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NONPOSITIVELY CURVED HOMOGENEOUS SPACES
OF DIMENSION FIVE

MAR!A J. DRUETTA

In this paper we classify, in terms of the rank, the simply connected
homogeneous spaces of nonpositive curvature and dimension five. In
particular, an affirmative answer is given to the conjecture "An irre-
ducible homogeneous space of nonpositive curvature and rank k > 2
is a symmetric space of rank/:".

We exhibit examples in dimension five of rank one homogeneous
spaces of nonpositive curvature having totally geodesic two-flats iso-
metrically imbedded. Moreover, these examples show that the rank in
a Lie group is not invariant under the change of left invariant metrics
of nonpositive curvature

Introduction. In this paper we study, in terms of the rank, the simply
connected Lie groups G of dimension five with left invariant metrics
of nonpositive curvature (K < 0). The results obtained are then used
to get a classification of the simply connected homogeneous spaces of
nonpositive curvature of rank two and dimension five. We exhibit on
G, the Lie group of 3 x 3 upper triangular real matrices of determi-
nant one, many different left invariant metrics of K < 0 and rank
one. We remark that G also has a unique, up to a positive constant
factor, left invariant metric of K < 0 and rank two which turns it
into a symmetric space. Thus we obtain examples of rank one homo-
geneous spaces of nonpositive curvature having two-flats isometrically
embedded. Moreover, we show that a Lie group (of dimension five)
may admit different left invariant metrics of nonpositive curvature of
different ranks.

In §1 we classify the simply connected five-dimensional homoge-
neous spaces H of nonpositive curvature with no flat de Rham factor
and rank two. We show that, either H = H2xT3 where H2 is a two-
dimensional space of constant negative curvature and Γ3 is a rank
one homogeneous space of K < 0, or H = SL(3, R)/ SO(3) the irre-
ducible symmetric space of noncompact type and rank two, provided
that we multiply the metric by a suitable positive constant.

Section 2 is an auxiliary section needed to complete the classification
given in § 1. Here, we study a particular example in dimension five that
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corresponds to studying all the left invariant metrics of K < 0 on the
group G of 3 x 3-upper triangular real matrices of determinant one.

In §3 we exhibit many different metrics turning G into rank one
homogeneous spaces having 2-flats isometrically imbedded. Further-
more, a comparison result between the symmetric metric on G and
non-symmetric ones is obtained.

Preliminaries. Let H be a complete simply connected Riemannian
manifold of nonpositive curvature (K < 0). If γ is a unit speed
geodesic in H, rank(y) is defined to be the dimension of the vec-
tor space of all parallel Jacobi fields along γ. The minimum of
rank(y) over all geodesies γ of H is called rank of H and denoted
by rank(iί). This definition was introduced in [3] and coincides with
the usual one if AT is a symmetric space.

Assume that H is a homogeneous space. Then rank(/ί) is the
minimum of rank(y) over all geodesies γ of H such that γ(0) = p
for some p in H. In this case, H admits a simply transitive and
solvable group of isometries (see [1]) and hence, H can be represented
as a solvable Lie group G with a left invariant metric of nonpositive
curvature.

Given a Lie group G with Lie algebra g and left invariant metric
( , ), we recall that if X, Y, Z e g then the Riemannian connection
V is given by

2(VXY9 Z) = ([X, Γ], Z) - ([Y, Z]) + <[Z, X], Y).

If R(X, Y) = [Vχ, Vy] - V[χ? Y] is the curvature tensor associated
to V, the sectional curvature K is given by

\X Λ Y\2K(X, Y) = (R(X ,Y)Y,X)

= l\U(X, Y)\2 - i(U(X, X), U(Y, Y)) - ί\[X9 Y]\2

-i([[X,Y]9Y],X)-$([[Y9X]9X]9Y)

where U(X, Y) = (ad x )*7 + (ad r )*X, and (ad x)* denotes the ad-
joint of adx.

Let G be a solvable simply connected Lie group with a left invariant
metric of nonpositive curvature. If α is the orthogonal complement
of [Q , β] in Q with respect to the metric, it follows from [1, Theorem
5.2] that it is an abelian subalgebra of g which is also totally geodesic
{VxY e a for all I J G O ) . Moreover, A = expα, the connected
Lie subgroup of G with Lie algebra α, is a dim α-flat in G.

In general, a fc-flat in H is defined to be the image of a totally
geodesic isometric imbedding of Rk into H.
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1. Homogeneous spaces of K < 0 and dimension five. In this section
we characterize, in terms of rank, the simply connected homogeneous
spaces of nonpositive curvature (K < 0) and dimension five.

Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositive curvature. If g is the Lie algebra of
G, then g = [g, g] Θ α where α, the orthogonal complement of [g, g]
with respect to the metric, is an abelian subalgebra of g.

If g'c is the complexification of g' = [g, g] then we have a direct
sum decomposition g'c = Σx %'λ > w h e r e

fl* = {u e g/c: (adH -λ(H)I)kU = 0

for some k > 1 and for all H e a}

is the associated root space for the root λ G (α*)c under the abelian
action of α on g'. If λ = a±iβ is a root of α in g' (that is, g£ Φ 0),
the generalized root space is defined by g'α β = gf

a _β = g' n (g£ Θ βj)
and g' is the direct sum of the adα-invariant subspaces gf

a β .
We assume that G has no de Rham flat factor. Then, it follows from

[2, Theorem 4.6] that the above condition is equivalent to g'o = £ f l /

and αo = {H e a: a(H) = 0 for all roots a + iβ} are zero.

The following formulas about sectional curvatures will be used fre-
quently; we include the proofs for the sake of completeness. In the
sequel, if H e α we will denote by DH and 5# the symmetric and
skew-symmetric part of ad// respectively with respect to the metric

LEMMA 1.1. Assume g1 abelian.

(i) Let {-H/}f=1 be an orthonormal basis for a and set Di = Djj,
1 k T hi = 1, ... , k. Then,

k

(R(X9 Y)Y, X) = Σ((DiX, Y)2 - (DiX, X)(DiY, Y))
( = 1

for all X, Y eg ' .

(ii) (R(X, Y+H)(Y+H),X) = (R(X, Y)Y, X)+(R(X, H)H, X)
for all X,Y€Q' and He a.

In general, we have (R(X, H)H, X) = \SHX\2 - \[H, X]\2 ([1,
Lemma 3.4]).

Proof. Let X, Y eQ' and He a.
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(i) We note that since g' isabelian, U(X 9 Y)ea and (U(X, Y)9

H) = -2(DHX, Y). Hence, U{X, Y) = -2Σf = 1 (AX, Y)Ht\ the
assertion follows from the curvature formula.

(ii) Since VJJX G fl' and V j ^ G α w e have i?(X, 7)// e α; from
this (ii) follows easily.

REMARK 1.2. If there exists an orthonormal basis {///}̂ =1 of α
such that Z)/ ( / = 1, .. . , fc) are all positive semidefinite, we have
K(X, Y) < 0 for all ΛΓ, 7 independent in g'. Moreover, we get
K(X, Γ) < 0 if for some j = 1, . . . , k, Dt is positive definite.

THEOREM 1.3. Let H be a simply connected homogeneous space of
nonpositive curvature and dim// = 5 . If H has no de Rham flat
factor then, either rank(i/) = 1 or rank(/7) = 2 and it is one of the
following spaces

(i) H = H2 x Γ 3 , where H2 is a two-dimensional space of con-
stant negative curvature and T3 is a rank one homogeneous space of
nonpositive curvature.

(ii) H = SL(3, R)/ SO(3), the irreducible symmetric space of non-
compact type and rank two, up to multiplying the metric by a positive
constant

We recall that in a three dimensional homogeneous space of non-
positive curvature, rank one and the visibility axiom are equivalent.
These spaces were completely characterized in [6] (see Corollary 2.5
and Remark 4.3).

Proof. Let G be a solvable Lie group that acts simply and transi-
tively on H. Then, we may assume that H = G is a solvable and
simply connected Lie group of dimension five with a left invariant
metric of K < 0 with no flat de Rham factor.

Let Q = g' Θ α, α the orthogonal complement of g' with respect
to the metric ( , ) . We only need to consider the case dim α =
2. In fact, in the case dimα = 1 it follows from [7, Theorem 1.5]
that G has rank one. If dim α = 3, there exist at most two roots
of α in Q1 (dim Q1 = 2) and consequently we may choose ff E α
satisfying a(H) = 0 for all a with a+iβ root; this implies that G has
de Rham flat factor (see the remark at the beginning of this section).
If dimα = 4, g is the example given in [6, Example 3.4] and G is
isometric to R3 x H2.
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Henceforth we assume that dim α = 2. Note that counting accord-
ing to multiplicities, there are three roots of α on g1. Their real parts
span the dual space α* (otherwise αo would be nonzero). Thus there
are two cases: either

(1) two real parts are proportional and the third is independent of
them, or

(2) the three real parts (necessarily roots) are pairwise independent.
We first show the following lemma.

