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REMOVABLE SINGULARITIES
FOR SUBHARMONIC FUNCTIONS

STEPHEN J. GARDINER

Let Ω be an open set in Rn {n > 3) and S be a C2 (n - 1)-
dimensional manifold in Ω. Let a e(0, n-2) and E be a compact
subset of S of zero α-dimensional Hausdorff measure. We show that,
if s is subharmonic in Ω\E and satisfies s(X) < c[άist(X, S)]a+2~n

for X G Ω\5, then s has a subharmonic extension to the whole of
Ω. The sharpness of this and other similar results is also established.

1. Introduction and results. Let Ω denote an open set in Euclidean
space R" (n > 3), and let E be a compact subset of Ω. This paper
is concerned with results of the following type: if ^ is a subharmonic
function in Ω\E, where E is "small" and s is "not too badly be-
haved" (near E), then s has a subharmonic extension to the whole
of Ω. We say in this case that E is a removable singularity of s.
There is an obvious analogue of this notion for harmonic functions.

It is a consequence of a classical result [7, Theorem 5.18] that, if E
is polar and s is a subharmonic function on Ω\E which is bounded
above near E, then E is a removable singularity of s. The idea be-
hind our results is that, by imposing constraints on the geometry and
size of the set E, the boundedness requirement can be considerably re-
laxed. The size of E is measured in terms of its α-dimensional Haus-
dorίf measure ma(E). A discussion of Hausdorff measures in relation
to subharmonic functions can be found in Hayman and Kennedy [7,
§5.4].

Let On denote the origin of Rn , let \X\ denote the Euclidean norm
of a point i G l " , and B(X, r) be the open ball of centre X and
radius r. Also, let Φ: Ω —• E be a C2 function with nonvanishing
gradient throughout Ω. We put S = {Y e Ω: Φ(Y) = 0}.

THEOREM 1. Let Q G ( 0 , « - 2 ) and E be a compact subset of S
such that ma(E) = 0. If s is subharmonic in Ω\E and satisfies

(1) s(X)< c[dist(Jr, S)]a+2~n (X e Ω\S)

for some positive constant c, then E is a removable singularity of s.
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COROLLARY. Let a and E be as above. If h is harmonic in Ω\E
and satisfies

\h(X)\ < c[dist(X, S)]a+2-" (X e Ω\S),

then E is a removable singularity of h.

Regarding the bound on a, Theorem 1 is true, but not interesting,
when a = n - 2: for then we are requiring s to be bounded above
near the set E, which is polar by [7, Theorem 5.14], For higher values
of a , the set E need not be polar [7, Theorem 5.13].

Theorem 1 is related to work by Dahlberg [4] on subharmonic func-
tions in Lipschitz domains. In the case of a domain with a C2 bound-
ary, his theorem simplifies to the following boundary analogue of The-
orem 1.

THEOREM A. Let Ω be a bounded domain in Rn with C2 boundary,
let a G (0, n - 1), and let E be a closed subset of dΩ such that
ma(E) = 0. If s is subharmonic in Ω, satisfies limsups(X) < 0 as
X->YedΩ\E, and

s(X) < c[dist(Jr, dΩ)]a+ι~n (X e Ω),

then s < 0 in Ω.

The sharpness of Theorem 1 and its corollary is shown by the fol-
lowing result, which does not require E to be a subset of S. (Clearly
(2) is stronger than (1) when E c S.)

THEOREM 2. Let ae(0, n -2) and E be a compact set such that
ma{E) > 0. Then there is a positive harmonic function h on Rn\E
such that

(2) h(X) < [dist(X, E)]a+2-n (X e Rn\E),

but for which E is not a removable singularity.

It is natural to ask whether Theorem 1 remains true if we drop the
requirement E c S and replace (1) by (2). The following example
shows that this is far from the case.

EXAMPLE. For each k e N let Sk = dB(On, [log(A: + I)]"1) and let
Ek be a finite subset of S^ such that B(X, 1/fe) ΠE^ is non-empty
for any X e S^. Then the compact set E = [\Jk E^] U {On} has the
property that ma(E) = 0 for every a > 0. On the other hand, the
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function s(X) = \X\2~n is harmonic on Rn\E and is easily seen to
satisfy

s(X) < C(n, a)[dist(X, E)]a+2~n (X e Rn\E)

for any a e [0, n - 2).

