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NIELSEN NUMBERS AND LEFSCHETZ NUMBERS
ON SOLVMANIFOLDS

CHRISTOPHER MCCORD

A compact solvmanifold S is a homogeneous space of a simply
connected solvable Lie group: S = S/H, with H C S a uniform
subgroup. If / : S —• S is a continuous self map on S, we show
that \L(f)\ < N(f), where N(f) is the Nielsen number of / and
L(f) is the Lefschetz number of / . Necessary conditions and suffi-
cient conditions in terms of π\{S) and /# are found for the equality
N(f) = \L(f)\ to hold.

In [3], Brooks, Brown, Pak and Taylor show that for a self map
/ : M —• M on a torus, the Nielsen number N(f) and Lefschetz num-
ber L{f) are equal up to a sign, i.e. N(f) = \L(f)\. In [1] and [4],
this result is extended to compact nilmanifolds (homogeneous spaces
of nilpotent Lie groups). In this work, we examine how far these re-
sults may be extended to compact solvmanifolds (homogeneous spaces
of solvable Lie groups). The equality does not hold for all self maps
on solvmanifolds, as the following example of Anosov [1] shows. The
Klein bottle K is a compact solvmanifold, which may be represented
as R2 with equivalence relation (x.9y) ~ (x + k, (—l)ky + I) for
k, I e Z. Define f:K-+Kby f[x, y] = [-x, 2y]. The map has
four fixed points, all in distinct fixed point classes; three have index 1
and one has index - 1 . Thus N(f) = 4 and L(f) = 2.

Indeed, we conjecture that the only compact solvmanifolds for
which \L{f)\ = N(f) for all maps are nilmanifolds. However, for
all maps on solvmanifolds, \L(f)\ < N(f), so the Lefschetz number
provides a lower bound on the fixed point set of / . Further, a num-
ber of conditions exist which guarantee equality of the Lefschetz and
Nielsen numbers. The crucial step in establishing the inequality and
the conditions for equality is the construction of a fibration for S. It
is well known [7] that every compact solvmanifold admits a fiber bun-
dle with a torus as the base and a compact nilmanifold as the fiber. In
§1, we examine the properties of this so-called Mostow fibration. We
show that every map on S is homotopic to a fiber-preserving map of a
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Mostow fibration, so that the results of [1], [3] and [4] may be applied.
If S admits an orientable Mostow fibration, then \L(f)\ = N(f) for
all maps. Unfortunately, such fibrations are never orientable unless S
is a nilmanifold.

Both the Nielsen number and Lefschetz number may be computed
from two pieces of information: the number of fixed point classes,
and the index of each class. In §2, we show that the number of fixed
point classes is given by the number of fixed point classes in the base
and in each fiber; and that each class either has index of +1 or - 1 .
The inequality \L(f)\ < N(f) follows easily from this, while finding
necessary conditions and sufficient conditions for N(f) = \L(f)\ re-
duces to finding necessary and sufficient conditions for the index of
all classes to have the same sign. A variety of such conditions are
developed in §3.

1. Solvmanifolds. Mal'cev [6] has shown that any compact nilman-
ifold N can be represented as a homogeneous space of a connected
simply connected nilpotent Lie group N, with N the universal cover
of N. That is, n\(N) embeds in TV as a discrete uniform subgroup,
with N = N/π\(N). The corresponding statement is false for solv-
manifolds: a compact solvmanifold S is always a homogeneous space
S/Γ of a connected simply connected solvable Lie group S, but Γ
may not be discrete [7]. With such a representation, π\(S) = Γ/ΓQ ,
where Γo is the connected component of the identity of Γ.

The Lie group S contains a unique maximal analytic nilpotent sub-
group M, which contains ΓQ and the commutator subgroup [S, S]
as normal subgroups. Thus S/M is isomorphic to Euclidean space
and T = S/YM is a torus with fundamental group π\(T) = Γ/ΓnΛf.
Similarly N = M/ΓπM = ΓM/Γ is a compact nilmanifold with fun-
damental group τri(Ty2= Γ n Af/IV That is, if fiber, total^pace and
base of the fibration M —• S —> S/M are quotiented by Γ n M , Γ and
Γ/Γ Π M respectively, there is a resulting fibration of homogeneous
spaces N —» S - ^ T. Thus S may be fibered over a torus with a

compact nilmanifold as fiber [7].
This fibration was obtained from the analytic nilpotent subgroup

M. Clearly, a similar construction can be generated by an analytic
nilpotent subgroup N c S which contains [ 5 , 5 ] . We will refer to
any such fibration as a Mostow fibration of S.