LEMMA. If Q' is not abelian, then a has three real roots λ\, λ2 and

A3 on gf such that λ\ and λ2 are independent and λ?> = λ\ + λ2.
Moreover the center 3 of g1 is the root space of A3.

Proof. Note that }φθ because g is solvable and hence g1 is nilpo-
tent. Since 3 is one-dimensional and adα-invariant we have 3 = gf

λ,
the root space associated to a nonzero real root λ (g'o = 0). We ob-
serve that there is no complex root γ = a + iβ, a Φ 0 if this is the
case, £,'c = βfθflSθflJ with 0 φ \$, tf] C fl;;+y = £& . Thus λ = 2α,
implying that G has de Rham flat factor. Hence, since Q1 is not
abelian we have real roots λ\, λ2 and λ\ + λ2 (0 Φ [g'λ , gf

λ ] c g'λ + A )
where λ\ and λ2 are independent.

Case 1. The lemma shows that gr is abelian. It follows from the
direct sum decomposition of gf in generalized root spaces that there
is an adα invariant orthogonal direct sum decomposition g' = g\ θ g2

(see [1, §5.3]) in which

(i) g\ has dimension / (i = 1, 2).
(ii) There is a basis {γ, a} of α* such that γ is the (necessarily

real) root of α on g\ and the real part of every root of α on gf

2 is
proportional to a.

We define Hx, H2 e a by γ(H) = (//, #1) and a(H) = ( # , Jf2)
for all H e a. It follows from Lemma 5.4 (iv) of [1] that (Hi, H2) >
0. Thus, there are two cases to consider: either

(1.1) (Hl9H2) = 0

or

(1.2) (HuH2)>0.

Case 1.1. In this case it turns out that G is isometric to a Riemann-
ian product. Let t = gf

2 θ RH2 and f) = g\ 0 Ri7i. Then t is an
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ideal of g, \) is a subalgebra, and g is the orthogonal direct sum of
t and Q . Note that ad# |fl/ is almost normal and has purely imag-
inary eigenvalues because a(H\) = (H\ , Hi) = 0. It follows from
Lemma 4.4 of [1] that ad# ^ is skew symmetric. Since Q' and α are
abelian, it now follows that adχ|t is skew symmetric for every X el).
Hence, G is isometric to the Riemannian product Γ 3 x H2 where
Γ 3 and H2 are the connected Lie subgroups of G with Lie algebras
t and f) respectively, and left invariant metric induced by the one
of 0 (see [6, Lemma 4.1]). Moreover, H2 has sectional curvature
K = K[β\, H\) = -\H\\2 (e\ is a unit vector in g\) and Γ 3 is a rank
one homogeneous space of K < 0 since it has no flat de Rham factor
(see [7, Theorem 1.5]).

Case 1.2. In this case it turns out that G has rank one. We will
prove this in the two following steps:

(1) (R(X9 Y)Y, X) < 0 whenever X, Y e g' are independent.
(2) There is X e gf with (R(X, H)H, X) < 0 for all nonzero

Hea.

Hence, applying Lemma l.l-(ii) we get K(X, Y + H) < 0 for all
Y independent of X in gf and all Hea; consequently the geodesic
γ in G satisfying y(0) = e, /(0) = X has rank one and therefore
rank(G) = 1.

Step 1. This will be done by showing that DHl is positive definite
and the unit vector Ho e a with {Ho, H2) = 0 and {Ho, H\) >
0 gives DHQ positive semidefinite. Then by applying Remark 1.2,
assertion (1) follows.

Note that the choice of Ho means that ad#o has a positive eigen-
value on the one-dimensional space Q\ and has purely imaginary
eigenvalues on g'2 (γ(H0) = {Hθ9 H{) > 0 and a(H0) = {Ho, H{) =
0). By the argument explained above in Case 1.1, one sees that ad#o

is skew symmetric on gf

2 . Thus, DH vanishes on g'2
 a n d hence it is

positive semidefinite on gf.
Since {H\, Hi) > 0, it follows that DH2 is positive definite on g\.

It remains to show that DH2 is positive definite on g!2. We observe first
that if ca is the real part of a root of α on gr it follows from Lemma
5.4 (iv) of [1] that c > 0 (gf is abelian). Hence, both eigenvalues of
ad#2 |^ have positive real part and since Ύτ(DH^) = Tr(ad#|fl/) > 0,
we have that DH, / cannot be negative definite. Thus, it suffices to
prove that DH ^ is definite. If this is not the case, then there is
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X e 02 w ^ DH2% = 0. Since DH0 vanishes on 0'2, it follows that
DHX = 0 for all H e a, which is impossible because the only one-
parameter subgroups which are geodesies are exp tH, /f G α (see [8,
Theorem 3.6]).