Among previous work on removable singularities of subharmonic
functions we mention papers by Shapiro [14], Kuran [11], Kaufman
and Wu [9], and Armitage [1]. Our results are new in that, by introduc-
ing the restriction E c S, we are able to permit very bad behaviour of
s near E. Thus, for example, the Lebesgue integrability requirement
in [14] is not applicable in Theorem 1 if a < n - 3. We mention
also Cima and Graham [3], who showed that an analytic subvariety
E in the unit ball of Cn is a removable singularity for holomorphic
functions which satisfy appropriate growth conditions near E.

A slight modification of the proof of Theorem 1 yields the following.

THEOREM 3. Let a e (0, n - 2) and E be a compact subset of S
such that ma{E) < +oo. If s is subharmonic in Ω\E and satisfies

s(X) < w(dist(X, S)) (X e Ω\S)

where tn~a~2u(t) —• 0 (t —• 0+), then E is a removable singularity
of s.

Theorem 3 can be regarded as a generalization of the following
simple, well-known fact, which corresponds to the case a = 0: if s is
subharmonic in Ω\{7} and limsup \X - Y\n-2s(X) < 0 as X -> Y,
then {Y} is a removable singularity of s. The following shows that
Theorem 3 is sharp.

THEOREM 4. Let a e (0, n - 2) and E be a compact set which
is not σ-finite with respect to ma. Then there is a positive harmonic
function h on Rn\E such that

sup{h(X): dist(X, E) = p} = o(pa+2~n) (p -> 0+),

but for which E is not a removable singularity.

Using ideas from [12], we can apply Theorem A to give removabil-
ity results based on the behaviour of the means, s/(s+; X, r) and
jt(s+ X, r), of s+ over the ball B(X, r) and the sphere dB(X, r)
respectively. (Given X e Ω, the function s+ will be defined at least
almost everywhere on dB(X, r) for all small r > 0.) The following
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theorem, which is close to a result of Shapiro [14], complements re-
movable singularity results of Armitage [1] based on the behaviour of
spherical means.

THEOREM 5. Let a e (0, n - 2) and E be a compact subset of Ω
such that ma(E) = 0. If s is subharmonic in Ω\E and satisfies

(3) j*(s+ X , r) < Cr
a+2-n (B(X, r) c Ω),

then E is a removable singularity of s.

THEOREM 6. Let a e (0, n - 2) and E be a compact subset of Rn

such that ma(E) > 0. Then there is a positive harmonic function h
on Rn\E such that

but for which E is not a removable singularity.

It is a pleasure to thank Professor Anthony O'Farrell for a number
of stimulating discussions.

2. Proofs of Theorems 1 and 3.

2.1. Let φ e (0, π/2), let X = (x, X1) e R x M""1, and define

D(Q ,r) = {Xe B(Q, 2r): \X' - Q'\ tan φ < \χ -

for Q G M " and r > 0.

LEMMA A. On ίλe seί i? = {X: \x\ < \X'\ tan^} ίAere w α positive
harmonic function of the form

(4) ^

k{φ) > 0, />(^) = 0 and F'φ is continuous on (0, π/2).
Further, k(φ) -> oc α^ ^ ^ 0 + .

It is well known that there is a positive harmonic function h on
i? of the form \X\k^F(X/\X\)9 where ik(^) > 0 and F = 0 on
dRndB(On, 1). Further, i 7 is unique up to a multiplicative con-
stant. This uniqueness and the symmetry properties of R imply that
h has the form (4), where Fφ(φ) = 0. Consideration of the sec-
ond order ordinary differential equation satisfied by Fφ shows that
Fφ G C°°(0, π/2). For the final assertion, see Friedland and Hayman
[6].
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We now fix φ small enough to ensure that k(φ) > n - 1. The set
RnB(On, 1) is a NTA domain in the sense of Jerison and Kenig [8],
so the boundary Harnack principle [8, (5.1)] can be applied to show
that there is a positive constant C(n, φ) such that the Green kernel
G for the set Rn\D(On, 1) satisfies

G(X, Y) < C(n, φ)\X\k^Fφ(tan-1 \x\/\X'\)

for
XeB(On,l)\D(On,l) and Y eRn\B(On, 3).

