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A RIESZ THEORY IN VON NEUMANN ALGEBRAS

ANTON STROH AND JOHAN SWART

An operator T is called a Riesz operator relative to a von Neu-
mann algebra si if T — λl is Fredholm relative to si for each
1 ^ 0 . Properties of Riesz operators are studied and a geometrical
characterization of these operators are given. This characterization is
used to show that a Riesz type of decomposition holds.

Introduction. The main theme of this paper is to introduce Riesz
operators relative to a von Neumann algebra and to obtain a Riesz
type of decomposition for these operators.

The theory of compact and Fredholm operators relative to a von
Neumann algebra has been studied in detail by various authors (cf.
[3], [4], [7], [8], [10], etc.). In the present paper Riesz operators are
defined in a natural way via the Fredholm operators relative to a von
Neumann algebra si, i.e. T will be called Riesz relative to sf if
T - λl is Fredholm relative to si for every λφO.

After some preliminaries in § 1 we develop the basic results on Riesz
operators in §2. These results are similar to results known for the clas-
sical case and will be used in the sequel. Section 3 contains a geomet-
rical characterization of the Riesz operators. This may be considered
as the main result of this paper, since it allows one to use the tech-
niques of [4] and [5] to obtain the required Riesz decomposition in
§4.

Whereas in the classical case the theory of Riesz operators has an
intimate connection with spectral theory, it should be noted that in
our representation we do not use spectral theory at all. Actually one
cannot hope to obtain any results on the spectrum of a Riesz operator
relative to a von Neumann algebra. In finite von Neumann algebras
for instance all operators are Riesz. One can thus find Riesz operators
with spectral properties very different from the classical case.

1. Preliminaries. Let L(H) be the algebra of all bounded linear
operators on a Hubert space H. Throughout the paper si will denote
a concrete von Neumann algebra on H. We denote by & the ideal
generated by the projections which are finite relative to si (cf. [11],
Chapter V for properties of the projection lattice &>(si) o n ^ ) . The
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ideal of compact operators X relative to si is the uniform closure of
ί?. Let π: si —> si fX be the canonical quotient map. An operator
T G si is called a Fredholm operator (relative to J / ) if π(T) is
invertible. For any Γ G J / we shall denote by Nτ the null projection
and Rτ the range projection (cf. [3], (3.1) and (3.2)). It follows from
[4], Theorem 1 and [7], Theorem 2.2 that T is Fredholm iff Nτ is
finite and RT is cofinite relative to si (cf. §4 for the definition of
a cofinite range projection). The set of all Fredholm operators in si
will be denoted by Φ . We refer to [3] and [4] for the definition of the
index function on Φ with values in a partially ordered abelian group.
Let Φo denote the class of Fredholm operators T with index zero
(i.e. Nγ ~ Nτ*).

For Γ G J / we denote the spectral radius by r(T) and we shall call
the spectrum of π(T) in si jX the (Wolf) essential spectrum of T
and denote it by σe(T).

2. Riesz operators. An operator T G si will be called a Riesz
operator (relative to si) if λl - T G Φ for every λ φ 0. It is clear
that T is Riesz iff σe(T) = {0}, which is also equivalent to

/ \i/n

lim f inf IIΓ1 - AΓII ) = r(π(T)) = 0

(cf. [7], 3.10). Since SF is dense in JΓ we may replace X with !? in
the last characterization. We shall denote the set of all Riesz operators
by & and if the reference to si is necessary we denote this set by

REMARKS. 1. Since for a finite von Neumann algebra si we know
that Φ = si it is clear that then also 31 = si . The theory of Riesz
operators in this case is trivial.

2. For any compact K G sf one has r(π(K)) = 0 from which it
follows that X c 31. There are many cases where this inclusion is
strict.

3. In purely infinite von Neumann algebras the Riesz operators
coincide with the quasinilpotent operators (recall that in this case X =

{0}).
We denote by [5, T] the commutator of 5 and Γ, i.e. [5, T] =

ST— TS. By using the well-known property that in any Banach algebra
the relations r(TS) < r(T)r(S) and r(T + S) < r(T) + r(S) hold
for any two commuting S and Γ, one easily obtains the following
proposition.
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2.1. PROPOSITION, (a) // S e 31, T e sf and [S,T]eJί, then

(b) If S,T e3? and [S, T]e3? then T + aS e3ί for any α e C .
(c) If a sequence (Tn) ofRiesz operators is uniformly convergent to

Tesf and if [Tn ,T]eJT for all neN then Te3l.

