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EXPLICIT d-PRIMΠΊVES OF HENKIN-LEITERER
KERNELS ON STEIN MANIFOLDS

T E L E M A C H O S HATZIAFRATIS

In this paper we construct explicitly d -primitives and use them
to obtain a representation formula for holomorphic functions and a
theorem on extendability of CR-functions.

1. Introduction. Let X be a Stein manifold of dimension n, h :
X —• Cp (p < n - 1) a holomorphic map and let Z(h) = {ζ e X :
h(ζ) = 0} . If K(ζ, z) = K^ >")(£, z) is a Henkin-Leiterer type ker-
nel on X (see §2 for notation) then K(ζ, z) is a <9-closed (Λ , n -1)-
form in f, for a fixed z , i.e., dζK(ζ, z) = 0, whose singularity occurs
at C = z . On the other hand, since X-Z(h) is (n - 2)-comρlete (see
Sorani and Villani [8, p. 435]), it follows that the cohomology group

Hn~\X - Z{h), <9n) = H^n~ι)(X - Z{h))

vanishes (see Andreotti and Grauert [1, p. 250]). Therefore, for a fixed
z e Z(h), there exists an (n, n — 2)-form η(ζ, z), in X - Z{h), so
that

For some problems, however, it is important to have explicit formu-
las for such ^-primitives, η, of K the problems we have in mind
are related to integral representations (see for example Stout [9] and
Hatziafratis [2]) and extendability of CR-functions (see for example
Lupacciolu [6], Tomassini [11] and Stout [10]). Since such forms
η(ζ, z) are not unique, their dependence on z, for example, may be
difficult to control with cohomological arguments.

In this paper we construct explicitly such d -primitives and use them
to obtain a representation formula for holomorphic functions and a
theorem on extendability of CR-functions.

The arrangement of the paper is as follows. First in §2 we review
the main points of the Henkin-Leiterer construction; with X and h
as above we consider a domain D c X, a Stein neighborhood W
of 5 and we briefly discuss what a Leray section s* = s*(ζ, z) and
the associated Henkin-Leiterer kernel K(ζ9 z) = K^s*>v\ζ, z) are.

123



124 TELEMACHOS HATZIAFRATIS

Then in §3 we carry out the construction of the d-primitives η^(ζ, z)
and in Theorem 3.1 we prove that indeed dζη^iζ, z) = K(ζ, z) for
ζ G W - Z(h - h(z)), ζ, z being always so that s*(ζ, z) is defined.
(At this point we would like to point out that we were led to consider
this construction by the paper of Laurent-Thiebaut [5] in which the
case p = 1 is studied.)

Our main application of this construction is a Cauchy type integral
representation formula for holomorphic functions. Fix a z e ΰ , w e
consider an open set Γ c dD (open in dD) with <9Γ smooth so
that Γ D (dD) Π Z(h - h(z)) and we prove (Theorem 3.2) that for
/ e C(T UD)Π &(D) we have

f(z) = / f(ζ)K(ζ,z)- f f(ζ)ηh(ζ,z).
JζeΓ JζedΓ

This integral formula expresses the value of / at z in terms of
its values on a part of the boundary of D namely Γ. In particular
it provides a formula for extending CR-functions from parts of the
boundary (if such extensions exist); this is the point of Theorem 4.1
in §4. This theorem gives a necessary and sufficient condition for the
extendability of a CR-function / from a part of the boundary of D
to a holomorphic function in D roughly speaking the condition says
that certain integrals involving the CR-function and taken over certain
cycles which lie in the domain (on dD) of / should agree.

Finally with regards to the Theorem 3.2 we mention the work of
Patil [7] where a different method was devised for recovering, in some
cases, an /72-function from its boundary values on a set of positive
measure.

Acknowledgments, I would like to thank Professors Lee Stout and
Guido Lupacciolu for discussions related to this paper.

2. Henkin-Leiterer type kernels. In this section we will establish no-
tation and recall the main points of the Henkin-Leiterer construction
on Stein manifolds.

Let X be a Stein manifold of dimension n and let T(X) denote its
holomorphic tangent bundle with the fiber above z (z e X) denoted
by TZ(X). Then, following Henkin and Leiterer [4, Ch. 4], there
exists a holomorphic map s : X x X -> T{X) and a holomorphic
function φ : X x X -^ C so that

(i) s(ζ,z)eTz(X) f o r (ζ,z)eXxX,

(ii) s(z, z) = 0 and s(-, z) is a biholomorphic map from a neigh-
borhood of z e X to a neighborhood of 0 e TZ{X) = Cn ,
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(iii) φ(z, z) = 1 and there exists a positive integer u0 so that
φ"o(ζ9 z)\\s{ζ, z)\\~2 is a C2-function on I x I - Δ = I x I - { ( z , z) :
z G X}, for any norm || || on T(X) in particular φv ||s||~2 is of class
Cr on X x X - A provided that v > v\{r) for some integer v\{r).

