EXPLICIT $\bar{\partial}$-PRIMITIVES OF HENKIN-LEITERER KERNELS ON STEIN MANIFOLDS

Telemachos Hatziafratis

Abstract

In this paper we construct explicitly $\bar{\partial}$-primitives and use them to obtain a representation formula for holomorphic functions and a theorem on extendability of CR-functions.

1. Introduction. Let X be a Stein manifold of dimension n, h : $X \rightarrow \mathbb{C}^{p} \quad(p \leq n-1)$ a holomorphic map and let $Z(h)=\{\zeta \in X:$ $h(\zeta)=0\}$. If $K(\zeta, z)=K^{\left(s^{*}, \nu\right)}(\zeta, z)$ is a Henkin-Leiterer type kernel on X (see $\S 2$ for notation) then $K(\zeta, z)$ is a $\bar{\partial}$-closed $(n, n-1)$ form in ζ, for a fixed z, i.e., $\bar{\partial}_{\zeta} K(\zeta, z)=0$, whose singularity occurs at $\zeta=z$. On the other hand, since $X-Z(h)$ is $(n-2)$-complete (see Sorani and Villani [8, p. 435]), it follows that the cohomology group

$$
H^{n-1}\left(X-Z(h), \mathscr{O}^{n}\right) \cong H_{\bar{\partial}}^{(n, n-1)}(X-Z(h))
$$

vanishes (see Andreotti and Grauert [1, p. 250]). Therefore, for a fixed $z \in Z(h)$, there exists an $(n, n-2)$-form $\eta(\zeta, z)$, in $X-Z(h)$, so that

$$
\bar{\partial}_{\zeta} \eta(\zeta, z)=K(\zeta, z)
$$

For some problems, however, it is important to have explicit formulas for such $\bar{\partial}$-primitives, η, of K; the problems we have in mind are related to integral representations (see for example Stout [9] and Hatziafratis [2]) and extendability of CR-functions (see for example Lupacciolu [6], Tomassini [11] and Stout [10]). Since such forms $\eta(\zeta, z)$ are not unique, their dependence on z, for example, may be difficult to control with cohomological arguments.

In this paper we construct explicitly such $\bar{\partial}$-primitives and use them to obtain a representation formula for holomorphic functions and a theorem on extendability of CR-functions.

The arrangement of the paper is as follows. First in $\S 2$ we review the main points of the Henkin-Leiterer construction; with X and h as above we consider a domain $D \subset X$, a Stein neighborhood W of \bar{D} and we briefly discuss what a Leray section $s^{*}=s^{*}(\zeta, z)$ and the associated Henkin-Leiterer kernel $K(\zeta, z)=K^{\left(s^{*}, \nu\right)}(\zeta, z)$ are.

Then in $\S 3$ we carry out the construction of the $\bar{\partial}$-primitives $\eta_{h}(\zeta, z)$ and in Theorem 3.1 we prove that indeed $\bar{\partial}_{\zeta} \eta_{h}(\zeta, z)=K(\zeta, z)$ for $\zeta \in W-Z(h-h(z)), \zeta, z$ being always so that $s^{*}(\zeta, z)$ is defined. (At this point we would like to point out that we were led to consider this construction by the paper of Laurent-Thiebaut [5] in which the case $p=1$ is studied.)

Our main application of this construction is a Cauchy type integral representation formula for holomorphic functions. Fix a $z \in D$, we consider an open set $\Gamma \subset \partial D$ (open in ∂D) with $\partial \Gamma$ smooth so that $\Gamma \supset(\partial D) \cap Z(h-h(z))$ and we prove (Theorem 3.2) that for $f \in C(\bar{\Gamma} \cup D) \cap \mathcal{O}(D)$ we have

$$
f(z)=\int_{\zeta \in \Gamma} f(\zeta) K(\zeta, z)-\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}(\zeta, z) .
$$

This integral formula expresses the value of f at z in terms of its values on a part of the boundary of D namely $\bar{\Gamma}$. In particular it provides a formula for extending CR-functions from parts of the boundary (if such extensions exist); this is the point of Theorem 4.1 in $\S 4$. This theorem gives a necessary and sufficient condition for the extendability of a CR-function f from a part of the boundary of D to a holomorphic function in D; roughly speaking the condition says that certain integrals involving the CR-function and taken over certain cycles which lie in the domain (on ∂D) of f should agree.

Finally with regards to the Theorem 3.2 we mention the work of Patil [7] where a different method was devised for recovering, in some cases, an H^{2}-function from its boundary values on a set of positive measure.

Acknowledgments. I would like to thank Professors Lee Stout and Guido Lupacciolu for discussions related to this paper.
2. Henkin-Leiterer type kernels. In this section we will establish notation and recall the main points of the Henkin-Leiterer construction on Stein manifolds.

Let X be a Stein manifold of dimension n and let $T(X)$ denote its holomorphic tangent bundle with the fiber above $z(z \in X)$ denoted by $T_{z}(X)$. Then, following Henkin and Leiterer [4, Ch. 4], there exists a holomorphic map $s: X \times X \rightarrow T(X)$ and a holomorphic function $\varphi: X \times X \rightarrow \mathbb{C}$ so that
(i) $s(\zeta, z) \in T_{z}(X)$ for $(\zeta, z) \in X \times X$,
(ii) $s(z, z)=0$ and $s(\cdot, z)$ is a biholomorphic map from a neighborhood of $z \in X$ to a neighborhood of $0 \in T_{z}(X) \cong \mathbb{C}^{n}$,
(iii) $\varphi(z, z)=1$ and there exists a positive integer ν_{0} so that $\varphi^{\nu_{0}}(\zeta, z)\|s(\zeta, z)\|^{-2}$ is a C^{2}-function on $X \times X-\Delta=X \times X-\{(z, z)$: $z \in X\}$, for any norm $\|\cdot\|$ on $T(X)$; in particular $\varphi^{\nu}\|s\|^{-2}$ is of class C^{r} on $X \times X-\Delta$ provided that $\nu \geq \nu_{1}(r)$ for some integer $\nu_{1}(r)$.

