A COMPARISON ALGEBRA ON A CYLINDER WITH SEMI-PERIODIC MULTIPLICATIONS

SEVERINO T. MELO

A necessary and sufficient Fredholm criterion is found for a C^* -algebra of bounded operators on a cylinder, which contains operators of the form $L\Lambda^M$, where $\Lambda=(1-\Delta)^{-1/2}$ and L is an Mth order differential operator whose coefficients are periodic at infinity.

0. Introduction. Let Ω denote the cylinder $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} is a compact Riemannian manifold, Δ_{Ω} its Laplacian and \mathscr{H} the Hilbert space $L^2(\Omega)$. Cordes [3] found a necessary and sufficient Fredholm criterion for operators in the C^* -subalgebra of $\mathscr{L}(\mathscr{H})$ generated by: (i) multiplications by functions that extend continuously to $[-\infty, +\infty] \times \mathbb{B}$, (ii) $\Lambda = (1 - \Delta_{\Omega})^{-1/2}$ and (iii) operators of the form $D\Lambda$, where D is either $\partial/\partial t$, $t \in \mathbb{R}$, or a first order differential operator on \mathbb{B} with smooth coefficients. Here we extend this algebra by adjoining the multiplications by 2π -periodic continuous functions to the generators, and a similar Fredholm criterion is obtained.

The commutator ideal $\mathscr{E}_{\mathscr{P}}$ of the extended algebra $\mathscr{E}_{\mathscr{P}}$ is proven to be *-isomorphic to $\mathscr{SL} \ \overline{\otimes} \ \mathscr{K}_{\mathbb{Z}} \ \overline{\otimes} \ \mathscr{K}_{\mathbb{B}}$, where \mathscr{SL} denotes the algebra of singular integral operators on the circle and $\mathscr{K}_{\mathbb{Z}}$ and $\mathscr{K}_{\mathbb{B}}$ denote the algebras of compact operators on $L^2(\mathbb{Z})$ and $L^2(\mathbb{B})$, respectively. This allows us to define on $\mathscr{E}_{\mathscr{P}}$ an operator-valued symbol, the " γ -symbol", such that $\ker \gamma \cap \ker \sigma$ equals the compact ideal of $\mathscr{L}(\mathscr{H})$. Here σ denotes the complex-valued symbol on $\mathscr{E}_{\mathscr{P}}$ that arises from the Gelfand map of the commutative C^* -algebra $\mathscr{E}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$. We prove that $A \in \mathscr{E}_{\mathscr{P}}$ is Fredholm if and only if γ_A and σ_A are invertible.

The simpler case when the compact manifold reduces to a point is considered in [5]. There, a unitary map W from $L^2(\mathbb{R})$ onto $L^2(S^1) \overline{\otimes} L^2(\mathbb{Z})$ is defined, such that the conjugate $W\mathscr{E}W^{-1}$ of the commutator ideal equals $\mathscr{SL} \overline{\otimes} \mathscr{K}_{\mathbb{Z}}$. Here, we conjugate $\mathscr{E}_{\mathscr{P}}$ with $W \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^2(\mathbb{B})$, and obtain $\mathscr{SL} \overline{\otimes} \mathscr{K}_{\mathbb{Z}} \overline{\otimes} \mathscr{K}_{\mathbb{B}}$.

If L is a differential operator on Ω whose coefficients are continuous and approach periodic functions at infinity, the operator $A = L\Lambda^M$ belongs to $\mathscr{C}_{\mathscr{P}}$, where M is the order of L. We can apply

the criterion above to A and prove that L is a Fredholm operator if and only if it is uniformly elliptic and a certain family of elliptic differential operators on the compact manifold $S^1 \times \mathbb{B}$ is invertible. This applies also for matrices of such operators.

These results can be extended in a standard way to non-compact manifolds with cylindrical ends (cf. [2], VIII-3,4). Fredholm properties of elliptic-differential operators on such manifolds have been studied, for example, by Lockhart-McOwen [6] and Taubes [8]. The case where the coefficients are periodic on the ends is included in Taubes' results.

1. Definition of the algebra $\mathscr{C}_{\mathscr{P}}$ and a description of its commutator ideal. Let Ω denote the Riemannian manifold $\mathbb{R} \times \mathbb{B}$, where \mathbb{B} denotes an n-dimensional compact manifold with metric tensor locally given by h_{jk} , and let \mathscr{H} denote the Hilbert space $L^2(\Omega)$, with Ω being given the surface measure

$$dS = \sqrt{h} dt dx^1 \cdots dx^n$$
.

where h is the determinant of the $n \times n$ -matrix $((h_{jk}))_{1 \le j, k \le n}$. The metric on Ω is given by $ds^2 = dt^2 + h_{jk} dx^j dx^k$, and the Laplace operator is locally given by

$$\Delta_{\Omega} = \Delta_{\mathbb{R}} + \Delta_{\mathbb{B}} = \frac{d^2}{dt^2} + \frac{1}{\sqrt{h}} \frac{\partial}{\partial x^j} \sqrt{h} h^{jk} \frac{\partial}{\partial x^k},$$

where $((h^{jk})) = ((h_{jk}))^{-1}$, and the summation convention from 1 to n is being used.

The symmetric operator Δ_{Ω} with domain $C_0^{\infty}(\Omega)$ is essentially self-adjoint, since Ω is complete (cf. [2], IV). We denote by H the closure of $1-\Delta_{\Omega}$ and by Λ its inverse square root, $\Lambda=H^{-1/2}$. Since $H\geq 1$, we have $\Lambda\in \mathscr{L}(\mathscr{H})$. The algebra $\mathscr{C}_{\mathscr{P}}$ is defined as the smallest C^* -subalgebra of $\mathscr{L}(\mathscr{H})$ containing the following operators (or classes of operators):

(1)
$$a \in \mathbf{C}^{\infty}(\mathbb{B}); b \in \mathbf{CS}(\mathbb{R});$$
 $e^{ijt}, j \in \mathbb{Z}; \Lambda; \frac{1}{i} \frac{\partial}{\partial t} \Lambda \text{ and } D_{x} \Lambda,$

 D_x being a first order differential operator on \mathbb{B} , locally given by $-ib^j(x)\partial/\partial x^j$, where $b^j(x)$, $j=1,\ldots,n$, are the components of a smooth vector field on \mathbb{B} . The operators $\frac{\partial}{\partial t}\Lambda$ and $D_x\Lambda$, defined on the dense subspace $\Lambda^{-1}(C_0^\infty(\Omega))$, can be extended to bounded operators of $\mathscr{L}(\mathscr{H})$ (cf. [2], for example). Bounded functions on Ω

have been identified with the corresponding multiplication operators in $\mathcal{L}(\mathcal{H})$ and $\mathbf{CS}(\mathbb{R})$ denotes the class of continuous functions on \mathbb{R} with limits at $+\infty$ and $-\infty$.

Our first objective is to obtain a necessary and sufficient criterion for an operator in $\mathscr{C}_{\mathscr{P}}$ to be Fredholm. Such a criterion has been found by Cordes [3] for the algebra generated by the operators in (1) except e^{ijt} , $j \in \mathbb{Z}$.

Taking advantage of the tensor product structure of \mathcal{H} ,

$$\mathscr{H} = L^2(\mathbb{R}) \, \overline{\otimes} \, L^2(\mathbb{B}) \,,$$

we consider the conjugate of $\mathscr{C}_{\mathscr{P}}$ with respect to the unitary operator $F \otimes I_{\mathbb{B}}$, where $I_{\mathbb{B}}$ denotes the identity operator on $L^2(\mathbb{B})$ and F the Fourier transform on $L^2(\mathbb{R})$,

$$(Fu)(\tau) = \frac{1}{\sqrt{2\pi}} \int e^{-i\tau t} u(t) dt.$$

In order to simplify notation, $A \otimes I_{\mathbb{B}}$ is denoted by A and $I_{\mathbb{R}} \otimes B$ by B, whenever $A \in \mathcal{L}(L^2(\mathbb{R}))$ or $B \in \mathcal{L}(L^2(\mathbb{B}))$.

We seek to describe what are $B_k := F^{-1}A_kF$, where A_k , $k = 1, \ldots, 6$, denote the operators listed in (1), in that order. The operator-valued functions $\tilde{\Lambda}(\tau) := (1+\tau^2-\Delta_{\mathbb{B}})^{-1/2}$, $\tau\tilde{\Lambda}(\tau)$ and $D_x\tilde{\Lambda}(\tau)$, $\tau \in \mathbb{R}$, are all in $\mathbf{CB}(\mathbb{R}, \mathcal{L}_{\mathbb{B}})$, as proven in [3], page 220, and thus determine operators in $\mathcal{L}(\mathcal{H})$ by multiplication in the real variable. Here $\mathcal{L}_{\mathbb{B}}$ denotes the algebra of bounded operators on $L^2(\mathbb{B})$ and $\mathbf{CB}(\mathbb{R}, \mathcal{L}_{\mathbb{B}})$ the bounded continuous $\mathcal{L}_{\mathbb{B}}$ -valued functions on \mathbb{R} . With this interpretation, we get B_k , $k = 1, \ldots, 6$, respectively given by

(2)
$$a \in \mathbb{C}^{\infty}(\mathbb{B}); b(D), b \in CS(\mathbb{R}); T_j, j \in \mathbb{Z};$$

$$\tilde{\Lambda}(\tau)$$
; $-\tau \tilde{\Lambda}(\tau)$ and $D_x \tilde{\Lambda}(\tau)$,

where $b(D) := F^{-1}bF$ and T_j denotes the translation $(T_j u)(\tau) = u(\tau + j)$.

