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ASYMPTOTIC BEHAVIOUR OF SUPERCUSPIDAL
CHARACTERS OF p-ADIC GL3 AND GL4:

THE GENERIC UNRAMIFIED CASE

FIONA MURNAGHAN

This paper describes the singular behaviour of the characters of ir-
reducible supercuspidal representations of π of G = GLn(F) around
1 in terms of the values at 1 of certain weighted orbital integrals.
The weighted orbital integrals are computed when n = 3 or 4 and π
is generic and unramified.

1. Introduction. Let π be an irreducible supercuspidal representa-
tion of G = GLn(F), where F is a p-adic field of characteristic 0.
The character θ π of π is a locally constant function on the regular
set Greg consisting of all x e G such that the coefficient of λn in
the polynomial det(λ + 1 - Aάx) is nonzero. It is well known that,
if d(π) is the formal degree of π and x e GτQ% is elliptic and close
to the identity, θπ(x) = cd{π) for some constant c depending only
on normalizations of Haar measures. For other x e GTQg near 1, the
value of θπ(x) is unknown. Kutzko [K] has given a formula for θ π

when n is prime, but it involves a sum over double cosets in G and
cannot easily be evaluated.

The two objects of this paper are as follows. The first is to describe
the singular behaviour of the character θ π of π around 1 in terms
of the values at 1 of certain weighted orbital integrals. To do this, we
compare results of Howe and Arthur giving asymptotic expansions for
θ π . The second is to compute the weighted orbital integrals required
to give a formula for θ π when n = 3 or 4 and π is generic and
unramified.

Howe showed that

θ π ( e x p X ) =

for X G & = Lie(G) close to zero and such that expX G GTQg. (Jfc)
denotes nilpotent AdG-orbits in 3?, c#(n) is a constant, and μ& is
the Fourier transform of the orbital integral over 0. In the case of
GLn(F), the functions μ<? are known. The behaviour of θπ(x) as
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x € Greg approaches 1 is determined by the homogeneity properties
of those μ# 's for which c#{π) Φ 0. These results are outlined in §2.

In §3 we state results of Arthur [A3], [A4] showing that a weighted
orbital integral has a germ expansion valid on a neighbourhood of 1,
and that θπ itself is a multiple of a weighted orbital integral of a sum
of matrix coefficients of π.

The equality of Howe's and Arthur's expansions for θπ yields one
of the main results of this paper—a formula for each constant c#{π)
as a multiple of a certain weighted orbital integral evaluated at 1. We
derive this formula in §4. It holds for all n and any supercuspidal
representation of GLn(F).

In §§5 and 7, we consider a generic, unramified, irreducible super-
cuspidal representation π of GL3(F) or G L 4 ( J F ) . Such a represen-
tation is known to be induced from a representation of some open
subgroup of G. The particular sum of matrix coefficients appearing
in the weighted orbital integrals is defined in §5 using results of Kutzko
which give the character of the inducing representation. §6 contains
a description of the normalizations of measures and the evaluation
of the weight factor for the weighted orbital integrals. In §7, we ob-
tain explicit expressions for the constants c<?(π) as polynomials in the
order q of the residue class field of F.

The equality of Arthur's expansion and Harish-Chandra's general-
ization of Howe's expansion to a reductive p-adic group can be ex-
pected to yield information about the character Θπ of any supercus-
pidal representation π. However, the functions μ&, which are not
known in general, may be difficult to compute, and the germ expan-
sion for weighted orbital integrals is more complicated than that for
GLn(F).

I would like to thank Paul Sally for helpful discussions and James
Arthur for explaining his results about weighted orbital integrals.

2. Fourier transforms and characters of admissible representations.
Throughout this section, G will be the F-points of a connected, re-
ductive F-group. Let π be an irreducible admissible representation
of G. θ π denotes the character of π . We summarize results of
Harish-Chandra and Howe relating the values of θπ near singular
points in G to certain Fourier transforms.

Recall the definition of the Fourier transform on the Lie algebra 9
of G. For / e Q°°(^), the function / e Q°(50 is given by:

ί ψ{B{X,Y))f{Y)dY,
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where B is a nondegenerate symmetric G-invariant bilinear form on
& 9 ψ is a nontrivial character of F and dY is a Haar measure on
the additive group of &. The map f *-> f is a bijection of Cg°(&).
The Fourier transform of a distribution Γ on 9 is defined by i (/) =
T(f). Let ^ r e g be the set of semisimple elements X in 9 such that

^ 0, where & is a Cartan subalgebra containing X.

THEOREM 2.1 [HC2, Theorem 3]. Lei T be a G-invariant distri-
bution on & which is supported on the closure of Ad G(ω) for some
compact set ω c 9. ΓAen ίAere exists a locally integrable function φj
on & such that

2. φr is locally constant on ^ r e g .

Let Xo e & and 0 = AdG(X0). If G^ is the stabilizer of
G, let dx* be a G-invariant measure on Gχ\G. Then

converges for / e Cc°°(^) and / »-• μ*(f) is a G-invariant distribu-
tion on 9.

COROLLARY 2.2 [HC2]. There exists a locally integrable function
μ<?: & -> C wA/cA w /ααz/iy constant on &ΐQg and

= [ ib(X)f(X)dX,

for feC?{&).

Let (Λ£) be the set of nilpotent G-orbits in ^ . If q is the order
of the residue class field of F, | | denotes the norm on F which
satisfies |τz71 = q~ι for any prime element w of F. For y e G, let
G7 be the centralizer of γ in G, and let ^, be the Lie algebra of Gγ.

