
PACIFIC JOURNAL OF MATHEMATICS
Vol. 147, No. 1, 1991

FINITE WEIGHT PROJECTIONS
IN VON NEUMANN ALGEBRAS

HERBERT HALPERN, VICTOR KAFTAL AND LASZLO ZSIDO

The ideal of definition of a faithful semifinite normal weight on a
countably decomposable von Neumann algebra is the set generated by
all positive elements of finite weight. The set is a hereditary left ideal
and therefore contains projections. In this paper the family of weights
whose ideals of definition form projection lattices is completely char-
acterized. These weights are the ones that are comparable to a combi-
nation of traces and normal functionals. A central spectral resolution
is introduced and used to analyze the Radon-Nikodym derivatives of
a weight with regard to a trace. Also introduced are two parameters
that measure whether the ideal of definition contains two projections
of least upper bound 1 and how close the weight is to being a trace
respectively.

1. Introduction. The set of the projections of a two-sided ideal in
a von Neumann algebra is a lattice because the set of projections is
hereditary and closed under the Murray-von Neumann equivalence
relation (if it contains a projection, it contains also all the projec-
tions in the algebra majorized by or equivalent to the projection [16]).
The situation is quite different if we take a one-sided ideal. While
still hereditary [10, §1.5.2], a one-sided ideal that is closed under the
equivalence relation for projections is a two-sided ideal. However,
there are interesting cases of one-sided ideals where the set of pro-
jections is nevertheless a lattice, e.g. the right ideal of "finite rank"
operators in a type IΠ^ factor (cf. [5, §3]).

There are one-sided ideals whose set of projections is not a lattice.
For example, if φ is a faithful semifinite normal weight (henceforth
f.s.n. for short) on a von Neumann algebra R, then

Nφ = {x eR\ φ(x*x) < oc}

is a left ideal and

Mφ = span{x e R+ \ φ{x) < oc} = N*Nφ

is a hereditary algebra [15, 10.14]. In [5, §7] the first two named
authors applied a result by U. Haagerup ([2], cf. [13, 30.12]) relating
to infinite weights in type III^ factors to construct two projections
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p , q in Mφ whose least upper bound pM q was not in Mφ . In [6,
Example 5.4], the same authors used a different technique employing
the discrete crossed product decomposition of a type ΠI^ factor R
to construct two projections p, q in Mφ with p V q = 1. Both
constructions made use of the fact that the least upper bound of two
distinct rank-one projections in Af2(C) (the 2 x 2 complex matrix
algebra) is the identity. A similar result, also depending on a 2 x 2
matrix construction, was obtained by A. Amann and the third named
author in [1] for the null ideal

Lω = {x e R I ω(x*x) = 0}

of a singular state ω e R* from quantum mechanics.
Motivated by the analogy between the ideals Lω for a singular state

ω and Nφ for an infinite weight φ, we determine in this paper nec-
essary and sufficient conditions under which the set P{Mφ) of the
projections of the ideal of definition Mφ of an f.s.n. weight φ on
a von Neumann algebra R is a lattice. Without loss of generality
we may always assume that the weights that we consider are faith-
ful (otherwise we could pass to the algebra reduced to the support of
the weight). Since all the projections in Mφ are <τ-finite and since
the least upper bound of two σ-finite projections is also σ-finite, we
reduce our considerations to σ-finite von Neumann algebras.

Our main result is:

THEOREM 1. Let R be a σ-finite von Neumann algebra and let φ
be a f.s.n. weight on R. Then P(Mφ) is a lattice if and only if there
is a decomposition of the identity into mutually orthogonal central pro-
jections e + f + g = \ such that Rf is a semifinite algebra and Rg is
a direct sum of type I ^ factors equipped with the fis.n. trace Tr {the
direct sum of the canonical traces on the factors) so that

(a) φ restricted to Re is a finite functional
(b) P(Mφ(f.)) = P{Mτ) for some f.s.n trace τ on Rf, and
(c)

We define two parameters

I(φ) = inf{φ(p + q)\pVq=l9p9<l projections in R}

and

to study the lattice properties of P(Mφ). The first I(φ) measures how
close the identity 1 is to being the least upper bound of projections
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in P{Mφ) while the second J(φ) measures how close φ is to being
a trace.

For a type III algebra we see from Theorem 1 that P(Mφ) is a lattice
if and only if φ is a finite functional. For semifinite algebras we see
from Theorem 1 that the situation is more complex. Here we exploit
the properties of the Radon-Nikodym derivative h of φ with respect
to a f.s.n. trace τ (cf. [11]). The Radon-Nikodym derivative h is a
positive self adjoint (possibly unbounded) operator affiliated with the
centralizer algebra

such that φ(x) = τ(hx) for all x e i?+ , where

τ(hx) = τ{xχl2hxιl2) = \imτ(xχl2hχ(-oo, n){h)xιl2).
n

Here χE{h) denotes the spectral projection of h corresponding to
the Borel set E. (When there is no possibility of confusion, we shall
drop the reference to h and just write χE. We generally use the
whole real line as the domain of the spectral resolution even for posi-
tive operators since it allows us to unify the notation when we analyze
the essential central spectrum of an unbounded operator. The essen-
tial central spectrum Z - σe(x) for a bounded operator x has been
developed in [4] and [14]. Here we extend the concept of essential cen-
tral spectrum to an unbounded self adjoint operator h via the spectral
resolution and arrive at a concept of central intervals. We calculate
the parameters I(φ) and J(φ) and show the former is related to the
central essential spectrum of the Radon-Nikodym derivative while the
latter is related to the spread in the essential spectrum of the Radon-
Nikodym derivative. In particular, we have that J(φ) = 1 if and only
if ^ is a trace.

We analyze P(Mφ) for finite algebras separately. We find a canon-
ical trace τφ associated to a f.s.n. weight φ and show that P{Mφ) is
a lattice if and only if P(Mφ) and P(Mτ ) coincide.

One of the tools used throughout this paper is the notion of φ-
semifinite projection, i.e., a projection p such that the restriction of
φ to Rp is still semifinite. We also use a 2 x 2 matrix construction to
obtain the sum of two orthogonal projections as a least upper bound
of two projections only one of which has to be controlled.

A few remarks about our notations: the algebra R operates on
the Hubert space H and has identity 1; Z denotes the center of
R, Z + denotes the extended positive part of Z , and Z denotes the
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self adjoint operators on H affiliated with Z . Recall that under the
identification of Z with L°°{Γ, μ}, where Γ is a locally compact
space and μ is a positive Radon measure, the set Z + coincides with
the set of //-measurable extended real valued nonnegative functions
and it is closed under least upper bounds. On the other hand, the set
Z coincides with the set of all real valued measurable functions that
are finite almost everywhere. For every projection p in R, Rp is
the algebra pRp restricted to the space pH and c(p) is the central
support of p p\lq and p/\q are the least upper bound and the greatest
lower bound respectively of the projections p and q\ R(x) and N(x)
are respectively the left support (i.e. the range projection) and the null
projection of an operator x k+ and k~ are the positive part and
the negative part respectively of a self adjoint (possibly unbounded)
operator k . For the rest of our notations we refer the reader to [15].

2. ^-semifinite projections. Let R be a cr-finite (i.e. countably de-
composable) von Neumann algebra and let φ be a faithful semifinite
normal weight on R (f.s.n for short). Let

Mφ = span{x e R+ | φ(x) < oo}.

DEFINITION 2.1. A projection p e R is said to be φ-semifinite ( φ-s.
for short) if the restriction of φ to Rp is semifinite. The projection
p is said to be φ-purely infinite if the restriction of φ to Rp assumes
only the values {0, oo} .

Notice that the restriction of φ to Rp is always a faithful and
normal weight, and it is semifinite if and only if MφΓ\Rp is σ-weakly
dense in Rp.

We shall often use the following criterions for a projection to be
φ-s.

LEMMA 2.2. Let p e R be a projection', then the following conditions
are equivalent.

(i) p is φ-s.
(ii) There is an x e M+ such that R(x) = p.

(iii) There is a sequence of mutually orthogonal projections pn in

Mφ such that p =

Proof. Let p be φ-s. We can find a countable strongly dense subset
{xn} in the unit ball of Mφ Π Rp because the unit ball of R+ is
metrizable in the strong operator topology [8, 5.7.46]. Then the series
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J22~n(l + φ(xn))~ιXn converges uniformly to an operator x e R+.
We see that R(x) = p due to the density of the set {xn}. By the
normality of φ, we get that

φ(x) = Σ 2"Λ(1 + φ(Xn))'ιφ(Xn) < oo.

Assume now that there is an x e M£ such that R(x) = p. The
spectral projections pn = χ[n~ι, (n + l ) " 1 ) ^ ) of x corresponding
to the intervals [n~ι, (n + I ) ' 1 ) are mutually orthogonal with sum
equal to R(x). Moreover, each projection pn is in Mφ since

ψ{Pn) < nφ(pnx) < nφ(x) < oo.

Thus, the projection p is the sum of the sequence of mutually orthog-
onal projections {pn} in Mφ.

Finally, if p is the sum of a sequence of mutually orthogonal pro-
jections {pn} in Mφ, let qn = P\ Λ \-pn. The subset \J(Rgn) of
Mφ is σ-weakly dense in Rp . D

Given a projection p in 7?, we can find a maximal sequence of
mutually orthogonal ^-s. subprojections {pn} of p. By maximality,
the projection p ~Σpn is ^-purely infinite. So /? can be decom-
posed into the sum of a φ-s. and a ^-purely infinite projection. This
decomposition is in general not unique. Indeed, the identity operator
is ^-s. by definition but may be decomposed as a nontrivial sum of a
φ-s. and a ^-purely infinite projection (see remarks after Proposition
2.4).

In finite algebras there are no ^-purely infinite projections.

PROPOSITION 2.3. Every projection in a finite von Neumann algebra
is φ-semifinite.