Now fix D c X, a relatively compact domain in JSΓ with smooth
boundary. Recall that a Leray section for (D, s, φ) is a C^-map
5* = s*(ζ9 z) defined for z e ΰ and for ζ in a neighborhood of
<9Z), denoted by Dom(4y*( , z)) and depending on z, with values in
Γ*(X), the holomoφhic cotangent bundle of X, so that:

(i) s*(ζ,z) G ΓZ*(X) (ΓZ*(X) denotes the fiber of T*(X) above z),
(ii) (5*(C, z) , j(C, z)) ^ 0 whenever φ(ζ, z) ^ 0 and

(iii) there is an integer i/* so that the function

φ"\ζ9z){(s*(ζ9z),s(ζ9z)))-1

is of class C 1 for ( ( , z ) e F x L , for each compact subset L of D
and where F is a neighborhood of 3D, depending on L. Here ( , •)
denotes the pairing of cotangent vectors with tangent vectors.

For examples of Leray sections, which always exist in the above
setting, see [4, p. 165].

To a Leray section s*, Henkin and Leiterer associate an (n, n - 1)-
form in the following way:

, z))

where z/ is assumed to be large enough so that K^s >v\ζ, z) is con-
tinuous in each V x L (v > nv* is enough); the differential forms
ω'ζ(s*(ζ, z)) are defined in terms of local coordinates (£/, /) at z ;
let (^i, . . . , sn) and (^^, . . . , s*) be the expressions of s and s* in
terms of the local coordinate system (£/, / ) , i.e.,

j(C, z) = Σsj(ζ9 z) ( - ^ - ) and 5*(C? z) = £ > * ( £ , z ) ( ^ ) z ;

here {(d/dχj)z}^=ι is the usual basis of ΓZ(X) with respect to (£/, /)
and {(rf/7')z}"=i is the corresponding basis for T*(X).

Then

ω f(5(C, z)) = rfC5i(C, z) Λ - Λ dζSn{ζ, z)

and

l r ^ ίC, z) /\ ι/ĉ (C, z)

where cn = {-\)n^-^l2{n - \)\/{2πi)n .
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Of course by the way o)ζ(s(ζ, z)) and ωr

ζ(s*(ζ, z)) are defined,
they depend on the choice of the local coordinates (U, χ). It turns
out, however, that their wedge product and therefore K^s iV\ζ9 z)
are independent of the choice of local coordinates, i.e., K^s* >"\ζ, z)
is a globally defined (n, n - l)-form, see [4, p. 166].

REMARK. The discussion, given in §1, in which we justify by a
cohomological argument the existence of d-primitives, η(ζ, z) , of
K(ζ, z) = K^s*>y\ζ, z) , applies for a particular class of Leray sec-
tions, the ones which are defined for (ζ, z) e X x X, i.e., D = X
and Dom(5*( , z)) = X; the point here is that, in the general case,
Dom(j*( , z)) — Z(h) is not («-2)-complete; however it is possible to
give a cohomological argument to prove existence of the d -primitives
in the general case too; this argument amounts to modifying, in a way,
s*(ζ, z) so that the argument given in §1 applies (see also the remark
following the proof of Theorem 3.1 below).

3. Construction of the d -primitives. With the notation of §2, let us
consider a holomorphic map h : W —• Cp, p < n — I, where W is
a Stein neighborhood of D; let Z(h - h(z)) denote the zero-set of
h-h(z), i.e.,

In this section we will construct a d-primitive of K^s*>v\ζ, z) in
W n Dom(s*( , z)) - Z{h - h(z)) in this construction, z is a fixed
point of D the dependence of the construction on z, however, will
be immediately clear, because of the explicit way the construction is
carried out.

According to [4, Lemma 4.7.2] there exist holomorphic maps h\ :
WxW -* T*{X), i = 1, . . . , p, so that /z*(C, z) e T*(X) and

for (ζ, z) G W x W and / = 1,...,/?. Using such holomorphic
maps h\ we now define a C°°-map f : W x W -> T*(X) in the
following way:

then it is clear that t* is a well-defined C°°-map with t*(ζ, z) G
T*Z{X).
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Also notice that

(I) (t*(ζ, z), s(ζ, z)> - φ(ζ, z) £ IΛ/ίC) - A,(z)|2.