PROPOSITION 2.3 [HC2]. For 0 e (Λb)>X e ^ and t e F\

Proof. For / € CC°°(S?), define /r(JΓ) = f(ΓιX),X e 9. It is
well-known that M/,2) = | * | d i m ^ M / ) . This, together with X

) r i , proves the proposition.
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THEOREM 2.4 [HC2, Theorem 5]. Let y be a semisimple point in
G. For any irreducible admissible representation π of G, there exist
unique complex numbers c#(π), one for each nilpotent Grorbit (9 in
%, such that

for X G &y sufficiently near 0. Here v@ is the Gγ-invariant measure
on ff, and ύ& is the Fourier transform of v@ on ^y.

REMARK. The case G = GLn(F) and γ = 1 is due to Howe [H],

The functions {μ#\& G (Λfc)} are linearly independent on Kπ^reg ,
for any neighbourhood V of 0 in 9 [HC2, Theorem 4]. Therefore
the functions {β^\c^(π) φ 0} determine the singular behaviour of Θπ

near 1. Very little is known about the constants c<?(π) in general. If
π is supercuspidal with formal degree d(π), then, if {0} denotes the
trivial nilpotent orbit, £{o}(π) = cd(π) where c Φ 0 depends on the
normalization of measures. Howe [H] proved that, if π is a super-
cuspidal representation of GLn(F), then c#(π) = 1 for the regular
(maximal dimension) nilpotent orbit &. Moeglin and Waldspurger
[MW] have shown a relation between c<?(π), for π admissible and
some (9, and dimensions of certain Whittaker models. As far as the
functions μ# themselves are concerned, there is some information
available in [MW] for induced nilpotent classes, and for G = G L Λ ( J F )

the fa's are known due to Howe (see Lemma 4.1).

3. Weighted orbital integrals and characters of supercuspidal repre-
sentations. We state several results due to Arthur which will be used
in later sections. Theorem 3.4 relates the character Θπ of a super-
cuspidal representation π to a weighted orbital integral of a sum of
matrix coefficients of π. Theorem 3.5 gives a germ expansion for
weighted orbital integrals. A vanishing property for weighted orbital
integrals of cusp forms is stated in Proposition 3.9. In Proposition
3.7, we derive a formula for the weighted germ gjfr corresponding to
the trivial unipotent class in a Levi subgroup M.

Our notation follows that of Arthur [A2]-[A4] except in one re-
spect: the boldface letter G will be used to denote an algebraic group
defined over F, and G = G(F) will be the F-rational points of
G. By a Levi subgroup M of G, we mean M = M(i 7 ) , where
P = MN is a parabolic subgroup of G. If AM is the split com-
ponent of M, then AM = AM(F). Let &~(M), resp. &{M), be
the collection of parabolic, resp. Levi, subgroups of G which contain
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M. Given a parabolic subgroup P = P(F), MP and NP denote its
Levi component and unipotent radical, respectively. Let &(M) =
{P € &(M) I Mp = M}. The chambers in the real vector space
aM = Hom(X(M)ir, R) parametrize the set &>(M), where X(M)F

is the group of characters of M which are defined over F.
We now review the notation required in order to define the weights

VM occurring in the weighted orbital integrals. Given M, choose a
special maximal compact subgroup K of G which is in good position
relative to M. For P e &>(M) and x = πp(x)mp(x)k(x), with
np(x) e NP, mp(x) e MP, and k(x) e Λ:, set HP(x) = HM{mP(x)).
Here HM: M -• aM is given by:

e<HM(m),X) = | χ ( m ) | ? meM, χe X(M)F.

Let α ^ be the kernel of the canonical map from aM onto aG. There
is a compatible embedding of aG into d^ resulting from the embed-
dings of X(M)f and ^(G)^ into the character groups X(AM) and
X(AQ) of AM and 4̂G > respectively. Therefore, α M = a^ Θ α^.
Fix a Weyl-invariant norm || || on aM , where MQ c Λf is a mini-
mal Levi subgroup. The restriction of || || to each of the subspaces
aM, M e <£?(Mo), yields a measure on aM. We take the quotient
measure on a^ c* QLMI^G

Let P e &>(M). The roots of (P, AM) will be regarded as charac-
ters of AM or as elements of the dual space a*M of aM. Let Δp be
the set of simple roots of (P, AM) . If α G Δp, the co-root α v is de-
fined as follows. Choose a minimal Levi subgroup MQ C M. If β is a
reduced root of (G, ^^ o ) , the co-root βy is an element of the lattice
Hom(Z(^M0), Z) in α^ o . For Po € ^(Af0), with Po C P, there is
exactly one root β e APQ such that β\AMo = α. α v is defined to be the
projection of /?v onto a^. Set Δ^ = {α v |α G Δ P } . The lattice Z(Δ^)
in α ^ generated by Δ^ is independent of the choice of P e &(M)
[A4, p. 12]. For x e G, VM(X) is equal to the volume of the convex
hull of the projection of the points {-Hp(x)\P e &(M)} onto α ^ .
Set θP(λ) = vol(α^/Z(ΔV))-iΠα€Δp^(«v)5 A € ig*M. Then, [A2, p.
36]

and, [A2, p. 46]

(3.1) υM(x) = l/r\ X) (-λ(HP{x))γθP(λ)-1

where r = dim(AM/Ao).
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For γ e G, define D(γ) = DG(y) = det(l - Ad(σ))^/^ , where σ is
the semisimple part of γ. Let / e C™{G). For a Levi subgroup M ,
set ^4M,reg = {# Ξ ^4M I G Λ C M 0 } . The weighted orbital integral is
defined for γ e M. If Gγ c M, then [A3, p. 234]

(3.2) JM(y,f) = \D(γ)\ι/2 ί f{χ-ιyx)vM{x)dx.
JGy\G

More generally, for any γ e M [A3, §5],

(3.3) /M(y,/) = lim £ rfo(γ, a)JL(aγ, / ) , a

where rj^(γ9a)9 L e &(M) is a certain real-valued function. We
remark that f *-> JM(Ϊ , f) is not an invariant distribution on CC°°(G).
If γ{ and γ2 are conjugate in M , then JM{y\,f) = JM(Y2,f)>
so «/ji/(<f, /) is well-defined for any conjugacy class *f c Af. The
restriction of f *-* JM(Y > f) to the space of cusp forms is G-invariant.