Let $\mathscr{K}_{\mathbb{B}}$ denote the ideal of compact operators on $L^2(\mathbb{B})$ and $\mathbf{CO}(\mathbb{R}, \mathscr{K}_{\mathbb{B}})$ denote the $\mathscr{K}_{\mathbb{B}}$ -valued continuous functions on \mathbb{R} that vanish at infinity. All commutators $[B_k, B_l]$, $k, l \neq 3$, are contained in the algebra

$$\mathscr{CK} := \mathbf{CO}(\mathbb{R}, \mathscr{K}_{\mathbb{B}}) + \mathscr{K}(\mathscr{H}),$$

where $\mathcal{K}(\mathcal{H})$ denotes the ideal of compact operators of $\mathcal{L}(\mathcal{H})$, as proven in [3], Proposition 1.2. Next we investigate what are the

commutators $[B_3, B_k]$, k = 1, ..., 6. We easily get $[B_3, B_1] = [B_3, B_2] = 0$. It is also clear that, for any $K(\tau) \in \mathbf{CB}(\mathbb{R}, \mathcal{L}_{\mathbb{B}})$, we have

$$[T_k, K(\tau)] = (K(\tau + k) - K(\tau))T_k, \qquad k \in \mathbb{Z}$$

PROPOSITION 1.1. The commutators of the generators in (2)—and of their adjoints—of the algebra $\widehat{C}_{\mathscr{P}} := F^{-1}\mathscr{C}_{\mathscr{P}}F$ are contained in

$$\mathscr{EHT} = \left\{ \sum_{j=-N}^{N} K_j(\tau) T_j + K; \ N \in \mathbb{N} \,, \, K_j \in \mathbf{CO}(\mathbb{R} \,, \, \mathscr{K}_{\mathbb{B}}) \,, \, K \in \mathscr{K}(\mathscr{H}) \right\}.$$

Proof. Let us first prove that $K(\tau+j)-K(\tau)\in \mathbf{CO}(\mathbb{R},\mathscr{K}_{\mathbb{B}})$, for $K(\tau)=\tilde{\Lambda}(\tau)$, $\tau\tilde{\Lambda}(\tau)$ or $D_x\tilde{\Lambda}(\tau)$. It follows from the fact that $-\Delta_{\mathbb{B}}$ on $L^2(\mathbb{B})$ has an orthonormal basis of eigenfunctions, with eigenvalues $0\leq \lambda_1\leq \lambda_2\leq \cdots$, $\lambda_n\to\infty$ as $n\to\infty$, that, for each $\tau\in\mathbb{R}$, $\tilde{\Lambda}(\tau)$ is unitarily equivalent to the multiplication operator $(1+\tau^2+\lambda_n)^{-1/2}$ on $L^2(\mathbb{N})$. Hence: $\tilde{\Lambda}(\tau)\in\mathbf{CO}(\mathbb{R},\mathscr{K}_{\mathbb{B}})$,

$$\|\tau[\tilde{\Lambda}(\tau+j)-\tilde{\Lambda}(\tau)]\|_{L^{2}(\mathbb{B})} \leq \max_{s\in[1,\infty)} |\tau[(s+(\tau+j)^{2})^{-1/2}-(s+\tau^{2})^{-1/2}]|$$

and

$$\|\tilde{\Lambda}(\tau)^{-1}\tilde{\Lambda}(\tau+j)-1\|_{L^{2}(\mathbb{R})} \leq \max_{s \in [1,\infty)} |(\tau^{2}+s)^{1/2}((\tau+j)^{2}+s)^{-1/2}-1|.$$

Note that the right-hand sides of the two previous inequalities go to zero as $\tau \to \pm \infty$. Furthermore, as

$$\lim_{n\to\infty} (1+\tau^2+\lambda_n)^{1/2} (1+(\tau+j)^2+\lambda_n)^{-1/2} - 1 = 0,$$

we have that $\tilde{\Lambda}(\tau)^{-1}\tilde{\Lambda}(\tau+j)-1\in\mathscr{K}_{\mathbb{B}}$, for each $\tau\in\mathbb{R}$. We then get: $(\tau+j)\tilde{\Lambda}(\tau+j)-\tau\tilde{\Lambda}(\tau)=\tau(\tilde{\Lambda}(\tau+j)-\tilde{\Lambda}(\tau))+j\tilde{\Lambda}(\tau+j)\in\mathbf{CO}(\mathbb{R}\,,\,\mathscr{K}_{\mathbb{B}})$ and

$$D_{X}\tilde{\Lambda}(\tau+j)-D_{X}\tilde{\Lambda}(\tau)=D_{X}\tilde{\Lambda}(\tau)[\tilde{\Lambda}(\tau)^{-1}\tilde{\Lambda}(\tau+j)-1]\in \mathbf{CO}(\mathbb{R},\mathcal{K}_{\mathbb{B}}).$$

By the remarks preceding the statement of the proposition, this proves that the commutators of the generators (2) are indeed contained in $\mathcal{E}\mathcal{K}\mathcal{T}$. Concerning the adjoints, let us note that the classes of B_k 's, $k=1,\ldots,5$, are self-adjoint and that, as proven in [3], $D_x\tilde{\Lambda}-\tilde{\Lambda}D_x\in\mathbf{CO}(\mathbb{R},\mathcal{K}_{\mathbb{B}})$. Hence

(4)
$$(D_{X}\tilde{\Lambda})^{*} - D_{X}^{*}\tilde{\Lambda} = \tilde{\Lambda}D_{X}^{*} - D_{X}^{*}\tilde{\Lambda} \in \mathbf{CO}(\mathbb{R}, \mathscr{K}_{\mathbb{B}}).$$

Here, D_X^* denotes the formal adjoint of D_X . The commutators of any $K(\tau) \in \mathbf{CO}(\mathbb{R}, \mathscr{K}_{\mathbb{B}})$ with the generators B_k , k=1,3,4,5,6, are clearly contained in \mathscr{EHT} . For $K(\tau)$ of the special form $K(\tau)=a(\tau)\widetilde{K}$, $a\in\mathbf{CO}(\mathbb{R})$ and $\widetilde{K}\in\mathscr{K}_{\mathbb{B}}$, the commutator $[b(D),K(\tau)]=[b(D),a(\tau)]\otimes\widetilde{K}$ is compact, since $[b(D),a(\tau)]$ is compact (cf. [4], Chapter III, for example), for $b\in\mathbf{CS}(\mathbb{R})$. The vector space generated by all $K(\tau)=a(\tau)\widetilde{K}$ as above is dense in $\mathbf{CO}(\mathbb{R},\mathscr{K}_{\mathbb{B}})$ and thus we have

(5)
$$[b(D), K(\tau)] \in \mathcal{K}(\mathcal{H}), \text{ for } b \in \mathbf{CS}(\mathbb{R}), K(\tau) \in \mathbf{CO}(\mathbb{R}, \mathcal{H}_{\mathbb{B}}).$$
 This concludes the proof.

Denoting by $\mathscr{E}_{\mathscr{P}}$ the commutator ideal of $\mathscr{E}_{\mathscr{P}}$ and by $\mathscr{E}_{\mathscr{P}}$ the commutator ideal of $\widehat{\mathscr{E}}_{\mathscr{P}}$, it is obvious that $\widehat{\mathscr{E}}_{\mathscr{P}} = F^{-1}\mathscr{E}_{\mathscr{P}}F$.

PROPOSITION 1.2. The commutator ideal $\widehat{\mathcal{E}}_{\mathscr{P}}$ of the algebra $\widehat{\mathcal{E}}_{\mathscr{P}}$ is obtained by closing the set of operators:

$$\widehat{\mathcal{E}}_{P,0} := \left\{ \sum_{j=-N}^{N} b_j(D) K_j(\tau) T_j + K; \\ b_j \in \mathbf{CS}(\mathbb{R}), \ N \in \mathbb{N}, K_j \in \mathbf{CO}(\mathbb{R}, \mathcal{K}_{\mathbb{B}}, K \in \mathcal{K}(\mathcal{H})) \right\}.$$

Proof. The algebra $\mathscr{C}_{\mathscr{P}}$ is a "Comparison Algebra", in the sense of [2], Chapter V, with "generating classes":

$$(6) \qquad \mathscr{A}^{\sharp} := \mathbf{C}_0^{\infty}(\Omega) \cup \mathbf{C}^{\infty}(\mathbb{B}) \cup \{e^{ijt}; j \in \mathbb{Z}\} \cup \{s(t) = t(1+t^2)^{-1/2}\}$$

and \mathscr{D}^{\sharp} equal to the vector space generated by the first order linear partial differential expressions on \mathbb{B} with smooth coefficients and by the expression $\partial/\partial t$. Indeed, $\mathscr{C}_{\mathscr{P}}$ can alternatively be defined as the C^* -algebra generated by all multiplications by functions in \mathscr{A}^{\sharp} and by all $D\Lambda$, $D \in \mathscr{D}^{\sharp}$. It follows then from Lemma V-1-1 of [2] that $\mathscr{K}(\mathscr{H}) \subset \mathscr{E}_{\mathscr{P}}$ and therefore $\mathscr{K}(\mathscr{H}) \subset \widehat{\mathscr{E}}_{\mathscr{P}}$. Moreover, it was proven in [3], Proposition 1.5, that $\mathbf{CO}(\mathbb{R}, \mathscr{K}_{\mathbb{B}})$ is contained in the commutator ideal of the C^* -algebra generated by B_4 , B_5 and B_6 . Thus we get $\widehat{\mathscr{E}}_{P,0} \subset \widehat{\mathscr{E}}_{\mathscr{P}}$.

All commutators of the generators (2) and their adjoints are contained in $\widehat{\mathcal{E}}_{P,0}$, by Proposition 1.1. Again using (3), (4) and (5), it is easy to verify that $\widehat{\mathcal{E}}_{P,0}$ is invariant under right or left multiplication by the operators in (2) and their adjoints. Two facts then follow:

(i) all commutators of the algebra (finitely) generated by the operators in (2) and their adjoints are contained in $\widehat{\mathcal{E}}_{P,0}$ and therefore all commutators of $\widehat{\mathcal{E}}_{\mathscr{P}}$ are contained in the closure of $\widehat{\mathcal{E}}_{P,0}$, and (ii) the closure of $\widehat{\mathcal{E}}_{P,0}$ is an ideal of $\widehat{\mathcal{E}}_{\mathscr{P}}$. By definition of commutator ideal, $\widehat{\mathcal{E}}_{\mathscr{P}}$ is contained in the closure of $\widehat{\mathcal{E}}_{P,0}$.

Let $CO(\mathbb{R})$ denote the set of continuous functions on \mathbb{R} vanishing at infinity and let $\widehat{\mathcal{E}}_0$ denote the set of bounded operators on $L^2(\mathbb{R})$

$$\widehat{\mathscr{E}}_0 := \left\{ \sum_{j=-N}^N b_j(D) a_j(\tau) T_j + K; N \in \mathbb{N}, b_j \in \mathbf{CS}(\mathbb{R}), \right.$$

$$a_j \in \mathbf{CO}(\mathbb{R}), K \in \mathscr{K}_{\mathbb{R}}$$
.

COROLLARY 1.3. With $\widehat{\mathscr{E}}$ denoting the closure of $\widehat{\mathscr{E}}_0$ defined above, we have:

$$\widehat{\mathscr{E}}_{\mathscr{P}}=\widehat{\mathscr{E}}\,\overline{\otimes}\,\mathscr{K}_{\mathbb{B}}$$

where $\overline{\otimes}$ denotes the operator-norm closure of the algebraic tensor product.

Proof. The vector-space generated by

$$\{(b(D)a(\tau)T_j+K)\otimes \widetilde{K}; b\in \mathbf{CS}(\mathbb{R}), a\in \mathbf{CO}(\mathbb{R}), j\in\mathbb{Z},$$

$$K \in \mathcal{K}_{\mathbb{R}}, \ \widetilde{K} \in \mathcal{K}_{\mathbb{R}}$$

is dense in $\widehat{\mathscr{E}}_{P,0}$ and in $\widehat{\mathscr{E}} \overline{\otimes} \mathscr{K}_{\mathbb{B}}$.

In the rest of this section, we define a unitary map

$$W: L^2(\mathbb{R}) \to L^2(\mathbb{S}^1; L^2(\mathbb{Z}))$$

and find a useful description for $(W \otimes I_{\mathbb{B}})\widehat{\mathcal{E}}_{\mathscr{P}}(W \otimes I_{\mathbb{B}})^{-1}$.

