L-HARMONIC FUNCTIONS
 AND THE EXPONENTIAL SQUARE CLASS

Caroline Sweezy

It is proved for a restricted class of second order linear differential operators L if $L u=0$ in $\mathbf{R}_{+}^{d+1},\left.u\right|_{\mathbf{R}^{d}}=f$ then if the Lusin area integral of $u, S u \in L^{\infty}, f$ is in the exponential square class. This extends the work of Chang, Wilson and Wolff who proved the same result for harmonic u [3].

1. Introduction. Let

$$
L=\sum_{i, j=1}^{d+1} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)
$$

be a second order differential operator in divergence form whose coefficients $a_{i j}$ are bounded and measurable functions on $\mathbf{R}_{+}^{d+1}, a_{i j}=a_{j i}$. L is strictly elliptic, i.e., $\exists \lambda>0$ such that

$$
\frac{1}{\lambda}|\xi|^{2} \leq \sum_{i, j=1}^{d+1} \xi_{i} a_{i j} \xi_{j} \leq \lambda|\xi|^{2}
$$

Then if u is a function where $L u=0$ in $\mathbf{R}_{+}^{d+1},\left.u\right|_{\mathbf{R}^{d}}=f, u$ is said to be the L-harmonic extension of f. (Note: In what follows the summation convention will be used. Sums are $i, j=1,2, \ldots, d+1$ unless otherwise indicated.)

As in the case $L=\Delta=$ the Laplacian there is a measure associated with L, called L-harmonic measure, written $d \omega$.

There has been a considerable body of work in the last 30 years on the extension of results for harmonic functions to L-harmonic functions. The purpose of this paper is to extend a recent result of Chang, Wilson, Wolff, to the L-harmonic case.

Let u be a harmonic (or L-harmonic) function; let

$$
\Gamma_{\alpha}(x)=\left\{(y, t) \in \mathbf{R}_{+}^{d+1}| | x-y \mid<\alpha t\right\}
$$

be the cone in \mathbf{R}_{+}^{d+1} over $x \in \mathbf{R}^{d}$ of aperture α;

$$
u^{*}(x)=\sup _{(y, t) \in \Gamma_{\alpha}(x)}|u(y, t)|
$$

be the non-tangential maximal function of f;

$$
S_{\alpha} f(x)=\left(\int_{\Gamma_{a}(x)}|\nabla u(y, t)|^{2} t^{1-d} d y d t\right)^{1 / 2}
$$

be the Lusin area integral of f.
In 1971 Burkholder and Gundy proved for harmonic u and $0<$ $p<\infty$

$$
\left\|u^{*}\right\|_{p} \sim\|S u\|_{p} . \quad[\mathbf{1}]
$$

If $p=\infty$, the correspondence is false so the question arose if $S u \in L^{\infty}$ was there some class that f was in? Recently Chang, Wilson and Wolff proved the following result. Let $f_{Q}=\frac{1}{|Q|} \int_{Q} f(y) d y$. Then

Theorem 3.2 [3]. Suppose $S_{\gamma} f \in L^{\infty}$. Then

$$
\sup _{Q: \text { cube }} \frac{1}{|Q|} \int_{Q} \exp \left[c_{1} \frac{\left|f-f_{Q}\right|^{2}}{\left\|S_{\gamma} f\right\|_{\infty}^{2}}\right]<c_{2}
$$

where $c_{1}>0$ and $c_{2}<\infty$ depend on d and γ.
The purpose of the present paper is to prove the following extension of their result:

Theorem 1. If L is as above with $a_{d+1, d+1} \equiv 1$ and $a_{d+1, j}=0$ for $j \neq d+1$ and surface measure is absolutely continuous with L harmonic measure and if $S_{\gamma} u \in L^{\infty}$ where $\left.u\right|_{\mathbf{R}^{d}}=f, f \in L^{2}\left(\mathbf{R}^{d}\right)$, $L u=0$ and $\|u(y, t)\|_{L^{2}(d y)}<c$ as $t \rightarrow \infty$, then there are constants c_{1} and c_{2} not depending on Q or f so that

$$
\frac{1}{|Q|} \int_{Q} \exp \frac{c_{1}\left|f(x)-f_{Q}\right|^{2}}{\left\|S_{\gamma} f\right\|_{\infty}^{2}} d x<c_{2}
$$

for all cubes Q.
Note. If the function f in Theorem 1 is smooth then the condition that surface measure be absolutely continuous with L-harmonic measure is unnecessary since the identity in Lemma 1 will automatically hold with respect to surface measure. However it does not seem trivial to prove that one can find functions in Schwartz class with uniformly bounded area integrals which converge to any L^{2} function whose area integral is bounded.