Now fix $D \subset X$, a relatively compact domain in X with smooth boundary. Recall that a Leray section for (D, s, φ) is a C^{1}-map $s^{*}=s^{*}(\zeta, z)$ defined for $z \in D$ and for ζ in a neighborhood of ∂D, denoted by $\operatorname{Dom}\left(s^{*}(\cdot, z)\right)$ and depending on z, with values in $T^{*}(X)$, the holomorphic cotangent bundle of X, so that:
(i) $s^{*}(\zeta, z) \in T_{z}^{*}(X)\left(T_{z}^{*}(X)\right.$ denotes the fiber of $T^{*}(X)$ above $\left.z\right)$,
(ii) $\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle \neq 0$ whenever $\varphi(\zeta, z) \neq 0$ and
(iii) there is an integer ν^{*} so that the function

$$
\varphi^{\nu^{*}}(\zeta, z)\left(\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle\right)^{-1}
$$

is of class C^{1} for $(\zeta, z) \in V \times L$, for each compact subset L of D and where V is a neighborhood of ∂D, depending on L. Here $\langle\cdot, \cdot\rangle$ denotes the pairing of cotangent vectors with tangent vectors.

For examples of Leray sections, which always exist in the above setting, see [4, p. 165].

To a Leray section s^{*}, Henkin and Leiterer associate an $(n, n-1)$ form in the following way:

$$
K^{\left(s^{*}, \nu\right)}(\zeta, z)=\varphi^{\nu}(\zeta, z) \frac{\omega_{\zeta}^{\prime}\left(s^{*}(\zeta, z)\right) \wedge \omega_{\zeta}(s(\zeta, z))}{\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle^{n}}
$$

where ν is assumed to be large enough so that $K^{\left(s^{*}, \nu\right)}(\zeta, z)$ is continuous in each $V \times L \quad\left(\nu \geq n \nu^{*}\right.$ is enough $)$; the differential forms $\omega_{\zeta}^{\prime}\left(s^{*}(\zeta, z)\right)$ are defined in terms of local coordinates (U, χ) at z; let $\left(s_{1}, \ldots, s_{n}\right)$ and $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ be the expressions of s and s^{*} in terms of the local coordinate system (U, χ), i.e.,

$$
s(\zeta, z)=\sum_{j=1}^{n} s_{j}(\zeta, z)\left(\frac{\partial}{\partial \chi_{j}}\right)_{z} \quad \text { and } \quad s^{*}(\zeta, z)=\sum_{j=1}^{n} s_{j}^{*}(\zeta, z)\left(d \chi_{j}\right)_{z} ;
$$

here $\left\{\left(\partial / \partial \chi_{j}\right)_{z}\right\}_{j=1}^{n}$ is the usual basis of $T_{z}(X)$ with respect to (U, χ) and $\left\{\left(d \chi_{j}\right)_{z}\right\}_{j=1}^{n}$ is the corresponding basis for $T_{z}^{*}(X)$.

Then

$$
\omega_{\zeta}(s(\zeta, z))=d_{\zeta} s_{1}(\zeta, z) \wedge \cdots \wedge d_{\zeta} s_{n}(\zeta, z)
$$

and

$$
\omega_{\zeta}^{\prime}(s(\zeta, z))=c_{n} \sum_{j=1}^{n}(-1)^{j-1} s_{j}^{*}(\zeta, z) \bigwedge_{k \neq j} d_{\zeta} s_{k}^{*}(\zeta, z)
$$

where $c_{n}=(-1)^{n(n-1) / 2}(n-1)!/(2 \pi i)^{n}$.

Of course by the way $\omega_{\zeta}(s(\zeta, z))$ and $\omega_{\zeta}^{\prime}\left(s^{*}(\zeta, z)\right)$ are defined, they depend on the choice of the local coordinates (U, χ). It turns out, however, that their wedge product and therefore $K^{\left(s^{*}, \nu\right)}(\zeta, z)$ are independent of the choice of local coordinates, i.e., $K^{\left(s^{*}, \nu\right)}(\zeta, z)$ is a globally defined ($n, n-1$)-form, see [4, p. 166].

Remark. The discussion, given in $\S 1$, in which we justify by a cohomological argument the existence of $\bar{\partial}$-primitives, $\eta(\zeta, z)$, of $K(\zeta, z)=K^{\left(s^{*}, \nu\right)}(\zeta, z)$, applies for a particular class of Leray sections, the ones which are defined for $(\zeta, z) \in X \times X$, i.e., $D=X$ and $\operatorname{Dom}\left(s^{*}(\cdot, z)\right)=X$; the point here is that, in the general case, $\operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h)$ is not $(n-2)$-complete; however it is possible to give a cohomological argument to prove existence of the $\bar{\partial}$-primitives in the general case too; this argument amounts to modifying, in a way, $s^{*}(\zeta, z)$ so that the argument given in $\S 1$ applies (see also the remark following the proof of Theorem 3.1 below).
3. Construction of the $\bar{\partial}$-primitives. With the notation of $\S 2$, let us consider a holomorphic map $h: W \rightarrow \mathbb{C}^{p}, p \leq n-1$, where W is a Stein neighborhood of \bar{D}; let $Z(h-h(z))$ denote the zero-set of $h-h(z)$, i.e.,

$$
Z(h-h(z))=\{\zeta \in W: h(\zeta)=h(z)\} .
$$

In this section we will construct a $\bar{\partial}$-primitive of $K^{\left(s^{*}, \nu\right)}(\zeta, z)$ in $W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$; in this construction, z is a fixed point of D; the dependence of the construction on z, however, will be immediately clear, because of the explicit way the construction is carried out.

According to [4, Lemma 4.7.2] there exist holomorphic maps h_{i}^{*} : $W \times W \rightarrow T^{*}(X), i=1, \ldots, p$, so that $h_{i}^{*}(\zeta, z) \in T_{z}^{*}(X)$ and

$$
\left\langle h_{i}^{*}(\zeta, z), s(\zeta, z)\right\rangle=\varphi(\zeta, z) \cdot\left(h_{i}(\zeta)-h_{i}(z)\right)
$$

for $(\zeta, z) \in W \times W$ and $i=1, \ldots, p$. Using such holomorphic maps h_{i}^{*} we now define a C^{∞}-map $t^{*}: W \times W \rightarrow T^{*}(X)$ in the following way:

$$
t^{*}(\zeta, z)=\sum_{i=1}^{p}\left(\bar{h}_{i}(\zeta)-\bar{h}_{i}(z)\right) h_{i}^{*}(\zeta, z) ;
$$

then it is clear that t^{*} is a well-defined C^{∞}-map with $t^{*}(\zeta, z) \in$ $T_{z}^{*}(X)$.