It follows from 2.1 that the closed algebra generated by a Riesz
operator is contained in 3ί.

2.2. PROPOSITION. For T e sf we have that T e 31 iff Tn e 31
for any {and hence for all) neN.

Proof If T e 31 then Tn e 31 for any n e N follows trivially from
2.1. Conversely if Tn e 3? it follows by definition that

lim ml\\Tnk-K\\ι/nk = 0.

Since

r(π(T)) = l i m i n f

is finite one clearly has

lim inf 117* - K\\χ!k = 0.

From the fact that X is a two-sided *-ideal in si we have for any
T G si and K e X that r{π(T)) = r(π(Γ*)) and r(π(T + K)) =
r(π(T)). Hence we obtain:

2.3. PROPOSITION, (a) Let T e si and K e JΓ. Then T e 3? iff

(b) 3ί is stable under compact perturbations.

If T is a normal operator in si it follows that r(π(T)) = 11 (̂7 )̂11 /̂̂ .
Hence we have:

2.4. PROPOSITION. For a normal operator T e3l iff T e3?.

It seems that the following result is not known even for the classical
case.

2.5. PROPOSITION. If T e si, S e 31 and [5, T] € X then
σe(T + S) = σe(T).
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Proof, For any two commuting elements a, b in a Banach algebra
one knows that σ{a+b) c σ(<z)+σ(Z>), in particular <τ(π(Γ)+π(S')) c
σ(π(Γ)) + σ(π(5)). By assumption σ(π(S)) = {0}. Hence σ*(Γ + S)
C σ'(Γ). Similarly σe(T) = σ*(Γ + S - S) C σ'(Γ + 5). D

The above-mentioned proposition may be used to prove a character-
ization of Riesz operators in von Neumann algebras which is similar
to a result due to Schechter (cf. [9], Theorem 12).

2.6. COROLLARY. T e 31 iff T + S eΦ for all S eΦ for which
[S, T]eJr.

Proof Let T e 31 and S e Φ with the property that [5\ Γ] e JT,
then we know that 0 $. σe(S) = σe(T + S), so T + S eΦ. Since
[λl, T] = 0 the converse is trivial. D

For Riesz operators one obtains the following functional calculus.

2.7. PROPOSITION. Let f be a holomorphic function on an open set
U containing σ(T) with /(0) = 0. Then

(a) IfTe^ then f(T) e31
(b) // f{T)e3l and f does not vanish on σ(T)\ {0} it follows

that Γ e J .

Proof, (a) From our assumptions it follows that f(T) = Tg(T)
where g is holomorphic on U and [Γ, g(T)] = 0. Then (a) follows
directly from 2.1 (a).

(b) Since σe(T) c σ(T) the functional calculus in s//& shows that
π(/(Γ)) = f{n{T)), and by the spectral mapping theorem f(σe(T)) =
σe(f(T)) = {0}. By hypothesis / does not vanish on σ(T) \ {0},
leaving σe{T) = {0} as the only possibility. D

In any unital ^*-algebra sf it is known that σ{xy) \ {0} =
σ(yx) \ {0} and σ(uxu*) \ {0} = σ(x) \ {0} hold for x, y e stf
and u G J / unitary. The following proposition therefore follows:

2.8. PROPOSITION, (a) TSe& if and only if ST e 31.
(b) // S and T are unitary equivalent, then Se3l iff T e3l.

One can easily see from the next proposition that if a von Neumann
algebra contains non-compact quasinilpotent operators, then X is
properly contained in 31.
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2.9. PROPOSITION. IfKeX and Q e si is quasinilpotent, then

Proof. This clearly follows from

\\π{Q + K)n\\χln = \\n{Q)n\\χln < \\Qn\\xln for all n e N. D

By the well-known West decomposition theorem (cf. [6], 3.33) the
converse of 2.9 holds in the case where si = L(H). It is an open
problem whether this is true in general von Neumann algebras. A
partial converse can be obtained by using a result of Akemann and
Pedersen [1]: If T e si with Tn e X for some n e N (note that in
this case T e & by 2.2), then T = K + Q where K eJ? and Q is
nilpotent. This follows from the fact that [1] 4.3 implies that there
exists a ί e l such that (T-K)n = 0.