The proof of Theorem 1 follows the same general outline as the Chang, Wilson, Wolff proof, but differs from it in detail and methodnecessarily since the kernel for general L is not translation invariant
and several techniques which can be used with the Poisson kernel are not applicable here. The idea is to get a decomposition for $f(x)$ in terms of integrals involving $\partial u / \partial y_{i}$ over a cone in \mathbf{R}_{+}^{d+1}, split each of these into two parts, one close to the boundary $\Lambda(x)-\Lambda_{Q}$ and one farther away $\Omega(x)-\Omega_{Q}$. For technical convenience we replace f_{Q} by $f_{\tilde{Q}}, \tilde{Q}=9 Q$. Then by Jensen's inequality $\left|f-f_{\tilde{Q}}\right| \in \exp L^{2}$ implies $\left|f-f_{Q}\right| \in \exp L^{2}$. Also by the proof of Lemma $2 \Lambda_{\tilde{Q}}=0$ so $f_{\tilde{Q}}=\Omega_{\tilde{Q}}$. Then the following adaptation of Lemma 3.3 from Chang, Wilson, Wolff can be used on $\Lambda(x)$.

Lemma 3.3' [3]. If $\Lambda(x)$ has the decomposition

$$
\Lambda(x)=\sum_{l(\tilde{Q}) \leq l(Q)} \lambda_{\tilde{Q}}(x)
$$

where the $\lambda_{\tilde{Q}}$ satisfy
(a) $\lambda_{\tilde{Q}}$ is supported on $3 \tilde{Q}$,
(b) $\int \lambda_{\tilde{Q}}=0$,
(c) $\left\|\lambda_{\tilde{Q}}\right\|_{\text {Lip } \alpha}^{2} l{ }^{2 \alpha}(\tilde{Q}) \leq C \int_{T_{\tilde{Q}}}|\nabla u(y, t)|^{2} t^{1-d} d y d t$ for some $\alpha, 0<$ $\alpha<1$,
then

$$
\frac{1}{|Q|} \int_{Q} \exp \frac{c_{1}|\Lambda(x)|^{2}}{\left\|S_{\gamma} f\right\|_{\infty}^{2}}<c_{2}<\infty .
$$

$\Omega(x)-\Omega_{\tilde{Q}}$ is shown to be in exponential square class separately (Lemma 3).

The proof of Lemma 3.3^{\prime} is identical for L-harmonic u as the proof of Lemma 3.3 in [3] for harmonic u.

Sketch of proof of Lemma 3.3'. Property (a) allows one to write $\sum \lambda_{\tilde{Q}}$ as a finite sum of sums of the form $\sum_{Q^{\prime}} \lambda_{Q^{\prime}}$ where each of these sums is such that the supports of $\lambda_{Q^{\prime}}$ are disjoint for cubes of the same length. Then it suffices to show each $\sum_{Q^{\prime}} \lambda_{Q^{\prime}}$ is exponentially square integrable, and writing $\sum_{Q^{\prime}} \lambda_{Q^{\prime}}$ as a dyadic martingale, properties (b) and (c) imply the dyadic square function of the martingale is bounded by $S f$. The fundamental theorem of sequential analysis can be applied to show that any dyadic martingale whose dyadic square function is in L^{∞} is exponentially square integrable [3].

To be able to use Lemma 3.3' one needs to get the identity for $f(x)$ in terms of integrals of $\partial u / \partial y_{i}$ over the upper half plane (Lemma 1), then to divide each integral into two parts $\Lambda(x)$ and $\Omega(x)$ and show

Lemma 3.3^{\prime} can be applied to $\Lambda(x)$ (Lemma 2) and that $\Omega(x) \in$ $\exp L^{2}$ (Lemma 3).

So the proof of Theorem 1 depends on the following three lemmas: since $f-f_{\tilde{Q}}=(f+c)-(f+c)_{\tilde{Q}}$ in what follows it suffices to take $f_{\tilde{Q}}=0$.

Lemma 1. For f and u as in Theorem 1 and $K(y)$ a smooth function of compact support in $\mathbf{R}^{d}, K_{t}(y)=t^{-d} K(y / t)$ then a.e. with respect to L-harmonic measure $d \omega$,

$$
\begin{align*}
f(x)= & \int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u(y, t)}{\partial y_{i}} \underset{i, j \neq d+1}{a^{i j}}(y, t) \frac{\partial K_{t}(x-y)}{\partial y_{j}} t d y d t \tag{1.1}\\
& +\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u(y, t)}{\partial t} \frac{\partial K_{t}(x-y)}{\partial t} t d y d t \\
& +\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u(y, t)}{\partial y_{j}} \underset{\substack{ \\
j \neq d+1}}{H_{t}^{j}}(x-y) d y d t,
\end{align*}
$$

where

$$
H_{j, t}(x-y)=\frac{x_{j}-y_{j}}{t^{d+1}} K\left[\frac{x-y}{t}\right]
$$

and the integrals on the right exist as L^{2} functions (see proof of Lemma $1)$.

Note. Surface measure being absolutely continuous with L-harmonic measure means the identity in Lemma 1 holds a.e. $d x$.