Let

/ n-l-2

where c'n = (-l) / |( / I- 1)/ 2(2π0" / I; ( s ί ? . . . , s * ) and (**,...,**) are
the expressions of s*(ζ, z) and Γ(£, z), respectively, with respect to
the local coordinates (U, χ) considered in §2; let us point out that
coς(s(ζ, z)), in the definition of η^ ' u\ζ, z) above, is computed with
respect to the same coordinates (U, χ) thus if (s\, . . . , sn) are the
expressions of s(ζ, z) with respect to (£/, χ) then cύζ(s(ζ, z)) =
dζS\ Λ Λ dζSn . In the determinants which appear in the definition

of η^ 'v\ j runs from j = 1 to j = n forming the n rows of them.

Although the differential form η^ '^(C, z) is introduced locally, it

turns out that it is invariantly defined since we have

LEMMA 3.1. η^ 'v\ζ, z) is a globally defined (n9 n- l)-form, i.e.,
it is independent of the choice of local coordinates, with ζ e W Π
Dom(ί*( , z ) ) - Z ( Λ - A ( z ) ) and a fixed zeD.

Proof. Let (U, /) be another coordinate system at z let (§*,...,
ί*), (t\, . . . , ?*) and (§\, . . . , ίrt) be the expressions of s*, ί* and
s, respectively, with respect to (U, χ). Then

where G = G(z) is the transition matrix from (£/, /) to (C/, /)
for the holomorphic vector bundle T(X), in which case (G')~ι, the
inverse of the transpose of G, is the transition matrix from (£/, χ)
to (U, χ) for the bundle T*(X) of course G = G(z) depends only
on z; here (SJ) denotes the transpose of (s\, . . . , sn) and similarly
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for the others; the dot denotes matrix multiplication. Therefore,

(dζsj) = G (dζsj),

It follows from the above relations and properties of determinants
with entries differential forms (see [3, p. 94]) that

/ n-l-2 I n-l-2

and
dζ§ι Λ Λ dζ§n = det(G)dζSι Λ Λ dζSn.

Since de^C?')"1] = [det(G)]"1, it follows that ηf'u)(ζ9 z) is, in-
deed, independent of local coordinates. This completes the proof of
the lemma.

REMARK. The holomorphic maps h* (i = 1,...,/?) are by no

means unique; thus the differential form η^ ' ̂  depends on the choice

of h*. We will come back to this point later.

LEMMA 3.2. Let σ* and τ* be defined, for (£, z) with φ(ζ, z) φ 0
and ζ G W Π Dom(^*( , z)) - Z(h - h(z)), as follows:

σ*(ζ, z) = ((S*{ζ9 z)9s(ζ9 z)))~{ j (C, z) and

Λ_2

/=0
σy* α«(i τ* are the expressions of σ* and τ* with respect to the

local coordinates (U, χ) and cθζ{s) = o)ζ(s(ζ, z)) is the differential

form as in the definition of η^ 'p) with respect to the same coordinates

{U9χ).

Proof. First notice that σ* and τ* are well-defined since φ(ζ, z) Φ
0 implies (s*{ζ, z)9s(ζ9 z)) φ 0 and together with ζ $ Z(h-h(z))9

they imply also that ( f (£ , z), s(ζ, z)) Φ 0 this is because of (I). It
follows from the definition of σ* and τ* that

dζσ* = ((**, s))-ιds*. +s*dζ[((s*, s))-1] and

+ ηaζ[{(t*, s)y1].
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Now the lemma follows from the above equations, from (I) and prop-
erties of determinants.

We are ready now to prove that
More precisely we have

' ̂  is a ^-primitive of K(s*»").

THEOREM 3.1. Let D be a domain on the Stein manifold X,
dim c X = n, and h : W -> Cp a holomorphic map, p < n - 1, where
W is a Stein neighborhood of T). Let s* =s*(ζ, z) and K^' >") be as
in § 2 and let η^ ' ^ be the above constructed differential form. Then,
for a fixed z eD, we have

for ζeWnΌom(s*( , z)) - Z(λ - h{z)).

Proof. Let us consider first (ζ, z) with φ(ζ, z) Φ 0. Then, by the
definition of σ* and τ*,

(1) (<J*,J) = 1 and (τ\s) = l.