Given $u \in L^2(\mathbb{R})$, denote:

$$u^{\diamond}(\varphi) := (u(\varphi - j))_{j \in \mathbb{Z}},$$

for each $\varphi \in \mathbb{R}$. The sequence $u^{\diamond}(\varphi)$ belongs to $L^2(\mathbb{Z})$ for almost every φ , by Fubini's Theorem, since $L^2(\mathbb{R})$ can be identified with $L^2([0,1)\times\mathbb{Z})$. Let

$$F_d: L^2(\mathbb{S}^1, d\theta) \to L^2(\mathbb{Z}), \qquad \mathbb{S}^1 = \{e^{i\theta}; \theta \in \mathbb{R}\},$$

denote the discrete Fourier transform:

(7)
$$(F_d u)_j = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} u(\theta) e^{-ij\theta} d\theta, \qquad j \in \mathbb{Z}.$$

For each $\varphi \in \mathbb{R}$, define

$$(8) Y_{\varphi} := F_d e^{-i\varphi\theta} F_d^{-1}.$$

The operators Y_{φ} define a smooth function on \mathbb{R} , taking values in the unitary operators on $L^2(\mathbb{Z})$ and satisfying $(Y_k u)_j = u_{j+k}$, for $k \in \mathbb{Z}$ and $u \in L^2(\mathbb{Z})$, and $Y_{\varphi} Y_{\varphi} = Y_{\varphi+\varphi}$, for φ , $\varphi \in \mathbb{R}$.

We now define the map (with $S^1 = \{e^{2\pi i \varphi}; \varphi \in \mathbb{R}\}\)$

(9)
$$W: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{S}^{1}, d\varphi; L^{2}(\mathbb{Z})),$$
$$u \mapsto (Wu)(\varphi) = Y_{\varphi}u^{\diamond}(\varphi).$$

Let $\mathbf{CS}(\mathbb{Z})$ denote the set of sequences b(j), $j \in \mathbb{Z}$, with limits as $j \to +\infty$ and $j \to -\infty$ and let $b(D_\theta)$ denote $F_d^{-1}b(M)F_d$, where b(M) denotes the operator multiplication by b on $L^2(\mathbb{Z})$. We then denote by \mathscr{SL} the C^* -subalgebra of $\mathscr{L}_{\mathbb{S}^1} := \mathscr{L}(L^2(\mathbb{S}^1))$ generated by $b(D_\theta)$, $b \in \mathscr{CS}(\mathbb{Z})$, and by the multiplications by smooth functions on \mathbb{S}^1 . It is easy to check that, with $\Lambda_{\mathbb{S}^1} := (1 - \Delta_{\mathbb{S}^1})^{-1/2}$,

$$\frac{1}{i}\frac{d}{d\theta}\Lambda_{\mathbb{S}^1} = s(D_{\theta}), \qquad s(j) = (1+j^2)^{-1/2}.$$

Since the polynomials in s are dense in $CS(\mathbb{Z})$, \mathscr{SL} coincides with the C^* -subalgebra of $\mathscr{L}_{\mathbb{S}^1}$ generated by $-i\frac{d}{d\theta}\Lambda_{\mathbb{S}^1}$ and $C^{\infty}(\mathbb{S}^1)$. In other words, \mathscr{SL} is the unique comparison algebra over \mathbb{S}^1 . It therefore contains the compact ideal $\mathscr{K}_{\mathbb{S}^1}$ and all its commutators are compact (cf. [2], Chapters V and VI).

The following theorem was proven in [5] (Theorem 2.6). See also [7], Theorem 1.2.

THEOREM 1.4. With the above notation, we have:

$$(10) W\widehat{\mathscr{E}}W^{-1} = \mathscr{SL} \overline{\otimes} \mathscr{K}_{\mathbb{Z}},$$

where $\mathscr{K}_{\mathbb{Z}}$ denotes the set of compact operators on $L^2(\mathbb{Z})$. Furthermore, for $b \in \mathbf{CS}(\mathbb{R})$, $a \in \mathbf{CO}(\mathbb{R})$ and $j \in \mathbb{Z}$, we have:

$$A^{\diamond}(e^{2\pi i\varphi}):=Y_{\varphi}a(\varphi-M)Y_{-\varphi}\in \mathbb{C}(\mathbb{S}^1\,,\,\mathcal{K}_{\mathbb{Z}})$$

and

(11)
$$W(b(D)aT_j)W^{-1} = b(D_\theta)Y_\varphi a(\varphi - M)Y_{-\varphi - j} + K,$$

$$K \in \mathcal{K}_{\mathbb{S}^1 \times \mathbb{Z}}.$$

Proposition 1.5. The map

$$\widehat{\mathscr{E}}_{\mathscr{P}} o \mathscr{SL} \, \overline{\otimes} \, \mathscr{K}_{\mathbb{Z}} \, \overline{\otimes} \, \mathscr{K}_{\mathbb{B}} \,,$$

$$A \mapsto W A W^{-1}$$

is an onto *-isomorphism. For $A \in \widehat{\mathcal{E}}_{\mathscr{P}}$ of the form $A = b(D)K(\tau)T_j$, with $b \in \mathbf{CS}(\mathbb{R})$, $K(\tau) \in \mathbf{CO}(\mathbb{R}, \mathscr{X}_{\mathbb{B}})$ and $j \in \mathbb{Z}$, we have:

(12)
$$WAW^{-1} = b(D_{\theta})Y_{\varphi}K(\varphi - M)Y_{-\varphi - j} + K$$
, with $K \in \mathcal{X}_{\mathbb{S}^1 \times \mathbb{Z} \times \mathbb{B}}$.

For each $\varphi \in \mathbb{R}$ here, $K(\varphi - M)$ denotes the compact operator on $L^2(\mathbb{Z})\overline{\otimes}L^2(\mathbb{B})$ defined by the sequence $K(\varphi - j) \in \mathscr{X}_{\mathbb{B}}$, $j \in \mathbb{Z}$. The first term of the right-hand side of (12) defines therefore a $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$ -valued continuous function on $\mathbb{S}^1 = \{e^{2\pi i \varphi}; \varphi \in \mathbb{R}\}$.

Proof. By Corollary 1.3 and (10),

$$W\widehat{\mathscr{E}}_{\mathscr{P}}W^{-1}=\mathscr{SL}\ \overline{\otimes}\ \mathscr{K}_{\mathbb{Z}}\ \overline{\otimes}\ \mathscr{K}_{\mathbb{B}}$$

and, by (11), formula (12) holds for $K(\tau)$ of the form $a(\tau) \otimes \widetilde{K}$, $a \in \mathbf{CO}(\mathbb{R})$ and $\widetilde{K} \in \mathcal{K}_{\mathbb{B}}$. We can then find a sequence $K_m(\tau) \in \mathbf{CO}(\mathbb{R}, \mathcal{K}_{\mathbb{B}})$ such that $K_m(\tau) \to K(\tau)$, uniformly in $\tau \in \mathbb{R}$, and (12) is valid for each $K_m(\tau)$. Then

$$Y_{\varphi}K_{m}(\varphi-M)Y_{-\varphi-j} \to Y_{\varphi}K(\varphi-M)Y_{-\varphi-j}$$

in $\mathscr{H}_{\mathbb{Z} \times \mathbb{B}}$, uniformly in $e^{2\pi i \varphi} \in \mathbb{S}^1$. Since the supremum-norm of a function on \mathbb{S}^1 taking values in $\mathscr{L}(L^2(\mathbb{Z}) \overline{\otimes} L^2(\mathbb{B}))$ equals the norm of the corresponding multiplication operator on $L^2(\mathbb{S}^1) \overline{\otimes} L^2(\mathbb{Z}) \overline{\otimes} L^2(\mathbb{B})$, the convergence above also holds in $\mathscr{L}(L^2(\mathbb{S}^1) \overline{\otimes} L^2(\mathbb{Z}) \overline{\otimes} L^2(\mathbb{B}))$. \square

Let \mathbf{M}_{SL} denote the maximal-ideal space of $\mathscr{SL}/\mathscr{K}_{\mathbb{S}^1}$ and let

$$\sigma^{SL} \colon \mathscr{SL}/\mathscr{X}_{\mathbb{S}^1} \to \mathbf{C}(\mathbf{M}_{SL})$$

denote the composition of the Gelfand map with the canonical projection. We then have (cf. [2], for example): $\mathbf{M}_{SL} = \mathbb{S}^1 \times \{-1, +1\}$ and

$$\sigma_a^{SL}(\cdot, \pm 1) = a(\cdot), \quad \text{for } a \in \mathbb{C}^{\infty}(\mathbb{S}^1)$$

and

$$\sigma^{SL}_{b(D_a)}(\cdot\,,\,\pm 1)=b(\pm \infty)\quad {
m for}\ b\in {f CS}({\Bbb Z}).$$

Let $\mathbf{C}(\mathbf{M}_{SL}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}})$ denote the $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$ -valued functions on \mathbf{M}_{SL} . Here $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}}$ denotes the compact ideal of $L^2(\mathbb{Z}) \ \overline{\otimes} \ L^2(\mathbb{B})$, $\mathscr{K}_{\mathbb{Z} \times \mathbb{B}} = \mathscr{K}_{\mathbb{Z}} \ \overline{\otimes} \ \mathscr{K}_{\mathbb{B}}$.

THEOREM 1.6. There exists an onto *-isomorphism

$$\Psi \colon \frac{\mathscr{E}_{\mathscr{P}}}{\mathscr{K}(\mathscr{H})} \to \mathbf{C}(\mathbf{M}_{SL}\,,\,\mathscr{K}_{\mathbf{Z} \times \mathbb{B}})$$

such that if $\tilde{\gamma}$ denotes the composition of Ψ with the canonical projection $\mathcal{E}_{\mathscr{P}} \to \mathcal{E}_{\mathscr{P}}/\mathcal{K}(\mathcal{K})$ and $A \in \mathcal{E}_{\mathscr{P}}$ is such that $B = F^{-1}AF$ is of the form $B = b(D)K(\tau)T_j$, where $b \in \mathbf{CS}(\mathbb{R})$, $K(\tau) \in \mathbf{CO}(\mathbb{R}, \mathcal{K}_{\mathbb{B}})$ and $j \in \mathbb{Z}$, we then have:

$$\tilde{\gamma}_A(e^{2\pi i\varphi}, \pm 1) = b(\pm \infty)Y_{\varphi}K(\varphi - M)Y_{-\varphi - j}.$$

Proof. Let Ψ be given by

$$\frac{\mathscr{E}_{\mathscr{P}}}{\mathscr{K}(\mathscr{H})} \to \frac{\widehat{\mathscr{E}}_{\mathscr{P}}}{\mathscr{K}(\mathscr{H})} \to \frac{\mathscr{SL} \ \overline{\otimes} \ \mathscr{K}_{\mathbb{Z}} \ \overline{\otimes} \ \mathscr{K}_{\mathbb{B}}}{\mathscr{K}_{\mathbb{S}^1 \times \mathbb{Z} \times \mathbb{B}}} \to \mathbf{C}(M_{SL} \ , \ \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}) \ ,$$

where in the first step we take $A+\mathcal{K}(\mathcal{H})\in\mathcal{E}_{\mathcal{P}}/\mathcal{K}(\mathcal{H})$ to $F^{-1}AF+\mathcal{K}(\mathcal{H})$, next to

$$WF^{-1}AFW^{-1} + \mathscr{X}_{\mathbb{S}^1 \times \mathbb{Z} \times \mathbb{B}},$$

and in the last step we use the onto *-isomorphism (see [1]):

$$\frac{\mathscr{SL} \ \overline{\otimes} \, \mathscr{K}_{\mathbb{Z}} \ \overline{\otimes} \, \mathscr{K}_{\mathbb{B}}}{\mathscr{K}_{\mathbb{S}^{1} \times \mathbb{Z} \times \mathbb{B}}} \to \mathbf{C}(M_{SL} \, , \, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}})$$

$$A \otimes K_{1} \otimes K_{2} + \mathscr{K}_{\mathbb{S}^{1} \times \mathbb{Z} \times \mathbb{B}} \mapsto \sigma_{A}^{SL}(\varphi \, , \, \pm 1)K_{1} \otimes K_{2}.$$

Defined this way, Ψ has the desired properties, by Proposition 1.5 and its proof.

