\right)
$$

denote the composition of the Gelfand map with the canonical projection. We then have (cf. [2], for example): $\mathbf{M}_{S L}=\mathbb{S}^{1} \times\{-1,+1\}$ and

$$
\sigma_{a}^{S L}(\cdot, \pm 1)=a(\cdot), \quad \text { for } a \in \mathbf{C}^{\infty}\left(\mathbb{S}^{1}\right)
$$

and

$$
\sigma_{b\left(D_{\theta}\right)}^{S L}(\cdot, \pm 1)=b(\pm \infty) \quad \text { for } b \in \mathbf{C S}(\mathbb{Z})
$$

Let $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)$ denote the $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$-valued functions on $\mathbf{M}_{S L}$. Here $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$ denotes the compact ideal of $L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B}), \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}=$ $\mathscr{K}_{\mathbb{Z}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}$.

Theorem 1.6. There exists an onto *-isomorphism

$$
\Psi: \frac{\mathscr{E}_{\mathscr{P}}}{\mathscr{K}(\mathscr{H})} \rightarrow \mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbf{Z} \times \mathbb{B}}\right)
$$

such that if $\tilde{\gamma}$ denotes the composition of Ψ with the canonical projection $\mathscr{E}_{\mathscr{A}} \rightarrow \mathscr{E}_{\mathscr{P}} / \mathscr{K}(\mathscr{H})$ and $A \in \mathscr{C}_{\mathscr{A}}$ is such that $B=F^{-1} A F$ is of the form $B=b(D) K(\tau) T_{j}$, where $b \in \mathbf{C S}(\mathbb{R}), K(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ and $j \in \mathbb{Z}$, we then have:

$$
\tilde{\gamma}_{A}\left(e^{2 \pi i \varphi}, \pm 1\right)=b(\pm \infty) Y_{\varphi} K(\varphi-M) Y_{-\varphi-j} .
$$

Proof. Let Ψ be given by

$$
\frac{\mathscr{C}_{\mathscr{P}}}{\mathscr{K}(\mathscr{H})} \rightarrow \frac{\hat{\mathscr{C}}_{\mathscr{A}}}{\mathscr{K}(\mathscr{H})} \rightarrow \frac{\mathscr{P} \mathscr{L} \bar{\otimes}_{\mathscr{K}_{\mathbb{Z}}} \overline{\mathscr{K}}_{\mathfrak{B}}}{\mathscr{K}_{\mathrm{s}^{\prime} \times \mathbb{Z} \times \mathbb{B}}} \rightarrow \mathbf{C}\left(M_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right),
$$

where in the first step we take $A+\mathscr{K}(\mathscr{H}) \in \mathscr{C} \mathscr{A} / \mathscr{K}(\mathscr{H})$ to $F^{-1} A F+$ $\mathscr{K}(\mathscr{H})$, next to

$$
W F^{-1} A F W^{-1}+\mathscr{K}_{\mathbf{s}^{1} \times \mathbb{Z} \times \mathbb{B}},
$$

and in the last step we use the onto $*$-isomorphism (see [1]):

$$
\begin{aligned}
\frac{\mathscr{L} \mathscr{L} \bar{\otimes}_{\mathscr{K}_{\mathbb{Z}}} \bar{\otimes} \mathscr{K}_{\mathbb{B}}}{\mathscr{K}_{\mathbf{S}^{\prime} \times \mathbb{Z} \times \mathbb{B}}} \rightarrow \mathbf{C}\left(M_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right) \\
A \otimes K_{1} \otimes K_{2}+\mathscr{K}_{\mathbf{s}^{\prime} \times \mathbb{Z} \times \mathbb{B}} \mapsto \sigma_{A}^{S L}(\varphi, \pm 1) K_{1} \otimes K_{2} .
\end{aligned}
$$

Defined this way, Ψ has the desired properties, by Proposition 1.5 and its proof.
2. Definition of two symbols on $\mathscr{C}_{\mathscr{P}}$. Our first task in this section is to give a precise description of the symbol space of $\mathscr{C}_{\mathscr{P}}$, i.e., the maximal-ideal space of the commutative C^{*}-algebra $\mathscr{C}_{\mathscr{P}} / \mathscr{C}_{9}$. The symbol space of \mathscr{C}, the C^{*}-algebra generated by the operators listed in (1) except the periodic functions $e^{i j t}$, was described in [3]:

Theorem 2.1 (Theorem 2.3 of [3]). The symbol space \mathbf{M} of \mathscr{C} can be identified with the bundle of unit spheres of the cotangent bundle of the compact manifold with boundary $[-\infty,+\infty] \times \mathbb{B}$, where $[-\infty,+\infty]$ denotes the compactification of \mathbb{R} obtained by adding the points $-\infty$ and $+\infty$. The σ-symbols of the generators $A_{1}, A_{2}, A_{4}, A_{5}$ and A_{6} are given below as functions of the local coordinates $(t, x ; \tau, \xi)$, where $(t, \tau) \in[-\infty,+\infty] \times \mathbb{R}^{*},(x, \xi) \in T^{*} \mathbb{B}$ and $\tau^{2}+h^{j k} \xi_{j} \xi_{k}=1:$

$$
\sigma_{A_{1}}=a(x), \quad \sigma_{A_{2}}=b(t), \quad \sigma_{A_{4}}=0, \quad \sigma_{A_{5}}=\tau, \quad \sigma_{A_{6}}=b^{j}(x) \xi_{j} .
$$

When periodic functions are adjoined to the algebra, the points over $|t|=\infty$ become circles. More precisely, we have:

Theorem 2.2. The symbol space \mathbf{M}_{P} of \mathscr{C}_{s} is homeomorphic to the closed subset of $\mathbf{M} \times \mathbb{S}^{1}$ described in local coordinates by

$$
\left\{\left((t, x ; \tau, \xi), e^{i \theta}\right) ;(t, x ; \tau, \xi) \in \mathbf{M}, \theta \in \mathbb{R} \text { and } \theta=t \text { if }|t|<\infty\right\} .
$$

Using this description of \mathbf{M}_{P}, the σ-symbols of the generators in (1) are respectively given by

$$
a(x), \quad b(t), \quad e^{i j \theta}, \quad 0, \quad \tau \quad \text { and } \quad b^{j}(x) \xi_{J} .
$$

Proof. Let $\mathbf{P}_{2 \pi}$ denote the closed algebra generated by $\left\{e^{i j t} ; j \in\right.$ $\mathbb{Z}\}$, i.e., the 2π-periodic continuous functions on \mathbb{R}. Its maximalideal space is \mathbb{S}^{1}, with $e^{i \theta} \in \mathbb{S}^{1}$ defining the multiplicative linear functional $f \rightarrow f(\theta)$.