2.10. PROPOSITION (Generalized Fredholm alternative). Let T e
^ . Then (/ - Γ) € Φ o .

Aw/. By definition (/ - AΓ) € Φ for all λ φ 0. Since the index
map on Φ is locally constant (cf. [4], Lemma 6), {/ - λT\λ e [0, 1]}
is contained in the same connected component of Fredholm operators
and the result follows. D

For any subset 5 C j / we define the perturbation class of B by

P(B) = {T e s*\T + S e B for all S e B}.

In 2.3(b) we have seen that 3ΐ is contained in the perturbation class
of &. The next proposition shows that one actually has equality:

2.11. PROPOSITION. The perturbation class of 31 is the ideal X of
compact operators.

Proof. Let Q{sί IX) be the class of quasinilpotent elements of
siIX. From a theorem due to Zemanek (cf. [2], BA2.8) we have:

nάisilX) = {π(T)\T e si and π(T) + Q{si/X) c Q{si/X)}

= {π(T)\T e si and T + S e 31 for all S e <&}.

Since si fX is a g^-algebra rad(j//Jf) = {0}, it then follows that

Se<& for all 5

= P{β). D
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2.12. THEOREM. The ideal 3? of compact operators is the largest
two-sided ideal consisting of Riesz operators only.

Proof. We first show that every Riesz projection is finite. Let E be
a Riesz projection. Then limn-+oo(infκejί \\E -K\\)ι/n = 0 and hence
E G X. Since any compact projection is finite we have E e &. Let
3Γ be any two-sided ideal contained in 31. From the first part of the
proof it then follows that F c F = , J . D

In the last two results of this section we show that the class of Riesz
operators behaves well under reduction with respect to central projec-
tions as well as under decompositions of the von Neumann algebra.
These results will be needed later in an important counterexample.

Similar results for the class of compact operators in s/ were ob-
tained by Kaftal (cf. [8], 2.1, 2.2).

Let E be a central projection in the von Neumann algebra sf . We
shall then use the following notation: S/E := <&E and 31 E .'= 3ίΈ.

2.13. LEMMA. With the above notation one has that &E = 31(S/E)

Proof. Let T G 31 E and λ φ 0 be given. There exists an S e 31
such that T = SE. Then Sλ := λl - S is invertible modulo 3?,
i.e. there exists an S'λ such that SλS'λ e I + 3? and S'λSλ e I + 5?
hence ESλES[ e E + 5?E and ES[ESλ e E + 3fE. We know that
3?[SUE) = 3?E and therefore λE - T (= ESχ) is invertible modulo
3Γ(J^E) Hence T e <9?($?E) - Conversely, suppose T e 31(S/E) and
λ Φ 0. Then Sλ := E - 1/λT e Φ{sfE). Thus there exists 5^ e srfE

such that

5^5^ G E + 3?E and S'λSλ eE + 3rE-

Let Aλ = Sλ +1 - E and Bλ = Sf

λ + I-E. Then Aλ, Bλesf and

AλBλeI + 3ί and BλAλeI + 3r.

T h u s / = ί/λT = A λ e Φ{sf) for all λ φ 0 a n d therefore Γ G J
a n d since T = TE, we have that T e

Let s/ = ΣfeI£?i be the direct sum of von Neumann algebras J^T
We may identify the identity of J*J with a central projection E\ G sf
and s/i with sfEi. Denote {Tex?: TEie3g(sή)} by ΣfeI3l(sή).

For L c / we may identify Σ ^ ^ ^ with a closed subalgebra of

Σ E / J ^ in an obvious way.
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2.14. PROPOSITION. Let srf = Σfei&i- τ h e n &{**) Q Σΐ
and equality holds if at most finitely many Et are infinite.

Proof. The inclusion follows directly by application of the previous
lemma. Suppose then that Et is finite for all i $ J, where / is
some finite subset J C I. LetΓ e Σfei&te) a n d λ Φ ° τ h e n i f

T = Σfei τi > si,λ := Ei - I/AT} € Φ(J*}) from which it follows that
there exist S\ λ and Kiλ, K\ λ ^X(sf\) such that

S M S ; A = £z + Kiiλ and Sj>AιSί>Λ = Et + K\ λ for every iel.