Also notice that

$$
\begin{equation*}
\left\langle t^{*}(\zeta, z), s(\zeta, z)\right\rangle=\varphi(\zeta, z) \sum_{i=1}^{p}\left|h_{i}(\zeta)-h_{i}(z)\right|^{2} \tag{I}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z) \\
& \quad=-c_{n}^{\prime} \varphi^{\nu-n+1} \sum_{l=0}^{n-2} \varphi^{\varphi} \frac{\operatorname{det}[s_{j}^{*}, t_{j}^{*}, \overbrace{\partial_{\zeta} s_{j}^{*}}^{l}, \overbrace{\overbrace{\zeta} t_{j}^{*}}^{n-l-2}] \wedge \omega_{\zeta}(s(\zeta, z))}{\left(\left\langle s^{*}, s\right\rangle^{l^{+1}\left(\sum_{i=1}^{p}\left|h_{i}(\zeta)-h_{i}(z)\right|^{2}\right)^{n-l-1}}\right.}
\end{aligned}
$$

where $c_{n}^{\prime}=(-1)^{n(n-1) / 2}(2 \pi i)^{-n} ;\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ and $\left(t_{1}^{*}, \ldots, t_{n}^{*}\right)$ are the expressions of $s^{*}(\zeta, z)$ and $t^{*}(\zeta, z)$, respectively, with respect to the local coordinates (U, χ) considered in $\S 2$; let us point out that $\omega_{\zeta}(s(\zeta, z))$, in the definition of $\eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)$ above, is computed with respect to the same coordinates (U, χ); thus if $\left(s_{1}, \ldots, s_{n}\right)$ are the expressions of $s(\zeta, z)$ with respect to (U, χ) then $\omega_{\zeta}(s(\zeta, z))=$ $\partial_{\zeta} s_{1} \wedge \cdots \wedge \partial_{\zeta} s_{n}$. In the determinants which appear in the definition of $\eta_{h}^{\left(s^{*}, \nu\right)}, j$ runs from $j=1$ to $j=n$ forming the n rows of them.

Although the differential form $\eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)$ is introduced locally, it turns out that it is invariantly defined since we have

Lemma 3.1. $\eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)$ is a globally defined ($n, n-1$)-form, i.e., it is independent of the choice of local coordinates, with $\zeta \in W \cap$ $\operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$ and a fixed $z \in D$.

Proof. Let $(\tilde{U}, \tilde{\chi})$ be another coordinate system at z; let $\left(\tilde{s}_{1}^{*}, \ldots\right.$, $\left.\tilde{s}_{n}^{*}\right),\left(\tilde{t}_{1}^{*}, \ldots, \tilde{t}_{n}^{*}\right)$ and $\left(\tilde{s}_{1}, \ldots, \tilde{s}_{n}\right)$ be the expressions of s^{*}, t^{*} and s, respectively, with respect to $(\tilde{U}, \tilde{\chi})$. Then

$$
\begin{aligned}
& \left(\tilde{s}_{j}\right)=G \cdot\left(s_{j}\right), \\
& \left(\tilde{s}_{j}^{*}\right)=\left(G^{\prime}\right)^{-1} \cdot\left(s_{j}^{*}\right), \\
& \left(\tilde{t}_{j}^{*}\right)=\left(G^{\prime}\right)^{-1} \cdot\left(t_{j}^{*}\right),
\end{aligned}
$$

where $G=G(z)$ is the transition matrix from (U, χ) to $(\tilde{U}, \tilde{\chi})$ for the holomorphic vector bundle $T(X)$, in which case $\left(G^{\prime}\right)^{-1}$, the inverse of the transpose of G, is the transition matrix from (U, χ) to ($\widetilde{U}, \tilde{\chi}$) for the bundle $T^{*}(X)$; of course $G=G(z)$ depends only on z; here $\left(s_{j}\right)$ denotes the transpose of $\left(s_{1}, \ldots, s_{n}\right)$ and similarly
for the others; the dot denotes matrix multiplication. Therefore,

$$
\begin{aligned}
& \left(\partial_{\zeta} \tilde{s}_{j}\right)=G \cdot\left(\partial_{\zeta} s_{j}\right), \\
& \left(\bar{\partial}_{\zeta} \hat{s}_{j}^{*}\right)=\left(G^{\prime}\right)^{-1} \cdot\left(\bar{\partial}_{\zeta} s_{j}^{*}\right), \\
& \left(\bar{\partial}_{\zeta} \tilde{t}_{j}^{*}\right)=\left(G^{\prime}\right)^{-1} \cdot\left(\bar{\partial}_{\zeta} t_{j}^{*}\right) .
\end{aligned}
$$

It follows from the above relations and properties of determinants with entries differential forms (see [3, p. 94]) that

$$
\operatorname{det}[\tilde{s}_{j}^{*}, \tilde{t}_{j}^{*}, \overbrace{\bar{\partial}_{\zeta} \tilde{s}_{j}^{*}}^{l}, \overbrace{\bar{\partial}_{\zeta} \tilde{t}_{j}^{*}}^{n-l-2}]=\operatorname{det}\left[\left(G^{\prime}\right)^{-1}\right] \operatorname{det}[s_{j}^{*}, t_{j}^{*}, \overbrace{\bar{\partial} s_{j}^{*}}^{l}, \overbrace{\bar{\partial} t_{j}^{*}}^{n-l-2}]
$$

and

$$
\partial_{\zeta} \tilde{s}_{1} \wedge \cdots \wedge \partial_{\zeta} \tilde{s}_{n}=\operatorname{det}(G) \partial_{\zeta} s_{1} \wedge \cdots \wedge \partial_{\zeta} s_{n}
$$

Since $\operatorname{det}\left[\left(G^{\prime}\right)^{-1}\right]=[\operatorname{det}(G)]^{-1}$, it follows that $\eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)$ is, indeed, independent of local coordinates. This completes the proof of the lemma.

Remark. The holomorphic maps $h_{i}^{*}(i=1, \ldots, p)$ are by no means unique; thus the differential form $\eta_{h}^{\left(s^{*}, \nu\right)}$ depends on the choice of h_{i}^{*}. We will come back to this point later.