With \mathscr{E} denoting the commutator ideal of \mathscr{C}, the maximal-ideal space of $\mathscr{C} / \mathscr{E}$ is \mathbf{M}, as described in Theorem 2.1. By definition of the Gelfand map, a point $(t, x ; \tau, \xi)$ defines the multiplicative linear functional

$$
A+\mathscr{E} \rightarrow \sigma_{A}(t, x ; \tau, \xi) .
$$

The following maps are canonically defined:

$$
\begin{equation*}
i_{1}: \frac{\mathscr{C}}{\mathscr{E}} \rightarrow \frac{\mathscr{C}_{\mathscr{P}}}{\mathscr{E}_{\mathscr{P}}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{2}: \mathbf{P}_{2 \pi} \rightarrow \frac{\mathscr{C}_{\mathscr{P}}}{\mathscr{C}_{\mathscr{P}}} . \tag{14}
\end{equation*}
$$

(It is obvious that $\mathscr{E} \subseteq \mathscr{E}_{\mathscr{P}}$)
Let us denote by l the product of the dual maps of i_{1} and i_{2}, i.e.,

$$
\begin{align*}
\imath: \mathbf{M}_{P} & \rightarrow \mathbf{M} \times \mathbb{S}^{1}, \tag{15}\\
w & \mapsto\left(w \circ i_{1}, w \circ i_{2}\right),
\end{align*}
$$

where w denotes a multiplicative linear functional on $\mathscr{C}_{\mathscr{A}} / \mathscr{C}_{\mathscr{P}}$.
As the images of i_{1} and i_{2} generate $\mathscr{C}_{\mathscr{P}} / \mathscr{E}_{\mathscr{P}}, l$ is an injective map, clearly continuous, which proves that \mathbf{M}_{P} is homeomorphic to a compact subset of $\mathbf{M} \times \mathbb{S}^{1}$. Now we proceed to investigate which points of $\mathbf{M} \times \mathbb{S}^{1}$ belong to the image of l. This dual-map argument is essentially "Herman's Lemma" (cf. [4]).

As in the proof of Proposition 1.2, here again we use general results on comparison algebras. It follows from Theorem VII-1-5 of [2] that
for every point of the cosphere-bundle of $\Omega,(t, x ; \tau, \xi) \in S^{*} \Omega$, there is a multiplicative linear functional on $\mathscr{C}_{\mathscr{P}} / \mathscr{C}_{\mathscr{P}}$ that takes any function a, belonging to the closed algebra generated by A^{\sharp} in (6), to $a(x, t)$ and $D \Lambda$,

$$
D=\frac{1}{i} \frac{\partial}{\partial t}+\frac{1}{i} b^{j}(x) \frac{\partial}{\partial x^{j}}+q(x) \in \mathscr{D}^{\sharp},
$$

to $\tau+b^{j}(x) \xi_{j}$. This multiplicative linear functional must correspond to the point

$$
\left((t, x ; \tau, \xi), e^{i t}\right) \in \mathbf{M} \times \mathbb{S}^{1}
$$

with $|t|<\infty$.
Suppose now that $\left((t, x ; \tau, \xi), e^{i \theta}\right)$ is in the image of l and that $|t|<\infty$. Let ω denote the corresponding multiplicative linear functional on $\mathscr{C}_{\mathscr{P}} / \mathscr{C}_{\mathscr{P}}$ and χ denote a function in $\mathbf{C}_{0}^{\infty}(\Omega)$ with $\chi(t)=1$. It is clear that $\chi(\cdot) e^{i(\cdot)}+\mathscr{C}_{\mathscr{A}}$ belongs to the image of i_{1} and thus, by (15),

$$
\omega\left(\chi(\cdot) e^{i(\cdot)}+\mathscr{C}_{\mathscr{P}}\right)=e^{i t} .
$$

On the other hand, since $e^{i(\cdot)}+\mathscr{E}_{\mathscr{A}}$ belongs to the image of i_{2}, we get:

$$
\omega\left(\chi(\cdot) e^{i(\cdot)}+\mathscr{C}_{\mathscr{P}}\right)=\omega\left(\chi(\cdot)+\mathscr{E}_{\mathscr{P}}\right) \omega\left(e^{i(\cdot)}+\mathscr{E}_{\mathscr{P}}\right)=e^{i \theta} .
$$

We then obtain $e^{i \theta}=e^{i t}$.
For $t= \pm \infty$ and any $e^{i \theta} \in \mathbb{S}^{1}$, let us consider the sequence $t_{m}=$ $\theta \pm 2 \pi m$. Since \mathbf{M}_{P} is closed and

$$
\left(\left(t_{m}, x ; \tau, \xi\right), e^{i t_{m}}\right) \rightarrow\left((t, x ; \tau, \xi), e^{i \theta}\right) \quad \text { as } m \rightarrow \infty
$$

we conclude that $\left((t, x ; \tau, \xi), e^{i \theta}\right) \in \mathbf{M}_{P}$.
Remark 2.3. We have just proved above that

$$
\mathbf{W}_{P}:=\left\{\left((t, x ; \tau, \xi), e^{i \theta}\right) \in \mathbf{M}_{P} ;|t|<\infty\right\}
$$

is dense in \mathbf{M}_{P}.
Next we define the γ-symbol.
The \mathbf{C}^{*}-algebra $\mathscr{C}_{\mathscr{A}} / \mathscr{K}(\mathscr{H})$ has the closed two-sided ideal $\mathscr{E}_{\mathscr{P}} / \mathscr{K}(\mathscr{H})$, which was proven to be $*$-isomorphic to $\mathbf{C}\left(M_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)$ in Theorem 1.6. Every $A \in \mathscr{C}_{\mathscr{A}}$ determines a bounded operator of $\mathscr{L}\left(\mathscr{C O}_{\mathscr{A}} / \mathscr{K}(\mathscr{H})\right)$ by $E+\mathscr{K}(\mathscr{H}) \rightarrow A E+\mathscr{K}(\mathscr{H})$, thus defining

$$
T: \mathscr{C}_{\mathscr{P}} \rightarrow \mathscr{L}\left(\mathscr{C}_{\mathscr{P}} / \mathscr{K}(\mathscr{H})\right) .
$$

Let us define

$$
\begin{align*}
\gamma: \mathscr{C P}_{\mathscr{P}} & \rightarrow \mathscr{L}\left(\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)\right) \tag{16}\\
A & \mapsto \gamma_{A}=\Psi T_{A} \Psi^{-1}
\end{align*}
$$

for Ψ defined in Theorem 1.6.
For $E \in \mathscr{C}_{\mathscr{D}}, \gamma_{E}$ is the operator multiplication by $\tilde{\gamma}_{E} \in$ $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)$ (see Theorem 1.6). Let $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$ denote the continuous functions on $\mathbf{M}_{S L}$ taking values in $\mathscr{L}_{\mathbb{Z} \times \mathbb{B}}:=$ $\mathscr{L}\left(L^{2}(\mathbb{Z} \times \mathbb{B})\right)$. Identifying functions in $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$ with the corresponding multiplication operator of $\mathscr{L}\left(\mathbf{C}\left(\mathscr{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)\right)$, we can say then that γ is an extension of $\tilde{\gamma}$.

Proposition 2.4. There exists a *-homomorphism

$$
\gamma: \mathscr{C}_{\mathscr{P}} \rightarrow \mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)
$$

where

$$
\mathbf{M}_{S L}=\left\{e^{2 \pi i \varphi} ; \varphi \in \mathbb{R}\right\} \times\{+1,-1\}
$$

given on the generators (1), according to notation established in $\S 1$ and in Theorem 1.6, by:

$$
\begin{gather*}
\gamma_{A_{1}}=a(x) ; \quad \gamma_{A_{2}}=b(\pm \infty) \tag{17}\\
\gamma_{A_{3}}=Y_{-j} ; \quad \gamma_{A_{4}}=Y_{\varphi} \tilde{\Lambda}(\varphi-M) Y_{-\varphi} \\
\gamma_{A_{5}}=Y_{\varphi} K(\varphi-M) Y_{-\varphi}, \quad \text { where } K(\tau)=-\tau \widetilde{\Lambda}(\tau), \tau \in \mathbb{R} \text { and } \\
\gamma_{A_{6}}=Y_{\varphi} L(\varphi-M) Y_{-\varphi}, \quad \text { where } L(\tau)=D_{x} \tilde{\Lambda}(\tau), \tau \in \mathbb{R}
\end{gather*}
$$

Furthermore, γ restricted to the C^{*}-algebra $C_{\mathscr{R}}^{\diamond}$, generated by the operators in (1) except $b \in \mathbf{C S}(\mathbb{R})$, is an isometry.