For future reference the integrals in (1.1) will be labeled:

$$
\begin{aligned}
\mathrm{I} & =\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u}{\partial y_{i}} i, a_{j \neq d+1}^{i j} \frac{\partial K_{t}}{\partial y_{j}} t d y d t \\
\mathrm{II} & =\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u}{\partial t} \frac{\partial K_{t}}{\partial t} t d y d t \\
\mathrm{III} & =\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u}{\partial y_{j}} H_{j \neq d+1}^{j} d y d t .
\end{aligned}
$$

Now write each integral I, II, III as $\int_{R}+\int_{\mathbf{R}_{+}^{++} \backslash R}$ where R is the "rectangle" in \mathbf{R}_{+}^{d+1} with base $3 Q$ in \mathbf{R}^{d} of height $\frac{4}{\gamma} l(Q)$. Take K supported in $|x|<\frac{\gamma}{4}$. Subdivide R into smaller "rectangles" $T_{Q_{n}}^{i_{n}}$ where $Q_{n}^{i_{n}}$ are the dyadic cubes in $3 Q$ of side length $2^{-n} l(Q)$ and

$$
T_{Q_{n}}^{i_{n}}=Q_{n}^{i_{n}} \times\left[\frac{1}{2^{n+1}} l(Q) \frac{4}{\gamma}, \frac{1}{2^{n}} l(Q) \frac{4}{\gamma}\right] \quad \text { (see Figure 1). }
$$

Figure 1
Let I_{J} be the integrand in I, II, III for $J=$ I, II, III respectively. Then

Lemma 2. For $J=\mathrm{I}$, II, III,

$$
\int_{R} I_{J}=\sum_{n=0}^{\infty} \sum_{i_{n}} \int_{T_{Q_{n}}^{i_{n}}} I_{J}=\sum_{\tilde{Q} \text { dyadic subdivisions of } Q} \lambda_{\tilde{Q}}
$$

where the $\lambda_{\tilde{Q}}$'s have the following properties:
(a) support $\lambda_{\tilde{Q}} \subseteq 3 \tilde{Q}$
(b) $\int_{\mathbf{R}^{d}} \lambda_{\tilde{Q}}=0$
(c) $\left\|\lambda_{\tilde{Q}}\right\|_{\text {Lip } \alpha}^{2}[l(\tilde{Q})]^{2 \alpha} \leq C \int_{T_{\tilde{Q}}}|\nabla u(y, t)|^{2} t^{1-d} d y d t$ for $0<\alpha<1$.

And finally to deal with $\int_{\mathbf{R}_{+}^{d+1} \backslash R}$:
Lemma 3. There are constants b_{1} and b_{2} depending only on γ, L and d so that if $\Omega(x)=\int_{\mathbf{R}_{+}^{d+1} \backslash R} I_{j}$ then for $J=\mathrm{I}$, II, III

$$
\frac{1}{|Q|} \int_{Q} \exp \frac{b_{1}\left|\Omega(x)-\Omega_{\tilde{Q}}\right|^{2}}{\|S f\|_{\infty}^{2}} d x<b_{2}
$$

Then Lemmas 2 and 3 imply the theorem.
Proof of Lemma 3. It suffices to show for any cube Q, fixed, with $x, x_{0} \in Q, \exists c$ not depending on Q or $\Omega(x)$ such that

$$
\left|\Omega(x)-\Omega\left(x_{0}\right)\right| \leq c\|S f\|_{\infty}
$$

Then, since $\exp \left|\Omega(x)-\Omega_{Q}\right|^{2} \leq \exp 2\left[\left|\Omega(x)-\Omega\left(x_{0}\right)\right|^{2}+\left|\Omega\left(x_{0}\right)-\Omega_{\tilde{Q}}\right|^{2}\right]$ and $\left|\Omega\left(x_{0}\right)-\Omega_{\tilde{Q}}\right| \leq c\|S f\|_{\infty}$, Lemma 3 is true.

In the notation for I_{J} as defined above, let

$$
G_{j}(y)=\left[\begin{array}{lll}
\frac{\partial K(y)}{\partial y_{j}} t & \text { in I, } & j \neq d+1 \\
\frac{\partial}{\partial y_{j}}\left(y^{j} K(y)\right) t & \text { in II, } & j \neq d+1 \\
y_{j} K(y) & \text { in III, } & j \neq d+1
\end{array}\right.
$$

(see (1.3) in the proof of Lemma 2 for why $\left(\partial / \partial y_{j}\right)\left(y^{j} K(y)\right)$ appears in II). Then $G_{j}(y)$ is smooth since K is smooth and $\left\|G_{j}\right\|_{\infty}$, $\left\|\nabla G_{j}\right\|_{\infty}<\infty$.