2. Definition of two symbols on $\mathscr{C}_{\mathscr{P}}$. Our first task in this section is to give a precise description of the symbol space of $\mathscr{C}_{\mathscr{P}}$, i.e., the maximal-ideal space of the commutative C^* -algebra $\mathscr{C}_{\mathscr{P}}/\mathscr{C}_{\mathscr{P}}$. The symbol space of \mathscr{C} , the C^* -algebra generated by the operators listed in (1) except the periodic functions e^{ijt} , was described in [3]:

Theorem 2.1 (Theorem 2.3 of [3]). The symbol space \mathbf{M} of $\mathscr C$ can be identified with the bundle of unit spheres of the cotangent bundle of the compact manifold with boundary $[-\infty, +\infty] \times \mathbb B$, where $[-\infty, +\infty]$ denotes the compactification of $\mathbb R$ obtained by adding the points $-\infty$ and $+\infty$. The σ -symbols of the generators A_1 , A_2 , A_4 , A_5 and A_6 are given below as functions of the local coordinates $(t, x; \tau, \xi)$, where $(t, \tau) \in [-\infty, +\infty] \times \mathbb R^*$, $(x, \xi) \in T^*\mathbb B$ and $\tau^2 + h^{jk}\xi_i\xi_k = 1$:

$$\sigma_{A_1} = a(x), \quad \sigma_{A_2} = b(t), \quad \sigma_{A_4} = 0, \quad \sigma_{A_5} = \tau, \quad \sigma_{A_6} = b^j(x)\xi_j.$$

When periodic functions are adjoined to the algebra, the points over $|t| = \infty$ become circles. More precisely, we have:

Theorem 2.2. The symbol space \mathbf{M}_P of $\mathscr{C}_{\mathscr{P}}$ is homeomorphic to the closed subset of $\mathbf{M} \times \mathbb{S}^1$ described in local coordinates by

$$\{((t, x; \tau, \xi), e^{i\theta}); (t, x; \tau, \xi) \in \mathbf{M}, \theta \in \mathbb{R} \text{ and } \theta = t \text{ if } |t| < \infty\}.$$

Using this description of \mathbf{M}_P , the σ -symbols of the generators in (1) are respectively given by

$$a(x)$$
, $b(t)$, $e^{ij\theta}$, 0 , τ and $b^{j}(x)\xi_{j}$.

Proof. Let $\mathbf{P}_{2\pi}$ denote the closed algebra generated by $\{e^{ijt}; j \in \mathbb{Z}\}$, i.e., the 2π -periodic continuous functions on \mathbb{R} . Its maximalideal space is \mathbb{S}^1 , with $e^{i\theta} \in \mathbb{S}^1$ defining the multiplicative linear functional $f \to f(\theta)$.

With $\mathscr E$ denoting the commutator ideal of $\mathscr E$, the maximal-ideal space of $\mathscr E/\mathscr E$ is $\mathbf M$, as described in Theorem 2.1. By definition of the Gelfand map, a point $(t,x;\tau,\xi)$ defines the multiplicative linear functional

$$A + \mathcal{E} \to \sigma_A(t, x; \tau, \xi).$$

The following maps are canonically defined:

$$i_1 : \frac{\mathscr{C}}{\mathscr{E}} \to \frac{\mathscr{C}_{\mathscr{P}}}{\mathscr{E}_{\mathscr{P}}}$$

and

(14)
$$i_2 \colon \mathbf{P}_{2\pi} \to \frac{\mathscr{C}_{\mathscr{P}}}{\mathscr{E}_{\mathscr{Q}}}.$$

(It is obvious that $\mathscr{E} \subseteq \mathscr{E}_{\mathscr{P}}$)

Let us denote by i the product of the dual maps of i_1 and i_2 , i.e.,

(15)
$$i: \mathbf{M}_P \to \mathbf{M} \times \mathbb{S}^1, \\ w \mapsto (w \circ i_1, , w \circ i_2),$$

where w denotes a multiplicative linear functional on $\mathscr{E}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$.

As the images of i_1 and i_2 generate $\mathscr{C}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$, ι is an injective map, clearly continuous, which proves that \mathbf{M}_P is homeomorphic to a compact subset of $\mathbf{M} \times \mathbb{S}^1$. Now we proceed to investigate which points of $\mathbf{M} \times \mathbb{S}^1$ belong to the image of ι . This dual-map argument is essentially "Herman's Lemma" (cf. [4]).

As in the proof of Proposition 1.2, here again we use general results on comparison algebras. It follows from Theorem VII-1-5 of [2] that

for every point of the cosphere-bundle of Ω , $(t, x; \tau, \xi) \in S^*\Omega$, there is a multiplicative linear functional on $\mathscr{C}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$ that takes any function a, belonging to the closed algebra generated by A^{\sharp} in (6), to a(x, t) and $D\Lambda$,

$$D = \frac{1}{i} \frac{\partial}{\partial t} + \frac{1}{i} b^{j}(x) \frac{\partial}{\partial x^{j}} + q(x) \in \mathcal{D}^{\sharp},$$

to $\tau + b^j(x)\xi_j$. This multiplicative linear functional must correspond to the point

$$((t, x; \tau, \xi), e^{it}) \in \mathbf{M} \times \mathbb{S}^1,$$

with $|t| < \infty$.

Suppose now that $((t, x; \tau, \xi), e^{i\theta})$ is in the image of ι and that $|t| < \infty$. Let ω denote the corresponding multiplicative linear functional on $\mathscr{C}_{\mathscr{P}}/\mathscr{E}_{\mathscr{P}}$ and χ denote a function in $\mathbf{C}_0^\infty(\Omega)$ with $\chi(t) = 1$. It is clear that $\chi(\cdot)e^{i(\cdot)} + \mathscr{E}_{\mathscr{P}}$ belongs to the image of i_1 and thus, by (15),

$$\omega(\chi(\cdot)e^{i(\cdot)} + \mathscr{E}_{\mathscr{P}}) = e^{it}.$$

On the other hand, since $e^{i(\cdot)} + \mathcal{E}_{\mathscr{P}}$ belongs to the image of i_2 , we get:

$$\omega(\chi(\cdot)e^{i(\cdot)} + \mathscr{E}_{\mathscr{P}}) = \omega(\chi(\cdot) + \mathscr{E}_{\mathscr{P}})\omega(e^{i(\cdot)} + \mathscr{E}_{\mathscr{P}}) = e^{i\theta}.$$

We then obtain $e^{i\theta} = e^{it}$.

For $t = \pm \infty$ and any $e^{i\theta} \in \mathbb{S}^1$, let us consider the sequence $t_m = \theta \pm 2\pi m$. Since \mathbf{M}_P is closed and

$$((t_m, x; \tau, \xi), e^{it_m}) \rightarrow ((t, x; \tau, \xi), e^{i\theta})$$
 as $m \rightarrow \infty$,

we conclude that $((t, x; \tau, \xi), e^{i\theta}) \in \mathbf{M}_P$.

REMARK 2.3. We have just proved above that

$$\mathbf{W}_{P} := \{ ((t, x; \tau, \xi), e^{i\theta}) \in \mathbf{M}_{P}; |t| < \infty \}$$

is dense in M_P .

Next we define the γ -symbol.

The C*-algebra $\mathscr{C}_{\mathscr{P}}/\mathscr{K}(\mathscr{H})$ has the closed two-sided ideal $\mathscr{E}_{\mathscr{P}}/\mathscr{K}(\mathscr{H})$, which was proven to be *-isomorphic to $\mathbf{C}(M_{SL},\mathscr{K}_{\mathbb{Z}\times\mathbb{B}})$ in Theorem 1.6. Every $A\in\mathscr{C}_{\mathscr{P}}$ determines a bounded operator of $\mathscr{L}(\mathscr{E}_{\mathscr{P}}/\mathscr{K}(\mathscr{H}))$ by $E+\mathscr{K}(\mathscr{H})\to AE+\mathscr{K}(\mathscr{H})$, thus defining

$$T \colon \mathscr{C}_{\mathscr{P}} \to \mathscr{L}(\mathscr{E}_{\mathscr{P}}/\mathscr{K}(\mathscr{H})).$$

Let us define

(16)
$$\gamma \colon \mathscr{C}_{\mathscr{P}} \to \mathscr{L}(\mathbf{C}(\mathbf{M}_{SL}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}))$$
$$A \mapsto \gamma_{A} = \Psi T_{A} \Psi^{-1},$$

for Ψ defined in Theorem 1.6.

For $E \in \mathscr{E}_{\mathscr{P}}$, γ_E is the operator multiplication by $\tilde{\gamma}_E \in \mathbf{C}(\mathbf{M}_{SL}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}})$ (see Theorem 1.6). Let $\mathbf{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}})$ denote the continuous functions on \mathbf{M}_{SL} taking values in $\mathscr{L}_{\mathbb{Z} \times \mathbb{B}}$:= $\mathscr{L}(L^2(\mathbb{Z} \times \mathbb{B}))$. Identifying functions in $\mathbf{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}})$ with the corresponding multiplication operator of $\mathscr{L}(\mathbf{C}(\mathscr{M}_{SL}, \mathscr{K}_{\mathbb{Z} \times \mathbb{B}}))$, we can say then that γ is an extension of $\tilde{\gamma}$.