Proof. Let us calculate γ, defined in (16), for the generators A_{1}, \ldots, A_{6} of (1). By Proposition 1.2, it is enough to calculate the result of a left multiplication by $A_{p}, p=1, \ldots, 6$, on operators $E \in \mathscr{E}_{\mathscr{D}}$ such that $F^{-1} E F$ are of the form $c(D) K(\tau) T_{l}, c \in \mathbf{C S}(\mathbb{R})$, $K \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$ and $l \in \mathbb{Z}$. For such an E, we get $F^{-1}\left(A_{p} E\right) F$, $p=1, \ldots, 6$, equal to, modulo compact operators,

$$
\begin{gathered}
c(D) a(x) K(\tau) T_{l}, \quad(c b)(D) K(\tau) T_{l}, \quad c(D) K(\tau+j) T_{j+l}, \\
c(D) \widetilde{\Lambda}(\tau) K(\tau) T_{l}, \quad-c(D) \tau \tilde{\Lambda}(\tau) K(\tau) T_{l} \quad \text { and } \quad c(D) D_{x} \tilde{\Lambda}(\tau) K(\tau) T_{l}
\end{gathered}
$$ respectively. Here we have used (3) and

$$
\left[c(D), B_{k}\right] \in \mathscr{K}(\mathscr{H}), \quad k=4,5,6
$$

(cf. [3], Proposition 1.2). By Theorem 1.6, we get:

$$
\begin{aligned}
\gamma_{A_{1} E}(\varphi, \pm 1) & =c(\pm \infty) Y_{\varphi} \tilde{K}(\varphi-M) Y_{-\varphi-1} \\
& =a(x) \gamma_{E}(\varphi, \pm 1) \quad(\widetilde{K}=a K), \\
\gamma_{A_{2} E}(\varphi, \pm 1) & =(c b)(\pm \infty) Y_{\varphi} K(\varphi-M) Y_{-\varphi-1}=b(\pm \infty) \gamma_{E}(\varphi, \pm \infty), \\
\gamma_{A_{3} E}(\varphi, \pm 1) & =c(\pm \infty) Y_{\varphi} K(\varphi+j-M) Y_{-\varphi-j-l}=Y_{j} \gamma_{E}(\varphi, \pm 1), \\
\gamma_{A_{4} E}(\varphi, \pm 1) & =c(\pm \infty) Y_{\varphi}(\widetilde{\Lambda} K)(\varphi-M) Y_{-\varphi-l} \\
& =Y_{\varphi} \widetilde{\Lambda}(\varphi-M) Y_{-\varphi} \gamma_{E}(\varphi, \pm 1)
\end{aligned}
$$

and analogously for $p=5$ and 6 . This proves formulas (17).
For any $A \in \mathscr{C}_{\mathscr{P}}$ such that $F^{-1} A F=J(\tau) \in \mathbf{C O}\left(\mathbb{R}, \mathscr{K}_{\mathbb{B}}\right)$, it is also clear, using (5), that

$$
\gamma_{A}(\varphi, \pm 1)=Y_{\varphi} J(\varphi-M) Y_{-\varphi} .
$$

Hence, by (4), $\gamma_{A_{6}^{*}}$ also belongs to $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{Z \times \mathbb{B}}\right)$.
The norm of the operator of $\mathscr{L}\left(\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)\right)$ given by multiplication by a function in $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$ is equal to the sup-norm of this function. In other words, the C^{*}-algebra $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$ is isometrically imbedded in $\mathscr{L}\left(\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}\right)\right)$. As the image of a dense subalgebra of $\mathscr{E}_{\mathbb{P}}$ is contained in $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbf{Z} \times \mathbb{B}}\right)$, we conclude that γ maps $\mathscr{C}_{\mathscr{P}}$ into $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$.

Using the identification

$$
L^{2}\left(\mathbb{S}^{1}\right) \bar{\otimes} L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})=L^{2}\left(\mathbb{S}^{1}, L^{2}(\mathbb{Z} \times \mathbb{B})\right),
$$

it can be straightforwardly verified that, for $A(\tau) \in \mathbf{C B}\left(\mathbb{R}, \mathscr{L}_{\mathbb{B}}\right)$, $W A(\tau) W^{-1} \in \mathbf{C}\left(\mathbb{S}^{1}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right)$ and it is given by $Y_{\varphi} A(\varphi-M) Y_{-\varphi}$. This means that for $k=1,4,5,6$, we have

$$
\gamma_{A_{k}}=W F^{-1} A_{k} F W^{-1} \quad \text { and } \quad \gamma_{A_{k}^{*}}=W F^{-1} A_{k}^{*} F W^{-1} .
$$

It is also clear that $W T_{j} W^{-1}=Y_{-j}$ and, hence,

$$
\gamma_{A}=W F^{-1} A\left(W F^{-1}\right)^{-1}, \quad \text { for } A \in \mathscr{C}_{\mathscr{G}}^{\circ},
$$

proving that

$$
\left\|\gamma_{A}\right\|_{\mathbf{C}\left(\mathbf{M}_{s L}, \mathscr{I}_{2 \times \mathrm{B}}\right)}=\|A\|_{\mathscr{L}(\mathscr{P})} \quad \text { and } \quad \gamma_{A^{*}}=(\gamma A)^{*} \quad \text { for } A \in \mathscr{C}_{\mathscr{\mathscr { C }}}^{\bullet} .
$$

This finishes the proof, since it is obvious that $\gamma_{A_{2}^{*}}=\left(\gamma_{A_{2}}\right)^{*}$.

The σ-symbol and the γ-symbol, defined in Theorem 2.2 and Proposition 2.4 respectively, are related by:

Proposition 2.5. For every $A \in \mathscr{C}_{\mathscr{P}},\left\|\left.\sigma_{A}\right|_{\mathbf{M}_{P} \backslash \mathbf{w}_{P}}\right\| \leq\left\|\gamma_{A}\right\|$, i.e., $\sup \left\{\left|\sigma_{A}\left((t, x ; \tau, \xi), e^{i \theta}\right)\right| ;|t|=\infty\right\} \leq \sup \left\{\left\|\gamma_{A}(m)\right\|_{\mathscr{L}_{z \times \mathbb{B}}} ; m \in \mathbf{M}_{S L}\right\}$.

Proof. Since the commutators of A_{2} with the other generators in (1) and their adjoints are compact (cf. [3], Proposition 1.2), the set of operators of the form

$$
\begin{align*}
& A=\sum_{j=1}^{N} b_{j}(t) A_{j}+K \tag{18}\\
& \qquad b_{j} \in \mathbf{C S}(\mathbb{R}), A_{j} \in \mathscr{C}_{\mathscr{D}}^{\diamond}, K \in \mathscr{K}(\mathscr{H}), N \in \mathbb{N},
\end{align*}
$$

is dense in $\mathscr{C}_{\mathscr{P}}$. As $\sigma_{K}=0$ and $\gamma_{K}=0$ for $K \in \mathscr{K}(\mathscr{H})$, it suffices to assume A of the form (18) with $K=0$.