Proof. Let p φ \ be an arbitrary nonzero projection in the finite
von Neumann algebra R. Let τ be a f.n. finite trace with τ(l) = 1.
Let φ be a f.s.n. weight on R and let h be the Radon-Nikodym
derivative of φ with respect to τ . By the normality of the trace there
is some n > 0 and a spectral projection q = χ[0, n)(h) such that
τ(q) > 1 - τ(p). By the Parallelogram Law we have that

p\l q -p ~ q - p Aq.

Then we have that

1 - τ(p) > τ(p y q ) - τ(p) = τ(q) -τ(pΛq)>l- τ(p) - τ(p Λ q ) .
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This shows that the projection p Λ q is not 0. Moreover

φ(p Λq)< φ{q) = τ(hq) < nτ{q) < oo.

Thus, we have shown that every nonzero projection in R majorizes a
nonzero projection in Mφ . By a maximality argument, we have that
every projection can be written as the sum of a sequence of mutually
orthogonal projections in Mφ. Thus, every projection is φ-s. by
Lemma 2.2. D

If φ is a trace, then clearly there are also no ^-purely infinite pro-
jections. In the case of B(H), there are ^-purely infinite projections
if and only if the Radon-Nikodym derivative h of φ with respect to
the canonical trace tr is unbounded. Indeed, on the one hand, if h is
bounded then any finite projection is in Mφ . On the other hand, if
h is unbounded, then there is a unit vector ξ not in the domain of
A1/2. Setting p equal to the one dimensional projection with range
span ξ, and hn = hχ[0, ή){h) we get that

Xr{hp) = limtr(phnp)

L
= lim\\h!ι

/2ξ\\2 = oo.

More generally, let φ = ψ®\r{h-) be a f.s.n weight on a von Neumann
algebra of the form R ® B(H). Again if h is unbounded, then we
have

φ{q®p) = ψ(q)ΐr(hp) = oo

for any nonzero projection q eR. From this we conclude that 1 ®p
is ^-purely infinite.

The ^-semifinite projections exhibit some of the standard proper-
ties associated with semifinite projections.

PROPOSITION 2.4. Let φ be f.s.n. weight on the von Neumann alge-
bra R. Then

(i) The supremum of a countable set of φ-s. projections is φ-s.
(ii) Let p be a φ-s. projection and let a € Rφ then R(apa*) is

φ-s.
(iii) Let p, q be two φ-s. projections with p > q. Ifqe Mφ, then

p - q is φ-s.
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(iv) Let R be semifinite, let τ be af.s.n. trace on R and let h be
the Radon-Nikodym derivative of φ with respect to τ then a projection
p is φ-s. if and only if php is selfadjoint.

Proof (i). Let {pn} be a sequence of φ-s. projections. Let {pnm}
be sequences of projections in Mφ with pn = Σmpnm Then

m,n

is an element in Mφ and has range projection equal to s\xppn . By
Lemma 2.2, this implies that suppn is φ-s.

Proof (ii). By Lemma 2.2 we can find an x e M+ with R(x) = p.
Since axa* e Mφ because Mφ is an i?9*-module, and since R(apa*) =
R(axa*), we see that R(apa*) is φ-s.

Proof (Hi). By Lemma 2.2 we can find an x e M+ with R(x) = p.
Then

(p - q)x(p -q)< 2pxp + 2qxq <2x + 2\\x\\q,

whence (p -q)x(p -q)E M+ . Since p-q = R((p -q)x(ρ -q)) > we
conclude, again by Lemma 2.2, that p - q is ^-s.

Proof (iv). Assume first that p e Mφ and let hn = hχ[0, n)(h).
The sequence phnp increases monotonically and hence it has a limit
k belonging to the extended positive part M + of M, and k has a
unique representation k = k + oo# where k = qLkqL is a positive
selfadjoint operator affiliated with M and q E M is a projection [2,
Remarks after Definition 1.3, Lemma 1.4 and Theorem 1.5]. Then τ
has an extension τ to M+ and

= lim τt/?/^/?) = τ(£) = τ(k) + ooτ(q),

whence q = 0 [2, Proposition 1.10]. Thus /?/*«/? T k i n the sense that

Since we also have

ζ,ξ) ί ^ . . , n , , 1 / 2 x
l o o if ξ (£ D(hι>2p),
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we obtain that D{kχl2) = D{hχl2p) and hence that hχl2p is densely
defined. (We can actually show that k = php, but we don't need this
fact here.)

Assume now that p is φ-s., so that by Lemma 2.2 there is a sequence
of mutually orthogonal projections p^ e Mφ such that P = ΣPk-
We have just proven that h^^p^ is densely defined for each k, and
a routine argument shows that then hχl2p too is densely defined.
Clearly, hχl2p is closed and since (hχ/2p)* D phχ/2, we see that phχl2

too is closed. It is easy to verify that {phχl2)* = hχl2p, and since
phχl2 = (phχ/2)**, we have also {hχl2p)* = phx'2. Therefore, by [8,
Theorem 2.7.8 (v)], we obtain that {hχl2p)*phχl2 = php is selfadjoint.

Conversely, if php is selfadjoint then τ(php) is an s.n. weight on
R which coincides with φ on Rp . D

In general the condition q £ Mφ in (iii) cannot be relaxed. We
can show this by refining the example after Proposition 2.3. Let R =
B(H), let h be a positive injective selfadjoint unbounded operator
on H, and let φ be the f.s.n. weight defined by φ = tr(Λ ). Working
with the spectral resolution of h, we can find an orthonormal basis
{ζn} for H such that ξx £ D{hχl2) while {ξn \ n > 2} is contained
in D{hχl2). Setting pn equal to the one dimensional projection of
H on the subspace generated by ξn , we get that the ^-purely infinite
projection p\ can be written as p\ = 1 - ΣiPn I n > 2} whereas 1
and ΣiPn I n > 2} are ^-s.

Notice also that by (ii) every projection in Rφ and in particular
every central projection is ^-s.

LEMMA 2.5. Let φ be a f.s.n. weight on R; then, for every projection
p in R and every φ-s. projection q with p •< q, there is a φ-s.
projection q1 with q1 < q and p ~ q'.

Proof. There is a projection p' ~ p with p1 < q. So there is no
loss of generality in the assumption that p < q. Since the weight φ
restricted to the algebra Rq is f.s.n., we may assume also that q = 1.
If p were properly infinite, then it would be equivalent to its central
support c(p), which is ^-s. by Proposition 2.4(i), and if R were finite,
then p would be ^-s. by Proposition 2.3. Thus we can assume that
p is a finite projection of central support 1 and that R is a properly
infinite semifinite algebra. Let Φ be a faithful normal operator valued
trace on R with Φ(p) = 1, let ω be a f.n. state on Z , let τ = ω o φ
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be the corresponding f.s.n. (scalar) trace, and let h be the Radon-
Nikodym derivative of φ with respect to τ . We may find a sequence
{rii} of integers and a sequence {e,} of orthogonal central projections
of sum 1 with e, < Φ(χ(-oo, Λ, )(λ))e, . Then we have that

> ( * ( , m ) { ) ) i = Φ

This proves that

P ~ q'

Since

flKί'έ?/) = τ ( Λ ^ ) < niτ{q'ei) < π, τ(p) < oo,

we see that qf = Σ qfeι is #>-s. by Lemma 2.2. D

3. A 2 x 2 matrix construction. Now we can start to investigate
the condition on a f.s.n. weight φ under which the set P(Mφ) of
projections of Mφ is a lattice.

LEMMA 3.1. Let p, s be two equivalent and orthogonal φ-s. pro-
jections in R with p G Mφ . Then for every e > 0 there is a projection
q G Mφ such that pV q = p + s and φ(q) < φ{p) + ε.

Proof. We actually obtain a projection q with q ~ p ~ s. By
Lemma 2.2 we can decompose s into a sum Σsn of mutually or-
thogonal projections 5Λ in Λ/̂  . This decomposition induces a corre-
sponding partition of p into the sum of mutually orthogonal projec-
tions p = ΣPn with pn ~ sn. There are partial isometries un e R
implementing this equivalence, i.e.,

Kun=pn and unu*n = sn.

Since /?„ and sn are in M^, so are also un and u*n, and by the
Cauchy-Schwarz inequality \φ(un)\ and |p(«j;)| are both bounded by
\Jφ{pn)φ{Sn) > Choose also a sequence δn e (0, 1) such that

Let Rn = span{pn, sn, un, w*} then Rn is a subalgebra of R nat-
urally isomorphic to M2(C). Let ^ e Rn be the projection corre-
sponding to
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i.e.,

qn = (1 - δn)pn + δnsn + y/δn(l - δn)(un + K).

Then pn -φ qn because δn φ 0, and hence pnv qn = pn + sn. Let

Q = ΣQn\ then it is easy to verify that

P V Q = Σ(Pn V Qn) = ΣiPn + Sn) = p + S.

On the other hand,

φ{Qn) < (1 - δn)φ{Pn) + Snφ(sn) + y/#n(l - δn)(\φ(un)\ + \φ(K)\)

< <P(Pn) + δnφ(sn) + 2y/δnφ(pn)φ(sn),

so that

Since φ(p) < ex) and q is φ-s. imply that /? V q -p is ^-s. due to
Proposition 2.4(i), the hypothesis that s is φ-s. cannot be avoided in
Lemma 3.1.

PROPOSITION 3.2. The set of projections P(Mφ) is not a lattice if
and only if there are two equivalent and orthogonal φ-s. projections r
and s in R such that r e Mφ and s φ Mφ.

Proof. First suppose that P(Mφ) is not a lattice. Let p and q be
two projections in Mφ such that p V q is not in Mφ . Since

{p-pΛq)Vq=pVq and {p-p/\q)Λq = 0,

by passing to subprojections if necessary, we may assume that p l\q —
0. By the Comparison Theorem there is a central projection e such
that

pe ~ q\< qe

and
q(l-e)~pχ <p(l-e).