Also let $G_{j, t}(y)=t^{-d} G_{j}(y / t)$.
Then

$$
\Omega_{J}(x)=\int_{\mathbf{R}_{+}^{d+1} \backslash R} G_{j, t}(x-y) a_{j}^{i}(y, t) \frac{\partial u(y, t)}{\partial y_{i}} d y d t
$$

where

$$
a_{j}^{i}(y, t)=\left[\begin{array}{ll}
a^{i j}(y, t) & \text { in I, } \\
\delta_{i j} & \text { in II and III. }
\end{array}\right.
$$

So for $J=\mathrm{I}$, II, III

$$
\begin{aligned}
& \left|\Omega_{J}(x)-\Omega_{J}\left(x_{0}\right)\right| \\
& \leq \\
& \leq c \int_{\mathbf{R}_{+}^{d+1} \backslash R}\left|G_{j, t}(x-y)-G_{j, t}\left(x_{0}-y\right)\right|\left|\frac{\partial u(y, t)}{\partial y_{j}}\right| d y d t \\
& \leq \\
& \leq c \int_{\mathbf{R}_{+}^{d+1} \backslash R} t^{-d}\left|G_{j}\left[\frac{x-y}{t}\right]-G_{j}\left[\frac{x_{0}-y}{t}\right]\right||\nabla u(y, t)| d y d t \\
& \leq \\
& \leq c \int_{\mathbf{R}_{+}^{d+1} \backslash R \cap\left\{(y, t):\left|y-x_{0}\right|<c t\right\}} t^{-d}\left\|\nabla G_{j}\right\|_{\infty}\left|\frac{x-x_{0}}{t}\right||\nabla u(y, t)| d y d t \\
& \leq \\
& \leq c\left|x-x_{0}\right|\left[\int_{\mathbf{R}_{+}^{d+1} \backslash R \cap\left\{(y, t):\left|y-x_{0}\right|<c t\right\}}|\nabla u(y, t)|^{2} t^{1-d} d y d t\right]^{1 / 2} \\
& \\
& \quad \times\left[\int_{\mathrm{cl}(Q)}^{\infty}\|\nabla G\|_{\infty}^{2} t^{-3}\right]^{1 / 2} \\
& \left.\leq c\|S f\|_{\infty} t^{-1}\left|\begin{array}{cl}
\infty \\
(Q) \mid
\end{array}\right| x-x_{0} \right\rvert\, \leq c\|S f\|_{\infty}
\end{aligned}
$$

since $\left|x-x_{0}\right| \leq l(Q)$ for $x, x_{0} \in Q$. The last constant c depends only on $K, d,\left\|a_{i j}\right\|_{\infty}$ and γ.

Proof of Lemma 2. Wlog $\Lambda_{Q}=0$. To prove: each of $\lambda_{Q}^{J}, J=$ I, II, III has properties (a), (b) and (c):

Property (a): K has compact support in $\mathbf{R}^{d} \Rightarrow$ support in y variable of $K_{t}(x-y)$ lies inside a cone of aperature $\frac{\gamma}{4}$ (since supp $K(y) \subseteq$ $\left.\left\{|y| \leq \frac{\gamma}{4}\right\}\right)$, so support in x variable for $G_{j, t}(x-y)$ lies inside $3 Q_{n}$ if (y, t) $\in T_{Q_{n}}$. Thus support (in x variable) for $\lambda_{Q}^{J} \subseteq 3 Q$ for $J=$ I, II, III (see Figures 2 and 3).

Property (b): $J=I$, then

$$
\lambda_{Q}^{I}=\int_{T_{Q}} \frac{\partial u}{\partial y_{i}} a_{i, j \neq d+1}^{i j} \frac{\partial K_{t}}{\partial y_{j}} t d y d t .
$$

Figure 2

Figure 3
So

$$
\begin{aligned}
& \int_{\mathbf{R}^{d}} \lambda_{Q}^{I} d x=\int_{\mathbf{R}^{d}} \int_{T_{Q}} \frac{\partial u(y, t)}{\partial y_{i}} \\
&=\int_{T_{Q}} \frac{\partial u(y, j \neq d+1}{i j}(y, t) \frac{\partial K_{t}(x-y)}{\partial\left(y_{j}\right)} t d y d t d x \\
& i, j \neq d+1 \\
& a^{i j}(y, t) \int_{\mathbf{R}^{d}}(-1) \frac{\partial K_{t}(x-y)}{\partial\left(x_{j}-y_{j}\right)} d x t d y d t
\end{aligned}
$$

by Fubini, and for $j \neq d+1$

$$
\int_{\mathbf{R}^{d}} \frac{\partial K_{t}(x-y)}{\partial\left(x_{j}-y_{j}\right)} d x=\int_{\mathbf{R}^{d}} \frac{\partial K_{t}(x-y)}{\partial\left(x_{j}-y_{j}\right)} d(x-y)=0
$$

since K is of compact support.
$J=\mathrm{II}$:

$$
\lambda_{Q}^{\mathrm{II}}=\int_{T_{Q}} \frac{\partial u}{\partial t} \frac{\partial K_{t}(x-y)}{\partial t} t d y d t .
$$