For such an A, Theorem 2.2 implies:

$$
\sigma_{A}\left((t, x ; \tau, \xi), e^{i \theta}\right)=\sum_{j=1}^{N} b_{j}(t) \sigma_{A_{j}}\left((t, x ; \tau, \xi), e^{i \theta}\right)
$$

Letting $A^{ \pm}$denote the operators $\sum_{j=1}^{N} b_{j}(\pm \infty) A_{j}$, it is clear then that

$$
\begin{aligned}
\sigma_{A}\left((+\infty, x ; \tau, \xi), e^{i \theta}\right) & =\sigma_{A^{+}}\left((\pm \infty, x ; \tau, \xi), e^{i \theta}\right) \quad \text { and } \\
\sigma_{A}\left((-\infty, x ; \tau, \xi), e^{i \theta}\right) & =\sigma_{A_{-}}\left((\pm \infty, x ; \tau, \xi), e^{i \theta}\right)
\end{aligned}
$$

hence:

$$
\begin{equation*}
\left\|\left.\sigma_{A}\right|_{\mathbf{M}_{P} \backslash \mathbf{W}_{P}}\right\| \leq \max \left\{\left\|\sigma_{A^{+}}\right\|,\left\|\sigma_{A^{-}}\right\|\right\} \tag{19}
\end{equation*}
$$

The map $\sigma: \mathscr{C}_{\mathscr{D}} \rightarrow \mathbf{C}\left(\mathbf{M}_{P}\right)$ was defined as the composition of the Gelfand map (an isometry) with the canonical projection $\mathscr{C}_{\mathscr{D}} \rightarrow$ $\mathscr{C}_{\mathscr{D}} / \mathscr{K}(\mathscr{H})$. It then follows that

$$
\left\|\sigma_{A^{ \pm}}\right\| \leq\left\|A^{ \pm}\right\|
$$

As $A^{ \pm} \in \mathscr{C}_{\mathscr{p}}^{\diamond}$, where γ is an isometry,

$$
\begin{equation*}
\left\|\sigma_{A^{ \pm}}\right\|_{\mathbf{C}\left(\mathbf{M}_{p}\right)} \leq\left\|\gamma_{A^{ \pm}}\right\|_{\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{Z \times \mathbb{B}}\right)} \tag{20}
\end{equation*}
$$

By Proposition 2.4,

$$
\gamma_{A}(\varphi,+1)=\sum_{j=1}^{N} b_{j}(+\infty) \gamma_{A_{j}}(\varphi,+1)=\gamma_{A^{+}}(\varphi,+1)
$$

and

$$
\gamma_{A}(\varphi,-1)=\gamma_{A^{-}}(\varphi,-1)
$$

Furthermore, for any $A \in \mathscr{C}_{\mathscr{D}}^{\diamond}$, it is clear from (17) that $\gamma_{A}(\varphi,+1)=$ $\gamma_{A}(\varphi,-1)$ and, therefore,

$$
\begin{equation*}
\left\|\gamma_{A}\right\|=\max \left\{\left\|\gamma_{A^{+}}\right\|,\left\|\gamma_{A^{-}}\right\|\right\} \tag{21}
\end{equation*}
$$

We are finished by (19), (20) and (21).
If $\gamma_{A}=0$, then, $\left.\sigma_{A}\right|_{\mathbf{M}_{P} \backslash \mathbf{W}_{P}}=0$. The converse is also true:
Proposition 2.6. An operator $A \in \mathscr{C}_{\mathscr{P}}$ belongs to the kernel of γ if and only if σ_{A} vanishes on $\mathbf{M}_{P} \backslash \mathbf{W}_{P}$. Furthermore, we have:

$$
\begin{equation*}
\operatorname{ker} \gamma \cap \operatorname{ker} \sigma=\mathscr{K}(\mathscr{H}) \tag{22}
\end{equation*}
$$

Proof. Let \mathscr{T}_{0} denote the C^{*}-algebra generated by multiplications by functions in $C_{0}^{\infty}(\Omega)$ and by the operators of the form $D \Lambda$, where D is a first order linear differential operator on Ω with smooth coefficients of compact support. Given A_{0}, one of these generators just described, we can find $\chi \in \mathbf{C}_{0}^{\infty}(\mathbb{R})$ such that $\chi A_{0}=A_{0}$ and then $\gamma_{A_{0}}=\gamma_{\chi} \gamma_{A_{0}}=0$, by Proposition 2.4. So, we have $\mathscr{T} \subseteq \operatorname{ker} \gamma$.

Using the nomenclature of [2], \mathscr{T}_{0} is the minimal comparison algebra associated with the triple $\{\Omega, d S, H\}$. It can be easily concluded from [2], Lemma VII-1-2, that $A \in \mathscr{C}_{\mathscr{P}}$ belongs to \mathscr{T}_{0} if and only if σ_{A} vanishes on $\mathbf{M}_{P} \backslash \mathbf{W}_{P}$, proving that $\mathscr{T}_{0} \subseteq \operatorname{ker} \gamma$, by Proposition 2.5.

Since $\operatorname{ker} \sigma=\mathscr{E}_{\mathscr{P}}$ and $\operatorname{ker} \gamma=\mathscr{T}_{0}$, the equality in (22) follows from [2], Theorem VII-1-3.
3. A Fredholm criterion and an application to differential operators. We will now give a necessary and sufficient criterion for an $N \times N$-matrix whose entries are operators in $\mathscr{C}_{\mathscr{P}}$, regarded as a bounded operator on $L^{2}\left(\Omega, \mathbb{C}^{N}\right), N \geq 1$, to be Fredholm. Let us denote $L^{2}\left(\Omega, \mathbb{C}^{N}\right)$ by \mathscr{H}^{N} and by $\mathscr{C}_{\mathscr{D}}^{N}$ the C^{*}-subalgebra of $\mathscr{L}\left(\mathscr{H}^{N}\right)$

$$
\mathscr{C}_{\mathscr{P}}^{N}:=\left\{\left(\left(A_{j k}\right)\right) ; A_{j k} \in \mathscr{C}_{\mathscr{P}}, 1 \leq j, k \leq N\right\}
$$

It is easy to see that the compact ideal of $\mathscr{L}\left(\mathscr{H}^{N}\right)$ coincides with the matrices with entries in $\mathscr{K}(\mathscr{H})$, i.e.,

$$
\mathscr{K}\left(\mathscr{H}^{N}\right)=\mathscr{K}^{N}:=\left\{\left(\left(K_{j k}\right)\right) ; K_{j k} \in \mathscr{K}(\mathscr{H}), 1 \leq j, k \leq N\right\} .
$$

Let us define two symbols on $\mathscr{C}_{\mathscr{R}}^{N}$:

$$
\sigma_{A}^{N}=\left(\left(\sigma_{A_{j k}}\right)\right)_{1 \leq j, k \leq N} \quad \text { and } \quad \gamma_{A}^{N}=\left(\left(\gamma_{A_{j k}}\right)\right)_{1 \leq j, k \leq N},
$$

where $A=\left(\left(A_{j k}\right)\right)_{1 \leq j, k \leq N} \in \mathscr{C}_{\mathscr{P}}^{N}$. The following proposition follows immediately from the definitions above and Proposition 2.6.