Lemma 3.2. Let σ^{*} and τ^{*} be defined, for (ζ, z) with $\varphi(\zeta, z) \neq 0$ and $\zeta \in W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$, as follows:

$$
\begin{aligned}
& \sigma^{*}(\zeta, z)=\left(\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle\right)^{-1} \cdot s^{*}(\zeta, z) \quad \text { and } \\
& \tau^{*}(\zeta, z)=\left(\left\langle t^{*}(\zeta, z), s(\zeta, z)\right\rangle\right)^{-1} \cdot t^{*}(\zeta, z) .
\end{aligned}
$$

Then

$$
\eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)=-c_{n}^{\prime} \cdot \varphi^{\nu} \cdot \sum_{l=0}^{n-2} \operatorname{det}[\sigma_{j}^{*}, \tau_{j}^{*}, \overbrace{\bar{\partial}_{\zeta} \sigma_{j}^{*}}^{l}, \overbrace{\bar{\partial}_{\zeta} \tau_{j}^{*}}^{n-l-2}] \wedge \omega_{\zeta}(s)
$$

where σ_{j}^{*} and τ_{j}^{*} are the expressions of σ^{*} and τ^{*} with respect to the local coordinates (U, χ) and $\omega_{\zeta}(s)=\omega_{\zeta}(s(\zeta, z))$ is the differential form as in the definition of $\eta_{h}^{\left(s^{*}, \nu\right)}$ with respect to the same coordinates (U, χ).

Proof. First notice that σ^{*} and τ^{*} are well-defined since $\varphi(\zeta, z) \neq$ 0 implies $\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle \neq 0$ and together with $\zeta \notin Z(h-h(z))$, they imply also that $\left\langle t^{*}(\zeta, z), s(\zeta, z)\right\rangle \neq 0$; this is because of (I). It follows from the definition of σ^{*} and τ^{*} that

$$
\begin{aligned}
& \bar{\partial}_{\zeta} \sigma_{j}^{*}=\left(\left\langle s^{*}, s\right\rangle\right)^{-1} \bar{\partial} s_{j}^{*}+s_{j}^{*} \bar{\partial}_{\zeta}\left[\left(\left\langle s^{*}, s\right\rangle\right)^{-1}\right] \quad \text { and } \\
& \bar{\partial}_{\zeta} \tau_{j}^{*}=\left(\left\langle t^{*}, s\right\rangle\right)^{-1} \bar{\partial} t_{j}^{*}+t_{j}^{*} \bar{\partial}_{\zeta}\left[\left(\left\langle t^{*}, s\right\rangle\right)^{-1}\right] .
\end{aligned}
$$

Now the lemma follows from the above equations, from (I) and properties of determinants.

We are ready now to prove that $\eta_{h}^{\left(s^{*}, \nu\right)}$ is a $\bar{\partial}_{\zeta}$-primitive of $K^{\left(s^{*}, \nu\right)}$. More precisely we have

Theorem 3.1. Let D be a domain on the Stein manifold X, $\operatorname{dim}_{\mathbb{C}} X=n$, and $h: W \rightarrow \mathbb{C}^{p}$ a holomorphic map, $p \leq n-1$, where W is a Stein neighborhood of \bar{D}. Let $s^{*}=s^{*}(\zeta, z)$ and $K^{\left(s^{*}, \nu\right)}$ be as in $\S 2$ and let $\eta_{h}^{\left(s^{*}, \nu\right)}$ be the above constructed differential form. Then, for a fixed $z \in D$, we have

$$
\bar{\partial}_{\zeta} \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)=d_{\zeta} \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)=K^{\left(s^{*}, \nu\right)}(\zeta, z)
$$

for $\zeta \in W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$.
Proof. Let us consider first (ζ, z) with $\varphi(\zeta, z) \neq 0$. Then, by the definition of σ^{*} and τ^{*},

$$
\begin{equation*}
\left\langle\sigma^{*}, s\right\rangle=1 \quad \text { and } \quad\left\langle\tau^{*}, s\right\rangle=1 \tag{1}
\end{equation*}
$$

Working always with a fixed coordinate system (U, χ) at $z,(1)$ can be written as

$$
\begin{equation*}
\sum_{j=1}^{n} \sigma_{j}^{*} s_{j}=1 \quad \text { and } \quad \sum_{j=1}^{n} \tau_{j}^{*} s_{j}=1 \tag{2}
\end{equation*}
$$

It follows from (2) that $s_{j} \neq 0$ for at least one $j \in\{1, \ldots, n\}$. We may assume, without loss of generality, that $s_{1} \neq 0$. Then, by Lemma 3.2,
(3)

$$
\eta_{h}^{\left(s^{*}, \nu\right)}=-\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} \operatorname{det}[\begin{array}{ccc}
\sigma_{1}^{*} s_{1} & \tau_{1}^{*} s_{1} \\
\sigma_{j}^{*} & \overbrace{\bar{\partial}\left(\sigma_{j}^{*}\right.}^{\bar{\partial} s_{j}^{*}}
\end{array} \overbrace{\overline{\bar{\partial}}\left(\frac{\left.\tau_{1}^{*} s_{1}\right)}{\bar{\partial} \tau_{j}^{*}}\right.}^{n-l-2}] \wedge \omega_{\zeta}(s) ;
$$

in the determinants in (3) j runs from $j=2$ to $j=n$ forming the 2nd up to the nth row of them. In obtaining (3) we also used the fact that $s_{1}=s_{1}(\zeta, z)$ is holomorphic in ζ (throughout this proof $\bar{\partial}=\bar{\partial}_{\zeta}$). Next, multiplying the j th-rows of each determinant in (3) ($2 \leq j \leq n$) by s_{j} and adding them to the first row of it we obtain, in view of (2),

$$
\eta_{h}^{\left(s^{*}, \nu\right)}=-\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \overbrace{0}^{l} & \overbrace{0}^{n-l-2} \tag{4}\\
\sigma_{j}^{*} & \tau_{j}^{*} & \bar{\partial} \sigma_{j}^{*} & \bar{\partial} \tau_{j}^{*}
\end{array}\right] \wedge \omega_{\zeta}(s) .
$$