Proposition 2.4. There exists a *-homomorphism

$$\gamma \colon \mathscr{C}_{\mathscr{P}} \to \mathbf{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}}),$$

where

$$\mathbf{M}_{SL} = \{e^{2\pi i \varphi}; \varphi \in \mathbb{R}\} \times \{+1, -1\},$$

given on the generators (1), according to notation established in $\S 1$ and in Theorem 1.6, by:

$$\begin{split} \gamma_{A_1} &= a(x)\,; \quad \gamma_{A_2} = b(\pm \infty)\,; \\ \gamma_{A_3} &= Y_{-j}\,; \quad \gamma_{A_4} = Y_{\varphi} \widetilde{\Lambda}(\varphi - M) Y_{-\varphi}\,; \\ \gamma_{A_5} &= Y_{\varphi} K(\varphi - M) Y_{-\varphi}\,, \quad \textit{where } K(\tau) = -\tau \widetilde{\Lambda}(\tau)\,, \ \tau \in \mathbb{R} \ \textit{and} \\ \gamma_{A_6} &= Y_{\varphi} L(\varphi - M) Y_{-\varphi}\,, \quad \textit{where } L(\tau) = D_x \widetilde{\Lambda}(\tau)\,, \ \tau \in \mathbb{R}. \end{split}$$

Furthermore, γ restricted to the C^* -algebra $C^{\diamond}_{\mathscr{P}}$, generated by the operators in (1) except $b \in \mathbf{CS}(\mathbb{R})$, is an isometry.

Proof. Let us calculate γ , defined in (16), for the generators A_1, \ldots, A_6 of (1). By Proposition 1.2, it is enough to calculate the result of a left multiplication by A_p , $p=1,\ldots,6$, on operators $E\in \mathscr{E}_{\mathscr{P}}$ such that $F^{-1}EF$ are of the form $c(D)K(\tau)T_l$, $c\in \mathbf{CS}(\mathbb{R})$, $K\in \mathbf{CO}(\mathbb{R},\mathscr{K}_{\mathbb{B}})$ and $l\in \mathbb{Z}$. For such an E, we get $F^{-1}(A_pE)F$, $p=1,\ldots,6$, equal to, modulo compact operators,

$$c(D)a(x)K(\tau)T_l\,, \qquad (cb)(D)K(\tau)T_l\,, \qquad c(D)K(\tau+j)T_{j+l}\,,$$

$$c(D)\widetilde{\Lambda}(\tau)K(\tau)T_l\,, \qquad -c(D)\tau\widetilde{\Lambda}(\tau)K(\tau)T_l \quad \text{and} \quad c(D)D_x\widetilde{\Lambda}(\tau)K(\tau)T_l\,,$$
 respectively. Here we have used (3) and

$$[c(D), B_k] \in \mathcal{K}(\mathcal{H}), \qquad k = 4, 5, 6$$

(cf. [3], Proposition 1.2). By Theorem 1.6, we get:

$$\begin{split} \gamma_{A_1E}(\varphi\,,\,\pm 1) &= c(\pm \infty) Y_{\varphi} \widetilde{K}(\varphi-M) Y_{-\varphi-1} \\ &= a(x) \gamma_E(\varphi\,,\,\pm 1) \quad (\widetilde{K}=aK)\,, \\ \gamma_{A_2E}(\varphi\,,\,\pm 1) &= (cb)(\pm \infty) Y_{\varphi} K(\varphi-M) Y_{-\varphi-1} = b(\pm \infty) \gamma_E(\varphi\,,\,\pm \infty)\,, \\ \gamma_{A_3E}(\varphi\,,\,\pm 1) &= c(\pm \infty) Y_{\varphi} K(\varphi+j-M) Y_{-\varphi-j-l} = Y_j \gamma_E(\varphi\,,\,\pm 1)\,, \\ \gamma_{A_4E}(\varphi\,,\,\pm 1) &= c(\pm \infty) Y_{\varphi}(\widetilde{\Lambda}K)(\varphi-M) Y_{-\varphi-l} \\ &= Y_{\varphi} \widetilde{\Lambda}(\varphi-M) Y_{-\varphi} \gamma_E(\varphi\,,\,\pm 1) \end{split}$$

and analogously for p = 5 and 6. This proves formulas (17).

For any $A \in \mathscr{C}_{\mathscr{P}}$ such that $F^{-1}AF = J(\tau) \in \mathbf{CO}(\mathbb{R}, \mathscr{X}_{\mathbb{B}})$, it is also clear, using (5), that

$$\gamma_A(\varphi, \pm 1) = Y_{\varphi}J(\varphi - M)Y_{-\varphi}.$$

Hence, by (4), $\gamma_{A_{\kappa}^*}$ also belongs to $\mathbb{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}})$.

The norm of the operator of $\mathscr{L}(\mathbf{C}(\mathbf{M}_{SL},\mathscr{K}_{\mathbb{Z}\times\mathbb{B}}))$ given by multiplication by a function in $\mathbf{C}(\mathbf{M}_{SL},\mathscr{L}_{\mathbb{Z}\times\mathbb{B}})$ is equal to the sup-norm of this function. In other words, the C^* -algebra $\mathbf{C}(\mathbf{M}_{SL},\mathscr{L}_{\mathbb{Z}\times\mathbb{B}})$ is isometrically imbedded in $\mathscr{L}(\mathbf{C}(\mathbf{M}_{SL},\mathscr{K}_{\mathbb{Z}\times\mathbb{B}}))$. As the image of a dense subalgebra of $\mathscr{C}_{\mathbb{P}}$ is contained in $\mathbf{C}(\mathbf{M}_{SL},\mathscr{L}_{\mathbb{Z}\times\mathbb{B}})$, we conclude that γ maps $\mathscr{C}_{\mathscr{P}}$ into $\mathbf{C}(\mathbf{M}_{SL},\mathscr{L}_{\mathbb{Z}\times\mathbb{B}})$.

Using the identification

$$L^2(\mathbb{S}^1) \overline{\otimes} L^2(\mathbb{Z}) \overline{\otimes} L^2(\mathbb{B}) = L^2(\mathbb{S}^1, L^2(\mathbb{Z} \times \mathbb{B})),$$

it can be straightforwardly verified that, for $A(\tau) \in \mathbf{CB}(\mathbb{R}, \mathcal{L}_{\mathbb{B}})$, $WA(\tau)W^{-1} \in \mathbf{C}(\mathbb{S}^1, \mathcal{L}_{\mathbb{Z} \times \mathbb{B}})$ and it is given by $Y_{\varphi}A(\varphi - M)Y_{-\varphi}$. This means that for k = 1, 4, 5, 6, we have

$$\gamma_{A_k} = WF^{-1}A_kFW^{-1}$$
 and $\gamma_{A_k^*} = WF^{-1}A_k^*FW^{-1}$.

It is also clear that $WT_iW^{-1} = Y_{-i}$ and, hence,

$$\gamma_A = WF^{-1}A(WF^{-1})^{-1}$$
, for $A \in \mathscr{C}_{\mathscr{P}}^{\diamond}$,

proving that

$$\|\gamma_A\|_{\mathbf{C}(\mathbf{M}_{SI},\mathcal{L}_{T\times B})} = \|A\|_{\mathcal{L}(\mathscr{X})} \quad \text{and} \quad \gamma_{A^*} = (\gamma A)^* \quad \text{for } A \in \mathscr{C}_{\mathscr{P}}^{\diamond}.$$

This finishes the proof, since it is obvious that $\gamma_{A_2^*} = (\gamma_{A_2})^*$.

The σ -symbol and the γ -symbol, defined in Theorem 2.2 and Proposition 2.4 respectively, are related by:

Proposition 2.5. For every $A \in \mathscr{C}_{\mathscr{P}}$, $\|\sigma_A|_{\mathbf{M}_p \setminus \mathbf{W}_p}\| \leq \|\gamma_A\|$, i.e.,

$$\sup\{|\sigma_A((t, x; \tau, \xi), e^{i\theta})|; |t| = \infty\} \le \sup\{\|\gamma_A(m)\|_{\mathcal{L}_{2\times R}}; m \in \mathbf{M}_{SL}\}.$$

Proof. Since the commutators of A_2 with the other generators in (1) and their adjoints are compact (cf. [3], Proposition 1.2), the set of operators of the form

(18)
$$A = \sum_{j=1}^{N} b_j(t)A_j + K$$
,

$$b_j \in \mathbf{CS}(\mathbb{R})$$
, $A_j \in \mathscr{C}^{\diamond}_{\mathscr{D}}$, $K \in \mathscr{K}(\mathscr{H})$, $N \in \mathbb{N}$,

is dense in $\mathscr{C}_{\mathscr{P}}$. As $\sigma_K = 0$ and $\gamma_K = 0$ for $K \in \mathscr{K}(\mathscr{H})$, it suffices to assume A of the form (18) with K = 0.

For such an A, Theorem 2.2 implies:

$$\sigma_{A}((t, x; \tau, \xi), e^{i\theta}) = \sum_{j=1}^{N} b_{j}(t)\sigma_{A_{j}}((t, x; \tau, \xi), e^{i\theta}).$$

Letting A^{\pm} denote the operators $\sum_{j=1}^{N} b_j(\pm \infty) A_j$, it is clear then that

$$\sigma_A((+\infty, x; \tau, \xi), e^{i\theta}) = \sigma_{A^+}((\pm \infty, x; \tau, \xi), e^{i\theta}) \quad \text{and} \quad \sigma_A((-\infty, x; \tau, \xi), e^{i\theta}) = \sigma_A((\pm \infty, x; \tau, \xi), e^{i\theta});$$

hence:

(19)
$$\|\sigma_A|_{\mathbf{M}_p \setminus \mathbf{W}_p} \| \le \max\{ \|\sigma_{A^+}\|, \|\sigma_{A^-}\| \}.$$

The map $\sigma: \mathscr{C}_{\mathscr{P}} \to \mathbf{C}(\mathbf{M}_P)$ was defined as the composition of the Gelfand map (an isometry) with the canonical projection $\mathscr{C}_{\mathscr{P}} \to \mathscr{C}_{\mathscr{P}}/\mathscr{K}(\mathscr{H})$. It then follows that

$$\|\sigma_{A^{\pm}}\| \leq \|A^{\pm}\|.$$

As $A^{\pm} \in \mathscr{C}_{\mathscr{P}}^{\diamond}$, where γ is an isometry,

(20)
$$\|\sigma_{A^{\pm}}\|_{\mathbf{C}(\mathbf{M}_{P})} \leq \|\gamma_{A^{\pm}}\|_{\mathbf{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{Z} \times \mathbb{B}})}.$$

By Proposition 2.4,

$$\gamma_A(\varphi, +1) = \sum_{j=1}^N b_j(+\infty)\gamma_{A_j}(\varphi, +1) = \gamma_{A^+}(\varphi, +1)$$

and

$$\gamma_A(\varphi, -1) = \gamma_{A^-}(\varphi, -1).$$

Furthermore, for any $A \in \mathscr{C}_{\mathscr{P}}^{\diamond}$, it is clear from (17) that $\gamma_A(\varphi, +1) = \gamma_A(\varphi, -1)$ and, therefore,

(21)
$$\|\gamma_A\| = \max\{\|\gamma_{A^+}\|, \|\gamma_{A^-}\|\}$$

We are finished by (19), (20) and (21).