Proposition 3.1. The γ^{N}-symbol of an operator $A \in \mathscr{C}_{\mathscr{A}}^{N}$ is identically zero if and only if its σ^{N}-symbol vanishes on $\mathbf{M}_{P} \backslash \mathbf{W}_{P}$. Furthermore, we have:

$$
\begin{equation*}
\operatorname{ker} \sigma^{N} \cap \operatorname{ker} \gamma^{N}=\mathscr{K}^{N} \tag{23}
\end{equation*}
$$

Theorem 3.2. For an operator $A=\left(\left(A_{j k}\right)\right)_{1 \leq j, k \leq N} \in \mathscr{C}_{\mathscr{P}}^{N}$ to be Fredholm, it is necessary and sufficient that:
(i) σ_{A}^{N} be invertible, i.e., the $N \times N$-matrix $\left(\left(\sigma_{A_{j k}}(m)\right)\right)$ be invertible for all $m \in \mathbf{M}_{P}$, and
(ii) γ_{A}^{N} be invertible, i.e., the $N \times N$-matrix, with entries in $\mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}\right),\left(\left(\gamma_{A_{j k}}(m)\right)\right)$ be invertible for all $m \in \mathbf{M}_{S L}$.

Proof. Suppose that A is Fredholm and let B be such that $1-A B$ and $1-B A$ are compact. We have $B \in \mathscr{C}_{\mathscr{D}}^{N}$, since $\mathscr{C}_{\mathscr{D}}^{N} / \mathscr{K}^{N}$ is a C^{*}-subalgebra of $\mathscr{L}\left(\mathscr{H}^{N}\right) / \mathscr{K}^{N}$. We then get

$$
\sigma_{1-A B}^{N}=\sigma_{1-B A}^{N}=0 \quad \text { and } \quad \gamma_{1-A B}^{N}=\gamma_{1-B A}^{N}=0
$$

and, hence,

$$
1=\sigma_{A}^{N} \sigma_{B}^{N}=\sigma_{B}^{N} \sigma_{A}^{N} \quad \text { and } \quad 1=\gamma_{A}^{N} \gamma_{B}^{N}=\gamma_{B}^{N} \gamma_{A}^{N}
$$

Conversely, suppose that (i) and (ii) above are satisfied. Since $\gamma^{N}: \mathscr{C}_{\mathscr{D}}^{N} \rightarrow \mathbf{C}\left(\mathbf{M}_{S L}, N \times N\right.$-matrices with entries in $\left.\mathscr{L}\left(L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{B})\right)\right)$ is a $*$-homomorphism (by Proposition 2.4), its range is a C^{*}-algebra. There must be then a $B \in \mathscr{C}_{\mathscr{D}}^{N}$ such that $\gamma_{B}^{N}=\left(\gamma_{A}^{N}\right)^{-1}$. Since $1-A B \in \operatorname{ker} \gamma^{N}, 1-\sigma_{A}^{N} \sigma_{B}^{N}$ vanishes on $\mathbf{M}_{P} \backslash \mathbf{W}_{P}$, by Proposition 3.1. As the map σ is surjective, so is σ^{N}. An operator $Q \in \mathscr{C}_{\mathscr{D}}^{N}$ can therefore be found such that its symbol σ_{Q}^{N} equals the continuous function vanishing on $\mathbf{M}_{P} \backslash \mathbf{W}_{P}$

$$
\left(\sigma_{A}^{N}\right)^{-1}-\sigma_{B}^{N}
$$

By Proposition 3.1 again, $Q \in \operatorname{ker} \gamma^{N}$ and, then,

$$
\gamma_{1-A(B+Q)}^{N}=\gamma_{1-(B+Q) A}^{N}=0
$$

Since we also have

$$
\sigma_{1-A(B+Q)}^{N}=1-\sigma_{A}^{N} \sigma_{B}^{N}-\sigma_{A}^{N} \sigma_{Q}^{N}=0=\sigma_{1-(B+Q) A}^{N}
$$

the operator $B+Q$ is an inverse for A, modulo a compact operator, by equation (23).

In order to apply this result to differential operators, it is convenient to conjugate the γ-symbol with the discrete Fourier transform. We define:

$$
\begin{align*}
\Gamma: \mathscr{C}_{\mathscr{D}} & \rightarrow \mathbf{C}\left(\mathbf{M}_{S L}, \mathscr{L}_{\mathbb{S}^{1} \times \mathbb{B}}\right) \tag{24}\\
A & \mapsto \Gamma_{A}(m)=F_{d}^{-1} \gamma_{A}(m) F_{d}, \quad m \in \mathbf{M}_{S L}
\end{align*}
$$

where $F_{d}: L^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}(\mathbb{Z}), \mathbb{S}^{1}=\left\{e^{i \theta} ; \theta \in \mathbb{R}\right\}$, was defined in (7), and, as usual, F_{d} also denotes $F_{d} \otimes I_{\mathbb{B}}$.

Next we calculate Γ_{A} for the generators of $\mathscr{C}_{\mathscr{D}}$. It is obvious that, for $a \in \mathbb{C}^{\infty}(\mathbb{B})$,

$$
\begin{equation*}
\Gamma_{a}(\varphi, \pm 1)=a, \quad\left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L} \tag{25}
\end{equation*}
$$

and, for $b \in \mathbf{C S}(\mathbb{R})$,

$$
\begin{equation*}
\Gamma_{b}(\varphi, \pm 1)=b(\pm \infty), \quad \text { independent of } \varphi \tag{26}
\end{equation*}
$$

For $j \in \mathbb{Z}, F_{d}^{-1} Y_{-j} F_{d}$ equals the operator multiplication by $e^{i j \theta}$ on $\mathbb{S}^{1}=\left\{e^{\imath \theta}, \theta \in \mathbb{R}\right\}$, and then, by (24) and (17),

$$
\begin{equation*}
\Gamma_{e^{+i j t}}(\varphi, \pm 1)=e^{i j \theta}, \quad \text { for all }\left(e^{2 \pi l \varphi}, \pm 1\right) \in \mathbf{M}_{S L} \tag{27}
\end{equation*}
$$

Let $a \in \mathbf{C}(\Omega)$ be of the form

$$
\begin{equation*}
a(t, x)=a_{+}(t, x) \chi_{+}(t, x)+a_{-}(t, x) \chi_{-}(t, x)+a_{0}(t, x) \tag{28}
\end{equation*}
$$

where $a_{ \pm}$are continuous and 2π-periodic in $t, a_{0} \in \mathbf{C O}(\Omega)$ and $\chi_{ \pm} \in \mathbf{C S}(\mathbb{R})$ satisfy $\chi_{ \pm}(\pm \infty)=1, \chi_{+}+\chi_{-}=1$. By the continuity of Γ, (25), (26) and (27), it follows that

$$
\begin{equation*}
\Gamma_{a}(\varphi, \pm 1)=a_{ \pm}(\theta, x), \quad \text { for }\left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L} \tag{29}
\end{equation*}
$$

Note that (28) gives $\Gamma_{A_{1}}, \Gamma_{A_{2}}$ and $\Gamma_{A_{3}}$, for A_{p} as defined on page 283.