Let MQH be the set of γ in Af which lie in some elliptic Cartan
subgroup of M. Recall that an admissible representation π of G is
super cuspidal \ϊ its matrix coefficients are compactly supported modulo
AG.

THEOREM 3.4 [A4]. Lei π be a supercuspidal representation of G.
Suppose f is a finite sum of matrix coefficients of π. For γ e Me l l n
G r e g > where M is a Levi subgroup,

(-l^^^θnif^Diγ^Θniγ) = JM(v,f).

REMARK. 1. Although / is not in CC°°(G), the weighted orbital
integrals of / still converge because supp / is compact modulo AQ .

2. The corresponding result for reductive Lie groups appears in
[Al].

3. In Theorem 3.4, and, with the exception of the proof of Propo-
sition 3.9, in the remainder of the paper, if γ e GTQg, the integral in
JM(Ϊ > f) is taken over AM\G instead of Gγ\G. The weight factor
VM is invariant under left translation by elements of M, so this is
equivalent to multiplying the original definition (3.2) by the measure
of AM\Gy.

The measures on AQ\G, AM\G, and aM/aG must be normalized
correctly in order for Theorem 3.4 to hold. Let KM = Aj^nK. Given
measures on aM, aG, and aM/aG defined using the restriction of
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a fixed Weyl-invariant metric on aM , as above, the compatibility
requirement for the measures is as follows [A4, p. 5]:

VO\ΛM{KM) = vol(aM/HM(AM)),

volAβ(κG) = yol(aG/HG(AG)).

The measures on AM\G and AG\G are the quotient measures in-
duced by the measures on G, AM and AG.

If γ e Greg Π M, the weighted orbital integral JM(V> f) has a
germ expansion on neighbourhoods of semisimple points in M. The
weighted germs are uniquely determined up to orbital integrals on
M. Suppose φ\ and φ2 are functions defined on an open subset Σ of
σMσ which contains an Mσ -invariant neighbourhood of the semisim-
ple element σ. φ\ is (M, cr)-equivalent to φι, φ\{y) ~ Φi{y) > if
Φ\{y) ~ ^2(7) = JΛ/(y> Λ) for 7 G Σ n ί/, where C/ is a neighbour-
hood of σ in M , and /z € Q°(Aί). Let (σ^Mσ) be the finite set of
orbits in σ%Mσ under conjugation by Af(σ) = M°(F)σ . Let 7 € Λf.
Generalizing the definition of Lusztig and Spaltenstein [LS], Arthur
[A3, p. 255] defines the induced space of orbits γ^ = γG in G as the
finite union of all G°(F)-orbits in G which intersect γNp in an open
set for any P e 3°{M).

THEOREM 3.5 [A3, Prop. 9.1, Prop. 10.2]. 1. There are uniquely
determined (M, σ)-equivalence classes of functions γ H-+ g^(γ9^),
γ G σMσ n Greg parametrized by the classes & e (O%L ) such that, for
any feC~(G),

{M) Σ

where JL{@, /) = f JL(σu, /) for any
2. Let teF* and w e (2fc). Set dG(w) = (l/2)(dimGu,-rankCr).

If x = exp(X), let xι = exp(ίZ).

Σ
where the c^{u, t) are certain real-valued functions and [uG : w] is 1
if w euG, 0 otherwise.

LEMMA 3.6. Let π be a supercuspidal representation of G and f
a matrix coefficient of π. Then Θπ(f) = d(π)~ιf(l), where d(π) is
the formal degree of π.
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Proof. Let ( , ) denote a (^-invariant inner product on the repre-
sentation space V of π. Let e\, e^, . . . be an orthonormal basis for
V. f(x) = (v, π(.x)u>), some υ ,w e V. We use the orthogonal-
ity relations for matrix coefficients of supercuspidal representations
[HC1, p. 5] to evaluate

= tr (7θn(f) = tτπ(f) = tr ( 7 /(*)*(*)dx*
J \

PROPOSITION 3.7. Assume G is connected. Let γ e AfeU Π G r e g .
w ί/ze F-rank of G and d^tg) is the formal degree of the Steinberg
representation of G, then

Proof. Let π be a supercuspidal representation of G. Choose a
matrix coefficient / of π such that / ( I ) ̂  0. By Lemma 3.6,

First, let γ e Gen Π Gτeg. From [R], the leading term in the Shalika
germ expansion of JG(γ9f) is ( « ( / d i ^ ) 1 / 2

We also have, by Theorem 3.4,

The leading term in Harish-Chandra's asymptotic expansion of
\D{y)\χl2eπ{y) is c{0}(π)\D(γ)\1/2, because μ{0} = 1. By {0}, we
mean the trivial nilpotent orbit in &. Thus the leading term in
JG(?9 S) is also equal to θπ{f)\D{y)\χl2c^{π), which means

c { 0 } (π) = ( - l ) (

which, by Lemma 3.6, equals (-
Now let γ e Λfell n G r e g . From Theorem 3.4 and Theorem 3.5(1),

, f)
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We will show that g^(γ9 1) is the only term occurring in the above
expansion having the same homogeneity as \D{γ)\1/2. Given this, we
then have

d(Stβ)

which, using Lemma 3.6, yields the desired expression for gj§ (y, 1).
Let L e &{M) and u e (%). Since [uG : 1] = 1 <*> L = G and

M = 1, and cG{\, t) = 1 (see [A3, §10] for the definition of cL(u, ί)),
Proposition 3.7(2) reduces to:

^ ^ 1).

Let w € (^G), w Φ 1. The power of \t\ in |ί| r f°(w)cL(M, t),ue
such that [« G : w] = 1, is less than ^ ( 1 ) . Therefore, all other terms
in the above weighted germ expansion for |Z>(7)|1/'2θπ(y) have smaller
homogeneity than gjfriγ, 1).