The projections qe and p(l - e) are in Mφ and so the projection
r = p\ + q\ is in Mφ too. However, the projection

is ^-s. (Proposition 2.4(i) and (iii)) but it is not in Mφ. Also, s is
orthogonal to r and it is equivalent to it via the Parallelogram Law

(pv q-q)e + (p\/ q-p)(\ - e) ~ pe + q{\ - e) ~ pγ + qx

due to the assumption that p A q — 0.
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Now suppose that r and s are orthogonal equivalent φ-s. projec-
tions with r 6 Mφ and s φ Mφ . By Lemma 3.1 there is a projection
q in R with r\l q = r + s and with φ(q) < φ{r) + 1 < oo. Since
r + s £ Mφ , we see that P{Mφ) is not a lattice. D

PROPOSITION 3.3. Let R be a type III algebra and let φ be a f.s.n.
weight on R. Then the set P{Mφ) is a lattice if and only if φ is finite.

Proof. The condition is clearly sufficient. Assume now that P{Mφ)
is a lattice. Let {pn} be a maximal set (necessarily countable since R
is σ-finite) of nonzero projections in P{Mφ) with mutually orthogonal
central supports. Since e— l—c(ΣPn) is φ-s. by Proposition 2.4(ii),
by the maximality of the family we see that e = 0. Since we may write
each pn as the sum of a sequence of mutually orthogonal equivalent
projections, we may assume without loss of generality that φ{pn) <
2~n for every n = 1 , 2 , . . . . The projection p = Σpn is then a
projection in Mφ of central support 1. Since R is type III and a-
finite, by passing to a subprojection of p, we may assume that p ~
1 -p ~ 1. Since 1 -p is φ-s. due to Proposition 2.4, by Lemma 3.1
we can find a projection q such that

p\jq=p + (l-p) = l and φ(q) < φ{p) + 1 < oo.

By assumption the set P{Mφ) is a lattice, and therefore, φ(l) < oo.
Thus, the weight φ is a finite normal functional. D

We now introduce two numbers associated with every f.s.n weight.

DEFINITION 3.4. Let φ be a f.s.n. weight on the von Neumann
algebra R. Then let

I(φ) = inf{φ(p + q)\pVq=\,p,q projections in R} ,

and

We have already seen that

I(φ) = inf{φ(p + q) | p v q = 1, p Aq = 0, p, q projections in R}

since (p-p/\q)Vq=pVq and (p-p Λq) Aq = 0.
We use the numbers I{φ) and J(φ) to determine when P{Mφ) is

a lattice.
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PROPOSITION 3.5. If R is a type III algebra then I(φ) = 0 and
J(φ) — oo.

Proof. By slightly changing the proof of Proposition 3.3, given ε >
0, we can find two projections p and q in R with p V q = 1 and
φ(p) + φ(q) < ε . This proves that I(φ) = 0.

We can now see that J(φ) — oo since the supremum of
<P(pV Q)lφ{P + <?) over the set of projections p and q with /? and q
in M^ and p\ι q — \ is already oo. D

Actually, we can see that J(φ) = oo as soon as i? has a nonzero
type III direct summand. Also I(φ) = 0 if φ is finite and i? is
properly infinite.

4. The semifinite case. Comparison of Mφ and Mτ. We begin with
a discussion of "central intervals" which we need throughout the rest of
the present work. Let Z be the center of the von Neumann algebra R
and Z be the set of all densely defined self adjoint elements affiliated
with Z . For each z e Z , there is a sequence {en} of mutually
orthogonal projections in Z of sum 1 such that zen is in Z for
every n. If x and y are in Z , then we write x < y (respectively,
x <y)iϊ there is a sequence {^} of mutually orthogonal projections
in Z of sum 1 such that xen and yen are bounded and xen < yen

(respectively, xen < yen ) for every n .
Now let h be a self adjoint element affiliated with i? and let χ

be the spectral resolution of h. Let {^} and {fn} be sequences of
mutually orthogonal projections in Z of sum 1 and let {an} and
{βn} be sequences in R. If Σ ^ α ^ < Σβnfn , we have that

Now let z e Z. Then the family of all sums of the form Σanen

with Σanen < z is upward directed. Thus, the following definition
is possible.

DEFINITION 4.1. Let h be a selfadjoint element affiliated with R
with spectral resolution χ and let z e Z. Then let χ(—oo, z)(h) =
/ ( - o c , z) be the least upper bound of the increasing family of pro-
jections of the form Σ/(—oo, απ)eΛ for all sequences {en} of cen-
tral projections of sum 1 and sequences {an} of real numbers with

We similarly define the other central spectral projection χ(z 9 oo)
as the least upper bound of the increasing family of projections of
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the form Σχ(an, oo)en for all sequences {en} of central projections
of sum 1 and sequences {an} of real numbers with Σanen > z.
We note that both #(—oo, z) and χ(z, oo) are in the von Neumann
algebra generated by Z and h.

Now let z G Z and let h be a self adjoint element affiliated with i?.
Then the operator z - h is a densely defined operator. In fact, there
is a sequence of mutually orthogonal projections {pn} in R of sum 1
commuting with z and h such that pnH is contained in the domain
D(z) ΠD(h) of z - h. The closure of this operator is a selfadjoint
operator affiliated with R. We again denote this selfadjoint operator
by z - h. The operator z - h is affiliated with the von Neumann
algebra generated by Z and h as are the positive selfadjoint operators

(z-A)+ = (z-Λ)χ(O,cx>)(z-A)

and

(z-hΓ = -(z-h)χ(-oo,0)(z-h)

(cf. [8,2.7.10]).
We have a different characterization of the central spectral projec-

tions.

PROPOSITION 4.2. Let R be a von Neumann algebra and let h
be a selfadjoint element affiliated with R. Then, for every z e Z ,
χ(-oo, z)(A) = Λ((z - /*)+) */!</ X(z, oo)(A) = Λ((z - A)").

Proof, We verify only the first relationship. Since z-h is a selfad-
joint operator affiliated with the von Neumann algebra generated by
Z and h, it has a spectral resolution / ' and i?((z-A)+) = χ'(0, oo).
In particular, the spectral resolutions χ and χ' commute. Now let
{en} be a sequence of central projections of sum 1 and let {an} be a
sequence of real numbers such that Σan€n < z. There is no loss of
generality in the assumption that zen - anen is a bounded invertible
positive operator since we may decompose the en further. Then we
have, for -m <an, that

zχ(-m, an)en - χ(-m, an)hen > zχ(-m, an)en - anχ(-m, an)en

shows that zχ(-m, an)en - /(—w, oίn)hen is an invertible positive
operator on χ(—m, an)enH. Since χ(-m, an)en commutes with
z - A , we have that
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By taking the least upper bounds, we have that

R{{z-h)+)>χ{-oo,z).

Conversely, let k be given. We can find a sequence of central pro-
jections {en} of sum 1 and a sequence {an} of real numbers such
that

(an - (l/3k))en < zen < (an + (l/3k))en.

For p = 1,2, ... we have that

<{z- h)χ' \T>p)x(<*n-^, m\

This shows that

enχ'{l/k,p)χ(an-(l/3k),m) = 0

for all m and p. By taking least upper bounds, we get

enχ'(l/k,oo)χ(an-(l/3k),oo) = 0,

and consequently, that

enχ'(l/k9 oo) < enχ(-oo, an - (l/3k)] < enχ(-oo, z).

Summing over n , we get the inequality

* ; (0 ,-<»)<*(-oo,z) ,

which is the reverse of the inequality found in the last paragraph. D

From the preceding proposition we see that the usual properties
of spectral resolutions are true for the central spectral resolutions
χ(-oc, z)(h) = χ(-oo, z) on Z . In particular, we note the prop-
erties:

(1) χ(-oo, z) + χ[z] + χ(z, oo) = 1;
(2) hχ(-oo, z) < zχ(-oo, z);
(3) hχ(z, oo) > zχ(z, oo) and
(4) hχ[z] = zχ[z].

Here we let equation (1) define χ[z]. From (4) we see that all sub-
projections of χ[z] are in {h}" V Z . In addition χ(—oo, z) has the



FINITE WEIGHT PROJECTIONS IN VON NEUMANN ALGEBRAS 95

usual continuity properties
(5) lub{*(-oo, z) I z < x} = *(-oo, x)

as well as translation properties
(6) /(—oo, wz)(wh) = χ(-oo, z){h) 9 for every w > 0 affiliated

with Z and
(7) / ( - o o , Z)(Λ: + Λ) = /(—oo, z - x)(Λ) for x in Z . Here (6)

arises from the relation

χ(-oo, wz){wh) = R{{wz - whf) = R{w{z - /*)+)

= i?((z-/0+) = *(-oo,

while (7) follows from the relation

We now recall some facts on the essential central spectrum from [4]
and [14]. Let R be a properly infinite semifinite algebra with center
Z and let / be the ideal in R generated by the finite projections of
R. Let Ω be the maximal ideal space of Z . For ω G Ω, let J(ω)
be the ideal of R generated by J and ω. Then for every selfadjoint
element h in R, the set Z - σe(h) of all z e Z such that z~(ω)
is in the spectrum of h modulo J(ω) for every ω e Ω is called the
essential central spectrum of h. Here z^ is the Gelfand transform of
z . The essential central spectrum is nonempty.

PROPOSITION 4.3. Let z be in the essential central spectrum of the
selfadjoint operator h in the properly infinite semifinite von Neumann
algebra R. Let χ be the spectral resolution of h. Then

χ(z -w9 z + w)= / ( - o o , z + w)χ(z - w , oo) ~ 1

for any w in Z with w > 0.

Proof. There is a sequence of orthogonal central projections {en}
of sum 1 and sequence {εn} of strictly positive numbers such that
enen <wen for every n = 1, 2, . . . . Let pn be the spectral projection
of (z - h)en corresponding to the interval [-εn, εn]. Then pn ~ en

[4, Proposition 3.13]. But we have that

Pn <χ(z-w, z + w)en

by the property (7) listed for the spectral resolutions. So we have that
χ(z — w 9 z + w) ~ I. Π

We start by comparing P(Mφ) to P(Mτ). We need the following
lemma.
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LEMMA 4.4. Let φ be af.s.n. weight on a semifinite von Neumann
algebra R, Let τ be a f.s.n. trace on R and let χ be the spectral
resolution of the Radon-Nikodym derivative of φ with respect to τ.
Then

(i) // τ(χ[β, oo)) + φ(χ[β, oo)) = oo for every β > 0, then there
is an element x in R such that φ(x) = oo and τ(x) < oo.
Furthermore, if R has no type I factor direct summands, then the fol-
lowing are true:

(ii) // τ(χ[β, oo)) + φ(χ[β, oo)) = oo for every β > 0, then, for
every γ >0, there is a φ-semifinite projection p in R majorized by
χ[γ, oo) such that φ(p) = oo and τ(p) < oo and

(iii) if τ(χ[β, oo)e) + φ(χ[β, oo)e) = oo for every β > 0 and every
nonzero central projection e, then there are orthogonal equivalent φ-
semifiniteprojections p and q in R such that φ{p) < oo, φ{q) = oo,
and τ(p) = τ(q) < oo.