Applying $\bar{\partial}=\bar{\partial}_{\zeta}$ to both sides of (4) and using the fact that φ is holomorphic in ζ, we obtain

$$
\begin{aligned}
& \bar{\partial} \eta_{h}^{\left(s^{*}, \nu\right)}=-\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2}\left(\operatorname{det}\left[\begin{array}{ccccc}
0 & 1 & \overbrace{0}^{l} \\
\bar{\partial} \sigma_{j}^{*} & \tau_{j}^{*} & \bar{\partial} \sigma_{j}^{*} & \overbrace{0}^{\bar{\partial} \tau_{j}^{*}}
\end{array}\right] \wedge \omega_{\zeta}(s)\right. \\
&\left.+\operatorname{det}\left[\begin{array}{ccccc}
n-l-2 \\
1 & 0 & \overbrace{0}^{l} & \overbrace{0}^{n-l-2} \\
\sigma_{j}^{*} & \bar{\partial} \tau_{j}^{*} & \bar{\partial} \sigma_{j}^{*} & \bar{\partial} \tau_{j}^{*}
\end{array}\right] \wedge \omega_{\zeta}(s)\right)
\end{aligned}
$$

or, after a computation,
(5) $\bar{\partial} \eta_{h}^{\left(s^{*}, \nu\right)}=-\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2}(\operatorname{det}[\overbrace{\bar{\partial} \sigma_{j}^{*}}^{l}, \overbrace{\bar{\partial} \tau_{j}^{*}}^{n-l-1}]-\operatorname{det}[\overbrace{\bar{\partial} \sigma_{j}^{*}}^{l+1}, \overbrace{\bar{\partial} \tau_{j}^{*}}^{n-l-2}]) \wedge \omega_{\zeta}(s)$

$$
=\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \operatorname{det}[\overbrace{\partial \bar{\partial} \sigma_{j}^{*}}^{n-1}] \wedge \omega_{\zeta}(s)-\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \operatorname{det}[\overbrace{\bar{\partial} \tau_{j}^{*}}^{n-1}] \wedge \omega_{\zeta}(s) ;
$$

all the determinants in (5) are $(n-1) \times(n-1)$ and j runs from $j=2$ to $j=n$ forming their ($n-1$) rows. Now we claim that

$$
\begin{equation*}
\frac{c_{n}^{\prime}}{s_{1}} \varphi^{\nu} \operatorname{det}([\overbrace{\partial \sigma_{j}^{*}}^{n-1}]_{j=2}^{n}) \wedge \omega_{\zeta}(s)=K^{\left(s^{*}, \nu\right)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{s_{1}} \operatorname{det}[\overbrace{\bar{\partial} \tau_{j}^{*}}^{n-1}]_{j=2}^{n}=0 . \tag{7}
\end{equation*}
$$

First let us prove (6). It follows from the definition of $K^{\left(s^{*}, \nu\right)}$ and the relations between s_{j}^{*} and σ_{j}^{*} (exactly as in the proof of Lemma 2.2) that

$$
K^{(s *, \nu)}=\frac{c_{n}^{\prime} \varphi^{\nu}}{s_{1}} \operatorname{det}\left(\left[\begin{array}{cc}
\sigma_{1}^{*} s_{1} & \overbrace{\bar{\partial}\left(\sigma_{1}^{*} s_{1}\right)}^{n-1}]_{j}^{\partial} \sigma_{j}^{*}
\end{array}\right]_{j=2}^{n}\right) \wedge \omega_{\zeta}(s) .
$$

Therefore, in view of (2),

$$
K^{\left(s^{*}, \nu\right)}=\frac{c_{n}^{\prime} \varphi^{\nu}}{s_{1}} \operatorname{det}\left(\left[\begin{array}{cc}
& \overbrace{0}^{n-1} \\
1 & \sigma_{j}^{*} \\
\sigma_{\partial}^{*} \sigma_{j}^{*}
\end{array}\right]_{j=2}^{n}\right) \wedge \omega_{\zeta}(s)
$$

which immediately implies (6).

Similarly, to prove (7) we write its left-hand side (in view of the relation between τ^{*} and t^{*}) as follows:

$$
\begin{equation*}
\frac{1}{s_{1}} \operatorname{det}[\overbrace{\bar{\partial} \tau_{j}^{*}}^{n-1}]=\left(\left\langle t^{*}, s\right\rangle\right)^{-n} \operatorname{det}([t_{j}^{*}, \overbrace{\left.\bar{\partial} t_{j}^{*}\right]_{j=1}^{n}}^{n-1}) . \tag{8}
\end{equation*}
$$

Let $h_{i j}^{*}(1 \leq i \leq p, 1 \leq j \leq n)$ be the expressions of h_{i}^{*} with respect to the local coordinates (U, χ), i.e.,

$$
h_{i}^{*}(\zeta, z)=\sum_{j=1}^{n} h_{i j}^{*}(\zeta, z)\left(d \chi_{j}\right)_{z} .
$$

Recalling that $t^{*}=\sum_{i=1}^{p}\left(\bar{h}_{i}-\bar{h}_{i}(z)\right) h_{i}^{*}$ we obtain

$$
\begin{equation*}
t_{j}^{*}=\sum_{i=1}^{p}\left(\bar{h}_{i}-\bar{h}_{i}(z)\right) h_{i j}^{*} \text { and } \bar{\partial} t_{j}^{*}=\sum_{i=1}^{p} h_{i j}^{*} \overline{\partial h_{i}}, \tag{9}
\end{equation*}
$$

since $h_{i j}^{*}$ are holomorphic in ζ. Now to prove (7) we distinguish two cases:

1 st case: $p \leq n-2$; in this case

$$
\begin{equation*}
\bar{\partial} t_{j_{1}} \wedge \cdots \wedge \bar{\partial} t_{j_{n-1}}=0 \tag{10}
\end{equation*}
$$

for $1 \leq j_{1}<\cdots<j_{n-1} \leq n$; this follows from (9); but (10) and (8) imply (7) in this case.

2nd case: $p=n-1$; in this case, substituting (9) into the right-hand side of (8), we obtain

$$
\begin{align*}
& \operatorname{det}\left[t_{j}^{*},\right.\overbrace{\bar{\partial} t_{j}^{*}}^{n-1}]_{j=1}^{n} \tag{11}\\
&=p!\operatorname{det}\left(\left[\sum_{i=1}^{p}\left(h_{i}-h_{i}(z)\right) h_{i j}^{*}, h_{1 j}^{*}, \ldots h_{p j}^{*}\right]_{j=1}^{n}\right) \\
& \times \overline{\partial h_{1}} \wedge \cdots \wedge \overline{\partial h_{p}}=0
\end{align*}
$$

since (11) and (8) imply (7), the proof of (7) is complete. Finally (7), (6) and (5) imply the formula of the theorem in the case $\varphi(\zeta, z) \neq 0$ and, since the set $\{\varphi(\zeta, z) \neq 0\}$ is dense, this completes the proof of the theorem.
Remark. As we pointed out before, $\eta_{h}^{\left(s^{*}, \nu\right)}$ depends on the choice of $\left\{h_{i}^{*}\right\}_{i=1}^{p}$; in the case $p \leq n-2$, however, this dependence is not essential in a sense which we will make precise now.