Now we calculate $F_{d}^{-1} K(\varphi-M) F_{d}$, for $\varphi \in \mathbb{R}$ and $K(\tau)=\tilde{\Lambda}(\tau)$, $-\tau \widetilde{\Lambda}(\tau)$ or $D_{x} \widetilde{\Lambda}(\tau)$, which is needed for obtaining $\Gamma_{A_{p}}, p=4,5,6$. Let us use again that $-\Delta_{\mathbb{B}}$ has an orthonormal basis of eigenfunctions $w_{m}, m \in \mathbb{N}$, with eigenvalues $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{m} \rightarrow \infty$ as $m \rightarrow \infty$, and define the unitary map

$$
\begin{aligned}
U: L^{2}(\mathbb{B}) & \rightarrow L^{2}(\mathbb{N}) \\
u & \mapsto\left(w_{m}, u\right)_{m \in \mathbb{N}}
\end{aligned}
$$

By the spectral theorem, the conjugate $U\left(1+(\varphi-j)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} U^{-1}$ equals the operator multiplication by $\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}$ on $L^{2}(\mathbb{N})$,
for each $j \in \mathbb{Z}, \varphi \in \mathbb{R}$. The operator $\tilde{\Lambda}(\varphi-M) \in \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}$ acts on

$$
\mathbf{u}=\left(u_{j}\right)_{j \in \mathbb{Z}} \in L^{2}\left(\mathbb{Z} ; L^{2}(\mathbb{B})\right)
$$

by

$$
\widetilde{\Lambda}(\varphi-M) \mathbf{u}=\left(\left(1+(\varphi-j)^{2}+\Delta_{\mathbb{B}}\right)^{-1 / 2} u_{j}\right)_{j \in \mathbb{Z}}
$$

and, thus,
(30) $\quad\left(I_{\mathbb{Z}} \otimes U\right) \tilde{\Lambda}(\varphi-M)\left(I_{\mathbb{Z}} \otimes U\right)^{-1}=\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}$,
where, by $\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}$, we now mean the corresponding multiplication operator on $L^{2}(\mathbb{Z}) \bar{\otimes} L^{2}(\mathbb{N})$.

Let us adopt the notation:

$$
\begin{equation*}
1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}:=\left(F_{d} \otimes U\right)^{-1}\left(1+(\varphi-j)^{2}+\lambda_{m}\right)\left(F_{d} \otimes U\right) \tag{31}
\end{equation*}
$$

It is easy to see that $1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}$ is the unique self-adjoint realization of the differential expression $1+\left(\varphi+i \frac{\partial}{\partial \theta}\right)^{2}-\Delta_{\mathbb{B}}$ on $\mathbb{S}^{1} \times \mathbb{B}$ (see Lemma 3.3). By (30) and (31) then, we obtain:

$$
\begin{equation*}
\left(F_{d} \otimes I_{\mathbb{B}}\right)^{-1} \tilde{\Lambda}(\varphi-M)\left(F_{d} \otimes I_{\mathbb{B}}\right)=\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} \tag{32}
\end{equation*}
$$

for every $\varphi \in \mathbb{R}$. Using that $Y_{\varphi}=F_{d}^{-1} e^{-i \varphi \theta} F_{d}, \varphi \in \mathbb{R}$ and (17), it follows that:

$$
\begin{align*}
& \Gamma_{\Lambda}(\varphi, \pm 1)=e^{-i \varphi \theta}\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} e^{i \varphi \theta} \tag{33}\\
&\left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L}
\end{align*}
$$

Since, for each $j \in \mathbb{Z}$ and each $\varphi \in \mathbb{R}$,

$$
U(\varphi-j)\left(1+(\varphi-j)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} U^{-1}
$$

equals the operator multiplication by

$$
(\varphi-j)\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}
$$

on $L^{2}(\mathbb{N})$, we obtain, in a way analogous to how (33) was obtained:

$$
\begin{align*}
& \Gamma_{A_{4}}(\varphi, \pm 1)=e^{-i \varphi \theta}\left(D_{\theta}-\varphi\right)\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} e^{i \varphi \theta} \tag{34}\\
&\left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L}
\end{align*}
$$

Here we have assumed the notation:

$$
\begin{aligned}
& \left(\varphi-D_{\theta}\right)\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} \\
& \quad:=\left(F_{d} \otimes U\right)^{-1}(\varphi-j)\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}\left(F_{d} \otimes U\right)
\end{aligned}
$$

For the last type of generator, we need the following lemma.

Lemma 3.3. The subspace

$$
\left\{u \in L^{2}\left(\mathbb{S}^{1} \times \mathbb{B}\right) ;\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} u \in \mathbf{C}^{\infty}\left(\mathbb{S}^{1} \times \mathbb{B}\right)\right\}
$$

is dense in $L^{2}\left(\mathbb{S}^{1} \times \mathbb{B}\right)$, for every $\varphi \in \mathbb{R}$.
Proof. The statement is true for $\varphi=0$, since

$$
1+D_{\theta}^{2}-\Delta_{\mathbb{B}}=1-\Delta_{\mathbb{S}^{1} \times \mathbb{B}}
$$

is essentially self-adjoint on $\mathbf{C}^{\infty}\left(\mathbb{S}^{1} \times \mathbb{B}\right)$, by [2], Theorem IV-1-8, for example. For $\varphi \in \mathbb{R}$,

$$
\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2}\left(1+D_{\theta}^{2}-\Delta_{\mathbb{B}}\right)^{1 / 2}
$$

is a Banach-space isomorphism, since it is unitarily equivalent to the multiplication by the function on $\mathbb{Z} \times \mathbb{N}$

$$
\left(1+(\varphi-j)^{2}+\lambda_{m}\right)^{-1 / 2}\left(1+j^{2}+\lambda_{m}\right)^{-1 / 2}
$$

which is bounded and bounded away from zero.
For every $v \in \mathbf{C}^{\infty}\left(\mathbb{S}^{1} \times \mathbb{B}\right)$, it is clear that

$$
D_{x} F_{d} v=F_{d} D_{x} v
$$

where, on the right-hand side, D_{x} is regarded as a differential expression on $\mathbb{S}^{1} \times \mathbb{B}$ and, on the left-hand side, D_{x} acts, as a differential operator on \mathbb{B}, on each component $w_{j} \in \mathbf{C}^{\infty}(\mathbb{B})$ of

$$
w=\left(w_{j}\right)_{j \in \mathbb{Z}}=F_{d} v \in L^{2}\left(\mathbb{Z} ; L^{2}(\mathbb{B})\right)
$$

By Lemma 3.3, it therefore follows that

$$
\begin{align*}
& F_{d}\left[D_{x}\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2}\right] F_{d}^{-1} \tag{35}\\
& \quad \quad=D_{x}\left[F_{d}\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} F_{d}^{-1}\right]
\end{align*}
$$

The right-hand side of (35) equals $D_{z} \tilde{\Lambda}(\varphi-M)$, by (32). We have, hence:

$$
\begin{equation*}
\Gamma_{A_{6}}(\varphi, \pm 1)=e^{-i \varphi \theta}\left[D_{x}\left(1+\left(\varphi-D_{\theta}\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2}\right] e^{i \varphi \theta} \tag{36}
\end{equation*}
$$

Equations (29), (31), (32), (33), (34) and (36) prove:
Proposition 3.4. The map Γ defined in (24) is given on the generators of $\mathscr{C}_{\mathscr{D}}\left(\right.$ with $m=\left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L}$ and $\Gamma_{A}(\varphi, \pm 1) \in \mathscr{L}_{\mathbb{S}^{1} \times \mathbb{B}}$, $\left.\mathbb{S}^{1}=\left\{e^{i \theta} ; \theta \in \mathbb{R}\right\}\right)$ by:

$$
\begin{aligned}
& \Gamma_{a}(\varphi, \pm 1)=a_{ \pm}(\theta, x), \quad \text { for } a \text { as in }(28) \\
& \Gamma_{\Lambda}(\varphi, \pm 1)=e^{-i \varphi \theta}\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} e^{i \varphi \theta} \\
& \Gamma_{-i} \frac{\partial}{\partial t} \Lambda \\
& \Gamma_{D_{x} \Lambda}(\varphi, \pm 1)=e^{-i \varphi \theta}\left(D_{\theta}-\varphi\right)\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} e^{i \varphi \theta} \\
& e^{-i \varphi \theta} D_{x}\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} e^{i \varphi \theta}
\end{aligned}
$$

Remark 3.5. Because of the way Γ was defined, it is obvious that condition (ii) of Theorem 3.2 can be replaced by
(ii') The matrix $\Gamma_{A}^{N}(m):=\left(\left(\Gamma_{A_{j k}}(m)\right)\right)_{1 \leq j, k \leq N}$ is invertible for all $m \in \mathbf{M}_{S L}$.