Working always with a fixed coordinate system (£/, χ) at z, (1) can
be written as

(2) έ σ ; ^ = i and Σ τ ^ = i

7 = 1 J = l

It follows from (2) that Sj ψ 0 for at least one j € { 1 , . . . , « } . We
may assume, without loss of generality, that Si Φ 0 . Then, by Lemma
3.2,

(3)
-2

1=0

n-l-2 η

in the determinants in (3) j runs from j = 2 to j = n forming the
2nd up to the n th row of them. In obtaining (3) we also used the
fact that s\ — s\(ζ, z) is holomorphic in ζ (throughout this proof
0 = dζ). Next, multiplying the j th-rows of each determinant in (3)
(2 < j < n) by Sj and adding them to the first row of it we obtain, in
view of (2),

n-2

(4)
ι=o

1 1

/

da*

n-l-2-]

0 ΛCύζ{s).
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Applying d = dζ to both sides of (4) and using the fact that φ is
holomorphic in ζ, we obtain

c' nΛ
' == ψv /

1 1=0

I n-l-21

0 1 0 0

dσ* τ* dσ* dτ* _,
I n-l-lΛ

Λ COζ(s)

det 1 0 0 0

Lσ* dτ* dσ* dτ* Δ

ΛCOζ(s)

or, after a computation,

(5) dη[s '*^= -φ

I n-l-i

n-\

/+i n-l-l

^ * , 5τJ])Λωc(j)

«-i

:!lΛωrW;= C-^φv det[fσ*] Λ ωζ(s) -C^φv

all the determinants in (5) are (n -1) x (n -1) and j runs from j = 2
to j = n forming their (n - 1) rows. Now we claim that

(6)

and

n-\

|<de,([aσ

n-\

- d e t I dτ*

Λ

= 0 .

First let us prove (6). It follows from the definition of K^s"'^ and
the relations between Sj and σj (exactly as in the proof of Lemma
2.2) that

σ*sι

Therefore, in view of (2),

dσ*

n-\ 1

σ* dσ*jΛ

ΛCύζ(s).

Λ COζ(s)

which immediately implies (6).
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Similarly, to prove (7) we write its left-hand side (in view of the
relation between τ* and t*) as follows:

n-\ n-\

(8) 1 άt\{ϋτ)} = ((ί*, j»-«det([/;, 1ϊt*rj={).

Let h*j (1 < / < p, 1 < j < n) be the expressions of A* with respect
to the local coordinates (U9 χ), i.e.,

7 = 1

Recalling that t* = Σj)

i=x(hι•-Έi{z))h* we obtain

(9) fj^ihi-hMWj and dq
i=\ /=1

since h*j are holomorphic in ζ. Now to prove (7) we distinguish two
cases:

1st case: p < n - 2 in this case

(10) dtjι Λ- /\dtJni = 0

for 1 < 7i < < jn-χ < n this follows from (9); but (10) and (8)
imply (7) in this case.

2nd case: p — n-1 in this case, substituting (9) into the right-hand
side of (8), we obtain

n-\

(11) det[ί), dt)]n

j=

. . . ,tpj

xdhi Λ -Λdhp = 0;

since (11) and (8) imply (7), the proof of (7) is complete. Finally (7),
(6) and (5) imply the formula of the theorem in the case φ(ζ, z) Φ 0
and, since the set {φ(ζ, z) Φ 0} is dense, this completes the proof of
the theorem.

REMARK. AS we pointed out before, η^ ' ^ depends on the choice
of {h*}p

i=ι in the case p < n - 2, however, this dependence is not
essential in a sense which we will make precise now.
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Let [η^ '^] denote the cohomology class of η^ ' ^ in the Dolbault

cohomology group H^'n~2\vz - Z(h- h(z))) where Vz is an open
o

neighborhood of dD with Vz c WnDom(s*( , z)) (here z is fixed,

as usual, and ζ is the variable).