LEMMA 3.8 [A3, Cor. 6.3]. Let Lx € ^ (Af) . Then

rϊ(γ, a)JL(aγ, f),
1

REMARK. / L I (yLi, /) ά^ Σi M4, / ) , where yLi = (J,-

Recall that a locally constant function φ on G is a
if, for all x e G and all proper parabolic subgroups P = MN of
G, fN φ(xn) dn = 0. The following is a generalization of the well-
known fact that orbital integrals of cusp forms vanish at nonelliptic
semisimple points in G.

PROPOSITION 3.9. Let f be a cusp form on G such that supp/ is
compact modulo AG. Suppose γ is a semisimple element in a Levi
subgroup M and γ $ MQn. Then JM(Y, /) = 0.

Proof. This is due to Arthur. We give a rough outline of the proof.
Using results about products of (G, M)-families from §§6 and 10 of
[A2], it is possible to show that, for M\ c M,
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where v^(x) = \imλ^Σ,{Pe^Mx)\PcQ}^λ{Hp{x))θί{λ)-1 and aQ e

R. Here, θ$(λ) is defined in the same way as θp, but with respect

to the set Δ^ of simple roots of (PΠMQ , AP) and the associated set

{ α v | α £ Δ ? } .
Because y £ Λfell, there is a Levi subgroup Λfi propertly contained

in M with y e M\. Assume that Mγ = Gγ. Then

•My, /) = Mγ)\ι/2 / f(χ-ιγχ)vM(χ)dχ
JMγ\G

Note that Afy = M\ . By [A2, (8.1)], the integral corresponding to Q

in the sum above is equal to JM

Q(γ, / ρ ) , where JM

Q is the weighted
orbital integral for the Levi subgroup M\ of MQ , and ^ : MQ -+ C
is given by /ρ(w) = (Jρ(m)1/2 /^ fκf(k~ιmnk)dkdn. Since / is a

cusp form, / 2 = 0 for QφG. Therefore, JM(7, f) = 0.
For general y, and α e ^Af,reg close to 1, the element αy is not

elliptic in any L e ^ ( M ) , and Laγ = G α y . Thus the above argument
shows that JL(aγ, /) = 0. From (3.3), JM(γ, /) = 0.

4. Some results for G = GLΠ(-F). Assume π is an irreducible
supercuspidal representation of G = G L ^ i 7 ) . The main result of
this section, Theorem 4.4, expresses the constant c&(π), (9 G (Λ£), as
a multiple of a certain weighted orbital integral of a sum of matrix
coefficients of π. Because of the one-to-one correspondence between
the set (ΛQ) ofnilpotent G-orbitsin 9 and the set (2fc) of unipotent
conjugacy classes in G, we can view c<?(π) and fo as corresponding
to (9 e (%) We begin by defining some notation which allows us
to state our results in terms of unipotent conjugacy classes. For (9 e
(&G), let &>(<9) = {P = MTV | ^ = 1 ^ } . If P e &{<?), let τrP

be the admissible representation of G induced (unitarily) from the
character δp{^2 of P, and let θ p denote the character of πp. If
Pi , Pi G &{<9), then Pi and P2 are conjugate in G, and πp and
πp2 are equivalent, so θ/> = θp2. Let θ ^ denote the common valuep2

For a Levi subgroup M of G, set ̂ ( Λ f ) = { I e £
If L i , L2 € -^(Af) and AT is a special maximal compact subgroup in
good position relative to M , then L\ = kLιk~x for some k EK and
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[A3, p. 235] JLi{\, /) = JLχ{\, f k ) , where fk{x) = /(/ex/;"1). As-
sume / is a cusp form. Then 7^(1, /*) = /L (1, / ) , so /L (1, /) =
/L 2 (1 > /) We denote the common value by /^( l , / ) . Similarly, let
ί/(St(^f)) be the formal degree of the Steinberg representation of any
L G -2§p(Afo), where MQ is a minimal Levi subgroup. We note that
5fr(M0) φ 0 for any 0 e (2fc). Finally, we set w, = |Λfc(Λ)/Zσ(Λ)|,
for 4̂ equal to the split component of any P e &(0), and NQ{A)
(resp. ZQ{A)) the normalizer (resp. centralizer) of A in (?. Let
K = GLn(βp), where ^ is the ring of integers in F. AT is a special
maximal compact subgroup of G. For convenience, we consider only
those Levi subgroups M which are in J?(MQ) , where MQ is the sub-
group of diagonal matrices in G. For all such M, G = PΛΓ = ΛT if
P e

LEMMA 4.1 [H]. Measures can be normalized so that /v(logy) =
> f°r 7 Ξ Greg *Ή # sufficiently small neighbourhood of I.

REMARK. In §6, we normalize measures on G and its Levi sub-
groups. We will assume that the measure on the Lie algebra & has
been normalized so that Lemma 4.1 holds.

LEMMA 4.2. Let M be a Levi subgroup of G. If γ e Afeu Π K n Greg

Let Pi = LχN\ e &>{0) with ^ the split component of
L\. We have simply rewritten van Dijk's [D] formula for the induced
character:

/ 2 W

where FΓ(^!, AM) = {s: A{ ^ AM \ si - 1, as = a*, y £ G}, and
sδplβ(y) = δplll{y-χyy). δPχ\K = 1 and y can be taken in K, so
sδpV2{y) = 1. W{AX ,AM) = 0& &*{M) = 0 . Assume Sfr{M) φ
0 and L\ G oS^(M). Define a map i H I from W{A\, AM) to
&(M) by: L = L\ = yLxy~x. If L e S%,{M), then L = L\ for
some y € K and α ι-+ αy maps ^ i bijectively onto AL. Since
Λf C L, AL c ^ . Thus α >-> αy defines an 5 € W{A\, AM) which
maps to L. Suppose L = Z^2 f°Γ some 52 € W{A\, AM) Then
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AL = yAxy~ι = yiAxy^1, so y^ly e NG(Aχ). Clearly s = s2 &
y^y e ZG(Aι). Thus s ι-> L is onto and t^-to-one, which proves
the lemma.