Note that in a Mostow fibration N —• S - ^ T, all of the spaces are

Eilenberg-Mac Lane spaces, so the homotopy exact sequence reduces
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to a short exact sequence of fundamental groups

That is, S is an Eilenberg-Mac Lane space with solvable fundamen-
tal group, and n\(N) is a normal nilpotent subgroup of n\(S) with
7t\(S)/πι(N) free abelian.

We now consider the structure of the fundamental group π = π\ (S).
π is a discrete torsion-free solvable group. As such, it has a unique
maximal nilpotent subgroup Mo , which contains [π, π]. Note that
a subgroup H is normal, nilpotent and has π/H abelian if and only
if [π, π] c H c Af0. We will be interested in finding subgroups //
of this type for which the exact sequence 1 -» 77 —• π —• π//7 —• 0
represents the fundamental group sequence of a Mostow fibration. Let
Jf{π) = {H c π: [π, π] c H c M o , π/// is torsion free}. For any
subgroup // with [π, π] c // C Af, there is a unique minimal sub-
group C(H) e jr{π) with H C C( i ί ) . Further, ^ ( π ) has unique
minimal element C = C([π, π]) and unique maximal element M.

THEOREM 1.1. Given a compact solvmanifold S with π\(S) = π
and H c π , ίΛ^r^ raste a Mostow fibration N —• 5 —• Γ w/rΛ πi (iV) =

// z/α^ί/ on/y if H e jV{π). G/v̂ n compact solvmanifolds S\ and S2
with fundamental groups π\(S\) = πiy Hi e ^{πi), and f: S\ —•
^2 > f is homotopic to a fiber-preserving map of the Mostow fibrations
induced by H\ and H2 if and only if f#{Hχ) C Hi.

Proof. It suffices to prove the first statement for H = M', the maxi-
mal element of jV(π). If S = S/Γ and the maximal analytic nilpotent
subgroup M C S has π\(M/M Π Γ) = Λf, then any H e ^ ( π ) em-
beds in M/ΓQ as a discrete torsion-free subgroup. // then has an
extension to an analytic subgroup of M/ΓQ , which lifts to an ana-
lytic subgroup N of M. This N and the corresponding nilmanifold
N/N Π Γ are the required spaces. To show that N = M/M n Γ has
n{(N) = M, we consider one construction of S from S.

In [8], Wang shows that π may be embedded as a closed uniform
subgroup of a solvable Lie group G which is simply connected and
which has only finitely many components. It is clear from the con-
struction that G may be chosen so that M c N, the maximal an-
alytic nilpotent normal subgroup of̂  G. Auslander [2] then shows
that the identity component GQ of G can be covered by a connected
simply connected solvable Lie group S. In this cover, the maximal
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analytic nilpotent subgroup M of S maps onto N and the sub-
group Γ which maps onto π has S/T compact and π\(S/Γ) = π.
Since compact solvmanifolds with isomorphic fundamental groups are
homeomorphic [7], S/Γ = S. Further, M Π Γ maps onto M, so
πx(M/MnΓ) = M.

To prove the second assertion, let TV/ -• 5/ -* 7} be the Mostow
fibration induced by 77/. As f#(Hχ) c //2 5 there is commutative
diagram

1'
πι(S2) -*-+ πx{T2) > 0

The homomorphism γ: %a\ -> Zα2 extends by linearity to Φ: Rαi —•
Rα2 ? and so defines a quotient map φ: T\ —• Γ 2, with φ# = γ on

Since p#o f# = φ#op#, the maps p o / and 0 o /? are homotopy-
commutative. Let H: S\X I -+ T2 be the homotopy with HQ = po f
and i/i = φop. Then the covering homotopy theorem implies that
there is a lift F: S\ xl -^ S2 of H with FQ = / , so the map F\: S\ -^
S2 has F\ ~ f and p oF\ = φop. n

Note that the same proof shows that any two fiber-preserving maps
which are homotopic as maps are homotopic as fiber-preserving maps.