2.2. Let L = {X1 e Rn~ι: \X'\ < 4} and / : L -> R be a C 2

function such that f(On-χ) = 0 and |V/(On_0| = 0. We write

Further, let T = {(f{Xf), X1): X1 € L} and put

Λ = U Z)(β, 1).
{QeT:\Q'\<\}

A simple sequence argument shows that A is a closed set.
If / c Rn is compact, we use H[J, i7] to denote the Perron-

Wiener-Brelot solution to the generalized Dirichlet problem for the
unbounded component of Rn\J, with data F on the finite boundary
and 0 at infinity.

LEMMA 1. Let β e (0, n - 2) and define g on dA by

) (X G T).

There are positive constants η, K such that, if f is as above and
satisfies IV2/I <η on L, then g is integrable with respect to harmonic
measure for Rn\A and

H[A,g](Y)<K\Y\2-« (\Y\>5).

To prove this, let η be sufficiently small to ensure that \f(Qf)\<\β
whenever \Q'\ < 1. Thus \X\ < 4 for X e A. Let G* be the Green
kernel for the set Rn\A, and let GQ be the Green kernel for the set
Rn\D(Q, 1), where Q is some point in T satisfying \Q'\ = 1. Then
G* < GQ in Rn\A, and so from §2.1,

G*(X, Y) < C{n , φ)\X - Q\k^FφiXzrΓ1 \x - q\\X' - Q'\)
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for
XeB(Q,l)\A and YeRn\B(On, 5).

Dividing by dist(X, A) and taking limits along the normal common
to dA and dD(Q, 1), we see that (for small η) the normal derivative
dG*/dnx at X satisfies

f)G
τr^(X, Y)<C(n,φ9 ι/)[dist(Λ\ Γ ) ] ^ " 1 ,
OΠχ

where
X e {Z e dA: 0 < dist(X, T) < (sin φ)/2} and Y e Rn\B(On, 5).

Since / : ( ^ ) - l > f t - 2 > / ? , i t now follows that g is integrable with
respect to harmonic measure for Rn\A. Further, the surface area of
{X G dA: dist(X, T) < (sin^)/2} is bounded above by a constant
depending on n, φ, η, but not / , so we can write

and hence

fΓ[^, ^](r) < C(Λ, ^, ι/)(5/|r|)Λ-2 ( | r | > 5).

(Note: Dahlberg [5] has shown that, for bounded Lipschitz domains,
harmonic measure is absolutely continuous with respect to surface area
measure, and that the density function is given by the normal deriva-
tive of the Green function. In the above argument we have used this
fact and the observation that the image of R"\̂ 4 under inversion in
ΘB(On, 1) is a bounded Lipschitz domain, punctured at the origin.)

2.3. We now complete the proof of Theorem 1. From the implicit
function theorem there exists γ > 0 such that, if Z e E, then (choos-
ing a suitable coordinate system (x\, ... ,xn) centred at Z) there is
a C2 function fz such that fzΦn-\) = 0, \Vfzφn-χ)\ = 0 and

{X € S: \x\ < γ and \X'\ < γ} = {X: \Xf\ < γ and x = fz(X')}-

Let ε > 0 and 0 < δ < γ/4. Since ma(E) = 0, there exists a finite
collection of open balls Bj of radii r, /2 < δ/2 such that

(5) Ec\jBi and £ > f < β.

For each /, choose Zf e BiΠE (any Bi for which 5/ Π E is empty is
discarded) and, using the above coordinate system centred at Z/, put
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Clearly E c U/ ̂ / if ^ is small. We define &• on dA\ by

[dist(X,S)p+2-« (X£S),
0 (X G 5).

Applying a dilation of centre Z/ and magnification factor r, , it follows
from Lemma 1 that

(6) H[Ai9 gt](Y) < Krf\Y - Zi\2-" (YeRn\B(Zi, 5r/)).

(Note that, provided y > 0 is chosen small enough, the hypothesis

1^2/1 < Ά is satisfied.)
Now let V be a bounded open set such that £ c F c K c Ω and

let a be an upper bound for s on a F . If X e V\ (J/ 5(Z, , 5<J), then
by (1), (5) and (6),

{s-aγ{X)<cΣH[Ai,gi}{X)

< cK(5δ)2-ne.

Since ε > 0 can be arbitrarily small, we have s(X) < a for I G F
satisfying dist(X, E) > 5δ. Further, since (5 > 0 can be arbitrarily
small, we have s < a in F \ £ . Thus s is bounded above near the
polar set E, and so E is a removable singularity of s.