LEMMA 4.3. Let f be a cusp form on G which is compactly sup-

ported modulo AQ.

1. Ifue{%M),anduφ\,then /j,(κ,/) = 0.
2. JM{\ , f ) = l i m β - i JM{a,f),ae

Proo/. 1. There exists a Levi subgroup Mx c M such that w =

By [A3, Corollary 6.3],

/7—M

Because a e AM ,reg and M\ φ L for each L e ^(Af) , α is not
elliptic in L. Therefore, by Proposition 3.9, JL(a, /) = 0.

2. For L e &(M)9 L φ M , we have JL{a, f) = 0, since α e
eg is not elliptic in L. By definition, [A3] r ^ ( l , α) = 1. Thus

Let π be a supercuspidal representation of G. We now express the
coefficients c#{π) in the asymptotic expansion about 1 of the charac-
ter Θπ in terms of the weighted orbital integrals at 1 of the matrix
coefficients of π.

THEOREM 4.4. Let f be a finite sum of matrix coefficients of the
supercuspidal representation π. Assume f(l)φθ. For (9 e

w,d(St(S))f{l)

Proof. Let γ € Af0>eu
 n ^reg. Recall [HC1] that the matrix coeffi-

cients of π are cusp forms. Applying Theorem 3.4, Theorem 3.5(1),
and Lemma 4.3(1),

( A^ 1 ) γ, \)Jg(1, /).
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Writing the sum over L <= J?(MQ) as a double sum over & € (^G) and
Le^f(Mo) and using Proposition 3.7 to substitute \DL(γ)\ι/2/d(StL)
for gMo(γ, 1), we obtain

For 7 G Λ/0>eii n Greg close to 1, we also have:

(4.6) θπ(γ)=

- Σ «#» ί Σ
V

The two expressions (4.5) and (4.6) differ by an orbital integral on
MQ = AM , that is, by c \ D(γ)\~ιl2, for some constant c. Let <^reg be
the regular unipotent class in G. By Lemma 4.3(2), JMJΛ, f) =
ί % ( l . f) = l i m « - i JM0{a,f),a e AMΰ>κ& Multiplying0 (4.5) by
(-l)n-ιθπ(f)\D(a)\1/2 and letting a -> 1, we get

which must equal J<? (l,f). Since Mo is abelian, the Steinberg
representation of Mo is just the trivial representation, so d(St((fτeg)) =
1. Therefore c = 0.

The functions Σz.6^ ( Λ/0) l ^ ( ? ) l 1 / 2 / I ^ W I 1 / 2 ^ e (2fe), are lin-
early independent on any neighbourhood of 1 intersected with AM κ%
Therefore, the equality of (4.5) and (4.6) implies:

From Lemma 3.6, θπ(f) = f{\)/d{π).

REMARK. 1. It follows from the definition of the Steinberg charac-
ter, that is, the character of StG (see [Ca]), that

where d{<9) = d im^ M , M e
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2. If π = Indp(τ® id), P = MN, τ a supercuspidal representation
of M, then, using van Dijk's formula in [D] which expresses θ π in
terms of θ τ , it is possible to write c&(π), (9 € (2fc), terms of the
constants <y (τ), 01 e (&M)

3. If π is in the discrete series of G and π is not supercuspidal or
a twist of St<7, there is no formula for c<y(π), & Φ {\}.

5. Characters of inducing representations. To find the constant c&(π)
for a supercuspidal representation π of G = GLn(F), we must eval-
uate Jj{\, /) for / equal to a sum of matrix coefficients of π such
that f(l) φθ (Theorem 4.4). Here, we outline how to produce such a
function / . It will be shown in Lemma 6.1 that only the values of /
on the unipotent set %Q are required to compute / ^ ( l , / ) . Lemma
5.2 gives a formula for the values of / on %Q for π generic and
unramified.

Carayol [C] has constructed an infinite family of irreducible uni-
tary representations of KAQ which are called very cuspidal. To each
such representation σ is attached a positive integer h, the level of
σ. Given any (unitary) character χ of F*, the representation π =
I n d ^ σ ® £ o det is irreducible and supercuspidal. We will say that
any such π is generic and unramified.

The reason for this terminology is as follows. Let p be the residual
characteristic of F. If (p, n) = 1, the irreducible supercuspidal rep-
resentations of G are parametrized by conjugacy classes of admissible
characters of extensions of degree n over F. For definitions and a
general description, see [CMS]. Let θ be such a character. In this
setting, those supercuspidal representations which correspond to the
case where θ is generic over F and the extension of F is unrami-
fied are precisely the generic and unramified representations defined
above. We remark that CarayoΓs construction is valid for arbitrary
p, and thus we do not place any restriction on p.

LEMMA 5.1 [C]. Let H be an open subgroup of G. Suppose φ is a
matrix coefficient of a representation σ of H. For x e G, define φ(x)
to be φ{x)f if x € H, and 0 otherwise. Then φ is a matrix coefficient
of Ind£σ.

Let π = Indf A σ ® / o det be generic and unramified. By Lemma
5.1, if χσ is the character of a, then χσ is a sum of matrix coefficients
of IndjiL σ, and we may take / = χσχ odet as a finite sum of matrix

G

coefficients of π. Note that /(I) = dimσ Φ 0. This particular /
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is chosen because fκf(k~ιuk)dk = f(ύ)9 for W E % 5 which will
simplify the computation of J&{\, /) (see Lemma 6.1).

Let w be a prime element in F, and let ^ p = VJ&F If 7 is a
positive integer, define Xj? = {A: E AT | k e I + M /

LEMMA 5.2. 7/1 α w a very cuspidal representation of KAQ having
level h, then, for ue%SGΓ)K,

XσW = <

0, otherwise.