But

$$
\begin{align*}
\frac{\partial K_{t}(x-y)}{\partial t} & =\frac{\partial}{\partial t}\left[t^{-d} K\left[\frac{x-y}{t}\right]\right] \tag{1.3}\\
& =-d t^{-d-1} K\left[\frac{x-y}{t}\right]+t^{-d} \frac{\partial K[x-y / t]}{\partial t} \\
& =-d t^{-d-1} K\left[\frac{x-y}{t}\right]-t^{-d-1} \sum_{j=1}^{d} \frac{x_{j}-y_{j}}{t} \frac{\partial K}{\partial v_{j}}(v) \\
& =-t^{-d-1} \frac{\partial}{\partial v_{j}}\left(v^{j} K(v)\right)=-t^{-d-1} \frac{\partial}{\partial v_{j}} H^{j}(v)
\end{align*}
$$

where $v_{j}=\left(x_{j}-y_{j}\right) / t$ and $H_{j}(v)=v_{j} K(v)$. Then H_{j} is of compact support so

$$
\begin{aligned}
\int_{\mathbf{R}^{d}} \frac{\partial}{\partial v_{j}} H^{j}(v) d x & =\int_{\mathbf{R}^{d}} t^{d} \frac{\partial}{\partial v_{j}} H^{j}(v) d v=0 \\
\Rightarrow \int_{\mathbf{R}^{d}} \lambda_{Q}^{\mathrm{II}} d x & =\int_{T_{Q}} \int \frac{\partial u}{\partial t}\left(-t^{-d}\right) \int_{\mathbf{R}^{d}} \frac{\partial}{\partial v_{j}} H^{j}(v) d x d y d t=0
\end{aligned}
$$

again using Fubini.

$$
\begin{aligned}
& J=\mathrm{III}: \\
& \qquad \lambda_{Q}^{\mathrm{III}}=\int_{T_{Q}} \frac{\partial u}{\partial y_{j}} \underset{j \neq d+1}{H_{t}^{j}}(x-y) d y d t
\end{aligned}
$$

and

$$
H_{j, t}(x-y)=t^{-d} \frac{x_{j}-y_{j}}{t} K\left[\frac{x-y}{t}\right] \Rightarrow \int_{\mathbf{R}^{d}} \frac{x_{j}-y_{j}}{t} K\left[\frac{x-y}{t}\right] d x=0
$$

since K is radial $\Rightarrow H_{j, t}(x-y)$ is an odd function in the x variable for y and t fixed. The proof of (c) is a straightforward computation of the Lipschitz norm.

Proof of Lemma 1. Wlog $f_{\tilde{Q}}=0$. On a domain Ω whose boundary is given by a C^{∞} function if

$$
L=\frac{\partial}{\partial y_{i}}\left[a_{s}^{i j} \frac{\partial}{\partial y_{j}}\right]
$$

where $a_{i j, s}$ are smooth, then the following form of Green's theorem holds:

$$
\begin{equation*}
\int_{\Omega}(L u) v-\int_{\Omega} u L v=\int_{\partial \Omega} v \frac{\partial u}{\partial n_{a}}-\int_{\partial \Omega} u \frac{\partial v}{\partial n_{a}} \tag{1.4}
\end{equation*}
$$

Figure 4
when u and v are C^{2} functions on $\bar{\Omega}$. Here

$$
\frac{\partial}{\partial n_{a}}=\left[a_{1}^{j} \frac{\partial}{\partial y_{j}}, a_{2}^{j} \frac{\partial}{\partial y_{j}}, \ldots, a_{d+1}^{j} \frac{\partial}{\partial y_{j}}\right] \cdot \vec{n}
$$

where \vec{n} is the normal vector to $\partial \Omega . \partial / \partial n_{a}$ is the co-normal derivative associated to L.
So taking

$$
L=\frac{\partial}{\partial y_{i}}\left[a_{s}^{i j} \frac{\partial}{\partial y_{j}}\right]
$$

where $a_{i j, s}$ are smooth approximations to the coefficients $a_{i j}$ of L in Theorem 1 and $u_{r}=u * h_{r}$ smooth approximations to the solution u, then $(t-\varepsilon)$ and $K_{t}(x-y)$ being smooth in \mathbf{R}_{+}^{d+1}, Green's formula (2.7) gives that

$$
\begin{align*}
\int_{\Omega_{\varepsilon}} & {\left[L\left(u_{r} K_{t}\right)\right](t-\varepsilon)-\int_{\Omega_{\varepsilon}} u_{r} K_{t} L(t-\varepsilon) } \tag{1.5}\\
& =\int_{\partial \Omega_{\varepsilon}} \frac{\partial\left(u_{r} K_{t}\right)}{\partial n_{a}}(t-\varepsilon)-\int_{\partial \Omega_{\varepsilon}} u_{r} K_{t} \frac{\partial(t-\varepsilon)}{\partial n_{a}}
\end{align*}
$$