Step 2. Since Z>//2 is positive definite, we can choose a nonzero
vector e2 G 02 such that Atf2e2 is a nonzero multiple of e2 {DH ^ is
symmetric). Let e\ be a nonzero vector in 0̂  and let X = e\ + 2̂
For any Hea, Dne\ and £#£2 are orthogonal, and Dπe\ = 0,
AF/^2 = 0 if and only if H is orthogonal to H\, and H is a multiple
of HQ respectively (Ho is the same as in Step 1). Since (Ho, Hi) = 0
and H\, #2 a r e independent, it follows that DJJX φ 0 for all nonzero
Hea.

Now, we observe that (DHX, SjyΛΓ) = 0 for all H e 0 {SHe\ =
0, Z)^ |fl/ = 0 , DH^I is a multiple of^ |fl

Hence K(X9 H) = \SHX\2 - \[H, X]\2 = -\DHX\2 < 0 for all
nonzero Hea.

Case 2. We will show that either G has rank one or G is an irre-
ducible symmetric space of rank two.

Case 2.1. gf abelian with three pairwise independent real roots
λ\, A2 and A3.

We prove next that G has rank one. By permuting λ\, λ2 and A3,
one can assume that A3 = aλ\ + bλ2 with both a and b positive.
In fact, we define Ht e a by λi(H) = (H, Ht) (/ = 1, 2, 3) for
all H e a. Then the Hi's are three nonzero vectors in the two-
dimensional space α and since (Hi, Hj) > 0 (see [1, Lemma 5.4(iv)])
the angle between any two of them is at most π/2. We assign the
indices so that H\ and H2 are the two outer vectors and H3 lies in
between.

Since 0; (/ = 1,2,3), the root space associated to A/, is one-
dimensional and the roots A/ are pairwise independent, we have an
orthonormal basis {e\, e2, e3} of 0' (see [1, §5.3 (Hi)]) such that:

[H, e{\ = λx(H)eι, [H, e2] = λ2(H)e2, [7/, e3] = λ3(H)e3

for all Hea. Hence ad# is symmetric for all Hea and its matrix
with respect to the basis {e\, e2, e3} is given by

H,H{) 0 0
0 (H,H2) 0
0 0 (H,aHλ+bH2)



24 MARIA J. DRUETTA

Let HQ be a unit vector in α such that (HQ, H\) = 0 and (HQ, H2)
> 0. Observe that DQ = ad#o is positive semidefinite and restricted
to g'9 , = g'; ® g'; is positive definite. Also, Z>i = ad# is posi-

Δ , J Λ2 Λ3 1

tive semidefinite and restricted to gΊ i = g'; Θ g'; is positive defi-
1 , J Λj Λ3

nite. Hence, if X = c^i + J ^ + ^^3 is a unit vector and 7 E g',

it follows from the curvature formula given in Lemma 1.1-(i) that,

(R(X, Y)Y, X) = 0 if and only if P|0> Y is proportional to de2+ee3

and p\Q> Y is proportional to c^i + ^ 3 , where p denotes the orthog-

onal projection onto the indicated subspaces.
By a simple computation we deduce that if e φ 0, (R{X, Y)Y, X)

= 0 if and only if Y is proportional to X. Hence, choosing d Φ
0, e Φ 0 (or c / 0) for any Y independent of X in g' we get

', Y) Y, X) < 0. Moreover, for any nonzero vector H e a,

- d2λ2(H)2 - e2λ3(H)2 < 0

since A2(//) and A3(i7) (or λ\(H)) cannot be simultaneously zero.
Therefore, if γ is the geodesic in G with γ(Q) = e, γ'(0) = X, 7 has
rank one and hence rank(G) = 1.

Case 2.2. Assume g' nonabelian. It turns out that either G has
rank one or G is an irreducible symmetric space of rank two.

It follows from the lemma that there are three real roots λ\, λ2

and A3 = λ\ + λ2 with λ\ and λ2 independent. Moreover, 3 is the
eigenspace associated to A3. By the same argument as in Case 2.1
we get an orthonormal basis {e\ ,e2,e{) of g' such that [//, e{\ =
λi(H)ei(i= 1,2,3) for all He a.