Let $\left[\eta_{h}^{\left(s^{*}, \nu\right)}\right.$] denote the cohomology class of $\eta_{h}^{\left(s^{*}, \nu\right)}$ in the Dolbault cohomology group $H_{\bar{\partial}}^{(n, n-2)}\left(V_{z}-Z(h-h(z))\right)$ where V_{z} is an open neighborhood of ∂D with $\bar{V}_{z} \subset W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right.$) (here z is fixed, as usual, and ζ is the variable).

Let $\left(h_{i}^{*}\right)^{\prime}: W \times W \rightarrow T^{*}(X), i=1, \ldots, p$, be holomorphic maps, with $\left(h_{i}^{*}\right)^{\prime}(\zeta, z) \in T_{z}^{*}(X)$ and $\left\langle\left(h_{i}^{*}\right)^{\prime}, s\right\rangle=\varphi \cdot\left(h_{i}-h_{i}(z)\right)$, i.e., another choice for h_{i}^{*} and let $\left(\eta_{h}^{\left(s^{*}, \nu\right)}\right)^{\prime}$ denote the $\bar{\partial}$-primitive of $K^{\left(s^{*}, \nu\right)}$ in $W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$ associated to $\left(h_{i}^{*}\right)^{\prime}$. We claim that

$$
\left[\eta_{h}^{\left(s^{*}, \nu\right)}\right]=\left[\left(\eta_{h}^{\left(s^{*}, \nu\right)}\right)^{\prime}\right]
$$

in other words, the cohomology class $\left[\eta_{h}^{\left(s^{*}, \nu\right)}\right]$ is independent of the choice of h_{i}^{*}. To prove this we argue as follows. Let $\psi(\zeta, z)$ be a C^{∞} function with $0 \leq \psi(\zeta, z) \leq 1$, having compact support contained in $W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)$, which is identically one in a neighborhood of \bar{V}_{z}. Let $\bar{s}(\zeta, z)$ denote a Leray section for (D, s, φ) with $\operatorname{Dom}(\bar{s}(\cdot, z))=$ W and defined for $z \in W$; such a Leray section always exists (see [4, p. 164]; let us point out that $\bar{s}(\zeta, z)$ is not the complex conjugate of $s(\zeta, z)$). Define

$$
\begin{aligned}
\lambda^{*}(\zeta, z)=\varphi^{\nu_{1}}(\zeta, z)\left[\frac{\psi(\zeta, z)}{\left\langle s^{*}(\zeta, z), s(\zeta, z)\right\rangle}\right. & s^{*}(\zeta, z) \\
& \left.\quad+\frac{1-\psi(\zeta, z)}{\langle\bar{s}(\zeta, z), s(\zeta, z)\rangle} \bar{s}(\zeta, z)\right]
\end{aligned}
$$

where $\nu_{1}=\max \left(\nu_{0}, \nu^{*}\right)$. Since

$$
\left\langle\lambda^{*}(\zeta, z), s(\zeta, z)\right\rangle=\varphi^{\nu_{1}}(\zeta, z)
$$

it follows that λ^{*} is a Leray section for (D, s, φ); thus we may associate to λ^{*} the $\bar{\partial}$-primitives $\eta_{h}^{\left(\lambda^{*}, \nu\right)}$ and $\left(\eta_{h}^{\left(\lambda^{*}, \nu\right)}\right)^{\prime}$ of $K^{\left(\lambda^{*}, \nu\right)}$, in $W-Z(h-h(z))$, corresponding to h_{i}^{*} and $\left(h_{i}^{*}\right)^{\prime}$. It follows from Theorem 3.1 that

$$
\bar{\partial}\left(\eta_{h}^{\left(\lambda^{*}, \nu\right)}-\left(\eta_{h}^{\left(\lambda^{*}, \nu\right)}\right)^{\prime}\right)=K^{\left(\lambda^{*}, \nu\right)}-K^{\left(\lambda^{*}, \nu\right)}=0 \quad \text { in } W-Z(h-h(z))
$$

but $W-Z(h-h(z))$ is $(n-3)$-complete (here $p \leq n-2$; see [7, p. 435]) whence $H^{n-2}\left(W-Z(h-h(z)), \mathscr{O}^{n}\right)=0$ (see [1, p. 250]); therefore, from Dolbault's theorem, there exists an ($n, n-3$)-form θ in $W-Z(h-h(z))$ with

$$
\eta_{h}^{\left(\lambda^{*}, \nu\right)}-\left(\eta_{h}^{\left(\lambda^{*}, \nu\right)}\right)^{\prime}=\bar{\partial} \theta
$$

Since $\psi \equiv 1$ in a neighborhood of \bar{V}_{z}, it follows from the proof of Lemma 3.2 that

$$
\begin{gathered}
\eta_{h}^{\left(\lambda^{*}, \nu\right)}=\eta_{h}^{\left(s^{*}, \nu\right)} \text { and } \\
\left(\eta_{h}^{\left(\lambda^{*}, \nu\right)}\right)^{\prime}=\left(\eta_{h}^{\left(s^{*}, \nu\right)}\right)^{\prime} \text { in } V_{z}-Z(h-h(z))
\end{gathered}
$$

whence

$$
\eta_{h}^{\left(s^{*}, \nu\right)}-\left(\eta_{h}^{\left(s^{*}, \nu\right)}\right)^{\prime}=\bar{\partial} \theta \quad \text { in } V_{z}-Z(h-h(z)) .
$$

This proves the claim that the cohomology class $\left[\eta_{h}^{\left(s^{*}, \nu\right)}\right]$ does not depend on the choice of h_{i}^{*}. Notice also that if Γ is an open subset of ∂D with $\bar{\Gamma} \subset \partial D-Z(h-h(z))$ and f is a smooth CR-function on Γ then

$$
f \eta_{h}^{\left(s^{*}, \nu\right)}-f\left(\eta_{h}^{\left(s^{*}, \nu\right)}\right)^{\prime}=\bar{\partial}(f \theta)=d(f \theta)
$$

whence we obtain

$$
\int_{c} f \eta_{h}^{\left(s^{*}, \nu\right)}(\cdot, z)=\int_{c} f\left(\eta_{h}^{\left(s^{*}, \nu\right)}(\cdot, z)\right)^{\prime}
$$

for every ($2 n-2$)-dimensional cycle c in Γ.
The following theorem is a generalization of the Henkin-Leiterer version of the Cauchy-Fantappiè formula; its proof is similar to the proof of Proposition 2.4 in [6, p. 185].