For u e K^-\, s^(u) is the number of blocks in the Jordan form of
υjx~h{u- 1) viewed as a matrix over

Proof [K, Lemma 6.6]. The proof given by Kutzko is for n prime,
but in fact uses only the very cuspidal property of σ and therefore is
valid for arbitrary n .

6. Weights for GL 4 ( i 7 ) . To compute the coefficients c#{π), it is
necessary to evaluate J#{\, /) for / equal to a suitable sum of matrix
coefficients of π. Proposition 6.5 gives explicit integral formulas for
/Λ/(1 9 f) f° r non-minimal Levi subgroups M of GL 4 ( i 7 ) .

On G = GLn(F), we take the Haar measure with respect to which
K = GLni&p) has measure one. The Haar measure on K is the
restriction of this measure to K. If P = MN is a parabolic subgroup
with G = KP, the measures on M and N are normalized so that
the measures of MnK and NnK equal one. Then we have

f φ(x)dx= ί f [ φ(mnk)dkdmdn,
JG JKJMJN

LEMMA 6.1. Let f be a cusp form on G which is compactly sup-
ported modulo AG. Then, if G = KP and P = MN,

fκ(u)υM(n)du,

where n e N is defined by u = a~ιn~ιan and

fκ(x)= ί f(k-ιxk)dk,
JK

for x e G.



122 FIONA MURNAGHAN

Proof. From Lemma 4.3(2) and (3.2),

= lim|Z)(ύO|1/2 / f{x~ιax)vM{x)dx, a
a^1

 JM\G

The quotient measure on M\G is dx = dndk, and [A2] vM(mnk) =
) for m e M, n e N, and k e K. Therefore,

/ MrΓιan)υM{n)dn.

Since w »-• a~xn~xan, n e N, a e AM,τeg> is a n invertible poly-
nomial mapping from TV to TV, we can make the change of vari-
ables u = a~ιn~ιan. This introduces the factor \D(a)\~ι/2δp(a)1/2.
fx is locally constant on G, and therefore is invariant under left
and right translation by some open compact subgroup of G. Thus
fκ{au) = fκ(u) for all u e N if a is sufficiently close to the identity.
Also, δP\KnP= 1.

We now describe, for GL Π (F), the normalizations of measures
on aM, aG, a^, AM , ̂ G and AM/AQ required by the compatibility
conditions of §3. Fix the Weyl-invariant inner product {{x\, . . . , xn),
CVi, . . . ,yn)) = lo&~2<lΣι<i<nχiyi o n ^MQ

 τ h e corresponding
measure is log~w ή' dxi ίίxw , where dx\ denotes the standard Haar
measure on R. On aM we take the measure coming from the restric-
tion of the above inner product to aM. Suppose M is conjugate to
Π/=i GLΠ ( F ) . The embeddings of X{M)F and X{G)F into the
character groups X(AM) and X(AQ) result in the embedding x ι->
(xπi/n, . . . , xnr/n) of aG into α M . It is compatible with the canon-
ical projection (xx, . . . , xr) ι-+ ]£i</<r *i from α M onto ΛG , whose
kernel is denoted by q^. This results in the decomposition aM =

Let JC3/ = 4̂̂ / Π K. The function HM maps AM/KM bijectively
onto a lattice in α M . As stated in [A4, p. 5], the measure of KM
in AM must equal the volume of CIM/HM(AM) The measures on
AM\G, AG\G, and aMlίG — ̂ M a r e t h e o n e s induced by those on
G, AM, AG, aM, and α G .

The next lemma gives the measures of the KM 'S. We will use these
to determine the formal degree d(St(<f)) which appears in the formula
for c&{π). Note that, in order to be consistent, the measure of MQ n
K = AM0 Π K must equal one. This determined our choice of inner
product on aM .
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LEMMA 6.2. Let M be conjugate to Π/=i G L « C )̂ W i t h t h e a b o v e

normalizations, the measure of KM is \jn\- -nr.

Proof. For meM, HM(m) = (log|detmi|, . . . , log|detra r |). Thus
HM{AM) = fti log#Z x x nr\o%q2j. The measure on aM ~ Rr is
(log~rq/y/nι "-nr) dx\ dxr. The volume of UM/HM(AM) is there-
fore y/ni' nr.

In order to evaluate VM{X) > x G G, we need to compute
vol(α&/Z(Δ]0) for P G ̂ (Λf) . As noted in [A4, p. 12], Z(Δ^) is
independent of the choice of P e ^ ( M ) . Let ^

LEMMA 6.3. μji/ = \Jnj{n\ •• nr)log- r + l

. Let P = MN e &\M) be chosen so that N is upper trian-
gular. Then Δ)ί = {<*i, . . . , α r _i}, where α, has 1 in the zth position
and 0 elsewhere. Define variables y\, . . . , yr by

Then, since dy\ rf^r = dx\ dxr, the measure on <αM is

rf^r. The measure on aG is 1

and x £ aG embeds in aM as (xn\/n, . . . , xnr/n). The quotient
measure on ^ is given by {\o%~r^ιq^nl{n\ nr) dy\ dyr-\.

Let w G supp /jr. We want to compute the value of VM(K) , where u =
a~ιn-ιan, α e ^M,reg. If aeAM, then α = diag(α!/Wi, . . . , arln),
with α/Gi 7 *, and 7rt the /i/X/i/ identity matrix, 1 < i <r. Let J*p
be the maximal ideal in the ring of integers ^ . For each positive
integer d, define ^ M j ί / = {a e AM^% | αz G 1 + ^ / 5 |a; - aj\ =
q~d

 9 i Φ j}. We will compute VM(K) for a G AM^ for large values
of d, and to evaluate /Λ/(1 , / ) , we will let <ί —• oo. The next lemma
gives the values of VM{ΪI) for certain non-minimal Levi subgroups of
G L ^ i 7 ) . We take n in the corresponding upper triangular unipotent
subgroup. For x eF*, I/(JC) is defined by \x\ = ^ - I / ( χ ) .