Thus a map f:S\ —• S2 may be identified as a fiber-preserving
map (up to homotopy) by its behavior on the fundamental group.
Suppose S\, 5*2 have fundamental groups m = τr(5/) and /// c TΓ/
are subgroups so that C(///) is defined. If 0: πi —• 7Γ2 has β(/?i) c
H2, then Θ(C(H{)) c C(Θ(H{)) c C(7/2). In particular, if 0: π -• r
is an endomorphism, then β([π,π]) c [ π , π ] and Θ(MQ) C M Q .
Thus 0(C) c C, and β(Af) C M i f M = M 0 . In general, M is
characteristic but not necessarily invariant under all endomorphisms.

COROLLARY 1.2. If f: S -+ S is a self map of a compact solvman-
ifold, then f is homotopic to a fiber-preserving map of the Mostow fi-
bration induced by the subgroup C = C([π, π]).

To conclude this section, we note that any Mostow fibration is
nonorientable. An element [ω] e τt\(T) acts orientably on N if
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the induced map τω: N -» N is homotopic to the identity. Let
O(N) c 7Γi(Γ) be the subgroup of elements which act orientably on
N, so that the fibration is orientable if O(N) = π\(T).

LEMMA 1.3. If N -+ S -^-* T is a Mostow fibration of S with

πx(S) = π and πx(N) = H e ^ ( π ) , then O(N) = p#(H Cπ(H)).
H Cπ(H) is a normal nilpotent subgroup of π, and O(N) is a proper
subgroup of n\(T).

Proof. The action of τt\(T) on N induces an action on H which
can be represented by conjugation of H by elements of π. That is,
if d e π and heH, then p#(rf) h = hd eH. As N is an Eilenberg-
Mac Lane space, an element p#(d) e π\(T) acts orientably on Λ̂  if
and only if it acts trivially on H. This is equivalent to requiring the
action on H to be conjugation in H. Thus p#(d) acts trivially if and
only if d e Cπ(H) H (where Cπ(H) is the centralizer of H in π).

If GW is the nth derived group of G, then (Cπ(H) H)W C π^ c
i/(°), and inductively, (Cπ(H) //)(") C ff^-D . c π (/ί) H is then
nilpotent, and O(N)=p#(Cπ(H)-H) Cp#(M0)ΪP#(πι(S)) = π(T) n

2. Nielsen numbers and Lefschetz numbers. We now employ the
Mostow fibrations of § 1 to compute Lefschetz numbers and Nielsen
numbers on compact solvmanifolds. As all of the quantities involved
will be homotopy invariants, we assume now that N —• S —• T is a
Mostow fibration of S and f:S—>S is a fiber-preserving map with
respect to the fibration. We may further assume that the induced map
φ: T —• T is a homomorphism. To define the Nielsen number of / ,
the fixed point set Fix(/) is partitioned as follows: X J G Fix(/)
belong to the same fixed point class if there exists a path c from x to
y with fc ^ c. The set of fixed point classes is denoted by FPC(/).

Each fixed point class F e FPC(/) is compact and open in Fix(/),
and so has a fixed point index, denoted indexs(/, F), defined. The
Lefschetz number L(f) is equal to the sum over all fixed point classes
of the indices, while the Nielsen number N(f) is the number of fixed
point classes with nonzero index. There are two cases to be considered:
L(φ) = 0 and L{φ) φ 0. If L(φ) = 0, then φ (and with it / ) is
homotopic to a fixed point free map. If L(φ) Φ 0, the following
lemmas establish the structure of FPC(/).

LEMMA 2.1. If L(φ) Φ 0, then every fixed point class F e FPC(0)
contains a single point.
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Proof. Fix{φ) is a subgroup of T, with all fixed point classes home-
omorphic to each other. The fixed point class of the identity Fo

can be described as follows: if Ra is the universal cover of T and
Φ: Ra —• Ra the unique linear transformation which covers φ, then
FQ is the projection of Fix(Φ). As FQ is compact subgroup of T,
Fix(Φ) is a vector subspace with Fix(Φ) ΠZfl a uniform subgroup. If
Fix(φ) φ 0, then Fix(Φ) n z * = Fix(φ#) φ 0. But Fadell and Husseini
[4] show that if L(φ) φ 0, then Fix(Φ) n Za = 0. D

Henceforth, we will identify Fix(φ) and FPC(φ) when L(φ) φ 0.
If b e Fix(φ), let fb: Nb -• Nb be the restriction of / to Nb =

p~ι(b). Then FPC(fb) denotes the equivalence classes of Fix(j^),
where x and y are equivalent if there exists a path c from x to y
in Nb with fc~c in Λ^. It is clear that if X\ and X2 are in the
same fixed point class in Nb, then they are in the same fixed point
class in S and that if y\ and yι are in the same fixed point class
in S, then p(y\) and p(yι) are in the same fixed point class in T.
That is, there is a sequence of maps

FPC(Λ) - ^ FPC(/)

A priori, /F P C may not be injective and /?FPC
 m a Y n ot be onto.