Theorem 3.2. Let D be a domain on the Stein manifold X and let $h, W, K^{\left(s^{*}, \nu\right)}$ and $\eta_{h}^{\left(s^{*}, \nu\right)}$ be as in Theorem 3.1. Let $z \in D$ and let $\Gamma \subset \partial D$ be an open subset of ∂D with $\partial \Gamma$ smooth and so that $\Gamma \supset(\partial D) \cap Z(h-h(z))$. Then for $f \in C(\bar{\Gamma} \cup D) \cap \mathcal{O}(D)$, i.e., continuous on $\bar{\Gamma} \cup D$ and holomorphic in D, we have the following representation formula:

$$
f(z)=\int_{\zeta \in \Gamma} f(\zeta) K^{\left(s^{*}, \nu\right)}(\zeta, z)-\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)
$$

Proof. Let $G \subset D$ be an open subset of D so that $\partial G \cap \partial D=\Gamma$ and $D \cap Z(h-h(z)) \subset G$. We also assume that $\partial G=\Gamma \cup \Gamma_{0}$ where $\Gamma_{0}=\partial G \cap \bar{D} \subset W$. Then, by [4, Theorem 4.3.4], we have

$$
\begin{align*}
f(z) & =\int_{\partial G} f K^{\left(s^{*}, \nu\right)}(\cdot, z) \tag{1}\\
& =\int_{\Gamma} f K^{\left(s^{*}, \nu\right)}(\cdot, z)+\int_{\Gamma_{0}} f K^{\left(s^{*}, \nu\right)}(\cdot, z)
\end{align*}
$$

Since $\Gamma_{0} \subset W-Z(h-h(z))$ it follows from Theorem 3.1, Stokes's theorem and the fact that f is holomorphic in D that

$$
\begin{align*}
\int_{\Gamma_{0}} f K^{\left(s^{*}, \nu\right)}(\cdot, z) & =\int_{\partial \Gamma_{0}} f \eta_{h}^{\left(s^{*}, \nu\right)}(\cdot, z) \tag{2}\\
& =-\int_{\partial \Gamma} f \eta_{h}^{\left(s^{*}, \nu\right)}(\cdot, z)
\end{align*}
$$

Now the formula of the theorem follows from (1) and (2).
Remark. If $\Gamma=\partial D$ then $\partial \Gamma=\varnothing$ and the formula of Theorem 3.2 reduces to that of [4, Theorem 4.3.4].
4. Extending CR-functions. Let $(D, s, \varphi), W$ and s^{*} be as in $\S 3$; we assume furthermore that $s^{*}(\zeta, z)$ is defined, as a Leray section, for all $(\zeta, z) \in W \times W$. Let E be a closed subset of ∂D so that each connected component of $\partial D-E$ contains a peak point for $\mathcal{O}(\bar{D})$, i.e., a point ζ_{0} for which there exists a $g \in \mathcal{O}(\bar{D})$ with $\left|g\left(\zeta_{0}\right)\right|>|g(\zeta)|$ for $\zeta \in \bar{D}-\left\{\zeta_{0}\right\}$. For each $z \in W-E$ let
$\mathscr{P}_{z}=\left\{h: W \rightarrow \mathbb{C}^{n-2}: h\right.$ holomorphic, $z \in Z(h)$ and $\left.Z(h) \cap E=\varnothing\right\}$.
We can now state a criterion for extendability of CR-functions defined on $\partial D-E$; a version of it in \mathbb{C}^{n}, with the Bochner-Martinelli kernel in place of the Henkin-Leiterer type kernel, is in [2]; its proof is based on ideas from [6] and [5].

Theorem 4.1. With notation as above, suppose that $\mathscr{P}_{z} \neq \varnothing$ for each $z \in W-E$ and let f be a smooth CR-function on $\partial D-E$. Then a necessary and sufficient condition that f extends to a holomorphic function in D is

$$
\begin{equation*}
\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)=\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{g}^{\left(s^{*}, \nu\right)}(\zeta, z) \tag{1}
\end{equation*}
$$

for $h, g \in \mathscr{P}_{z}, \Gamma \supset(\partial D) \cap(Z(h) \cup Z(g))$ open (in $\left.\partial D\right)$ with $\bar{\Gamma} \subset$ $\partial D-E$ and $\partial \Gamma$ smooth and $z \in W-E$.

Remarks. (i) Of course $\eta_{h}^{\left(s^{*}, \nu\right)}$ and $\eta_{g}^{\left(s^{*}, \nu\right)}$ are $\bar{\partial}$-primitives of $K^{\left(s^{*}, \nu\right)}$ in $W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-Z(h-h(z))$ and $W \cap \operatorname{Dom}\left(s^{*}(\cdot, z)\right)-$ $Z(g-g(z))$ respectively. As we pointed out before, in the remark following the proof of Theorem 3.1, given Γ, the value of the integral

$$
\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)
$$

is uniquely determined by h, i.e., it is independent of the choice of h_{i}^{*}.
(ii) Observe that if Γ^{\prime} has the properties required for Γ then, by Theorem 3.1 and Stokes's theorem,

$$
\begin{gathered}
\int_{\zeta \in \partial \Gamma^{\prime}} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)-\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z) \\
=\int_{\zeta \in\left(\Gamma^{\prime}-\Gamma\right) \cup\left(\Gamma-\Gamma^{\prime}\right)} f(\zeta) K^{\left(s^{*}, \nu\right)}(\zeta, z)
\end{gathered}
$$

with the various parts of $\left(\Gamma^{\prime}-\Gamma\right) \cup\left(\Gamma-\Gamma^{\prime}\right)$ appropriately oriented; therefore if (1) holds for Γ it will also hold for Γ^{\prime}.

Proof of Theorem 4.1. First the necessity of (1) follows immediately from Theorem 3.2.