If $\gamma_A = 0$, then, $\sigma_A|_{\mathbf{M}_p \setminus \mathbf{W}_p} = 0$. The converse is also true:

PROPOSITION 2.6. An operator $A \in \mathscr{C}_{\mathscr{P}}$ belongs to the kernel of γ if and only if σ_A vanishes on $\mathbf{M}_P \backslash \mathbf{W}_P$. Furthermore, we have:

(22)
$$\ker \gamma \cap \ker \sigma = \mathcal{K}(\mathcal{H}).$$

Proof. Let \mathscr{T}_0 denote the C^* -algebra generated by multiplications by functions in $\mathbf{C}_0^\infty(\Omega)$ and by the operators of the form $D\Lambda$, where D is a first order linear differential operator on Ω with smooth coefficients of compact support. Given A_0 , one of these generators just described, we can find $\chi \in \mathbf{C}_0^\infty(\mathbb{R})$ such that $\chi A_0 = A_0$ and then $\gamma_{A_0} = \gamma_\chi \gamma_{A_0} = 0$, by Proposition 2.4. So, we have $\mathscr{T}_0 \subseteq \ker \gamma$.

Using the nomenclature of [2], \mathcal{T}_0 is the minimal comparison algebra associated with the triple $\{\Omega, dS, H\}$. It can be easily concluded from [2], Lemma VII-1-2, that $A \in \mathcal{C}_{\mathscr{P}}$ belongs to \mathcal{T}_0 if and only if σ_A vanishes on $\mathbf{M}_P \backslash \mathbf{W}_P$, proving that $\mathcal{T}_0 \subseteq \ker \gamma$, by Proposition 2.5.

Since $\ker \sigma = \mathcal{E}_{\mathcal{P}}$ and $\ker \gamma = \mathcal{T}_0$, the equality in (22) follows from [2], Theorem VII-1-3.

3. A Fredholm criterion and an application to differential operators. We will now give a necessary and sufficient criterion for an $N \times N$ -matrix whose entries are operators in $\mathscr{C}_{\mathscr{P}}$, regarded as a bounded operator on $L^2(\Omega, \mathbb{C}^N)$, $N \ge 1$, to be Fredholm. Let us denote $L^2(\Omega, \mathbb{C}^N)$ by \mathscr{H}^N and by $\mathscr{C}^N_{\mathscr{P}}$ the C^* -subalgebra of $\mathscr{L}(\mathscr{H}^N)$

$$\mathscr{C}^{N}_{\mathscr{P}} := \{ ((A_{jk})); A_{jk} \in \mathscr{C}_{\mathscr{P}}, 1 \leq j, k \leq N \}.$$

It is easy to see that the compact ideal of $\mathcal{L}(\mathcal{H}^N)$ coincides with the matrices with entries in $\mathcal{K}(\mathcal{H})$, i.e.,

$$\mathcal{K}(\mathcal{H}^N) = \mathcal{K}^N := \{((K_{jk})); K_{jk} \in \mathcal{K}(\mathcal{H}), 1 \le j, k \le N\}.$$

Let us define two symbols on $\mathscr{C}_{\mathscr{P}}^{N}$:

$$\sigma_A^N = ((\sigma_{A_{jk}}))_{1 \le j, k \le N}$$
 and $\gamma_A^N = ((\gamma_{A_{jk}}))_{1 \le j, k \le N}$,

where $A = ((A_{jk}))_{1 \le j, k \le N} \in \mathscr{C}^N_{\mathscr{P}}$. The following proposition follows immediately from the definitions above and Proposition 2.6.

PROPOSITION 3.1. The γ^N -symbol of an operator $A \in \mathscr{C}_{\mathscr{P}}^N$ is identically zero if and only if its σ^N -symbol vanishes on $\mathbf{M}_P \backslash \mathbf{W}_P$. Furthermore, we have:

(23)
$$\ker \sigma^N \cap \ker \gamma^N = \mathcal{K}^N.$$

THEOREM 3.2. For an operator $A = ((A_{jk}))_{1 \leq j, k \leq N} \in \mathscr{C}_{\mathscr{P}}^{N}$ to be Fredholm, it is necessary and sufficient that:

- (i) σ_A^N be invertible, i.e., the $N \times N$ -matrix $((\sigma_{A_{jk}}(m)))$ be invertible for all $m \in \mathbf{M}_P$, and
- (ii) γ_A^N be invertible, i.e., the $N \times N$ -matrix, with entries in $\mathbf{C}(\mathbf{M}_{SL}, \mathcal{L}_{\mathbb{Z} \times \mathbb{B}})$, $((\gamma_{A_{jk}}(m)))$ be invertible for all $m \in \mathbf{M}_{SL}$.

Proof. Suppose that A is Fredholm and let B be such that 1-AB and 1-BA are compact. We have $B\in\mathscr{C}^N_\mathscr{P}$, since $\mathscr{C}^N_\mathscr{P}/\mathscr{K}^N$ is a C^* -subalgebra of $\mathscr{L}(\mathscr{K}^N)/\mathscr{K}^N$. We then get

$$\sigma^N_{1-AB}=\sigma^N_{1-BA}=0\quad\text{and}\quad \gamma^N_{1-AB}=\gamma^N_{1-BA}=0$$

and, hence,

$$1 = \sigma_A^N \sigma_R^N = \sigma_R^N \sigma_A^N$$
 and $1 = \gamma_A^N \gamma_R^N = \gamma_R^N \gamma_A^N$.

Conversely, suppose that (i) and (ii) above are satisfied. Since $\gamma^N\colon \mathscr{C}_{\mathscr{P}}^N\to \mathbf{C}(\mathbf{M}_{SL}\,,\,N\times N\text{-matrices}$ with entries in $\mathscr{L}(L^2(\mathbb{Z})\overline{\otimes}L^2(\mathbb{B})))$ is a *-homomorphism (by Proposition 2.4), its range is a C^* -algebra. There must be then a $B\in \mathscr{C}_{\mathscr{P}}^N$ such that $\gamma_B^N=(\gamma_A^N)^{-1}$. Since $1-AB\in\ker\gamma^N$, $1-\sigma_A^N\sigma_B^N$ vanishes on $\mathbf{M}_P\backslash\mathbf{W}_P$, by Proposition 3.1. As the map σ is surjective, so is σ^N . An operator $Q\in\mathscr{C}_{\mathscr{P}}^N$ can therefore be found such that its symbol σ_Q^N equals the continuous function vanishing on $\mathbf{M}_P\backslash\mathbf{W}_P$

$$(\sigma_A^N)^{-1} - \sigma_B^N$$
.

By Proposition 3.1 again, $Q \in \ker \gamma^N$ and, then,

$$\gamma_{1-A(B+Q)}^{N} = \gamma_{1-(B+Q)A}^{N} = 0.$$

Since we also have

$$\sigma^{N}_{1-A(B+Q)} = 1 - \sigma^{N}_{A}\sigma^{N}_{B} - \sigma^{N}_{A}\sigma^{N}_{Q} = 0 = \sigma^{N}_{1-(B+Q)A}$$
,

the operator B+Q is an inverse for A, modulo a compact operator, by equation (23).

In order to apply this result to differential operators, it is convenient to conjugate the γ -symbol with the discrete Fourier transform. We define:

(24)
$$\Gamma \colon \mathscr{C}_{\mathscr{P}} \to \mathbf{C}(\mathbf{M}_{SL}, \mathscr{L}_{\mathbb{S}^1 \times \mathbb{B}})$$

$$A \mapsto \Gamma_A(m) = F_d^{-1} \gamma_A(m) F_d, \qquad m \in \mathbf{M}_{SL},$$

where $F_d: L^2(\mathbb{S}^1) \to L^2(\mathbb{Z})$, $\mathbb{S}^1 = \{e^{i\theta}; \theta \in \mathbb{R}\}$, was defined in (7), and, as usual, F_d also denotes $F_d \otimes I_{\mathbb{B}}$.

Next we calculate Γ_A for the generators of $\mathscr{C}_{\mathscr{P}}$. It is obvious that, for $a \in \mathbb{C}^{\infty}(\mathbb{B})$,

(25)
$$\Gamma_a(\varphi, \pm 1) = a, \qquad (e^{2\pi i \varphi}, \pm 1) \in \mathbf{M}_{SL},$$

and, for $b \in \mathbf{CS}(\mathbb{R})$,

(26)
$$\Gamma_b(\varphi, \pm 1) = b(\pm \infty)$$
, independent of φ .

For $j \in \mathbb{Z}$, $F_d^{-1} Y_{-j} F_d$ equals the operator multiplication by $e^{ij\theta}$ on $\mathbb{S}^1 = \{e^{i\theta}, \theta \in \mathbb{R}\}$, and then, by (24) and (17),

(27)
$$\Gamma_{e^{\pm ijt}}(\varphi, \pm 1) = e^{ij\theta}, \text{ for all } (e^{2\pi i\varphi}, \pm 1) \in \mathbf{M}_{SL}.$$

Let $a \in \mathbf{C}(\Omega)$ be of the form

(28)
$$a(t, x) = a_{+}(t, x)\chi_{+}(t, x) + a_{-}(t, x)\chi_{-}(t, x) + a_{0}(t, x),$$

where a_{\pm} are continuous and 2π -periodic in t, $a_0 \in \mathbf{CO}(\Omega)$ and $\chi_{\pm} \in \mathbf{CS}(\mathbb{R})$ satisfy $\chi_{\pm}(\pm \infty) = 1$, $\chi_{+} + \chi_{-} = 1$. By the continuity of Γ , (25), (26) and (27), it follows that

(29)
$$\Gamma_a(\varphi, \pm 1) = a_{\pm}(\theta, x), \quad \text{for } (e^{2\pi i \varphi}, \pm 1) \in \mathbf{M}_{SL}.$$

Note that (28) gives Γ_{A_1} , Γ_{A_2} and Γ_{A_3} , for A_p as defined on page 283.

Now we calculate $F_d^{-1}K(\varphi-M)F_d$, for $\varphi\in\mathbb{R}$ and $K(\tau)=\widetilde{\Lambda}(\tau)$, $-\tau\widetilde{\Lambda}(\tau)$ or $D_x\widetilde{\Lambda}(\tau)$, which is needed for obtaining Γ_{A_p} , p=4, 5, 6. Let us use again that $-\Delta_{\mathbb{B}}$ has an orthonormal basis of eigenfunctions w_m , $m\in\mathbb{N}$, with eigenvalues $0\leq \lambda_1\leq \lambda_2\leq \cdots$, $\lambda_m\to\infty$ as $m\to\infty$, and define the unitary map

$$U: L^2(\mathbb{B}) \to L^2(\mathbb{N}),$$

 $u \mapsto (w_m, u)_{m \in \mathbb{N}}.$

By the spectral theorem, the conjugate $U(1+(\varphi-j)^2-\Delta_{\mathbb{B}})^{-1/2}U^{-1}$ equals the operator multiplication by $(1+(\varphi-j)^2+\lambda_m)^{-1/2}$ on $L^2(\mathbb{N})$,

for each $j\in\mathbb{Z}$, $\,\varphi\in\mathbb{R}$. The operator $\,\widetilde{\Lambda}(\varphi-M)\in\mathscr{L}_{\mathbb{Z} imes\mathbb{B}}\,$ acts on

$$\mathbf{u} = (u_i)_{i \in \mathbb{Z}} \in L^2(\mathbb{Z}; L^2(\mathbb{B}))$$

by

$$\widetilde{\Lambda}(\varphi - M)\mathbf{u} = ((1 + (\varphi - j)^2 + \Delta_{\mathbb{B}})^{-1/2}u_j)_{j \in \mathbb{Z}}$$

and, thus,

$$(30) (I_{\mathbb{Z}} \otimes U) \widetilde{\Lambda} (\varphi - M) (I_{\mathbb{Z}} \otimes U)^{-1} = (1 + (\varphi - j)^2 + \lambda_m)^{-1/2},$$

where, by $(1 + (\varphi - j)^2 + \lambda_m)^{-1/2}$, we now mean the corresponding multiplication operator on $L^2(\mathbb{Z})\overline{\otimes}L^2(\mathbb{N})$.