LEMMA 2.2. // L(φ) φ 0, then /FpC: FPC(Λ) -+ FPC(/) w //ι/α-
tive for every b e Fix(</>). If L(fb) Φ 0, ίΛ^n b G im(pF Pc).

Proof. From [5], Theorem 4.1.6, we know that /ppC(F) = | Fix(φ#b):
p#Fix(/# J)| where 5 e Fix(/^). But if L{φ) = 0, then Fix(0#z,) = 0.
If L(fb) Φ 0, then there is some s e Fix(j^), and the fixed point class
of s maps to b. D

COROLLARY 2.3. // L(</>) ̂  0, then FPC(/) = U € F i x W
 F P C ( /* )

We now turn to the question of computing the fixed point index for
each fixed point class of / . From [1] and [3], all fixed point classes
in T have the same index, which is either + 1 , 0 or - 1 . Likewise,
for each b e Fix{φ) all fixed point classes in Nb have the same index
in Nb , which is either + 1 , 0 or - 1 .

LEMMA 2.4. Every fixed point class F of f has indexs(/, F ) Ξ
{+1,0,-1}.
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Proof. If L(φ) = 0, then / is homotopic to a fixed point free
map and N(f) = 0. That is, every fixed point class has index 0. If
L(φ) Φ 0, then every fixed point class F e FPC(/) is represented by a
fixed point class ¥b e FFC(fb), with index^/^, F^), indexτ(Φ, b) e
{+1,0,-1} . Thus indexs(/, F) = indexΓ(i, b) mdexN{fb, Vb) =
± 1 . D

Our main result now follows immediately from 2.2 and 2.4.

THEOREM 2.5. If S is a compact solvmanifold and f:S—>S is a
self map of S then \L(f)\ < N(f). If f is a fiber-preserving map of
a Mostow fibration N -+ S -> T, then \L(f)\ = N(f) if and only if
either L{φ) = 0 or sgn(L(fb)) is independent ofbe Fix(φ). Further,

\L(f)\ = \L(f)L{fb)\ = N(f)N(fb) = N(f)

if and only if either L(φ) = 0 or L(Fb) is independent of b e Fix(φ).

Proof. Every map is homotopic to a fiber-preserving map with re-
spect to a Mostow fibration, with the induced map on T a homomor-
phism φ. If L(φ) = 0. Then φ (and hence / ) is homotopic to a fixed
point free map, so L(f) = L(φ) L(fb) = N(φ) N(fb) = N(f) = 0.
If L(φ) Φ 0, Fix(0) consists of N(φ) fixed points, all of the same
index ± 1 . Then

= Σ
beFix(φ) beFix(φ)

Σ
beFix(φ)

= \Uf)\

The inequality is an equality if and only if all L{fb) have the same
sign. If L(fb) is independent of b, then ΣbeFϊx(φ) N(fb) = N(φ)N(fb)
and ΣbeFix(φ) \Ufb)\ = \UΦWb)\ °

Note that the equality \L(f)\ = N(F) can occur without the product
formula \L(f)\ = \L(f)L(fb)\ = N(f)N(fb) = N(f) holding. For
example the map g: K —• K on the Klein bottle given by g(x, y) =
(-x, y) covers the homomorphism γ(x) = - i on ^ . γ has two
fixed points +1 and - 1 , each with index - 1 . The fiber over each
point is likewise a circle, with L(g+\) = 0 and L(g_i) = — 1. Thus
L(g+ι) φ L(^_0, but \L(g)\ = N(g) = 2. Similarly, the product
formula can hold without all fb having the same homotopy type.