Proof (i) and (ii). There is no loss of generality in the assumption
that τ(χ[β, oo)) = oo for every β > 0. Indeed, if there is a β >
0 with τ(χ[β, oo)) < oo, then there is no loss of generality in the
assumption that β > γ. The projection p = χ[β, oo) then satisfies
the requirements of (i) and (ii) since it is ^-semifinite such that φ(p) =
oo and τ(p) < oo. So we assume that τ(χ[β, oo)) = oo for every β >
0. By induction, we can find a monotonely increasing sequence {βn}
of real numbers with βn > 2n and projections pn <χ[βn, βn+ι) v îth
2~n < τ(pn) < oo for every n = 1, 2, . . . . We start the induction with
βι > γ. Suppose we have constructed p\, . . . , pn and β\, . . . , βn+\.
Because

hxbyτ{χ[βn+u γ)) = oo

by hypothesis, there is a βn+2 > m a x { ^ + 1 , 2n+x} such that
τQίϋAi+1 > βn+i)) > 2n+l τ h e r e is a projection p Λ + 1 with pn+ϊ <
χ[βn+\, βn+i) a n < i 2~n~ι < τ{pn+\) < oo. This completes the in-
duction step. We note we may assume that τ(pn) = 2~n for every
n provided that R has no type I factor direct summands. Setting
x = Σ2~~nτ{pn)~xPn in the general case (respectively, p = Σpn in
the case that R has no type I factor direct summands), we get a posi-
tive element x (respectively, a ^-semifinite projection p) in R such
that

τ{x) = Σ2-«τ(pny
ιτ(pn) = J^2~n < oo
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and

φ(p) = Σ2-nτ{pny
ιφ{pn) >Σβn2-nτ{pny

xτ{pn) = oc

(respectively,

and

i) Case I. First assume that τ(χ[β, oo)e) = oo for every
β > 0 and every nonzero central projection £. Choose βo s o that
/ ( - o o , /?o) 7̂  0 and let p be a nonzero projection of finite trace
majorized by / ( - o o , βo). Then #?(/?) < βoτ(p) < oo. Using the
fact that i? has no type I factor direct summands, we write p as an
infinite sum of mutually orthogonal nonzero projections p = Σpn

There is an increasing sequence βn > βo such that Σβnτ{Pn) = oc.
We now construct by induction a sequence of mutually orthogonal φ-
s. projections qn < χ[βn, oo) such that pn ~ qn. Suppose that we
have constructed mutually orthogonal projections q\, #2 > > Qn and
a sequence {en(}i of mutually orthogonal central projections of sum
1 and a corresponding sequence {γni}i of positive numbers such that
(1) Qj < X[βj ,00) for 1 < j < n (2) Pj - qj for 1 < j < n and
(3) \q\ + •• + qn)eni < χ[0, 7ni)eni for all /. We construct qn+ι,
{^+i/}/> and {yn+\i)i satisfying (1), (2) and (3). There is no loss of
generality in the assumption that enι = 1. Then let β = γnι . Then
it is sufficient to find a single nonzero central projection e, a γ > 0,
and a projection <7rt+1 with ήrπ+1 orthogonal to q\, #2, .. , qn and

(1) 4n+\ <X[βn+\, OO);
(2) epn+χ - gΛ+1 and
(3) (qi + - + qn + qn+\)e<χ[O,γ)e.

Indeed, a maximal set of nonzero mutually orthogonal central projec-
tions e satisfying the foregoing properties will have sum 1. To find
qn+ι let Φ be an operator valued trace on R. We have that

for some β > 0 due to (3) and the assumption that eni = 1. Let
δ = βn+ι v β. We have that χ[δ, 00) - 1. Since lub{;t[<J, γ) \
δ <ϊ} = X[δ 5°°) J there is a nonzero central projection e and a y > ί
with eΦ(;t[<5, y)) > ^Φ(p Λ + i ) . This means that epn+\ is equivalent
to a subprojection # w + 1 of the projection eχ[δ, y). Then we have
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that
(1) 4n+ι<eχ[δ,V)<eχ[βn+\,oo);
(2) epn+\ ~ qn+ι and
(3) (qi + - + qn + qn+ι)e<χ[O,β)e + eχ[δ9γ)<eχ[O,γ).

This completes the induction step.
We notice that each projection qneni is in Mφ since

φ{qneni) < <P(X[O, βni\Qn) < βm^Qn) = finfliPn) < oo.

Thus, the projections qn = J2t qneni and q = Σn qn are ^-semifinite
due to Proposition 2.4(i). We also have that

and

φ(9) = Σ ViQn) > Σ βnΦn) = 00.

This completes the proof of the first case.

Proof (in) Case II. Now assume that τ(/[/?o> oo)e) < °° f° r some
βo > 0 and some nonzero central projection e. Then we must have
that φ(χ[βo, oo)/) = oc for every nonzero central projection / ma-
jorized by e. Since φ is a semifinite faithful normal weight on the
semifinite algebra Re without type I factor direct summands, there
is no loss of generality in the assumption that τ(χ[βo, oo)) < oo and
that φ(χ[β, oo)^) = oo for every nonzero central projection e and
every β > βo. By using the normality of φ and τ , we can find two
monotonely increasing sequences βo < βn < In < βn+ι such that
τ(xlfin,oo)) < 2~n and φ(χ[βn,γn)) > 1. Let qn = χ[βn,γn) and
let q = Σqn- We also note that q is a #>-s. projection (Proposition
2.4(ii)). By construction, we have that q £ Mφ but q e Mτ. Since
χ[βo, oo) is a finite projection, we have that / ( - o o , βo) ~ 1. Because
/ ( - o o , /?o) is a $?-s. projection, we can find a ^-s. projection p <
/ ( - o o , j90) with p ~ q (Lemma 2.5). Then φ(p) < βoτ(p) < oo. D

The next lemma treats the lower part of the spectral resolution of
the Radon-Nikodym derivative in a manner similar to Lemma 4.4.

LEMMA 4.5. Let φ be af.s.n. weight on a semifinite von Neumann
algebra R. Let τ be a f.s.n. trace on R and let χ be the spectral
resolution of the Radon-Nikodym derivative of φ with respect to τ.
Then

(i) if τ(/(-oo, α)) = oo for every a > 0, then, for ε > 0, there
is a positive element x in R such that φ(x) < ε and τ(x) = oo and
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(ii) // τ(χ(-oo, ά)e) = oo for every a > 0 and every nonzero
central projection e, then, given ε > 0, there is a projection p in R
such that φ(p) < ε and p ~ 1 - p ~ 1.

Furthermore,
(iii) if R has no type I factor direct summands, and if τ(χ(-oo, a))

= oo for every a > 0, then, for ε > 0 and every γ > 0, /Aere w <2
projection p in R majorized by /(—oo, y) 5 wc/z ί/zαί φ(p) < ε and
τ{p) = oo.

Proof (i) α«ί/ (iii). Let {αw} be a strictly decreasing sequence of
positive real numbers such that a\=y and such that Σan < oo. By
induction we can find a decreasing sequence {βn} of positive num-
bers such that βn < an and a sequence of projections pn with pn <
χ{βn+\ 9 βn] such that an < τ(pn) < oo. As in Lemma 4.4, we can find
a projection pn with pn < χ{βn+\, jSnl such that αrt = τ(pn) provided
R has no type I factor direct summands. Setting x = Στ(Pn)~ιPn
in the general case (respectively, p = Σpn in the case that R has no
type I factor direct summands), we get a positive element x (respec-
tively, a ^-semifinite projection p by Proposition 2.4(ii)) in i? such
that

and
PM = Σ AiτCPnΓWίp,,) < J ] α π < OO

(respectively,

and

Ψ(P) <^2βnτ{Pn) <Oθ).

(ii). The hypothesis is equivalent to the statement that
/ ( - o o , α) ~ 1 for every a > 0. This means in particular that R is
properly infinite. Let ro be a finite projection in i? such that τ(r0) = 5
for some δ > 0. Let {αw} be a monotonely decreasing sequence of
strictly positive real numbers such that X) δan < ε. We construct a
sequence {rn} of mutually orthogonal projections such that

ro~rn <#(-oo, an)

for every « = 1, 2, . . . . Suppose that we have constructed the finite
set r\, . . . , rn we construct rn+\. Let r = r\ -\ h rn . We see that

/ ( - o o , αΛ+i) - i?(/[(-oo, αΛ +i)r)) ~ 1
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because #(—oo, an+\) ~ 1 by hypothesis and because the range projec-
tion R(χ(-oo, an+\)r) of #(-oo, an+\)r is a finite projection since
the range projection is equivalent to a subprojection of r. We can
therefore find a projection rn+\ with

ro ~ rn+x < χ(-oo, an+x) -R(χ(-oo, α n + i )r) .

Then we have that

= rn+ι(R(χ(-oo, an+ι)r))r = 0.

Thus, we have completed the induction step. We now have a sequence
of mutually orthogonal projections {rn} with ro ~ rn and with rn <
/(—oo, an) for every n = 1,2, ... . Setting p = Σ rn , we get that

Ψ(P) = Σ ^ ( Γ Λ ) = Σ τ ( Λ r ") - Σ α«τ(r«) = Σ an<ro) < oo.
We also have that /? ~ C(ΓQ) .