For i φ J we may choose 5? ̂  = 0 and K\ λ = - £ / .

Let Sλ = E/e/'S'i.λ a n d Sχ = Σ ^ / ^ U T h e l a s t s e r i e s i s a n

element of si since it actually reduces to a finite sum by our choice
o f siλ

Then clearly, SλS
f

λ e I + Σfei^W) = I + JΓ(JΪ) (cf. [8]5 2.2) and
similarly Sf

λSλ e I + <%r(x?). Since Sλ = I - 1/λT it follows that
D

3. Characterizations of Riesz operators relative to a von Neumann
algebra. Smyth obtained a geometric characterization for Riesz oper-
ators on a general Banach space (cf. [2], 0.3.5). In proving this result a
somewhat laborious machinery of vector sequence spaces was needed.
We shall prove a similar result for general von Neumann algebras
which gives an elegant proof of Smyth's result for the L(i/)-case.

For an operator T in a von Neumann algebra s/ the following
property (referred to as property A) will be used to characterize the
Riesz operators relative to tf .

A. For every ε > 0 there exists an n e N, a finite projection
Pεe^(j^) and a bounded set Nε c Pε(H) such that for each
xeUH there exists a y e Nε such that \\Tnx - y\\ < en.

(Here and in the following UH will denote the unit ball of H.)

3.1. LEMMA. If T es/ has property A then Tm also has property
A for all meN.

Proof. Without loss of generality we may assume Tm Φ 0. For
e > 0, put δ = ε/||Γm~1 | |. By assumption there exist an n e N,
a finite projection Pδ and a bounded set Nδ C P#(H) such that for
each w EUH there exists a z e Nδ such that \\Tnw - z|| < J w . Let
jVβ = || T™-1!!11^ and Pe = Pό. Then for c e C/# it follows that
| |Γw wx - y\\ < εn for some yeNε. o
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3.2. THEOREM. Let T e s/ . Then T e 31 if and only if T has
property A.

Proof. Let T e 31 and ε > 0. Then since

lim ( inf \\Tn-F\\) = 0

there is an n G N and an Fε E ̂  such that

(1) | | Γ Λ - F β | | < β Λ .

Let Pε = Rf and Λ̂ ε = F£(UH) , then Pε is a finite projection and
iVε is a bounded subset of Pε(H). By (1) | |ΓΛJC - Fex\\ < εn , for all
x eUπ. This proves property A.

Conversely let Γ have property A. We are going to show that there
exists a subsequence of {(inf^6t^ \\Tn - K\\)λln}n which converges to
zero, implying that the spectral radius of π(Γ) vanishes.

Let ε > 0. Then there exist an n e N, a finite projection Pε e
9°\sf) and a bounded set Nε c Pε(/ί) such that for every x e
there exists a y e Nε such that

Thus \\Tnx - PεT
nx\\ = wfwep9(H) \\τnx - 1̂1 < εn This holds for

every x EUH , hence

Since Pε is finite and therefore PeT
n
 E3Γ(J/), it follows that for any

ε > 0 there exists a n n E N such that (inf#G J r \\Tn - K\\)χln < ε.
We now find the zero converging subsequence recursively. There

exists an nx e N such that (infjce* l|3™2 - ^ | | ) 1 / W l < 1. Since Tn^1

has property A by 3.1, there exists an m\ e N such that

(2) ( jnjμKΓ^Γ.-iqiJ <(i/2))«.+ 1

Let «2 = (nι + l ) w i . Then clearly n\ < ni and from (2) it follows
that

\/n2

Repeating this argument one finds a monotone increasing sequence of
positive integers n\ < n^ < • •• < n^ < • • • such that

inf | |Γ n * -K\\) <l/k for every ik e N. D
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REMARK. It should be noted that in the case where sf = L{H),
property A coincides with the notion of a finite εw-net for Tn(UH)
(cf. [2], §0.3 for the definition of an ε-net).

From the proof of 3.2 we have:

3.3. COROLLARY. Γ G J if and only if for every ε > 0 there exist
an n e N and a projection Q e &>(s/) such that \\QTn\\ < en and
I - Q is finite.