LEMMA 6.4. Lef u e NnK, a e AMfd, and n be given by u =
1 1

1. Let M = GL 3(F) x GLi (F)

/ I

M =
0
0

. / /
0
1
0
0

0
0
1
0

xλ
y

z
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is such that max{|x|, \y\, \z\} φ 0, then

VM(H) — 75 (d - min{^(x), u(y), u(

for large d.

2. Let M = GL2(F) x GL 2 (F). //

/I 0 W Λ

u =
0 1 y z
0 0 1 0

{0 0 0 \J

such that wz - xy Φ 0 then

vM{n) = 2d-u(wz-xy),

for large d.

3. Let M = GL2(F) x GU(F) x GLi(F). Let

u =

(\ 0 JCI y\
0 1 x2 y2

0 0 1 z
V0 0 0 \ )

Define

Λ = min{i/(x1), u(x2)},

B = mm{p{xιy2 - x2y\), v{z) + A).

If AφO, B φθ, and d is large, then

vM(n) = 3Vϊd2 - d(2VΪA + 2V2u(z) + y/ΪB)

+ -±=B2 - V2(B - A)2 + V2Bv(z).
2

REMARK. Let Po = AMoNo be the Borel subgroup of GLn(F) such
that No is the subgroup of upper triangular unipotent matrices. For
x e GLn(F), we use the following fact to find Hpo(x). Suppose
x = nak, with n e iV0, a = diag(αi, ... ,an) e AMf), and k e K.
Then, for 1 < / < n, \a,•• • an\ is equal to the maximum of the set.
of norms of determinants of (n - i + 1) x (n - / + 1) matrices which
can be formed from the last n - i + 1 rows of x. For example,

\an-\an\ = τaaxι<iφj<ίn{\xn-χtixnj-Xn,iXn-\,j\}. If P = MN, Me
,NcN0, then HP(x) = (log|αi •••αn\,..., \og\αn _ + 1 αn\).
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Proof of Lemma 6.4. 1. Let P e 3°{M) be the opposite parabolic
subgroup. It is not hard to see that Hψ{ή) = -Hp(nt ), where t
denotes transpose. If a e AMjd = diag(αi, a\, aι, Λ2) then

n =

(\ 0 0 ( 1 - ,
0 1 0 ( 1 -
0 0 1 ( 1 - ,
0 0 0

xa2)^x\
1α2)~V

1

Using the above remark, we obtain

HP(nr) = logmaxO , qd\x\, qd\y\, qd\z\}{-\, 1)

= - logq(d - min{v(x), u{y), v(z)}){\, -1), d large.

By definition, VM(Π) is the volume in α ^ of the convex hull
of Hp(n) = 0 and Hj{ή), which is, by Lemma 6.3, equal to

2. We note that, if a = diag(αi,

/ 1
0

, a2, ai)

0
1

0 0Λ
0 0
0 0
0 0)

Then

Hj(n) = logmax{l, q2d\wz-xy\, qd\w\, qd\x\, qd\y\, qd\z\}(l, -1)

= logq(2d - u(wz - xy))(I, -1), d large.

To obtain 2, proceed as above for 1.

3. Let a = diag(αi, a\, aι, a^) € AMj. The characters a =
(1, - 1 , 0), β = (1, 0, -1) and γ = (0, l', -1) of AM are viewed
as elements of the dual space a*M. Given u as in the statement of
the lemma,

/I 0 xι pι
0 1 x2 h
0 0 1 zn =

\0 0 0 \ )

where

\-i-
W )

i = (l-aι

ιa3)
- i Λ ^-l-ax

ιa2)
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Define A = min{i/(x!, vfa)} and B = vcάn{u{x\y2 — xiy\), v{z) +
A). For u in an open dense subset of the unipotent radical, A and B
are nonzero. For d sufficiently large, the values Hp(ή), P e
are given by the table below.

ΔP log"1 qHp(n)

{a,γ}
{Id -

0
(2d - v(z) -

For the pairs {-α, -y}, {-α, β} and {β, -7}, //p(n) can easily be
computed using the remark preceding the lemma. We describe the
case {β, -γ}. If P G &>(M) has simple roots {β, -γ}, then

/ I 0 C13 C1 4λ

0 1 C23 ^24

0 0 1 0
[\0 0 C43 l y

NP =

Note that

n = rip

l z

/ I 0 0 0^
0 1 0 0
0 0 1 z
0 0 0 1

where nP eNP. Also, ( ι z ) is the product of Cw\) and

with a matrix in GLI^F)^ where |^i| = \δι\~ι = | i | ? for large d.
Therefore, 2fP(/ι) = log(^|z|)(0, 1,-1).

The values HP{ri) for {α, -^} and {-/?, 7} are determined by
the values for the other parabolic subgroups by using the following
property (see [A4, p. 5]): If P, Pf e &>(M) are adjacent, and τ is
the simple root of (P, AM) in AP n (-Δp/) which determines the
wall shared by the chambers of P and P1 in α M , then for any
x € C?, —Hp(x) + HP'(x) is a nonnegative multiple of τ v . That is,
{—Hp(x) I P G ^(M)} forms a positive orthogonal set for M.

To compute VAT(Λ) we use formula (3.1):

vM(x) = 1/r! (-λ(HP(x))γθp(λ) -1

α ^ , r =
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where θP(λ) = / / ^ Π α G Δ . V ) . Setting λ = (itΪ9 it2, it3) with

ί i , h, t^ distinct real numbers, βM = \/21og~2 q, and computing

V ^ Σ ^ e ^ M ) } ^ ^ ^ ) ) ) 2 ^ ^ ) ' 1 > a f t e r s o m e algebra, we obtain the

desired expression for vM{n).