Now let {pw} be a maximal set of nonzero projections in R with
orthogonal central supports such that φ(pn) < β and p n ~ c{pn).
The material in the previous paragraph shows that Σpn = 1 Since
i?/?w is properly infinite, we can decompose each pn into 2n mutually
equivalent orthogonal projections {pnk)k of sum pn. One of the
projections pnk satisfies φ{pnk) < ε/2n and pnk ~ c(pnk) - pnk ~
c(pnk). So we may assume that φ(pn) < ε/2n and pn ~ c(pn) - pn ~
c(pn). Therefore, the projection p = Σpn satisfies φ{p) < ε and
p ~ 1 — p ~ 1. D

If the ideals of definition of a f.s.n. weight and a f.s.n. trace are
related by inclusion, then the weight and the trace bound one another
up to a finite functional.

PROPOSITION 4.6. Let R be a semifinite von Neumann algebra. Let
φ be a f.s.n. weight on R and let τ be a f.s.n. trace on R. Then a(i)
Mφ c Mτ if and only if a(ii) there is an a> 0 α«d a positive normal
functional ω\ such that aτ-ω\ <φ\ andb(i) Mτ c Af̂  z/αm/only
if b(ii) ί/ẑ re ϋfl /? > 0 αwί/ α positive normal functional ωι such that
φ < βτ + ω2 .

Proof. We only need to show that (i) implies (ii). We use Lem-
mas 4.4(i) and 4.5(i). First we show that a(i) implies a(ii). Let χ
be the spectral resolution of the Radon-Nikodym derivative of φ
with respect to τ . By Lemma 4.5(i), there is an a > 0 such that
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τ(/(—oo, a)) < oo for some a > 0 otherwise, there would be a posi-
tive element x in R with φ(x) < oo and τ(x) = oo contrary to a(i).
But then we have that

aτ < φ + aτ(χ(-oo, a)).

Letting ω\ = ατ(/(—oo, α) ), we see that cύ\ is finite and aτ - cϋ\ <
φ.

The implication b(i) implies b(ii) follows in a similar manner from
Lemma 4.4(i). D

When the algebra R has no type I factor direct summands, we can
rephrase Proposition 4.6 in terms of the projection lattices.

PROPOSITION 4.7. Let R be a semifinite von Neumann algebra with
no type I factor direct summands. Let φ beaf.s.n. on R and let τ
beaf.s.n. trace on R. Then Mφ c Mτ ifandonlyifP(Mφ)cP(Mτ)
and Mτ c Mφ if and only if P(Mτ) c P(Mφ).

Proof. First let P{Mφ) c P(Mτ). Let χ be the spectral resolution of
the Radon-Nikodym derivative of φ with respect to τ . By Lemma
4.5(ii), there is an a > 0 such that τ(/(—oo,α)) < oo for some
a > 0 otherwise, there would be a projection p with φ(p) < oo and
τ(p) = oo contrary to the assumption that P{Mφ) c P(Mτ). As in
Proposition 4.5(a), there is a normal functional ω on R such that

aτ - ω < φ.

This shows that Mφ c Mτ.
The proof of the second part of Proposition 4.6 is similar. Here

Lemma 4.4(ii) is used instead of Lemma 4.5(ii). D

In the remainder of this section we consider f.s.n. weights φ such
that P(Mφ) is a lattice. Here we need to separate two cases: with
type I factor summands and without such summands. We first prove
a lemma that is used in both cases.

LEMMA 4.8. Let φ beafs.n. weight on a properly infinite semifinite
von Neumann algebra R such that P{Mφ) is a lattice. If {en} is a
sequence of mutually orthogonal central projections such that φ{en) <
oo for every n, then X) φ{en) < oo.

Proof. Let χ be the spectral resolution of the Radon-Nikodym
derivative of φ with respect to a f.s.n. trace τ on R. Then the
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projection χ[β, oo)ew has finite trace for every β > 0 because

βτ(χ[β, ooK) < φ(χ[β,oo)en) < φ(en) < oo.

Because R is properly infinite τ(χ(—oo, a)e) = oo for every a > 0
and every nonzero central projection e majorized by en. Lemma
4.5(ii) applied to Ren implies the existence of a projection pn <
en with φ(Pn) < 2~n such that pn ~ en - pn ~ en. However, the
projection p = Σpn now satisfies φ{p)<\ and

So we have obtained two orthogonal equivalent ^-semifinite projec-
tions p and Σen - P (cf. Proposition 2.4(i) and (ii)). Now the
characterization of the lattice property of P{Mφ) in Proposition 3.2
forces

which taken together with φ(p) < oo forces

<oo. D

Now we consider the first of the two cases.

THEOREM 4.9. Let R be a properly infinite semifinite von Neumann
algebra without type I factor direct summands. Let φ beaf.s.n. weight
on R. Then P(Mφ) is a lattice if and only if there is a central projection
e andafs.n. trace τ on R such that

(i) φ restricted to Re is a functional, and
(ii) P(Mτ) = P(Mφ) on i?(1_,).

Proof. Let φ be a f.s.n. weight on R such that P(Mφ) is a lattice.
First let {en} be a maximal set of mutually orthogonal nonzero central
projections such that φ(en) < oo. Setting e = Σen > w e S e t a central
projection e such that φ is a functional on Re (Lemma 4.8) and such
that φ(f) = oo for every nonzero central projection / in R(\-e) - We
note that the finite projections of φ\R(\_e) is still a lattice. So by
reducing to the f.s.n. weight on the properly infinite semifinite algebra
R(i-e) with no type I factor direct summands, there is no loss of
generality in the assumption φ(f) = oo for every central projection
/ in R.

We construct a f.s.n. trace τ with P(Mτ) = P(Mφ). Let τ be any
f.s.n. trace on R and let h be the Radon-Nikodym derivative of φ
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with respect to τ . Let χ be the spectral resolution of h. We modify
τ by multiplying it by an element affiliated with the center constructed
from h in order to get the desired trace.

First, let {en} be a maximal set of nonzero mutually orthogonal
central projections in R such that for each en there is a βn > 0 with

τ(χ[βn, oo)en) + φ(χ[βn, oo)en) < oo.

We must have that Σen = 1 otherwise, we must have that every
nonzero projection e majorized by the nonzero projectional 1 - Σ en
satisfies

τ(χ[β, oo)e) + φ(χ[β, oo)*) = oo

for every β > 0. Then there would be two orthogonal equivalent
projections p and q in R such that φ{p) < oo, φ(q) = oo (Lemma
4.4(iii)) and P(Mφ) would not be a lattice (Proposition 3.2). So we
must have that Σ en = 1 -

Second, let {fn} be a maximal set of nonzero orthogonal central
projections in R such that for each fn there is an an > 0 with

τ(/(-oo, an)fn) <oo.

By the same reasoning as the preceding paragraph we have that Σfn =
1. Here we use Lemma 4.5(ii).

Now by combining the sets {en} and {fn} into a single set, we
may assume that there is a sequence of mutually orthogonal central
projections {en} of sum 1 and two sequences {an} and {βn} of real
numbers with 0 < an < βn such that

(-oo, an)en) + τ(χ[βn , oo)en) + φ(χ[βn , oo)en) < oo

for every n = 1, 2, . . . . We can also write

τ(/(-oo, an)en) + ί?(χ(-oo, an)en)

+ τ(χ[βn , oo)^w) + φ(χ[βn , oo)^rt) < oo.

We have that τ(p) < oo if and only if φ{p) < oo for every projec-
tion p < en . In fact, we have that τ(p) < oo (respectively, φ(p) < oo)
if and only if τ(pχ[an , βn)en) < oo (respectively, φ(pχ[an , /?„)*„) <
oo) so that the relation

anτ(χ[an, βn)pen) < φ(χ[an, βn)pen) < βnr((χ[an, βn)pen))

shows that τ and #> mutually bound each other on projections ma-
jorized by en.
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Now we have that each hn given by

hn =h{\ - ( / ( - O O , OLn) +X[βn, <X>)))en

is a bounded positive operator on the properly infinite von Neumann
algebra Re . Let zn be an element in the essential central spectrum
of hn . We" have that

since

oίnen <hn< βnen

modulo the ideal generated by finite projections in Re . Thus, for
n

any projection p, the number τ(znp) is finite if and only if φ(znp)
is finite.

Now we show that the trace

is the desired trace. From this point to the end of the proof we do
not use the fact that R has no type I factor direct summands. We
present an argument based entirely on the fact that anen < zn < βnen .
So we must show that P(MTQ) = P{Mφ). First let p be an arbitrary
projection in R with τ(pn) + φ{pn) < °° f°Γ every n = 1 , 2 , . . . .
Here pn = pen . Let {εn} be a sequence of positive real numbers such
that

Σnτ(Pn) <oc.

Then we have that

χ(zn - enen, zn + εnen) ~ en

by Proposition 4.3. The range projection

rn = R{χ(zn - εnen, zn + enen)Pn)

is a finite projection and satisfies

φ{rn) < βnτ{Pn) < oo.

So we have that

r'n = X(zn - enen, zn + εnen) - rn

is a φ-s. projection (Proposition 2.4(iii)) equivalent to en . Then we
can find a ^-s. projection qn with
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due to Lemma 2.5. Actually, the projection qn is in Mφ . We see that
pn is orthogonal to qn since

QnPn = QnX{zn-Bnen, zn + enen)pn = qnrnχ{zn-εnen, zn+enen)p = 0.

We also see that

τ((zn + en)qn) - enτ(qn) < τo(pn) = τQ(qn) < τ((zn - εn)qn) + εnτ(qn)

since

ψ{Qn) = τ(hnχ(zn - εnen , zn + enen)qn) < τ((zn + en)qn)

and likewise that

τ{{zn-ε)qn) <φ{qn)
Setting Σ Qn = Q , we get a #>-s. projection q with pq = 0 and # ~ /?
such that

Now we use the material in the last paragraph to complete the
proof. Suppose that p e P(Mφ). Let pn = pen. Then we have
t(Pn) + <P(Pn) < °o for every n = 1, 2, . . . due to the first part of the
proof. This means that the projection q constructed in the previous
paragraph is in P(Mφ) otherwise, the set P(Mφ) would not be a lat-
tice by Proposition 3.2. Since Σenΐ(<ln) < CXD, we have that p is in
P(Mh). So we have that P(Mφ) c P(MΊQ) .