3. Conditions for equality. Suppose / has the homotopy type of a
fiber-preserving map of the Mostow fibration N —• S —> T. We now
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consider when all b e Fix(^) have the same sgn(L(^)), the same
L(fb), or the same homotopy type. Choose bo, b\ e Fix(φ). As the
fiber N is a K(π, 1), the maps f$: NQ —• TVQ and / i : iVi —• N\ may
be compared by comparing the induced maps //#: 7Γi (iV/) —• πi(JV/).
In particular, ^ and /i have the same homotopy type if and only if
/o# and /i# are conjugate.

If c is a path in T from Z?o to b\, then there is fiber translation
map τ c : No —• iVi and commutative diagram

That is,

so that /i# is conjugate to fm o (τφcoc-ι)#. Fixb0 = 0 and define

= {[0c o c"1] € πj(T, 0) I c: / -• Γ with c(0) = 0,

We can then compute the fiber-preserving maps from φ, fo# and
the action of &(φ) on πχ(N0). Note that &~(φ) provides a simple
description of Fix(^), and is itself easily computed.

LEMMA 3.1. &{φ) is a subgroup of π\(T, 0), and there exists an
endomorphism p: ^{φ) -+ ΈVC(φ) given by ρ([φcoc~1]) = c(l) . If
7Γi(7\ 0) is embedded as the integer lattice Zn in Rn and Φ: R" -• Rn

is the unique linear transformation covering φ: T —• T, then ^(φ)
embeds as im(Φ - /) n Zn and ker(/>) embeds as (Φ - I){Zn).

Proof. If ω is a path based at 0 and a is a loop based at 0, then
ω o (ω(l) + α) ~ a o ω . In particular, if CQ , c\ are paths from 0 to
bo, b\ e Fix(0), then C2 = Co o (Z>0 + ci) is a path from 0 to bo + b\,
with

o C2l =
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and CQ1 - bo is a path from 0 to -bo with

φc0 o CQ ι o ({φco)~~ι - bo) o (c0 - bo)

~ φCo o (^Co)""1 o C0 o C"1 ~ U.

p will clearly be an epimorphism if it is well defined. If Co, C\ are
paths from 0 to bo, b\ e Fix(φ) such that h: φco o c$ι ~ φc\ o c" 1 ,
then ω = CQ1 o a has ^ω ~ ω. Thus &o a n d b\ are in the same
fixed point class.

If c is a path in Γ from 0 to b e Έix(φ), let c be the lift of c
based at 0 e Rn, and let x = C(l). Then ^c lifts to ΦC and ̂ coc"1

lifts to ΦC o (Φx + C" 1 ), so [0c o c"1] embeds as Φ x - x € Z Λ .
Conversely, if m e im(Φ — /) n I/1, with (Φ — /)x = m, choose a path
C in Rn from 0 to x. Then C projects in T to a path c from
0 to b € Fix(0), and ΦC o (Φx + C"1) projects to φc o c~λ. But
ΦCo(φχ+C- 1)(l) = (Φ--/)x = m,so ^coc-1 lifts to m. Finally, if
[φcor1] e ker(/>), c may be chosen to be a loop at 0. Its lift C then
has C(l)€ZΛ ,so [φcoc~ι] embeds as (Φ-/)C(1) e (Φ-/)(Z*).α

Note that if L(^) = det(Φ - / ) ? ί θ , then ^(0) = πi(Γ) and
ker(p) = im(^# - id).

Any map f:No~+No is homotopic to a homomorphism #, which
lifts to a homomorphism G: N -+ N and so defines DG: n ~» n,
where n is the Lie algebra of N. Then L(f) = det(Z>G!-/). Likewise
L(φ) = det(Φ - / ) , where Φ is the unique linear transformation on
Rn covering φ. Let F: n-* n be the map induced from fo and Tω

the automorphism induced from τω.