Let {h*Y :WxW -+T*(X), / = 1, . . . ,/?, be holomorphic maps,

with (A )'(C, Z) e ΓZ*(X) and <(/**)', s) = ψ (Λ/ -Λ, (z)) , i.e., another

choice for Λ; and let (ηf *u)y denote the 0-primitive of ^ ( r >*) in

^ n Dom(.y*( , z)) - Z(Λ - h(z)) associated to (h*)'. We claim that

in other words, the cohomology class [η^ 5Ϊ/)] is independent of the
choice of hj . To prove this we argue as follows. Let ψ(ζ, z) be a C°°
function with 0 < ψ(ζ, z) < 1, having compact support contained in
WnDom(s*(', z)), which is identically one in a neighborhood of Ύz .
Let s(ζ, z) denote a Leray section for (D, s, φ) with D o m ^ , z)) =
W and defined for z eW such a Leray section always exists (see [4,
p. 164]; let us point out that s(ζ, z) is not the complex conjugate of
s(ζ, z)). Define

+ (s(ζ, z), s(ζ, z))Ί(ζ'' Z)\

where v\ = max(^o? v*) - Since

it follows that λ* is a Leray section for (D,s, φ)\ thus we may as-

sociate to λ* the d-primitives η% 'v) and [η^ 'v))' of A^^*^), in

W - Z(h - Λ(z)), corresponding to A* and (Λ*) ;. It follows from

Theorem 3.1 that

d(ηf'u) - (ηf9U))') = &*•*>") - K(λ*>v) = 0 in W - Z(h - h{z))

but W - Z(h - h(z)) is (n - 3)-complete (here p < n - 2; see [7,
p. 435]) whence Hn~2(W - Z(h - Λ(z)), ^ w ) = 0 (see [1, p. 250]);
therefore, from Dolbault's theorem, there exists an (Λ , n- 3)-form θ
in ί Γ - Z ( Λ - Λ ( z ) ) with

ηf^-iηf^y-OΘ.
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Since ψ = 1 in a neighborhood of Vz , it follows from the proof of
Lemma 3.2 that

{if v))'= {$' v))' inVz-Z{h-h{z))

whence

nΐ'v)-(nΐ'v))' = dθ in vz-z(h-h(z)).
This proves the claim that the cohomology class [η^ 5ίy)] does not
depend on the choice of h*. Notice also that if Γ is an open subset
of dD with T c 3D- Z(h - h{z)) and / is a smooth CR-function
on Γ then

whence we obtain

f fηf Λ-, z) = [Aηf Λ-,
J C J C

for every (In - 2)-dimensional cycle c in Γ.
The following theorem is a generalization of the Henkin-Leiterer

version of the Cauchy-Fantappie formula; its proof is similar to the
proof of Proposition 2.4 in [6, p. 185].

THEOREM 3.2. Let D be a domain on the Stein manifold X and
let h, W, K^m^ and ηf >υ) be as in Theorem 3.1. Let z e D
and let Γ c dD be an open subset of dD with dT smooth and so
that Γ D (dD) n Z(h - h{z)). Then for f eC(TuD)n 0{D), i.e.,
continuous on Γ u D and holomorphic in D, we have the following
representation formula:

f(z) = I f(ζ)K^'v\ζ, z)-\ f{ζ)ηΐ'"\ζ, z).
JζeT Jζ

Proof. Let G c D be an open subset of D so that dGndD = Γ
and D n Z(h - h{z)) c G. We also assume that dG = Γ u Γo where
Γ0 = a G n 5 c W / . Then, by [4, Theorem 4.3.4], we have

(1) f(z)= ί fK
JdG



134 TELEMACHOS HATZIAFRATIS

Since Γo c W - Z(h - h(z)) it follows from Theorem 3.1, Stokes's
theorem and the fact that / is holomorphic in D that

(2) f fK^-%,z)= [ frξ'v\;z)
JΓo Jar*

/ ΐ
dT

Now the formula of the theorem follows from (1) and (2).

REMARK. If Γ = dD then dT = 0 and the formula of Theorem
3.2 reduces to that of [4, Theorem 4.3.4].

4. Extending CR-functions. Let (Z>, s, φ), W and s* be as in §3;
we assume furthermore that s*(ζ, z) is defined, as a Leray section,
for all (C, z) eWxW. Let E be a closed subset of dD so that each
connected component of dD-E contains a peak point for #(D), i.e.,
a point Co for which there exists age (?(D) with |̂ (Co)l > \s(ζ)\
for C e D - {Co}. For each z e W - E let

^ z = {h : PΓ ^ C"" 2 : h holomorphic, z e Z(h) and Z(Λ) Π £ = 0}.

We can now state a criterion for extendability of CR-functions defined
on ΘD-E; a, version of it in Cn , with the Bochner-Martinelli kernel
in place of the Henkin-Leiterer type kernel, is in [2]; its proof is based
on ideas from [6] and [5].