Conversely, suppose that p e P{MTQ) . Again we have τo(pn) < oo
for every n — 1 , 2 , . . . . This means that τ(pn) < oo for every n
and thus that φ{pn) < °° f° r every n. Now by the previous part
of the proof we find a φ-s. projection q with pq = 0, p ~ #, and

< oc such that

= τo(q) < φ{q)

So we get that <? is in P{Mφ), and consequently, p is in P(Mφ) by
Proposition 3.2. This means that P(MTQ) C P(Mφ). D

Now we complete the analysis of the properly infinite semifinite
case.

THEOREM 4.10. Let R = Σ(BRn where Rn are type I ^ factors
and let φ be f.s.n. weight on R. Then P{Mφ) is a lattice if and only
if the identity is the sum of three orthogonal central projections e, f
and g such

(i) φ is a finite functional on Re;
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(ii) P{Mφ) c P(Mτr) on Rf\ and
(iii) P(Mφ) = P(Mτ) on Rg.

Here Tr = ]Γ) φ tr where tr is the canonical trace on a type loo factor
and τ isfs.n. trace on Rg.

Proof. We show that P(Mφ) c P(MΊr) on R implies P(Mφ) is a
lattice. Let en be the central projection of R which is the identity on
Rn . Let p, q £ P{Mφ) then p\/ q e P(Mjr). Since p V ? is a sum
of minimal projections, each with trace one, we see that (pVq)en = 0
for all but a finite number of indices. For these indices

for some γn > 0 because pen and qen are finite dimensional projec-
tions. But then

ψ(P V q) < max{γn}φ(p + q) < oo,

whence /? V q G P{Mφ). Thus P{Mφ) is a lattice.
Now assume that P(Mφ) is a lattice. Let χ be the Radon-Nikodym

derivative h of φ with respect to Tr and as before let en be the central
projection of R such that i?eπ = Rn . First let S\ be the set

SΊ = {/! I φ(en) < oo}.

Then we must have that

) \ n e S{} < oo

by Lemma 4.8, i.e., φ is a finite functional on i?^ where e =

Now we consider φ on the direct sum X)0{i?« | ft £ S\}. Again
there is no loss of generality in the assumption that

First we show that, for every n, there is an > 0 such that χ(0, an)en =
0. We have that φ{en) = oo. If tr(χ(-oo, a)en) = oo for all α > 0,
then we could again find a projection p < en with p(p) < oo and
p ~ en - p ~ en by Lemma 4.5(ii). This also contradicts Proposition
3.2. So we must have that tr(/(—oo, a)en) < oo for some a > 0. We
have that

since φ is a f.s.n. when restricted to Ren . Because tr(/(-oo, α)eΛ)
is integer valued, we must have that tr(/(-oo, a)en) = 0 for some
a > 0. Let

αΛ = lub{α | tr(/(-oo, a)en) = 0}.
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We have that χ(-oo, an)en = 0 while * (-oo, an]en φ 0. The latter
is due to the fact that a -+ tr(/(-oo, a)en) is integer valued and left
continuous.

Now let

S = {n\χ[lf <x>)en ~ e n ) .

Suppose that n eS. We show that

γ = g\b{an I n e S} > 0.

We obtain a contradiction if γ = 0. By passing to a subset of S, we
may assume that Σ an < °° Then there are two infinite orthogonal
sequences of one dimensional projections {/?„} and {qn} such that

Pn <X(-oo,an]en

and

Qn<X(l9 βn\en

for every n. Here βn is some number βn > 1. However, this would
give two equivalent ^-s. projections p = ΣPm and q = Σqm with

and

^(«) >Σfin tr(qn) =
Again this would contradict Proposition 3.2. So we must have γ > 0.
Now let / = Σien I w € *S}. Then the weight φ restricted to Rf is
a f.s.n. weight with

φ(p) > y^{pχ[γ, oo)) = yTr(p/(χ(-oo γ) + χ[γ, oo))) = yTr(p/)

for every projection /? majorized by / . This means that P{Mφ)f c
P{MΊτ).

Now we consider the final set of indices, the complement of S and
S\. We have that χ[l, oo)ert is a finite projection in i?^w otherwise,
the projection χ[l, oo)ew would be infinite and n would be in S.
Since lub^ Xr{χ[βn, oc)^) = 0, there is a βn > 0 with /[>(?„, oc)^ =
0. Thus, there are numbers 0 < an < βn such that / ( - o o , an)en =
χ[)ff, oo)^Λ = 0. Now we can finish the proof in the same way we
finished the proof of Theorem 4.9. Let δn be in the essential spectrum
of the bounded operator hen . Let τ be the trace Σ Θ $ntr Then
we have that P(Mφ) = P(Mτ). D

REMARK 4.11. In the case of type I ^ factors the inclusion P{Mφ) c
P(MχT) does not in general imply that P(Mφ) = P(Mir). In fact, if
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h is the Radon-Nikodym derivative of φ with respect to tr, then
P(Mφ) = P(Aftr) implies that h is bounded. Indeed, if there were
a vector ξ φ D(hχl2), then the rank 1 projection on the subspace
generated by ζ would be in P(Mtr) but not in P{Mφ). So P{Mφ) =
P{MXτ) implies that h is defined on the whole Hubert space and thus
that h is bounded.

On the other hand P(Mφ) = P(Mir) does not in general imply
that Mφ = MΊΐ. For example, the weight φ = Σ 0 f l t r satisfies
P(Mφ) = P(MTr) but Mφ φ MTr.

5. Finite algebras. To treat finite algebras we need to develop addi-
tional functional calculus for central intervals.

PROPOSITION 5.1. Let R be a finite von Neumann algebra with cen-
ter Z, let Φ be the canonical center valued trace on R, let hηR,
h = h* > 0 with null space N(h) = 0 and let

z = lub{xηZ I x> 0, ΦQί(-oo, JC)) < (1/2)1}.

Then zηZ, z > 0 and

Φ ( χ ( - o o , z ) ) < (1/2)1 and Φ(χ(z, oo)) < (1/2)1.

Proof. Let {?„} (respectively, {fn} ) be a maximal family of non-
zero mutually orthogonal central projections such that there are strictly
positive numbers {an} (respectively, {/?„}) with ΦQt(-oo, an)en) <
2-χen (respectively, Φ(/(-oo, βn)fn) > (2/3)/Λ). Then we must
have that X) en = 1 (respectively, Σ Λ = 1) since the limit in the
strong operator topology of {Φ(/(—oo, α))} as α goes to 0 (respec-
tively, oo) is 0 (respectively, 1). We have that

Then the set of all sums Σanen where {en} is a sequence of mutually
orthogonal projections of sum 1 and {an} is a sequence of strictly
positive numbers such that ΣΦ(/(—oo, an)en) < 2" 11 is upward by
the ordering described in the introduction to §4. In addition the set of
all sums is bounded above by the sums Σβnfn- Thus, we have that

z = lub {£>„<?„ I Σen = 1 and ^Φ(χ(-oo, an)en) < 2"1}

is a positive self adjoint element affiliated with Z such that
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Now let x and y be positive self adjoint elements affiliated with Z
such that z < x < y. Then we have that

and

Φ{χ(y, oo)) < 1 - Φ ( * ( - o o , x)) < 2 ^ 1 .

Taking the least upper bound of Φ(χ(y, oo)) for all y > z, we get

, o c ) ) < 2 - 1 l . D

Now let φ be a f.s.n. weight on the finite von Neumann algebra
i?. Let τ\ and τ2 be two f.n.s. traces on R and let h\ and Λ2
be the Radon-Nikodym derivatives of φ with respect to X\ and x2

respectively. Let χ\ and χ2 be the spectral resolutions of h\ and A2
respectively. Let z\ and Z2 be the operators associated to h\ and h2

respectively by Proposition 5.1, viz.,

Zi = lub{xηZ \x>0, Φ(χ/(-oo, x)) < (1/2)1}.

There is a wηZ+ with u> > 0 such that

for all x G i?+ . So we have that whi = h\. We have already seen in
Property 6 of the central spectral resolution given in §4 that

Xi(-oo, z) = χ(-oo, z)(hχ)

= χ (-oo 5 wz){wh{) = χ(-oo, tyz)(A2) = X2(-oc? ioz).

Taking into account the definition of z\ and Z2 as least upper bounds,
we get that z\ =wz2. This means that

τχ(zχx) = τι(wz2x) = τ2(z2x)

for all x in i?+ .
Now the following definition makes sense.

DEFINITION 5.2. Let R be a finite von Neumann algebra and φ be
a f.s.n. weight. Let τ be a f.s.n. trace on R and let

z = lub{jc>/Z I x > 0, ΦQt(-oo, x)) < (1/2)1}

where Φ is the canonical operator valued trace on R and χ is the
spectral resolution of the Radon-Nikodym derivative h of φ with
respect to τ . Then the trace τφ = τ z is called canonical trace
associated with the weight φ .

The canonical trace balances at 1 the spectral resolution of the
Radon-Nikodym derivative.
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PROPOSITION 5.3. Let φ be a f.s.n. weight on the finite von Neu-
mann algebra R with center Z, let τφ be the canonical trace associ-
ated with φ, and let h be the Radon-Nίkodym derivative of φ with
respect to τφ . Then

1 = \ub{xηZ I x > 0, Φ(*(-oo, x){h)) < (1/2)1},

where Φ is the canonical operator valued trace on R.

Proof. Setting

z = sup{xηZ I x > 0, Φ(χ(-oo, x)(h)) < (1/2)1},

we have that τψ = τψ z, and consequently, we have that z = 1. D

PROPOSITION 5.4. Let R be a finite von Neumann algebra, let φ
be a f.s.n. weight on R, let τφ be the canonical trace associated
with φ, and h be the Radon-Nikodym derivative of φ with respect to
τφ. Then there are equivalent projections r_ and r+ in Rφ such that
(i) hr- < r- , (ii) r+ < hr+ and (ii) Λ(l - (r_ + r+)) = 1 - (r_ + r+).