Let us adopt the notation:

$$(31) 1 + (\varphi - D_{\theta})^2 - \Delta_{\mathbb{B}} := (F_d \otimes U)^{-1} (1 + (\varphi - j)^2 + \lambda_m) (F_d \otimes U).$$

It is easy to see that $1 + (\varphi - D_{\theta})^2 - \Delta_{\mathbb{B}}$ is the unique self-adjoint realization of the differential expression $1 + (\varphi + i\frac{\partial}{\partial \theta})^2 - \Delta_{\mathbb{B}}$ on $\mathbb{S}^1 \times \mathbb{B}$ (see Lemma 3.3). By (30) and (31) then, we obtain:

$$(32) (F_d \otimes I_{\mathbb{B}})^{-1} \widetilde{\Lambda}(\varphi - M)(F_d \otimes I_{\mathbb{B}}) = (1 + (\varphi - D_{\theta})^2 - \Delta_{\mathbb{B}})^{-1/2},$$

for every $\varphi\in\mathbb{R}$. Using that $Y_{\varphi}=F_d^{-1}e^{-i\varphi\theta}F_d$, $\varphi\in\mathbb{R}$ and (17), it follows that:

(33)
$$\Gamma_{\Lambda}(\varphi, \pm 1) = e^{-i\varphi\theta} (1 + (D_{\theta} - \varphi)^2 - \Delta_{\mathbb{B}})^{-1/2} e^{i\varphi\theta},$$
$$(e^{2\pi i\varphi}, \pm 1) \in \mathbf{M}_{SL}.$$

Since, for each $j \in \mathbb{Z}$ and each $\varphi \in \mathbb{R}$,

$$U(\varphi - j)(1 + (\varphi - j)^2 - \Delta_{\mathbb{B}})^{-1/2}U^{-1}$$

equals the operator multiplication by

$$(\varphi - i)(1 + (\varphi - i)^2 + \lambda_m)^{-1/2}$$

on $L^2(\mathbb{N})$, we obtain, in a way analogous to how (33) was obtained:

(34)
$$\Gamma_{A_4}(\varphi, \pm 1) = e^{-i\varphi\theta} (D_{\theta} - \varphi) (1 + (D_{\theta} - \varphi)^2 - \Delta_{\mathbb{B}})^{-1/2} e^{i\varphi\theta},$$
$$(e^{2\pi i\varphi}, \pm 1) \in \mathbf{M}_{SL}.$$

Here we have assumed the notation:

$$(\varphi - D_{\theta})(1 + (\varphi - D_{\theta})^{2} - \Delta_{\mathbb{B}})^{-1/2}$$

:= $(F_{d} \otimes U)^{-1}(\varphi - j)(1 + (\varphi - j)^{2} + \lambda_{m})^{-1/2}(F_{d} \otimes U).$

For the last type of generator, we need the following lemma.

LEMMA 3.3. The subspace

$$\{u\in L^2(\mathbb{S}^1\times\mathbb{B})\,;\,(1+(\varphi-D_\theta)^2-\Delta_\mathbb{B})^{-1/2}u\in\mathbb{C}^\infty(\mathbb{S}^1\times\mathbb{B})\}$$

is dense in $L^2(\mathbb{S}^1 \times \mathbb{B})$, for every $\varphi \in \mathbb{R}$.

Proof. The statement is true for $\varphi = 0$, since

$$1 + D_{\theta}^2 - \Delta_{\mathbb{B}} = 1 - \Delta_{\mathbb{S}^1 \times \mathbb{B}}$$

is essentially self-adjoint on $\mathbb{C}^{\infty}(\mathbb{S}^1 \times \mathbb{B})$, by [2], Theorem IV-1-8, for example. For $\varphi \in \mathbb{R}$,

$$(1+(\varphi-D_{\theta})^2-\Delta_{\mathbb{B}})^{-1/2}(1+D_{\theta}^2-\Delta_{\mathbb{B}})^{1/2}$$

is a Banach-space isomorphism, since it is unitarily equivalent to the multiplication by the function on $\mathbb{Z} \times \mathbb{N}$

$$(1+(\varphi-j)^2+\lambda_m)^{-1/2}(1+j^2+\lambda_m)^{-1/2}$$

which is bounded and bounded away from zero.

For every $v \in \mathbb{C}^{\infty}(\mathbb{S}^1 \times \mathbb{B})$, it is clear that

$$D_{X}F_{d}v=F_{d}D_{X}v,$$

where, on the right-hand side, D_x is regarded as a differential expression on $\mathbb{S}^1 \times \mathbb{B}$ and, on the left-hand side, D_x acts, as a differential operator on \mathbb{B} , on each component $w_i \in \mathbb{C}^{\infty}(\mathbb{B})$ of

$$w=(w_j)_{j\in\mathbb{Z}}=F_dv\in L^2(\mathbb{Z}\,;\,L^2(\mathbb{B})).$$

By Lemma 3.3, it therefore follows that

(35)
$$F_{d}[D_{x}(1+(\varphi-D_{\theta})^{2}-\Delta_{\mathbb{B}})^{-1/2}]F_{d}^{-1} = D_{x}[F_{d}(1+(\varphi-D_{\theta})^{2}-\Delta_{\mathbb{B}})^{-1/2}F_{d}^{-1}].$$

The right-hand side of (35) equals $D_z \widetilde{\Lambda}(\varphi - M)$, by (32). We have, hence:

(36)
$$\Gamma_{A_6}(\varphi, \pm 1) = e^{-i\varphi\theta} [D_x (1 + (\varphi - D_\theta)^2 - \Delta_\mathbb{B})^{-1/2}] e^{i\varphi\theta}$$
. Equations (29), (31), (32), (33), (34) and (36) prove:

PROPOSITION 3.4. The map Γ defined in (24) is given on the generators of $\mathscr{C}_{\mathscr{P}}$ (with $m=(e^{2\pi i \varphi},\pm 1)\in \mathbf{M}_{SL}$ and $\Gamma_A(\varphi,\pm 1)\in \mathscr{L}_{\mathbb{S}^1\times\mathbb{B}}$, $\mathbb{S}^1=\{e^{i\theta}\,;\,\theta\in\mathbb{R}\}$) by:

$$\begin{split} &\Gamma_{a}(\varphi\,,\,\pm 1)=a_{\pm}(\theta\,,\,x)\,,\quad \textit{for a as in } (28) \\ &\Gamma_{\Lambda}(\varphi\,,\,\pm 1)=e^{-i\varphi\theta}(1+(D_{\theta}-\varphi)^{2}-\Delta_{\mathbb{B}})^{-1/2}e^{i\varphi\theta} \\ &\Gamma_{-i\frac{\partial}{\partial t}\Lambda}(\varphi\,,\,\pm 1)=e^{-i\varphi\theta}(D_{\theta}-\varphi)(1+(D_{\theta}-\varphi)^{2}-\Delta_{\mathbb{B}})^{-1/2}e^{i\varphi\theta} \\ &\Gamma_{D_{x}\Lambda}(\varphi\,,\,\pm 1)=e^{-i\varphi\theta}D_{x}(1+(D_{\theta}-\varphi)^{2}-\Delta_{\mathbb{B}})^{-1/2}e^{i\varphi\theta}. \end{split}$$

REMARK 3.5. Because of the way Γ was defined, it is obvious that condition (ii) of Theorem 3.2 can be replaced by

(ii') The matrix $\Gamma^N_A(m):=((\Gamma_{A_{jk}}(m)))_{1\leq j\,,\,k\leq N}$ is invertible for all $m\in \mathbf{M}_{SL}$.

Our next and final objective is to find necessary and sufficient conditions for a differential operator with semi-periodic coefficients on Ω to be Fredholm. Most of the ideas and proofs in what follows are borrowed from [2], §§VII.3 and IX.3, where the more general problem of finding differential expressions within reach of a Comparison Algebra is addressed.

Proposition 3.6. Let L be an Mth order differential expression on \mathbb{B} , with smooth coefficients. The operator $L\Lambda^M$, defined initially on the dense subspace $\Lambda^{-M}(\mathbf{C}_0^\infty(\Omega))$, can be extended to a bounded operator A in $\mathcal{L}(\mathcal{H})$. Moreover, we have that $A \in \mathscr{C}_{\mathscr{P}}$, σ_A coincides with the principal symbol of L on \mathbf{W}_P (points of \mathbf{M}_P over $|t| < \infty$) and

$$\Gamma_A(\varphi, \pm 1) = e^{-i\varphi\theta}L(1+(D_\theta-\varphi)^2-\Delta_\mathbb{B})^{-1/2}e^{i\varphi\theta},$$

$$(e^{2\pi i\varphi}, \pm 1) \in \mathbf{M}_{SL}.$$

Proof. It is easy to see that any Mth order differential expression on a compact manifold equals a sum of products of at most M first-order differential expressions. (See, for example, the proof of Proposition VI-3-1 of [2].) It is therefore enough to consider L of the form

$$L=D_1D_2\cdots D_M,$$

where D_j , $j=1,\ldots,M$, are first order expressions. For M=1, the proposition is true by Theorem 2.2 and Proposition 3.4.