T H E O R E M 3.2. Suppose f:S-+S is a fiber-preserving map of a

Mostow fibration N ~> S —> T which covers homomorphism φ: T ->

T. Then

(i) N(f) = |L(/)| ί/αnrf on/ y i/«ϊΛer det(Φ - /) = 0 or

sgn(det(Z)Γω o f - / ) ) = sgn(det(F -

(ii) N(f) =
either det(Φ - /) = 0 or dct(DTω o f - / ) = det(F - /) /or α//
[ω]em(T);

(iii) ΓΛ̂  mfl/?ί yί, have the same homotopy type for all b € Fix(^)
if there exists & c O(iV) ̂ wcΛ that (9 and ker(/>) generate
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Proof. The only statement requiring comment is the last. The exis-
tence of such an (9 in L(N) is equivalent to 0{N)Γ{SΓ{φ) mapping
onto Fix(φ) via p. If so, then for every b G Fix(φ) there exists a
path c from 0 to b with [ / c o r 1 ] e O(N), so that τ^φcoc-ι)# acts
trivially on πι(Nθ9 0) and f0 is conjugate to τ (^,o c-i ) # o fb = fb . n

Having found conditions in terms of a given Mostow fibration for
equality of the Lefschetz and Nielsen numbers and for the product
formulas to hold, we now consider how these conditions compare for
different Mostow fibrations.

LEMMA 3.3. Suppose Hx, H2 e Jf{π) with /#(///) c Hi and in-
duced homomorphism φi\ T —• T. Then

(i) The condition that either L(φj) = 0 or that the fiber maps fib

have the same sgn(L(fib)) for all b e Fix(φi) is independent of Hi.
(ii) The conditions that either L(φi) = 0 or that the fiber maps fib

have the same L(fib) for all b e Fix(0, ) is independent of Hi.
(iii) // Hi c H2 c Hi o Cπ(Hι) and there exists <?2 Q O(H2) such

that (f2 and ker(/>2) generate ^(φi), then there exists <9\ c O(H\)
such that ff\ and ker(/?i) generate &~(φ\).

Proof. The first condition is equivalent to N(f) = \L(F)\. Since
this is independent of the Mostow fibration, the condition is indepen-
dent of H.

It suffices to prove (ii) for the case Hi c H2. Requiring all fb to
have the same L(fb) is equivalent to requiring that all fixed point
classes have the same sign, and that every b e Fix(^) has the same
number of fixed points in S covering it. If this is true for Hi and
HiQHi, consider the fibration N2/Nι —• Tι - ^ T2 . The fibration is
orientable, and the homomorphism φι: Tι —• Tι is a fiber-preserving
map covering φ2: T2-+T2. Then L(0i) = L(φ2)L(φ) and every fixed
point in T2 is covered in Tι by L(^) fixed points. But every fixed
point in Tι is covered by L(fιb) fixed points, so every fixed point in
T2 is covered by L(φ) L(fϊb) = L(f2b) fixed points.

Conversely, if the condition holds for H2, then every fixed point in
G2 is covered by L(f2b) fixed points in S, and by L(φ) fixed points in
Tι. Thus if L(f2b) = L(fιb)L(φ), every fixed point in Tι is covered
by L(fιb) fixed points in S. A simple induction argument along
the lines of [4] shows that L(f2b) = L(fib)L(φ) for any nilmanifold
fibration N{-+N2-^ N2/Nχ.
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For the last statement, note that O(H2) Q ψ#O(Hχ), and that 9~(φ)
c 0{H\). Also, there is a commutative diagram of exact sequences

Thus, if @Ί c O(7/2) and ker(/>2) generate ^(<fo)> then ^ = ψ~ι(<?i)
c O(/ίi) and ker(/>i) generate «^(0i). •

That is, testing for equality of the Lefschetz number and Nielsen
number, or for the product formula, can be done equally well with any
Mostow fibration. Since every map is homotopic to a fiber-preserving
map of the Mostow fibration induced by C, we conclude by consider-
ing the implications of this section for this fibration. Let H\ (S Z) =
F θ T, where F is torsion-free and T is finite. Then for the Mostow
fibration of C, π\(T) is isomorphic via the Hurewicz homomor-
phism h to F, which in turn embeds in H\ (S R) by the inclusion
i: H\(S Z) -* Hχ(S ΈL). But Hi(S R) is also isomorphic to the uni-
versal cover RΛ of Γ, with Φ = fu: HX(S; R) ->.Hι(S\ R). With
these identifications, we obtain a condition for equality of the Lef-
schetz number and Nielsen number which requires only the computa-
tion of O(C) and of fu: Hx (S R) -» Hx(S R).

COROLLARY 3.4. If f: S -* S is a self map of a solvmanifold such
that either det(/ u - id) = 0 or i o h(O{C)) and i o (fu - id)H{ (S Z)
generate ioH{(S; Z), then N(f) = \L(f)\ and det(/ u - i d ) divides
N(f).
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