Proof. By taking a central decomposition, we may assume that R
is either a type II i or a type ln algebra. First assume that R is
a type Hi algebra. Then we have that hχ(—oo9 1) < z(-oo, 1),
χ{\, oo) < /z/(l, oo), and hχ[\] = χ[l]. Now we have that

Φ(*(-oo, 1)) < (1/2)1 < 1 - Φ ( χ ( l , oo)) = Φ(χ(-oo, 1)) +Φ(*[1]).

Since R is a continuous algebra, there is a subprojection p of
such that Φ(/[0, 1) + p) = 1. Setting r_ = / ( - o o , I) +p and r+ =
1 - r_ , we get two projections r_ and r+ in i?^ due to the fact that
every subprojection of χ[l] is in Rφ . We also have that

and

Since the condition Φ(r_) = Φ(r+) implies that r_ ~ r + , we have
constructed the desired projections in the type IIi case. Note that
r+ + r_ = 1 in this case.

If R is a type ln algebra, we may assume that by passing to a central
summand that / ( - o o , 1), χ[\], and χ(l, oo) are equal respectively
to the sum of n\, nι and n^ mutually orthogonal maximal abelian
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projections. Then n\/{n\ + IΪ2 + n^) < 1/2 while n$/{n\ +ri2 + #3) <
1/2. Now it is clear that one can find r_ and r+ using the fact that
two maximal abelian projections are equivalent. D

It is instructive to consider a type In factor algebra Mn . Let tr be
the trace tr((α, y)) = Σaa We may assume that the Radon-Nikodym
derivative h of the weight φ with respect to tr is the diagonal matrix

h = diag(tfi, ...,an)

with 0 < a\ < CL2 < - - < an . Then a decomposition of the identity
satisfying the requirements of Proposition 5.4 is

, . . . , 1 ,0 , . . . , 0),

and

r+ = d i a g ( 0 , . . . , 0 , 1 , . . . , 1),

where there are [n/2] ones in both r_ and r+. Here [n/2] is the
integer part of n/2. We note that the decomposition of Proposition
5.4 is not unique. However, the canonical trace is unique and is given
by

We can now discuss the lattice properties of P(Mφ) for a finite
algebra.

THEOREM 5.5. Let R be a finite algebra, let φ be af.s.n. weight
and let τφ be the associated canonical trace. Then P{Mφ) is a lattice
if and only if P(Mφ) = P{M%).

Proof. We can prove the necessity in the separate cases (i) R is a
direct sum of type I factors and (ii) R has no type I factor direct
summands. We have already presented a proof for the direct sum
of type I factors in [7]. We sketch the proof again for the sake of
completeness.

First let R be the direct sum of matrix algebras

n

We have already seen that the canonical trace for φ is
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where m(n) = [(k{ή) + l ) / 2 ] . Given any projection p = Σn φpn in

i?, we define

r Λ = d i a g ( l , . . . , l , 0 , . . . , 0 ) and *„ = diag(0, . . . , 0, 1, . . . , 1),

both with min{tr(p n ), [Λ:(«)/2]} ones, and we set

a n d s =

Here we shall again use the assumption that hn are diagonal matrices.
The projections r and s are orthogonal equivalent projections. By
definition of rn and sn and by the monotonicity of {anj} , we have

t r ( r Λ ) < t r ( p Λ ) < 2 t r ( r r t ) ,

and
tr(ΛΛrrt) < αΛ,W(Λ)tr(r r t) < \τ{hnsn).

We have that

tr(/>π) fc(τι)

tr(ΛΛrn) < J ^ αΛ></ < 5^fln,m(pn)77 = tr(AΛ/7Λ)

and likewise that tr(hnpn) < 3tr(hnsn). Therefore, we obtain the
inequalities

φ(r) <τφ{r)<φ{s),

τφ(r) <τφ(p) <3τφ(r),

φ{r) < φ(p) < 3φ(s).

Now assume that P{Mφ) Φ P{Mτ ) . We shall obtain a contradiction
from the preceding inequalities by showing the existence of two or-
thogonal ^-semifinite projections, one of which is in Mφ and one of
which is not. This is impossible on account of Proposition 3.2. On
the one hand, if p e Mφ but p £ Mτ , then r G Mφ , r £ Mτ and
hence s φ Mφ . On the other hand, if p G Mτ but p £ Mφ , then
s <£ Mφ and hence r G Mφ . In either case, we have two equivalent
orthogonal projections r and s, one of which is in Mφ and one of
which is not. But every projection in a finite von Neumann algebra is
9?-semifinite (Proposition 2.3). Thus, we have obtained a contradic-
tion. Hence, we conclude that P(Mφ) = P(Mτ ) whenever P(Mφ) is
a lattice.

Now assume that R has no type I factor summands and let r_ and
r+ be the equivalent, orthogonal projections in Rφ given by Propo-
sition 5.4 applied to the canonical trace τφ with respect to φ. First



FINITE WEIGHT PROJECTIONS IN VON NEUMANN ALGEBRAS 113

we show that P(Mφ) (jL P(Mτ ) leads to a contradiction. Indeed, let
χ be the spectral resolution of the Radon-Nikodym derivative of φ
with respect to τφ. We have already seen that τφ(χ(-oo, a)) < oo
for some a > 0 implies that P{Mφ) c P(Mτ ) since

τφ(x) < a~ιφ(x) + τφ(χ(-oo, a)x)

whenever x > 0. So if P{Mφ) <£. P(Mτ ) were true, we must have that
τφ(X(-°°, α)) = oo for all a > 0. Thus, there would be a projection
P < X(-oo, 1) = f- such that ^(p) < oo and τ>(/?) = oo (Lemma
4.5(iii)). Since r_ ~ r+ , we could find a ^-semifinite projection q <
r+ < χ[l, oo) which is equivalent to p due to Lemma 2.5. However,
we would then have that

φ(q) = τφ(hq) > τφ(q) = τφ{p) = oo.

This would now mean that P{Mφ) is not a lattice due to Proposition
3.2. On the other hand, if P(Mτ ) £ P(Mφ), then we also get a
contradiction. We would have that

°°)) + Ψixlβ? oo)) = oo

for all β > 0 and so we could find a ^-s. projection /? < χ(l, oo) <
r+, such that τφ(p) < oo and φ(p) = oo (Lemma 4.4(ii)). But then
there is a projection q < r_ with # ~ /? because r_ ~ r+ (Proposition
5.4). Since

φ{q) = τ^(Λί) < τ^(ί) = τ^(p) < oo,

we would conclude, again by Proposition 3.2, that P(Mφ) is not a
lattice. Thus, we must have that P(Mτ ) c P(Mφ). Combining this
with the previous inclusion found in the first part of the proof, we get
that P(Mτ ) = P{Mφ) whenever P{Mφ) is a lattice. D

Now we can compute I{φ) for finite algebras.

THEOREM 5.6. Let φ beaf.s.n. weight on a finite algebra R and let
h be the Radon-Nikodym derivative of φ with respect to the canonical
trace τφ of φ. Let r_ and r+ be any projections in Rφ with r_ ~ r+
in R such that (i) hr- < r_, (ii) r+ < hr+ , and (iii) h(\ - r_ - r+) =
1 - r_ - r + = r 0 .

Proof. We note that projections r_ and r+ exist by Proposition 5.4
but are not necessarily unique since the piece of χ[l] is not deter-
mined. Then there is a sequence {en} of mutually orthogonal central
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projections of sum 1 such that τφ(en) < oc for every n = 1, 2, . . . .
We have that τφ en is the canonical trace associated with the weight
φ en on Re . We also have that

and

Σ r J ) + φ(enr0)) = 2φ{rJ) + φ(r0).

Thus, there is no loss of generality in the assumption that τφ is a
finite trace. Then we have that

φ(r-) = τφ(hr-) < τφ(r-) < oc

so that φ(r--) is a finite functional. Therefore, for every projection
p, we can decompose φ(p) as

φ(p) = φ(r-) - φ{r.{\ -p))

> φ{rJ) - τφ(r-(l - p)) + τφ((l - rJ)p)

= φ{r-) + τφ{p)-τφ(r-).

Now we take now a second projection q such that p\ί q = 1. We
have that l-p~q-pΛq by the Parallelogram Law. In defining
I(φ), we have already remarked that there is no loss of generality in the
assumption that p Λ q = 0. Using this assumption, the Parallelogram
Law for p and q becomes 1 - p ~ q . Applying the inequality in the
preceding paragraph to both p and q and adding the results, we get

> ψ{P + Q)> 2φ{r.) + τφ(p + q) - 2τ>(r_)

To prove the reverse inequality, we apply Lemma 3.1 to the pair
of orthogonal equivalent projections r_ and r+. Notice that r+ is
40-semifinite since it is in Rφ (Proposition 2.4(ii)). Thus, for every
ε > 0, there is a projection q such that r_V? = r . + r + and φ(q) <
φ(r-) + ε. Because (r_ + r o )V? = l , we get

< φ(r- +ro + q)< 2φ{rJ) + φ{r0) + ε.

Since ε > 0 is arbitrary, we have that

I(φ)<2φ(r-)
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In particular we see that 2φ(r-) + φ(r0) does not depend on the
choice of r_ and r+ with the properties (i)-(iii) of Proposition 5.4.

6. Calculation of I(φ) and J(φ) for semifinite algebras. We have
already calculated I(φ) for finite algebras. We also know that I(φ) =
oo if the identity is not the supremum of two projections in Mφ . We
complete the remaining case in the next theorem.

First we need to extend the notion of essential central spectrum to
an unbounded self adjoint operator h affiliated with a von Neumann
algebra R with center Z . The self adjoint operator z affiliated with
z will be said to be in the essential central spectrum of h if

χ(z -w, z + w){h) ~ 1

for every w > 0 affiliated with z. This corresponds to the behavior of
the essential central spectrum for bounded operators (cf. Proposition
4.3).

THEOREM 6.1. Let φ beaf.s.n. weight on a properly infinite semifi-
nite von Neumann algebra R and let h be the Radon-Nikodym deriva-
tive of φ with respect to af.s.n. trace τ. Then the following are equiv-
alent

(i) OeZ-σ<(A);
(ii) I(φ) = O\and

(iii) I(φ) < oo, i.e., the identity is the supremum of two projections
in Mφ.