where Ω_{ε} is taken to be a smooth approximation to the rectangle in \mathbf{R}_{+}^{d+1} of height $\frac{1}{\varepsilon}$, centered at $\left(x, \varepsilon+\frac{1}{2 \varepsilon}\right)$, which is wide enough (width $\sim \frac{1}{\varepsilon}$) so the cone $\Gamma(x)$ intersects the flat part of the boundary of Ω_{ε} (see Figure 4).
Using integration by parts, the fact that the boundary terms in the y_{j} variables $j \neq d+1$ (horizontal variables) vanish since $K_{t}(x-y)$ has compact support in y for x and t fixed (see Figure 5), and

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}} \frac{\partial K_{t}(x-y)}{\partial t} u_{r}(y, t)=-\int_{\Omega_{\varepsilon}} \frac{\partial u_{r}}{\partial y_{j}} \underset{j \neq d+1}{j}(x-y) \tag{1.6}
\end{equation*}
$$

where $H_{j, t}(x-y)=t^{-d} \frac{x_{j}-y_{j}}{t} K\left[\frac{x-y}{t}\right]$.

Figure 5

One obtains

$$
\begin{align*}
&-\int_{\Omega_{\varepsilon}} \frac{\partial u_{r}}{\partial y_{j}} a_{s}^{i j} \frac{\partial\left[K_{t}(t-\varepsilon)\right]}{\partial y_{j}}+\int_{\Omega_{\varepsilon}} \frac{\partial u_{r}}{\partial y_{i}} a_{s}^{i j} \frac{\partial K_{t}}{\partial y_{j}}(t-\varepsilon) \tag{1.7}\\
&+\int_{\Omega_{\varepsilon}} \frac{\partial u_{r}}{\partial y_{j}} \underset{j \neq d+1}{H_{t}^{j}}(x-y) \\
& \quad=-\int_{\partial \Omega_{\varepsilon}} u_{r} K_{t} \frac{\partial(t-\varepsilon)}{\partial n_{a}}
\end{align*}
$$

Letting $a_{i j, s} \rightarrow a_{i j}$ and $u_{r} \rightarrow u(1.7)$ holds with $a_{i j, s}$ replaced by $a_{i j}$ and u_{r} replaced by u. Now let $\varepsilon \rightarrow 0$. The 2nd and 3rd integrals in the left in (1.7) converge in the sense of $L^{2}(Q)$ since by the argument in the proof of Lemma 2,

$$
\int_{R \cap\{t>\varepsilon\}} \frac{\partial u}{\partial y_{i}} a^{i k} G_{t}^{j}(x-y)
$$

can be written as a dyadic martingale whose dyadic square function is bounded independent of ε. This implies these integrals converge as $\varepsilon \rightarrow 0$ in the sense of $L^{2}(Q)$. The upper part, $\int_{\mathbf{R}_{+}^{d+1} \backslash R}$, was shown in the proof of Lemma 3 to be bounded by $c\|S f\|_{\infty}{ }^{+}$.

Now wherever $\lim _{\varepsilon \rightarrow 0}$ exists it equals $\lim _{\varepsilon_{\varepsilon} \rightarrow 0}$ for any subsequence $\left\{\varepsilon_{k}\right\}$. To handle the 1 st term on the left in (1.7) we need

Sublemma. (i) For a.a. ε,

$$
\left|\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial\left[K_{t}(t-\varepsilon)\right]}{\partial y_{j}}\right| \lesssim \int_{\partial \Omega_{\varepsilon}}\left|\frac{\partial u}{\partial n_{a}} K_{t}(t-\varepsilon)\right| .
$$

Figure 6
(ii) $\exists \varepsilon_{k} \rightarrow 0$ such that

$$
\lim _{\varepsilon_{k} \rightarrow 0} \int_{\partial \Omega_{\varepsilon_{k}}}\left|\frac{\partial u}{\partial n_{a}} K_{t}\left(t-\varepsilon_{k}\right)\right|=0
$$

Proof. (i) Multiply $K_{t}(x-y)(t-\varepsilon)$ by a smooth bump function φ_{η} of compact support in Ω_{ε} such that $\varphi_{\eta} \equiv 1$ on the region interior to Ω_{ε} of distance η away from $\partial \Omega_{\varepsilon}, \varphi_{\eta} \equiv 0$ on (int $\left.\Omega_{\varepsilon}\right)^{c}$ and

$$
\left|\frac{\partial \varphi_{\eta}}{\partial t}\right| \precsim \frac{1}{\eta}, \quad \frac{\partial \varphi}{\partial y_{j}} \underset{j \neq d+1}{=} 0 \quad \text { on } \operatorname{supp} K_{t} \cap \operatorname{supp} \frac{\partial \varphi_{\eta}}{\partial t}
$$