THEOREM 4.1. With notation as above, suppose that 3*z φ <Z> for
each z eW-E and let f be a smooth CR-function on dD-E. Then
a necessary and sufficient condition that f extends to a holomorphic
function in D is

(1) ί f(C)vf'U)(C z) = ί f(ζ)η?'u\ζ, z)
JζedΓ JζedΓ

for A, g e &>z, Γ D (dD) Π (Z(A) U Z(g)) open (in dD) with Γ c
dD-E and <9Γ smooth and zeW -E.

REMARKS, (i) Of course η^ ' ^ and η^g ' ^ are 5-primitives of
K(s*>") in WnΌom(s*( , z))-Z(h-h(z)) and ΪFnDom(s*( , z))-
Z(g ~ g{z)) respectively. As we pointed out before, in the remark
following the proof of Theorem 3.1, given Γ, the value of the integral

LζedΓ
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is uniquely determined by h, i.e., it is independent of the choice
of h].

(ii) Observe that if F has the properties required for Γ then, by
Theorem 3.1 and Stokes's theorem,

. . . . „ ' \ζ, z ) - / f ( ζ ) η (

h ' >(ζ, z)
ζedΓ JζedΓ

with the various parts of ( F - Γ) U (Γ - P ) appropriately oriented;
therefore if (1) holds for Γ it will also hold for P .

Proof of Theorem 4.1. First the necessity of (1) follows immediately
from Theorem 3.2.

Now we prove sufficiency of (1), i.e., we assume that (1) holds and
we prove that / extends to a holomorphic function in D. To this
end let z eW - dD and let h e 3d

z choose Γ and define

(2) F(z) = ί /(C)tf<f"'">(C, z) - f f(ζ)ηf^\ζ, z).
JζeΓ JζedΓ

Condition (1) now guarantees that F(z) is well-defined, i.e., it is in-
dependent of the various choices (basically of the choice of h , in view
of the previous remarks). Next we prove that F is holomorphic; for
this we compute Ί)ZF .

(3) dzF(z) = ί f(QdzK^^(ζ9 z)-f f(ζ)dzηf'"\ζ9 z ) .
JζeΓ JζedΓ

This computation is justified, in part, by the explicit formula for
η[s 'v) notice that if h e ^z then h - h(zf) e 3°z> for z' close
to z thus, in (3),

the point here is that h , too, depends on z . But

(4) dzK^^(ζ,z) = dζK(ζ,z)

where
n-2

det[s*, dzs*, 9r5* ] Λ ωc(s)
K(ζ, z) = -(n - 1 ) 4 > " L^' ( s l j ) n

] —

(with the notation of §3; in particular we make use of a local coor-
dinate system (£/, χ) as in §3; the independence of K(ζ, z) of the
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choice of (U, χ) is proved exactly as Lemma 3.1); this is proved in
[3, p. 107]; K(ζ, z) is defined for z e W and ζ e W - {z}.

But, by Theorem 3.1,

(5) ζf
It follows from (4) and (5) that

dζ[dzηf>ι/)-K] = 0 in W-Z(h).

Since W - Z(h) is (n - 3)-complete, it follows that there exists an
(n, n - 3)-form μ(£, z) in ζ, whose coefficients are (0, l)-forms in
z (locally in (£/, χ)), so that

(6) dzηf'iy)-K = dζμ in W-Z(h)

(this argument is similar to the remark following the proof of Theorem
3.1).

But (3), in view of (4) and (6), becomes:

dzF= ί fdζK- f fK- ί fdζμ,
Jr JdT JdT

from which, by Stokes's theorem and the fact that / is a CR-function
we obtain dzF = 0 thus F is holomorphic in W-dD. An argument
similar to that in [6, pp. 188-190] proves that F = 0 in W - D and
that F\D is indeed a holomorphic extension of / . For the Plemelj
type formula in the setting of Stein manifolds, which is required here,
see [5].

This completes the proof of Theorem 4.1.

Comments, (i) The point of using the differential form K in the

proof of Theorem 4.1 is that, although η^ ' ^ is not defined on Z{h),

dzη^ ' ^ is <9ζ-cohomologous to K in a neighborhood of <9Γ, and

K is defined in W - {z} .

(ii) A point which may be investigated further is to find geometric
conditions under which equality (1) holds; for example, if
dimc(Z(Λ) n Z(g)) > 1, does it follow that (1) holds?

(iii) If h, q e &z and hx = = hn-2 and gx = = gn-2 {n >

3) then the difference ηf'^-ηf'^ is a-exactin W-(Z(h)υZ(g))

(this is proved in [5]), which implies that (1) holds in this case.
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