Proof(i) implies (ii). Let 0 e Z - σe(h) then χ(0, a) ~ 1 for all
a > 0. This means that, given e > 0, there is a projection p in R
with φ{p) < ε and p ~ 1 - p ~ 1 (Lemma 4.5(ii)). We can find a
projection q with φ(q) < e and pMq =p + (l -p) = 1 (Lemma 3.1)
because 1 -/? is ^-semifinite (Proposition 2.4(iii)). This means that
I(φ) < 2ε. Since ε > 0 is arbitrary, we have that I(φ) = 0.

Proof (iii) implies (i). Suppose that there are two projections p and
q in Mφ with p v q = I. We get a contradiction if #(-oo, a)e is
a finite projection for some nonzero central projection e and some
a > 0. In fact, if / ( - o o , a)e is a finite projection, we have that

aτ(χ[a, oo)pe) < τ(hχ[a, oo)pe) < φ{pe) < oo.

This means that χ[a, oo)pe and consequently

pe = /(-oo, a)pe + χ(a, oo)pe
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are finite projections. Likewise, the projection qe is finite so that
pe\l qe = e is finite contrary to our assumption that R is properly
infinite. Thus / ( - o o , α) ~ 1 for all a > 0. D

Let φ be a n.s.f. weight on the von Neumann algebra R. Using
Theorem 6.1, we compute the parameter J(φ). Recall that we have
already shown in Proposition 3.5 that J(φ) = oo whenever R has a
nonzero type III direct summand. So we can restrict our attention to
semifinite algebras.

Let h be a positive faithful self adjoint element affiliated with the
von Neumann algebra R with center Z . Let χ be the spectral reso-
lution of h. On the one hand, there is a set {en} of central projec-
tions of sum 1 and a sequence {an} of positive numbers such that
Σx(-°° > an)en = 0. Thus, the set of elements in Z given by

{zeZ I / ( - o o , z ) = 0}

is upward directed and

is a positive self adjoint element affiliated with Z .
On the other hand, there is a maximal set {fn} of nonzero or-

thogonal central projections and a set {βn} of numbers such that
Σλ(βn , oo)fn = 0. Let Σfn = fh and let

wh = glb{z η Zfh I χ ( z , oo) = 0} + oo(l - f h ) .

Since i/;^ = glb{/(z, oo) | zηZf^} is a positive selfadjoint element
affiliated with Zfh due to the fact that h is faithful and positive
selfadjoint, the element w is in Z + (cf. [2]).

PROPOSITION 6.2. L^ί h be a faithful positive selfadjoint element
affiliated with the von Neumann algebra R. Let χ be the spectral
resolution of h. Let

vh =lub{z G Z I / ( - o o , z) = 0}

am/
wΛ =glb{z f/ Z/A | * ( z , oo) = 0} + oo(l -fh)

where (l-fh) is the largest projection f in Z such that χ(a, oo) has
central support f for every a. Then

(i) / ( - o o , z) has central support \ for every z affiliated with Z
such that z > vh
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(ii) / ( z , oo) has central support 1 for every z affiliated with Z
such that z < wh; and

(iii) vh<h<wh.

Proof (i). Suppose that z is affiliated with Z with υ^ < z. Then
there is a sequence {en} of central projections of sum 1 and sequences
of numbers {an} and {βn} such that

vhen < anen < zen < βnen.

We must have that / ( - o o , an)en has central support en by the defi-
nition of vh . Thus, the projection Σ/(—oo, αΛ)ert and consequently
the projection / ( - o o , z) has central support 1.

Proof (n). Same as (i).

(iii). Let {en} be an orthogonal sequence of central projec-
tions of sum 1 and let {an} be a sequence of numbers with

/ ( - o o , αΛ)eΛ = 0.

Then we have that, for all rnn > an ,

anχ(-oc, mn)en < Λ/(-oo, mn)en.

Then for all finite sums we have that

J2anX{~oo, mn)en = Y^hχ{-oo, rnn)en.

Hence, we have that

Y^ < h,
and finally, that

vh<h

(cf. [2, §1]).
Now let {en} be an orthogonal sequence of central projections of

sum fh and let {βn} be a sequence of numbers with Σχ{βn, oo)en

= 0. Then we have that

hχ{jn , kn)en < βnχ{jn , kn)en

for all j n < βn < kn . So we have that

hχ(jn, kn)en < when

as a relation for bounded operators and

hfh < whfh
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by taking least upper bounds. Since h{\ - fh) < oo(l - fh), we get

h < Wfr. Ώ

DEFINITION 6.3. Let φ be a f.s.n. weight on the semifinite von
Neumann algebra R with center Z , let τ be a f.s.n. trace on R, and
let h be the Radon-Nikodym derivative of φ with respect to τ . Let
χ be the spectral resolution of h and let

v = vh = lub{z e Z I / ( - o o , z) = 0}

and
w = wh = glb{z */ Zfh \χ{z, oo) = 0} + oo(l - /Λ)

where (1 — ̂ ) is the largest projection f in Z such that / ( α , oo)
has central support / for every a. Then the central size of φ is the
number

^ if v~ιw is bounded,
otherwise.

Notice that v and w do not depend on the choice of the trace.
In fact, if τ' is a second n.s.f. trace on R, then there is an x > 0
affiliated with Z such that

τ = τr x.

The Radon-Nikodym derivative of φ with respect to τr is xh . Then
we have that / ( - o o , z)(Λ) = 0 if and only if / ( - o o , χz){xh) = 0
(cf. §4, Property 6) so that χv^ = vx^ . Similar reasoning gives χw^ =

-r,-{ d i r l 1

THEOREM 6.4. If R is a semifinite algebra, let φ be a f.s.n. weight
on R and let γ = γφ be the central size of φ then

Proof. Let us first prove that J(φ) < j ( l + y). Clearly we need to

consider only the case that γ Φ oo. Since

τ' <φ<yτ',

where τ' = τ(t ), we have Af̂  = Afτ/. Let /? and q be nonzero
projections in Mψ then r = p\/ q is in Λfτ'. Hence i?r is a finite
algebra and so the restriction φ' of #> to Rr is finite and normal
and faithful. Thus, by Proposition 5.4 applied to Rr, we can find
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a decomposition of r = r_ + ΓQ + r+ into three mutually orthogonal
projections such that r_ ~ r+ and

φ'(p + Q) = Ψ(P + q) > Πψ') > 2φ'{r.) + φ'(r0) > 2φ(r.) + φ(r0).

Then we get

q) < φ(r-) + φ(r0) + φ(r+)
<

φ(p + q)~ 2φ(r-) + φ(r0)

< 1 2τ(wr+) + φ(r0) < 1 2γτ(υr+) + φ(r0)
- 2 2τ(vr-) + <p(r0) ~ 2 2τ(υr+) + φ(r0)so that

since γ > 1. Since p and q are arbitrary, we obtain

Now we prove the reverse inequality. First suppose that χ is the
spectral resolution of h. Suppose that χ(a, a') and χ(β, /?') have
the same nonzero central support e for some 0<a<a'<β<β'.
Then there are finite equivalent p and q with p < χ(a, a!) and
q < X(β, β') For every η > 0, there is a projection ^ such that
φ{qη) < φ(p) + η and qηV p =p + q . Then we have

>
+ A/ ~ 2α'τ(/7) + η

Since ^ > 0 is arbitrary, we have that

Now we consider two cases: (i) the null projection e of v is
nonzero and (ii) e = 0. In case (i) we have that γ = oc. Let /? > 0
be any number such that χ(β, oo)£ Φ 0. By replacing e by a smaller
nonzero projection if necessary, there is no loss of generality in the
assumption that e is a nonzero central projection such that ve = 0
and χ(β, oo)e has central support e . Now by the definition υ we
have that χ(0, a!)e has central support e for every a1 > 0. By the
previous paragraph there are projections p and <? with

g) > β
>

<P(P + βθ " 2α''
Since /? > 0 is fixed and a1 can be arbitrarily small, we get the desired
relation J(φ) = oo.
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Assume now that e = 0. For every integer n define

— s
{ n if y = oo.

If 7 = 1, then υ = w = h; hence, we see that φ is a trace and
therefore /(p) = 1 = (1 + γ)/2.

Assume, therefore, that γ > 1, and choose ft so that also δn < y.
Then, by the definition of y, we can find a nonzero central projection
/ such that δnf < wυ~ιf. For every e > 0, there are mutually
orthogonal projections χ(a, a!) and χ(β, oo) with /?/α' > δ such
that

As before, we have that

J(φ)>

This means that J(φ) > (1 + γ)/2 as desired. D

COROLLARY 6.5. The weight φ is a trace if and only if J{φ) = 1.

Proof. On the one hand, if J(φ) = 1, then R can have no type III
direct summand (Proposition 3.5). Thus, the algebra R is semifinite.
Then we have that γφ = 1 and φ = τ h for some injective positive
self adjoint operator with υ < h < v with v G Z+ . This means that
h = v and thus that φ is a trace. On the other hand, if φ is a trace,
then γφ = 1 and J(φ) = (1 + )>)/2 = 1. D

7. The main result. We can now restate our main theorem.

THEOREM 1. Let R be a σ-finite von Neumann algebra and let φ
be afis.n. weight on R. Then P(Mφ) is a lattice if and only if there
is a decomposition of the identity into mutually orthogonal central pro-
jections e + f + g= 1 such that Rf is a semifinite algebra and Rg is
a direct sum of type I^ factors equipped with the f.s.n. trace Tr {the
direct sum of the canonical traces on the factors) so that

(a) φ restricted to Re is a finite functional
(b) P{Mφ(f.}) = P(Mτ) for some f.s.n. trace τ on Rf, and
(c)

Proof. The proof follows from combining the statements of Propo-
sition 3.3, Theorem 4.9, Theorem 4.10, and Theorem 5.5. Note that
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some of the type loo factors have been included in (ii) due to Theorem
4.10. D
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