Our next and final objective is to find necessary and sufficient conditions for a differential operator with semi-periodic coefficients on Ω to be Fredholm. Most of the ideas and proofs in what follows are borrowed from [2], $\S \S$ VII. 3 and IX.3, where the more general problem of finding differential expressions within reach of a Comparison Algebra is addressed.

Proposition 3.6. Let L be an Mth order differential expression on \mathbb{B}, with smooth coefficients. The operator $L \Lambda^{M}$, defined initially on the dense subspace $\Lambda^{-M}\left(\mathbf{C}_{0}^{\infty}(\Omega)\right)$, can be extended to a bounded operator A in $\mathscr{L}(\mathscr{H})$. Moreover, we have that $A \in \mathscr{C}_{\mathscr{P}}, \sigma_{A}$ coincides with the principal symbol of L on \mathbf{W}_{P} (points of \mathbf{M}_{P} over $|t|<\infty$) and

$$
\begin{aligned}
\Gamma_{A}(\varphi, \pm 1)=e^{-i \varphi \theta} L\left(1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}\right)^{-1 / 2} & e^{i \varphi \theta} \\
& \left(e^{2 \pi i \varphi}, \pm 1\right) \in \mathbf{M}_{S L} .
\end{aligned}
$$

Proof. It is easy to see that any M th order differential expression on a compact manifold equals a sum of products of at most M first-order differential expressions. (See, for example, the proof of Proposition VI-3-1 of [2].) It is therefore enough to consider L of the form

$$
L=D_{1} D_{2} \cdots D_{M},
$$

where $D_{j}, j=1, \ldots, M$, are first order expressions. For $M=1$, the proposition is true by Theorem 2.2 and Proposition 3.4.

Using that $\Lambda^{2}=H^{-1}, H=1-\Delta_{\mathbb{R}}-\Delta_{\mathbb{B}}$, it is easy to see that, for $u \in \Lambda^{-2}\left(\mathbf{C}_{0}^{\infty}(\Omega)\right)$, and D_{1} and D_{2} first order expressions, we have:

$$
\begin{equation*}
D_{1} D_{2} \Lambda^{2} u=D_{1} \Lambda^{2} D_{2} u+D_{1} \Lambda^{2}\left[H, D_{2}\right] \Lambda^{2} u . \tag{37}
\end{equation*}
$$

The commutator $\left[H, D_{2}\right.$] is a second order expression on \mathbb{B} and can therefore be expressed as a sum of products of at most two first order differential expressions:

$$
\left[H, D_{2}\right]=\sum_{j=1}^{p} F_{j} G_{j} .
$$

This shows that, on the dense subspace $\Lambda^{-2}\left(C_{0}^{\infty}(\Omega)\right), D_{1} D_{2} \Lambda^{2}$ equals the operator

$$
\left(D_{1} \Lambda\right)\left(D_{2}^{*} \Lambda\right)^{*}+\left(D_{1} \Lambda\right) \sum_{j=1}^{p}\left(F_{j}^{*} \Lambda\right)^{*}\left(G_{j} \Lambda\right) \Lambda \in \mathscr{C}_{\mathscr{A}},
$$

where D^{*} denotes the formal adjoint of a differential expression D.
Since $\sigma_{\Lambda}=0$, we get:

$$
\sigma_{D_{1} D_{2} \Lambda^{2}}=\sigma_{D_{1} \Lambda} \sigma_{D_{2}^{*} \Lambda},
$$

which, restricted to \mathbf{W}_{P}, coincides with the principal symbol of D_{1}, D_{2}, by Theorem 2.2. It also follows that:

$$
\Gamma_{D_{1} D_{2} \Lambda^{2}}=\Gamma_{D_{1} \Lambda} \Gamma_{D_{2}^{*} \Lambda}^{*}+\Gamma_{D_{1} \Lambda} \sum_{j=1}^{p} \Gamma_{F ;}^{*}{ }^{*} \Gamma_{G_{j} \Lambda} \Gamma_{\Lambda} .
$$

By Proposition 3.4, we get:

$$
\begin{aligned}
e^{i \varphi \theta} & \Gamma_{D_{1} D_{2} \Lambda^{2}}(\varphi, \pm 1) e^{-i \varphi \theta} \\
& =\left(D_{1} \Lambda_{\varphi}\right)\left(D_{2}^{*} \Lambda_{\varphi}\right)^{*}+D_{1} \Lambda_{\varphi} \sum_{j=1}^{p}\left(F_{j}^{*} \Lambda_{\varphi}\right)^{*}\left(G_{j} \Lambda_{\varphi}\right) \Lambda_{\varphi} \\
& =D_{1} \Lambda_{\varphi}^{2} D_{2}+D_{1} \Lambda_{\varphi}^{2} \sum_{j=1}^{p} F_{j} G_{j} \Lambda_{\varphi}^{2}
\end{aligned}
$$

where $\Lambda_{\varphi}=H_{\varphi}^{-1 / 2}, H_{\varphi}=1+\left(D_{\theta}-\varphi\right)^{2}-\Delta_{\mathbb{B}}$. Since $\left[H, D_{2}\right]$ and [H_{φ}, D_{2}] are equal (as expressions on \mathbb{B}), we get:

$$
e^{i \varphi \theta} \Gamma_{D_{1} D_{2} \Lambda^{2}}(\varphi, \pm 1) e^{-i \varphi \theta}=D_{1} \Lambda_{\varphi}^{2} D_{2}+D_{1} \Lambda_{\varphi}^{2}\left[H_{\varphi}, D_{2}\right] \Lambda_{\varphi}^{2}=D_{1} D_{2} \Lambda_{\varphi}^{2}
$$

proving the proposition for $L=D_{1} D_{2}$.
Suppose now that the proposition is true for sums of products of at most M first order differential expressions and let $L=D_{1} D_{2} \cdots D_{M+1}$ be a product of first order expressions. Define: $F=D_{1} D_{2}$ and $G=$ $D_{3} \cdots D_{M+1}$. Using the formula

$$
\begin{aligned}
L \Lambda^{M+1} u & =F \Lambda^{2} G \Lambda^{M-1} u+F \Lambda^{2}[H, G] \Lambda^{M+1} u, \\
u & \in \Lambda^{-M-1}\left(\mathbf{C}_{0}^{\infty}(\Omega)\right),
\end{aligned}
$$

the proposition follows for this L, by the same argument as above.