Now we prove sufficiency of (1), i.e., we assume that (1) holds and we prove that f extends to a holomorphic function in D. To this end let $z \in W-\partial D$ and let $h \in \mathscr{P}_{z}$; choose Γ and define

$$
\begin{equation*}
F(z)=\int_{\zeta \in \Gamma} f(\zeta) K^{\left(s^{*}, \nu\right)}(\zeta, z)-\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z) . \tag{2}
\end{equation*}
$$

Condition (1) now guarantees that $F(z)$ is well-defined, i.e., it is independent of the various choices (basically of the choice of h, in view of the previous remarks). Next we prove that F is holomorphic; for this we compute $\bar{\partial}_{z} F$.
(3) $\bar{\partial}_{z} F(z)=\int_{\zeta \in \Gamma} f(\zeta) \bar{\partial}_{z} K^{\left(s^{*}, \nu\right)}(\zeta, z)-\int_{\zeta \in \partial \Gamma} f(\zeta) \bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)$.

This computation is justified, in part, by the explicit formula for $\eta_{h}^{\left(s^{*}, \nu\right)}$; notice that if $h \in \mathscr{P}_{z}$ then $h-h\left(z^{\prime}\right) \in \mathscr{P}_{z^{\prime}}$ for z^{\prime} close to z; thus, in (3),

$$
\bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}(\zeta, z)=\left.\bar{\partial}_{z^{\prime}} \eta_{h}^{\left(s^{*}, \nu\right)}\left(\zeta, z^{\prime}\right)\right|_{z^{\prime}=z} ;
$$

the point here is that h, too, depends on z. But

$$
\begin{equation*}
\bar{\partial}_{z} K^{\left(s^{*}, \nu\right)}(\zeta, z)=\bar{\partial}_{\zeta} \widetilde{K}(\zeta, z) \tag{4}
\end{equation*}
$$

where

$$
\widetilde{K}(\zeta, z)=-(n-1) c_{n}^{\prime} \varphi^{\nu} \frac{\operatorname{det}[s_{j}^{*}, \bar{\partial}_{z} s_{j}^{*}, \overbrace{\bar{\partial}_{\zeta} s_{j}^{*}}^{n-2}] \wedge \omega_{\zeta}(s)}{\left(s^{*}, s\right\rangle^{n}}
$$

(with the notation of $\S 3$; in particular we make use of a local coordinate system (U, χ) as in $\S 3$; the independence of $\widetilde{K}(\zeta, z)$ of the
choice of (U, χ) is proved exactly as Lemma 3.1); this is proved in [3, p. 107]; $\widetilde{K}(\zeta, z)$ is defined for $z \in W$ and $\zeta \in W-\{z\}$.

But, by Theorem 3.1,

$$
\begin{equation*}
\bar{\partial}_{\zeta}\left(\bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}\right)=\bar{\partial}_{z} K^{\left(s^{*}, \nu\right)}(\zeta, z) . \tag{5}
\end{equation*}
$$

It follows from (4) and (5) that

$$
\bar{\partial}_{\xi}\left[\bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}-\widetilde{K}\right]=0 \quad \text { in } W-Z(h) .
$$

Since $W-Z(h)$ is $(n-3)$-complete, it follows that there exists an ($n, n-3$)-form $\mu(\zeta, z)$ in ζ, whose coefficients are (0,1)-forms in z (locally in (U, χ)), so that

$$
\begin{equation*}
\bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}-\widetilde{K}=\bar{\partial}_{\zeta} \mu \quad \text { in } W-Z(h) \tag{6}
\end{equation*}
$$

(this argument is similar to the remark following the proof of Theorem 3.1).

But (3), in view of (4) and (6), becomes:

$$
\bar{\partial}_{z} F=\int_{\Gamma} f \bar{\partial}_{\zeta} \tilde{K}-\int_{\partial \Gamma} f \widetilde{K}-\int_{\partial \Gamma} f \bar{\partial}_{\zeta} \mu,
$$

from which, by Stokes's theorem and the fact that f is a CR-function we obtain $\bar{\partial}_{z} F=0$; thus F is holomorphic in $W-\partial D$. An argument similar to that in [6, pp. 188-190] proves that $F=0$ in $W-\bar{D}$ and that $\left.F\right|_{D}$ is indeed a holomorphic extension of f. For the Plemelj type formula in the setting of Stein manifolds, which is required here, see [5].

This completes the proof of Theorem 4.1.
Comments. (i) The point of using the differential form \tilde{K} in the proof of Theorem 4.1 is that, although $\eta_{h}^{\left(s^{*}, \nu\right)}$ is not defined on $Z(h)$, $\bar{\partial}_{z} \eta_{h}^{\left(s^{*}, \nu\right)}$ is $\bar{\partial}_{\zeta^{-}}$-cohomologous to \widetilde{K} in a neighborhood of $\partial \Gamma$, and \widetilde{K} is defined in $W-\{z\}$.
(ii) A point which may be investigated further is to find geometric conditions under which equality (1) holds; for example, if $\operatorname{dim}_{\mathbb{C}}(Z(h) \cap Z(g)) \geq 1$, does it follow that (1) holds?
(iii) If $h, q \in \mathscr{P}_{z}$ and $h_{1}=\cdots=h_{n-2}$ and $g_{1}=\cdots=g_{n-2} \quad(n \geq$ 3) then the difference $\eta_{h}^{\left(s^{*}, \nu\right)}-\eta_{g}^{\left(s^{*}, \nu\right)}$ is $\bar{\partial}$-exact in $W-(Z(h) \cup Z(g))$ (this is proved in [5]), which implies that (1) holds in this case.

References

[1] A Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
[2] T. Hatziafratis, On certain integrals associated to CR-functions, Trans. Amer. Math. Soc., to appear.
[3] G. M. Henkin and J. Leiterer, Global integral formulas for solving the $\bar{\partial}$-equation on Stein manifolds, Ann. Pol. Math., 39 (1981), 93-116.
[4] _, Theory of Functions on Complex Manifolds, Birkhäuser Verlag, Basel 1984.
[5] C. Laurent-Thiebaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl., (4) 150 (1988), 141-151.
[6] G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math., 124 (1986), 177-191.
[7] D. J. Patil, Recapturing H^{2}-functions on a polydisc, Trans. Amer. Math. Soc., 188 (1974), 97-103.
[8] G. Sorani and V. Villani, q-Complete spaces and cohomology, Trans. Amer. Math. Soc., 125 (1966), 432-448.
[9] E. L. Stout, An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces, Duke Math. J., 42 (1975), 347-356.
[10] _, Removable singularities for the boundary values of the holomorphic functions, to appear.
[11] G. Tomassini, Extension d'objets CR, Math. Z., 194 (1987), 471-486.
Received December 12, 1988 and in revised form February 23, 1989.
University of Washington
Seattle, WA 98195
Current address: University of Athens
Athens 15784, Greece