PROPOSITION 6.5. Lei f be a cusp form on GL4(i7) w/ίλ supp/ c
KZ. G/V^Λ M, ίfe/me the variable ue N Γ)K as in Lemma 6.4.

1. If M = GL3{F) x GU(F),

JM(l, f) = -2/V3 / fκ(u)min{v(x),v(y),v(z)}du.
JN

2. If M = GL2(F) x

,/) = - / fκ(u)v(wz - xy) du.
JN

3. // M = GL2(i7) x GLi(F) x GLi(F), and A and B are as in
Lemma 6.4,

V f A)2
f) = V2 f fκ(u)(B2/2-(B-

JN

Proof. Let d > 1 and a G AMj. Forn e N such that u =
a~ιn~ιan, set ^ ( n ) equal to

2V2u(z) + V2B)

in cases 1, 2 and 3, respectively. By Lemma 6.4, for all u e N n
^00(^Λf(n) - Ojj/(n)) = 0. Results of Arthur [A3], imply that

fN fκ(u){vM(n) - ϋM(n))du = 0. Thus

, / ) = lim ( / fκ(u)ϋM(n)du+ / fκ{u){vM{n) - ϋM(n))du)

= lim / fκ(u)ϋM{n)du.

Because / , hence //^, is a cusp form, we have fNfκ(u)du = 0. In
the first two cases, VM(H) is a constant multiple of d plus a term
which is independent of d. Thus the lemma follows immediately in
these cases.
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To prove 3, we first observe that, for large values of d, VM1 («) is
a multiple of Id - A - v{z), where Mi = GL3(.F) x GLy(F). In the
notation used in the proof of the third part of Lemma 6.4,

n =

(\ 0 Jc, (Λ
0 1 Jc2 0
0 0 1 0

(\ 0 0 yi-
0 1 0 j) 2-Jc 2ί
0 0 1 z
0 0 0 1

x2i\).

\0 0 0 I

is therefore a multiple of logmax{l,

|2| = 0*1*1.
\fi - xιz\ = qd\yi - (1 - a2la3)-ιXiz\, i = 1, 2.

We assume that ΛΓ, Z ^ 0, / = 1, 2, and d is large. Then |j>, - xtz\ =

{(Λ > /) = 5p(α)1/2 fNfκ(au)vMl («) d«. This is obtained by the
same change of variables used in the proof of Lemma 6.1. a e AM^
is not elliptic in M\, so, by Proposition 3.9, /M,(^> /) = 0. By an
argument similar to the one above for JM(1 , f), we get:

lim/M(α,/)= lim / fκ{u)vM(n)du

= lim f fκ{u){2d-A-v{z))du
d-^ooJN

v(z))du.[
N

Thus JNfκ(u)(A + v
Similarly, if Mi = GLι(F) x GL2(JP) , we can show that VM2(K) is

a multiple of 2d - B for large d, so /^ fκ(u)Bdu = 0.
Looking at the formula for VM(K) given at the beginning of the

proof, we see that

ί fκ(u)ϋM(n)du= ί fκ(u)V2(B2/2-(B-A)2

JN JN

7. Calculation of c<?(π) for GL3(F) and GL4(F). We now conί
pute the coefficients c<?(π) for a generic unramified supercuspidal rep-
resentation π of GL$(F) or GL^F).

Let M = Πκ/<r £*Ln (F). Let StM be the Steinberg representation
of M. If G = GLΠ(F),' the formal degree d(StG) of StG is given by
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[CMS]:

d(StG) = l/n {T\{qk - I)) vo\Z\G(Z\KZyι.
\k=l /

Here Z = AQ is the centre of G. We are assuming that VOIZ\G(Z\KZ)

= VO\G(K)/VO\Z(K Π Z) . With the measures normalized as in §6, we
have

(7.1) d{S\M) = Y[\/y/niγ[{qk-\).
i=l k=\

If π — Ind# z σ, then, by [C, p. 211], the formal degree d{π) =
VO\Z\G(Z\KZ)~1 dimσ = v^dimσ.

THEOREM 7.2. Assume G = GL^F). Given any character χ of
F*, let n = Ind^zcr ® χ o det 6e α generic unramified supercuspidal
representation of G, where σ has level h. If M is a Levi subgroup,
let 0=1%.

1. // M = G, c&{π)
2.IfM = GL3(F) x
3.IfM = GL2(F) x
4.IfM = GL2(F) x GL!(F) x
5. If M is minimal, c&(π) = 1.

Proof. 1 and 5 are due to Howe [H]. Let χσ be defined as in §5.
The function / = χσ ® χ o det is a sum of matrix coefficients of
π. Note that /(«) = χσ{u) for any unipotent element u e G, so
/^(l, / ) , hence c#(π)9 is independent of / . Since dimσ = / ( I ) ,
and n = 4, rf(π) = 2/(1). Putting this together with Theorem 4.4,
we obtain c^(π) = —2/^(1, f)/(w^d(St((f))). In cases 1-4, tt;^ =
1,1,2 and 2, respectively. The values of / on the unipotent set are
given in Lemma 5.2. Substitution of these values into each formula for
J#{\, /) given in Proposition 6.5 (note that fκ = f), and evaluation
of the integral results in:

2. ( ^
3. -
4.

The calculations are fairly short in cases 2 and 3, and lengthy in case
4. We do not include them here. Using (7.1) to evaluate d(St(&))
completes the proof.
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REMARK. For arbitrary n, and π and / as in the theorem, if
M = GLn-\(F) x GL\(F), it is easy to compute

which results in c*(n) = {-\)n-2nq{n-\){n-2){h-\)/2 f o r <? =

PROPOSITION 7.3. Lfaofer ί/ze same assumptions as Theorem 12, ex-
cept that G = GL3(F), c<?(π) = 3q3(h~ι\ -lqh~x, and 1 for M =
G, GL2(i7) x GLι(F), and Mo, respectively.
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