Let $\left\{U_{\beta}\right\}$ be a finite atlas on \mathbb{B} and $\left\{\varphi_{\beta}\right\}$ a subordinate partition of unity, i.e. support $\varphi_{\beta} \subset U_{\beta}$. Let L be a differential operator on Ω, acting on \mathbb{C}^{N}-valued functions, locally given on U_{β} by

$$
\begin{equation*}
L=\sum_{j=0}^{\widetilde{M}} \sum_{|\alpha| \leq M_{j}} A_{\beta, j, \alpha}(t, x)\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial t}\right)^{j}, \tag{38}
\end{equation*}
$$

where

$$
\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}:=\left(-i \frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(-i \frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}, \quad \text { for } \alpha \in \mathbb{N}^{n}
$$

and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. We will say that L has semi-periodic coefflcients if the matrices

$$
\tilde{A}_{\beta, j, \alpha}(t, x):=\varphi_{\beta}(x) A_{\beta, j, \alpha}(t, x),
$$

regarded as functions on Ω, have as entries functions of the type (28). It is easy to see that this definition is independent of the choice of atlas on \mathbb{B}. We want to decide when

$$
L: H^{M}\left(\Omega, \mathbb{C}^{N}\right) \rightarrow L^{2}\left(\Omega, \mathbb{C}^{N}\right)
$$

is a Fredholm operator, assuming that L has semi-periodic coefficients. Here M denotes the order of $L, M=\max \left\{M_{j}+j, j=\right.$ $1, \ldots, \widetilde{M}\}$.
We also denote by Λ the operator $\Lambda \otimes I_{N}$ on $\mathscr{L}\left(L^{2}\left(\Omega, \mathbb{C}^{N}\right)\right)$, where I_{N} denotes the $N \times N$ identity matrix. Since Λ commutes with $\frac{\partial}{\partial t}$ and $L=\sum L_{\beta}$, for $L_{\beta}:=\varphi_{\beta} L$, we get:

$$
L \Lambda^{M}=\sum_{\beta, j, \alpha}(t, x)\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha} \Lambda^{|\alpha|}\left(\frac{1}{i} \frac{\partial}{\partial t}\right)^{j} \Lambda^{j} \Lambda^{M-|\alpha|-j} .
$$

After multiplying $\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}$ above by $\chi_{\beta, j, \alpha} \in \mathbf{C}_{0}^{\infty}\left(U_{\beta}\right), \chi_{\beta, j, \alpha}(x)=1$ for x in the support of $\tilde{A}_{\beta, j, \alpha}$, we still get the same operator and $\chi_{\beta, j, \alpha}(x)\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}$ is now a differential expression defined on \mathbb{B}. We can therefore apply Proposition 3.6 and conclude that $L \Lambda^{M} \in \mathscr{C}_{\mathscr{A}}^{N}$. Using, moreover, that $\sigma_{\Lambda^{M-|a|-J}}=0$ for $|\alpha|+j<M$, we get:

$$
\sigma_{L \Lambda^{M}}(t, x ; \tau, \xi)=\sum_{\beta} \sum_{|\alpha|+j=M} \tilde{A}_{\beta, j, \alpha}(t, x) \xi^{\alpha} \tau^{j}, \quad|t|<\infty
$$

The right-hand side of the previous equation coincides with the principal symbol of L restricted to the co-sphere bundle of Ω. Invertibility
of the σ-symbol is therefore equivalent to uniform ellipticity of L, by Remark 2.3 .

The operator-valued symbol $\Gamma_{L \Lambda^{m}}$ is also given by Proposition 3.6 (and Proposition 3.4):

$$
\begin{aligned}
& e^{-i \varphi \theta} \Gamma_{L \Lambda^{M}(\varphi, \pm 1) e^{i \varphi \theta}} \\
& \quad=\sum_{\beta, j, \alpha} \tilde{A}_{\beta, j, \alpha}^{ \pm}(\theta, x)\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial \theta}-\varphi\right)^{j} \Lambda_{\varphi}^{M},
\end{aligned}
$$

where we have used that Λ_{φ} and $\frac{\partial}{\partial \theta}$ commute. We have denoted by $\widetilde{A}_{\beta, j, \alpha}^{ \pm}$the 2π-periodic continuous functions such that

$$
\tilde{A}_{\beta, j, \alpha}(t, x)-\chi_{+}(t) \tilde{A}_{\beta, j, \alpha}^{+}(t, x)-\chi_{-}(t) \tilde{A}_{\beta, j, \alpha}^{-}(t, x) \in \mathbf{C O}(\Omega) .
$$

(See (28).)
Let $L_{\beta}^{ \pm}(\varphi)$ denote the differential expressions on $\mathbb{S}^{1} \times \mathbb{B}$

$$
L_{\beta}^{ \pm}(\varphi):=\sum_{j=0}^{\widetilde{M}} \sum_{|\alpha| \leq M,}+\widetilde{A}_{\beta, j, \alpha}^{ \pm}(\theta, x)\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha}\left(\frac{1}{i} \frac{\partial}{\partial \theta}-\varphi\right)^{j}
$$

and define the operator

$$
\begin{equation*}
L^{ \pm}(\varphi):=\sum_{\beta} L_{\beta}^{ \pm}(\varphi): H^{M}\left(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}\right) \rightarrow L^{2}\left(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}\right) \tag{39}
\end{equation*}
$$

Since Λ_{φ} is an isomorphism from

$$
L^{2}\left(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}\right) \quad \text { onto } H^{M}\left(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}\right)
$$

the above considerations, together with Theorem 3.2 and Remark 3.5 prove the following theorem.

Theorem 3.7. Let L denote an Mth order differential operator on Ω of the form (38), with continuous semi-periodic coefficients, and let $L^{ \pm}(\varphi)$ denote the differential operators on $S^{1} \times \mathbb{B}$ defined in (39). Then

$$
L: H^{M}\left(\Omega, \mathbb{C}^{N}\right) \rightarrow L^{2}\left(\Omega, \mathbb{C}^{N}\right)
$$

is Fredholm if and only if L is uniformly elliptic and $L^{ \pm}(\varphi)$ are invertible for all $\varphi \in[0,1]$.

References

[1] M. Breuer and H. O. Cordes, On Banach algebras with σ-symbol, part 2, J. Math. Mech., 14 (1965), 299-314.
[2] H. O. Cordes, Spectral theory of linear differential operators and comparison algebras, London Math. Soc. Lecture Notes Vol. 76, Cambridge University Press 1987.
[3] _-, On the two-fold symbol chain of a C^{*}-algebra of singular integral operators on a polycylinder, Revista Mat. Iberoamericana, 2 (1986), 215-234.
[4] __, Elliptic pseudo-differential operators, an abstract theory, Springer Lecture Notes in Math., Vol. 756, Berlin, Heildelberg, New York 1979.
[5] H. O. Cordes and S. T. Melo, An algebra of singular integral operators with kernels of bounded oscillation, and application to periodic differential operators, J. Differential Equations, 75 (1988), 216-278.
[6] R. Lockhart and R. McOwen, Elliptic differential operators on noncompact manifolds, Annali della Scuola Normale Superiore di Pisa, IV-XII (1985), 409-447.
[7] S. T. Melo, Comparison Algebras with Periodic Symbols, Thesis, Berkeley 1988.
[8] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geometry, 25 (1987), 363-430.

Received September 26, 1988. This work is part of my thesis at Berkeley, under the advise of Professor H. O. Cordes, to whom I wish to express my deepest thanks. I was supported by the Brazilian Government, through CAPES and UFPE.

Universidade Fed. de Pernambuco
50739 Recife Pe, Brazil