(the shaded region in Figure 6).
Then by definition of $L u=0$ on \mathbf{R}_{+}^{d+1}, for any smooth Ψ of compact support in \mathbf{R}_{+}^{d+1},

$$
\int_{\mathbf{R}_{+}^{d+1}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial \Psi}{\partial y_{j}}=0 .
$$

So taking $\Psi=\varphi_{\eta} K_{t}(t-\varepsilon)$, then

$$
\begin{aligned}
0 & =\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{j}} a^{i j} \frac{\partial}{\partial y_{j}}\left[K_{t}(t-\varepsilon) \varphi_{\eta}\right] \\
& =\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial\left[K_{t}(t-\varepsilon)\right]}{\partial y_{j}} \varphi_{\eta}+\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} K_{t}(t-\varepsilon) \frac{\partial \varphi_{n}}{\partial y_{j}} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|-\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial\left[K_{t}(t-\varepsilon)\right]}{\partial y_{j}} \varphi_{\eta}\right| \leq \int_{\Omega_{\varepsilon}}\left|\frac{\partial u}{\partial y_{i}} a^{i j} K_{t}(t-\varepsilon)\right|\left|\frac{\partial \varphi_{\eta}}{\partial y_{j}}\right| . \tag{1.8}
\end{equation*}
$$

Now take the limit as $\eta \rightarrow 0$. Since

$$
\left|\frac{\partial \varphi_{\eta}}{\partial t}\right| \leq c\left|\frac{1}{\eta}\right| \quad \text { and } \quad \frac{\partial \varphi_{\eta}}{\partial y_{j}}=0 \quad \text { for } j \neq d+1
$$

on supp K_{t} the integral on the right approaches the boundary integral a.e. (this means for a.a. ε). One can see this since

$$
\iint_{\left[\operatorname{supp} \frac{\partial q_{\eta}}{\partial t}\right]}\left|\frac{\partial u}{\partial y_{i}}\right|\left|a^{i j}\right|\left|K_{t}(t-\varepsilon)\right|\left|\frac{\partial \varphi_{\eta}}{\partial t}\right| d y d t<\infty
$$

\Rightarrow as a function of t the inner integral

$$
\int_{R^{d}}\left|\frac{\partial u}{\partial y_{i}}\right|\left|a^{i j}\right|\left|K_{t}(t-\varepsilon)\right|\left|\frac{\partial \varphi_{\eta}}{\partial t}\right| d y \in L_{\mathrm{loc}}^{1}(\mathbf{R})
$$

so by the Lebesgue Differentiation Theorem

$$
\lim _{\eta \rightarrow 0} \frac{1}{\eta} \int_{t_{\varepsilon}-\eta}^{t_{\varepsilon}} \int_{\mathbf{R}^{d}}\left|\frac{\partial u}{\partial y_{i}}\right|\left|a^{i j}\right|\left|K_{t}(t-\varepsilon)\right| d y d t
$$

exists a.e. t_{ε}, and equals

$$
\int_{t=t_{e}}\left|\frac{\partial u}{\partial y_{i}}\right|\left|a^{i j}\right|\left|K_{t}(t-\varepsilon)\right| d y .
$$

For a.a. ε

$$
\begin{equation*}
\left|\int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial\left[K_{t}(t-\varepsilon)\right]}{\partial y_{j}}\right| \lesssim \int_{\partial \Omega_{e}}\left|\frac{\partial u}{\partial y_{i}}\right|\left|a_{d}^{i}\right|\left|K_{t}(t-\varepsilon)\right| \tag{1.9}
\end{equation*}
$$

is obtained by putting the above into (1.8) and taking $\lim _{\eta \rightarrow 0}$ since $\varphi_{\eta} \rightarrow \chi_{\Omega_{e}}$.

Proof of (ii). On the upper part of $\partial \Omega_{\varepsilon} t=\varepsilon+\frac{1}{\varepsilon}$ and for each region W,

$$
W=\Gamma(x) \cap\left[\frac{1}{2 \varepsilon_{k}} \leq t \leq \frac{3}{2 \varepsilon_{k}}\right],
$$

there exists a set of values for $t\left(t_{k} \sim 1 / \varepsilon_{k}+\varepsilon_{k}\right)$ of non-zero measure such that

$$
\begin{aligned}
& \frac{1}{\varepsilon_{k}} \int_{\partial \Omega_{\varepsilon_{k}} \cap\left\{t=t_{k}\right\}}\left|\frac{\partial u}{\partial n_{a}}\right|\left|K_{t}\left(t-\varepsilon_{k}\right)\right| \leq \int_{1 / 2 \varepsilon_{k}}^{3 / 2 \varepsilon_{k}} \int_{\mathbf{R}^{d}}\left|\frac{\partial u}{\partial n_{a}}\right|\left|K_{t}\left(t-\varepsilon_{k}\right)\right| \\
& \quad \leq c\left[\int_{W}|\nabla u|^{2}\right]^{1 / 2}\left[\int_{W} t^{2-2 d}\right]^{1 / 2} \\
& \quad \leq c\left[\varepsilon_{k}^{2} \int_{W^{*}}|u|^{2}\right]^{1 / 2}\left(e_{k}^{d-3}\right)^{1 / 2}
\end{aligned}
$$

where the third inequality is by an inequality due to Di Giorgi, Nash, and Moser which states for any ball B of radius t, B^{*} concentric with B of radius $(1+\xi) t$, then
(A)