2.4. The proof of Theorem 3 requires only self-evident modification
to (5) and the last paragraph of §2.3.

3. Proofs of Theorems 2 and 4.

3.1. Theorem 2 relies on a lemma due to Frostman [7, Lemma 5.4].
This says that, if ma(E) > 0, then there is a finite, positive measure
μ on E such that μ(B(X 9 r)) < ra for any ball B(X, r ) . Clearly we
can assume that μ(E) < 1. The Newtonian potential υ , due to μ, is
harmonic on RΛ\2? but not on Rn .

Now let X e Rn\E and p = dist(X, £ ) . If p < 1 and Y e
B(X, /?), then integration by parts yields

v(Y)= f \Y-Z\2-"dμ(Z)
JE

roo

<{n-2) μ(B(Y, t))t1-" dt
Jp-\Y-X\

roo

<(n-2) min{ta, l}tι~ndt
Jop-\Y-X\

- 2 - a ) " 1 (p - \Y - X\)a+1~n.
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Putting p = [2(n -2- a)]~ι, we now have

\p-» [ [v(Y)rdγ) P

I JB(X,p) )

< C(n, a){p-n Γ tn~ι[p - t](a+2-")P dt\

Applying an inequality originally due to Hardy and Littlewood in the
case n = 2, and extended by Kuran to higher dimensions [10, Theo-
rem 1], it follows that

v(X)<C(n,a)pa+2~n,

and so, letting h = v/C(n, a), we obtain (2).

3.2. To prove Theorem 4, we note (see [13, pp. 83, 84]) that, if
E is not σ-finite with respect to ma, then there is a positive, nonde-
creasing, continuous function w on [0, +oo) such that t~aw{t) —•
0 (ί —• 0+) and E is not σ-finite with respect to mw. (Here mw

refers to the Hausdorff measure generated by w.) As in §3.1 there ex-
ists a finite, positive measure μ on E such that μ(B(X 9 r)) <w(r),
for any ball B(X, r). We write h for the Newtonian potential due
to μ and assume that μ(E) < 1.

Now let e > 0 and choose δ > 0 such that t~aw(t) < ε for
te(09δ). Also, let X e Rn\E and p = dist(X, E). If /? < J and
Y e B(X, />), the reasoning of §3.1 yields

h(Y) < δ2~n + ε(n - 2){n - 2 - α ) " 1 ^ - |Γ -

and
Λ(JΓ) < C(n, α)(J 2 " w + ε

whence

, E) = p}) < eC(n,a).
P-+0+

Since ε > 0 can be arbitrarily small, the result follows.

4. Proofs of Theorems 5 and 6.

4.1. To prove Theorem 5, let V be a bounded open set such that
E c V c V c Ω and let α be an upper bound for 5 on 9 F .
Let v = (s - a)+ on F and let υ = 0 on RΛ\K. Clearly t; is
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subharmonic on Rn\E. Now let Iυ denote the Poisson integral of v
in Rn x (0, +00). Using integration by parts and then (3), it follows
that

roo

Iv{X,y) = C[ή)y Γtn+x(y2 + / 2 ) - ( " + 3 ) / V ( υ ; X , t ) d t
Jo

< C(/i, α , c)ya+2~n (XeRn;y> 0).

Applying Harnack's inequalities [2, p. 200] twice in the ball of centre
(X, y) and radius y/2, we have

I(-Av)(X, y) = d2Iv(X,y)/dy2 < C(/ι, α, c)yα"*.

But the distributional Laplacian Av is non-negative on Rn\E by the
subharmonicity of v . Applying a half-space version of Theorem A
(obtained by inversion from the corresponding result for the ball),
it follows that I(-AV) < 0 on 1" X (0, +oo). Hence Av > 0 on
Rn and so v has a subharmonic extension to Rn. Since s is now
bounded above on V\E, it follows that the polar set E is a removable
singularity of s.

4.2. Let μ and υ be as in the proof of Theorem 2. Then (cf. [7,
(3.9.6)])

(υ;X,r) = (n-2) tχ-nμ{B{X, t))dt
J r

< (n - 2) /°° ία+1-« dt = C{n)ra+2-",

and Theorem 6 follows.
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