Proof If T e & it has property A. Now if we put Q = I - Pε in
the converse part of the proof of 3.2 the condition holds. Clearly the
condition implies property A and the result follows. D

3.4. COROLLARY. Let S, T e srf be commuting. IfTe& and
S(H)CT(H) then 5 e J .

Proof. Let ε > 0 be given. Under the conditions of the theorem
there exists an a > 0 such that for any n e N one has

(1) S U

(cf. [2], 0.4.1, 0.4.3).
Since T e<9l there exist an n e N, a finite projection Pε e

and a bounded set Nε c Pε(H) such that for each x EUH there exists
a y e Nε with

(2) \\T"x-y\\<(ε/2ar.

Let x e UH, then it follows from (1) that there exists a z e UH such
that \\Snx-anTnz\\<en/2.

By(2) there exists a w e Nε such that \\αnTnz - αnw\\ < εn/2n.
Thus US71* - αntt;|| < ε n . By noting that the set αnNε c Pε(i/) is
bounded the corollary follows. D

4. Riesz decomposition. In [5] a Riesz type of decomposition was
obtained for compact operators in a von Neumann algebra. With our
characterization 3.2 and its Corollary 3.3 in hand we can now use the
techniques of [3] and [5] to obtain a Riesz type of decomposition for
Riesz operators. It should be noted that all proofs are similar to the
proofs in [3], [5]. Hence we shall only give attention to the essential
differences.

For Test let

N n : = N ( I _ τ r ; Fn := Nn+1 - Nn 9 Λ = 0 , 1 , 2 , . . . ,
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Note that (Nn) is non-decreasing (i.e. Nn+rNn = Nn for all r e N)
and (Rn) is non-increasing (i.e. RnRn+r = Rn+r for all r G N ) .

The range projection Rγ will be called (relatively) cofinite if I-Rτ

is finite and if there exists a projection Q e s/ such that Q(H) C
T{H) with Rγ - Q finite. In L(i/) this coincides with the classical
definition of cofiniteness.

4.1. LEMMA. With the above notation
(a)
(b) FnT

kFn =
(c) Rk

(d)
for /ι = 0, 1 , 2 , . . . ; r =

Proof, (a) and (b) follow by induction (on k) and by using the
relation (/ - Nn)TNn+χ = Fn which follows from the properties of
the projection Nn (cf. [3]). Similarly (c) and (d) follow by using the
relation (/ - Rn+\)TRn = Gn which follows from the properties of
the range projection. Q

4.2. THEOREM. Let Γ G f , Then the following hold:
(a) Nn is relatively finite and Rn relatively cofinite.
(b) If Noo = SUPΠ€N7VH and Roo = infneNRn then both Noo(H) and

Roo(H) are invariant under Tk for any k e N.
(c) iVoo is relatively finite and Noo ~ I - Roo -
(d) inf{7Voo, Roo} = 0 and sup{JVoo, Roo} = / .

Proof, (a) Clearly (/ - T) e Φ . By ([7], 2.2) Nx is relatively finite
and R\ is relatively cofinite. For « G N , n > 1 it follows from 2.1
that (/ - T)n = / - To where To e 31 and as before it follows that
Nn is relatively finite and Rn relatively cofinite.

(b) This follows from 4.1 (a) and (c) for r = 0 and taking the strong
operator limit on both sides.

(c) By using 3.3 and 4.1 the proof for the relative finiteness of JVΌo
for the compact case may be carried over virtually word for word by
only replacing T with Tn. From 2.10 and the fact that Φ o is a semi-
group, it follows that Nn ~ I - Rn and hence N^ ~ I - JROO follows
similarly as for the compact case, cf. [3], Theorem 2, (i).

(d) This again follows along the lines of [3], Theorem 2 (iv) and
[5], Theorem 3 (ii) by only noting that (I - T)k = I - T{k) where
T(k\ e 3Z . D
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It is well-known that both the sequences (Nn) and (Rn) eventually
become stationary in the classical case. The following example shows
that this is not always the case in general von Neumann algebras.

EXAMPLE. Let

where Hn = H is a separable Hubert space. Let Tk e L(H) be
defined by

( oo \ fc+1

1=1 / ί=2

where {φi\i e N} is any orthonormal basis for H. It is easy to see
that

- 7*)

for all fc,reN. Let
oo oo

7 = Yf In where /„ = / for all n e N and T := J ] Θ Γw.
72=1 « = 1

Then Γ is compact and hence Riesz relative to $/ . However

N(7-T)k § N(ϊ-T)k+r for all fc, r e N.
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