Using that $\Lambda^2 = H^{-1}$, $H = 1 - \Delta_{\mathbb{R}} - \Delta_{\mathbb{B}}$, it is easy to see that, for $u \in \Lambda^{-2}(\mathbb{C}_0^{\infty}(\Omega))$, and D_1 and D_2 first order expressions, we have:

(37)
$$D_1 D_2 \Lambda^2 u = D_1 \Lambda^2 D_2 u + D_1 \Lambda^2 [H, D_2] \Lambda^2 u.$$

The commutator $[H, D_2]$ is a second order expression on \mathbb{B} and can therefore be expressed as a sum of products of at most two first order differential expressions:

$$[H, D_2] = \sum_{j=1}^p F_j G_j.$$

This shows that, on the dense subspace $\Lambda^{-2}(C_0^\infty(\Omega))$, $D_1D_2\Lambda^2$ equals the operator

$$(D_1\Lambda)(D_2^*\Lambda)^* + (D_1\Lambda)\sum_{j=1}^p (F_j^*\Lambda)^* (G_j\Lambda)\Lambda \in \mathscr{C}_\mathscr{P},$$

where D^* denotes the formal adjoint of a differential expression D. Since $\sigma_{\Lambda} = 0$, we get:

$$\sigma_{D_1D_2\Lambda^2}=\sigma_{D_1\Lambda}\sigma_{D_2^*\Lambda},$$

which, restricted to W_P , coincides with the principal symbol of D_1 , D_2 , by Theorem 2.2. It also follows that:

$$\Gamma_{D_1D_2\Lambda^2} = \Gamma_{D_1\Lambda}\Gamma_{D_2^*\Lambda}^* + \Gamma_{D_1\Lambda}\sum_{j=1}^p \Gamma_{F_j^*\Lambda}^* \Gamma_{G_j\Lambda}\Gamma_{\Lambda}.$$

By Proposition 3.4, we get:

$$\begin{split} e^{i\varphi\theta}\Gamma_{D_1D_2\Lambda^2}(\varphi\,,\,\pm 1)e^{-i\varphi\theta} \\ &= (D_1\Lambda_\varphi)(D_2^*\Lambda_\varphi)^* + D_1\Lambda_\varphi \sum_{j=1}^p (F_j^*\Lambda_\varphi)^*(G_j\Lambda_\varphi)\Lambda_\varphi \\ &= D_1\Lambda_\varphi^2D_2 + D_1\Lambda_\varphi^2 \sum_{j=1}^p F_jG_j\Lambda_\varphi^2\,, \end{split}$$

where $\Lambda_{\varphi} = H_{\varphi}^{-1/2}$, $H_{\varphi} = 1 + (D_{\theta} - \varphi)^2 - \Delta_{\mathbb{B}}$. Since $[H, D_2]$ and $[H_{\varphi}, D_2]$ are equal (as expressions on \mathbb{B}), we get:

$$e^{i\varphi\theta}\Gamma_{D_1D_2\Lambda^2}(\varphi\,,\,\pm 1)e^{-i\varphi\theta} = D_1\Lambda_{\varphi}^2D_2 + D_1\Lambda_{\varphi}^2[H_{\varphi}\,,\,D_2]\Lambda_{\varphi}^2 = D_1D_2\Lambda_{\varphi}^2$$

proving the proposition for $L = D_1D_2$.

Suppose now that the proposition is true for sums of products of at most M first order differential expressions and let $L = D_1 D_2 \cdots D_{M+1}$ be a product of first order expressions. Define: $F = D_1 D_2$ and $G = D_3 \cdots D_{M+1}$. Using the formula

$$\begin{split} L\Lambda^{M+1}u &= F\Lambda^2G\Lambda^{M-1}u + F\Lambda^2[H,\,G]\Lambda^{M+1}u\,,\\ u &\in \Lambda^{-M-1}(\mathbf{C}_0^\infty(\Omega))\,, \end{split}$$

the proposition follows for this L, by the same argument as above. \Box

Let $\{U_{\beta}\}$ be a finite atlas on \mathbb{B} and $\{\varphi_{\beta}\}$ a subordinate partition of unity, i.e. support $\varphi_{\beta} \subset U_{\beta}$. Let L be a differential operator on Ω , acting on \mathbb{C}^N -valued functions, locally given on U_{β} by

(38)
$$L = \sum_{j=0}^{\widetilde{M}} \sum_{|\alpha| \leq M, A_{\beta,j,\alpha}(t,x)} \left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha} \left(\frac{1}{i} \frac{\partial}{\partial t}\right)^{j},$$

where

$$\left(\frac{1}{i}\frac{\partial}{\partial x}\right)^{\alpha} := \left(-i\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(-i\frac{\partial}{\partial x_n}\right)^{\alpha_n}, \quad \text{for } \alpha \in \mathbb{N}^n$$

and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We will say that L has semi-periodic coefficients if the matrices

$$\widetilde{A}_{\beta,j,\alpha}(t,x) := \varphi_{\beta}(x)A_{\beta,j,\alpha}(t,x),$$

regarded as functions on Ω , have as entries functions of the type (28). It is easy to see that this definition is independent of the choice of atlas on \mathbb{B} . We want to decide when

$$L: H^M(\Omega, \mathbb{C}^N) \to L^2(\Omega, \mathbb{C}^N)$$

is a Fredholm operator, assuming that L has semi-periodic coefficients. Here M denotes the order of L, $M = \max\{M_j + j, j = 1, \ldots, \widetilde{M}\}$.

We also denote by Λ the operator $\Lambda \otimes I_N$ on $\mathcal{L}(L^2(\Omega, \mathbb{C}^N))$, where I_N denotes the $N \times N$ identity matrix. Since Λ commutes with $\frac{\partial}{\partial I}$ and $L = \sum L_\beta$, for $L_\beta := \varphi_\beta L$, we get:

$$L\Lambda^{M} = \sum_{\beta, i, \alpha} (t, x) \left(\frac{1}{i} \frac{\partial}{\partial x} \right)^{\alpha} \Lambda^{|\alpha|} \left(\frac{1}{i} \frac{\partial}{\partial t} \right)^{j} \Lambda^{j} \Lambda^{M - |\alpha| - j}.$$

After multiplying $(\frac{1}{i}\frac{\partial}{\partial x})^{\alpha}$ above by $\chi_{\beta,j,\alpha}\in C_0^{\infty}(U_{\beta})$, $\chi_{\beta,j,\alpha}(x)=1$ for x in the support of $\widetilde{A}_{\beta,j,\alpha}$, we still get the same operator and $\chi_{\beta,j,\alpha}(x)(\frac{1}{i}\frac{\partial}{\partial x})^{\alpha}$ is now a differential expression defined on \mathbb{B} . We can therefore apply Proposition 3.6 and conclude that $L\Lambda^M\in\mathscr{C}^N_{\mathscr{P}}$. Using, moreover, that $\sigma_{\Lambda^{M-|\alpha|-j}}=0$ for $|\alpha|+j< M$, we get:

$$\sigma_{L\Lambda^{M}}(t, x; \tau, \xi) = \sum_{\beta} \sum_{|\alpha|+j=M} \widetilde{A}_{\beta, j, \alpha}(t, x) \xi^{\alpha} \tau^{j}, \qquad |t| < \infty.$$

The right-hand side of the previous equation coincides with the principal symbol of L restricted to the co-sphere bundle of Ω . Invertibility

of the σ -symbol is therefore equivalent to uniform ellipticity of L, by Remark 2.3.

The operator-valued symbol $\Gamma_{L\Lambda^M}$ is also given by Proposition 3.6 (and Proposition 3.4):

$$\begin{split} e^{-i\varphi\theta}\Gamma_{L\Lambda^{M}}(\varphi\,,\,\pm 1)e^{i\varphi\theta} \\ &= \sum_{\beta\,,\,i\,,\,\alpha} \widetilde{A}^{\pm}_{\beta\,,\,j\,,\,\alpha}(\theta\,,\,x) \left(\frac{1}{i}\frac{\partial}{\partial x}\right)^{\alpha} \left(\frac{1}{i}\frac{\partial}{\partial \theta} - \varphi\right)^{j} \Lambda^{M}_{\varphi}\,, \end{split}$$

where we have used that Λ_{φ} and $\frac{\partial}{\partial \theta}$ commute. We have denoted by $\widetilde{A}_{\beta,j,\alpha}^{\pm}$ the 2π -periodic continuous functions such that

$$\widetilde{A}_{\beta,j,\alpha}(t,x) - \chi_{+}(t)\widetilde{A}_{\beta,j,\alpha}^{+}(t,x) - \chi_{-}(t)\widetilde{A}_{\beta,j,\alpha}^{-}(t,x) \in \mathbf{CO}(\Omega).$$

(See (28).)

Let $L_{eta}^{\pm}(arphi)$ denote the differential expressions on $\mathbb{S}^1 imes \mathbb{B}$

$$L_{\beta}^{\pm}(\varphi) := \sum_{j=0}^{\widetilde{M}} \sum_{|\alpha| \leq M_{j}} + \widetilde{A}_{\beta,j,\alpha}^{\pm}(\theta, x) \left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{\alpha} \left(\frac{1}{i} \frac{\partial}{\partial \theta} - \varphi\right)^{j},$$

and define the operator

$$(39) \qquad L^{\pm}(\varphi) := \sum_{\beta} L_{\beta}^{\pm}(\varphi) \colon H^{M}(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}) \to L^{2}(\mathbb{S}^{1} \times \mathbb{B}, \mathbb{C}^{N}).$$

Since Λ_{φ} is an isomorphism from

$$L^2(\mathbb{S}^1 \times \mathbb{B}, \mathbb{C}^N)$$
 onto $H^M(\mathbb{S}^1 \times \mathbb{B}, \mathbb{C}^N)$,

the above considerations, together with Theorem 3.2 and Remark 3.5 prove the following theorem.

Theorem 3.7. Let L denote an Mth order differential operator on Ω of the form (38), with continuous semi-periodic coefficients, and let $L^{\pm}(\varphi)$ denote the differential operators on $S^1 \times \mathbb{B}$ defined in (39). Then

$$L: H^M(\Omega, \mathbb{C}^N) \to L^2(\Omega, \mathbb{C}^N)$$

is Fredholm if and only if L is uniformly elliptic and $L^{\pm}(\varphi)$ are invertible for all $\varphi \in [0, 1]$.

REFERENCES

- [1] M. Breuer and H. O. Cordes, On Banach algebras with σ-symbol, part 2, J. Math. Mech., 14 (1965), 299-314.
- [2] H. O. Cordes, Spectral theory of linear differential operators and comparison algebras, London Math. Soc. Lecture Notes Vol. 76, Cambridge University Press 1987.
- [3] ____, On the two-fold symbol chain of a C*-algebra of singular integral operators on a polycylinder, Revista Mat. Iberoamericana, 2 (1986), 215–234.
- [4] _____, Elliptic pseudo-differential operators, an abstract theory, Springer Lecture Notes in Math., Vol. 756, Berlin, Heildelberg, New York 1979.
- [5] H. O. Cordes and S. T. Melo, An algebra of singular integral operators with kernels of bounded oscillation, and application to periodic differential operators, J. Differential Equations, 75 (1988), 216–278.
- [6] R. Lockhart and R. McOwen, *Elliptic differential operators on noncompact manifolds*, Annali della Scuola Normale Superiore di Pisa, IV-XII (1985), 409–447.
- [7] S. T. Melo, Comparison Algebras with Periodic Symbols, Thesis, Berkeley 1988.
- [8] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geometry, 25 (1987), 363-430.

Received September 26, 1988. This work is part of my thesis at Berkeley, under the advise of Professor H. O. Cordes, to whom I wish to express my deepest thanks. I was supported by the Brazilian Government, through CAPES and UFPE.

Universidade Fed. de Pernambuco 50739 Recife Pe, Brazil