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}|\nabla u|^{2} \leq c_{\xi} \frac{t^{-2}}{\left|B^{*}\right|} \int_{B^{*}}|u|^{2} \tag{4}
\end{equation*}
$$

And because $|W| \sim\left[1 / \varepsilon_{k}\right]^{d+1}$ and $(y, t) \in W \Rightarrow t \sim 1 / \varepsilon_{k}$.
Then

$$
\begin{aligned}
& c\left[\varepsilon_{k}^{2} \int_{W^{*}}|u|^{2}\right]^{1 / 2}\left(e_{k}^{d-3}\right)^{1 / 2} \\
& \quad \leq c\left[\varepsilon_{k}^{2} \frac{1}{\varepsilon_{k}} \sup _{\frac{1}{2 \varepsilon_{k}}<t}\left[\int_{\mathbf{R}^{d}}|u(y, t)|^{2} d y\right]\right]^{1 / 2} \varepsilon_{k}^{(d-3) / 2} \\
& \quad=c \varepsilon_{k}^{(d / 2)-1} \sup _{\frac{1}{2 \varepsilon_{k}}<t}\left[\int_{\mathbf{R}^{d}}|u|^{2}\right]^{1 / 2} \Rightarrow \int_{\Omega_{\varepsilon_{k}} \cap\left\{t=t_{k}\right\}}\left|\frac{\partial u}{\partial n_{a}}\right|\left|K_{t}\left(t-\varepsilon_{k}\right)\right| \\
& \quad \leq c \varepsilon_{k}^{d / 2}
\end{aligned}
$$

where c depends only on L, d, K and the constant in (A). So since $c \varepsilon_{k}^{d / 2} \rightarrow 0$ as $\varepsilon_{k} \rightarrow 0$, the boundary integral on $\left\{t=t_{k}\right\} \rightarrow 0$ as $t_{k} \rightarrow \infty$.
One can easily pick a sequence of $\Omega_{\varepsilon_{k}}$ such that (i) holds on the boundary and (ii) holds as $\varepsilon_{k} \rightarrow 0$ by the above estimate on the upper boundary. On the lower boundary $t=\varepsilon_{k}$ so the factor $t-\varepsilon_{k}=0$ which means the integral over the lower boundary disappears.

So (1.7) becomes

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{i}} a^{i j} \frac{\partial K_{t}}{\partial y_{j}}(t-\varepsilon)+\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} \frac{\partial u}{\partial y_{j}} \underset{j \neq d+1}{H_{t}^{i}}(x-y) \tag{1.10}\\
\quad=\lim _{\varepsilon \rightarrow 0}-\int_{\partial \Omega_{\varepsilon}} u K_{t} \frac{\partial(t-\varepsilon)}{\partial n_{a}}=f(x)
\end{gather*}
$$

As can be easily seen

$$
\lim _{\varepsilon \rightarrow 0}-\int_{\partial \Omega_{\varepsilon}} u(y, \varepsilon) K_{\varepsilon}(x-y) \frac{\partial(t-\varepsilon)}{\partial n_{a}}=f(x) .
$$

Finally writing the first integral in (1.10) as the sum of two integrals (to distinguish $\partial K_{t} / \partial y_{j}, j \neq d+1$, from $\partial K_{t} / \partial t$) and writing $\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}}$ as $\int_{\mathbf{R}^{d+1}}(1.10)$ becomes (1.1).

References

[1] D. Burkholder and R. Gundy, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544.
[2] Caffarelli, Fabes, Mortola and Salsa, Boundary behaviour of non-negative solutions of elliptic operators in divergence form, Indiana University Math. J., 3 (1981), 621-640.
[3] A. Chang, M. Wilson, and T. Wolff, Some weighted norm inequalities concerning the Schrodinger operators, Comment. Math. Helvetici, 60 (1985), 217-246.
[4] B. Dahlberg, D. Jerison, and C. Kenig, Area integral estimates for elliptic differential operators with non-smooth coefficients, Studia Math., (1984), 97-108.
[5] E. Fabes, D. Jerison and C. Kenig, Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Annals of Math., 119 (1984), 121-141.
[6] D. Gilbarg, and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin Heidelberg, 1983.
[7] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., XIV (1961), 577-591.
[8] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

Received November 30, 1988.
New Mexico State University
Las Cruces, NM 88003