Let Hi be defined by A/(/J) = (H, Hf) (i = 1, 2), H e a. We
consider a unit vector HQ in α such that (HQ , H\ + H2) = 0 and
(Ho, Hι)>0.If H = {Hi +H2)l\Hχ +H2\, the matrices of ad#o and
ad- with respect to the orthonormal basis {e\, e2, £3} are given by

0
0 (H0,H2) 0
0 00

•,#1) 0 0

0 (H,H2) 0
0 0 (H,Hι+H2)]

Since g' is nonabelian, ([ΰf

λ , ΰ'λ ] C ĝ  + A =3) and we
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may assume that ε > 0 (otherwise we change e?> to -e?). Set e4 =

i / 0 , e5 = H, a = {H9Hή9 β = (i/,/f 2> and 7 = < # 0 , # i > > 0 .

Then, {ei, e 2 > ^3, £4 > ^5} is an orthonormal basis of 0 satisfying:

e2] = ε e 3 , [ei, e3] = 0 = [e2, ^3],

^1] = ye\, [e4, e2j = -7*2, [^4, ^3] = 0 = [e4, e5],

j [e5, ^2]

with ε > 0, 7 > 0 and a + β > 0. Moreover, a > 0 and β > 0 since
* ( * i , e3) = \ε2 - α(α + /?), ^ ( ^ 2 , e3) = | ε 2 - )ί(α + β) (see §2, (3))
and the sectional curvature K < 0. This special case will be studied in
detail in §2. As we will see, G is isomorphic to the Lie group of 3 x 3
upper triangular real matrices of determinant one, and it follows from
Corollary 2.8 that G has rank one or two. In the latter case, provided
that one multiplies the metric by a suitable positive constant, G is
isometric to the irreducible symmetric space of noncompact type and
rank two SL(3, R)/ SO(3) (see Remark 2.8).

By examining all the cases, Theorem 1.3 follows. Note that G sat-
isfies visibility or not depending on whether dim α = 1 or 2.

COROLLARY 1.4. The simply connected homogeneous spaces H of
nonpositive curvature, with no flat de Rham factor, with dim(/f) <
5 and rank(7/) = 2 are H2 x T2, H2 x T3 or H an irreducible
symmetric space of noncompact type.

Proof. It is immediate by Theorem 1.3 and Corollary 4.4 of [6].
H2, T2 and Γ 3 are as in the statement of Theorem 1.3.

2. Example. Let 0 be the Lie algebra of dimension five generated

by {ei}Si=\ a n c * L * e bracket given by

[e\, e2] = εe3, [ex, e3] = 0 = [e2, e3],

[e4, ex\ = yex, [e4, e2] = -7*2, [e4, e3] = 0 = [e4, e5],
[e5, e2] = βe2, [e 5 , e3] = (α

where α, /?, 7, ε are positive real numbers. (Note that Q' is spanned
by {ex, £2, £3}.) We will say that such a 0 is associated to (α, β,

Let ( , ) be the inner product in g with respect to which {£/}^=1

is an orthonormal basis of g, and let G be the simply connected Lie
group with Lie algebra 0 and left invariant metric associated to ( , ) .
By a straightforward computation, using the connection formula and
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the definitions of R, K we get:

(1) Veιe{=γe^ae5, ^ef2 = \εe3, V eχe3 =-\εe2,

Ve2e2 = -ye* + β*s > Veie3 = \εeγ, V ^ 3 = (a + /?)e5,
v e ^ 4 = - ^ i > V ^ = - α ^ , Ve2e4 = γe2,
V , / 5 = -β*2 > V ^ 4 = 0, Ve3e5 = -(a + β)ey

(2) R{ex, e2)eι = ( | ε 2 + aβ - γ2) e2 , R{ex, e 2)^ 2 = (y 2 - α ^ - | ε 2 ) ^ ,

R(ex, 62)e3 = - ^ e ( α + ^ ) e 5 , JR(^ 2 , e3)ex = \ε(yeA + α ^ 5 ) ,

R{e2,ez)e2= {-\ε2 + β{a +β)) e3, R(e2, e3)e3 = (\ε2 - β(a +β)) e2,

R{e{,e3)e{ = (~\ε2 + α(

(3) K{eι,e2) = -\ε1 + γ2 -aβ, K(eχ, e3) = \ε2 - α(α + β),

K(e2 , e3) = \ε2 - β(a + β), K(e4 , e2) = K(e4 , eχ) = -γ2 ,

K(e5, e2) = -β2 , K(e5, £>3) = - ( α + βf.

We note that in all computations above, a, β, γ and ε may be arbi-
trary.

(4) We remark that it will be shown in §3.1 that if a = β = e/2 —
γ/^3 then G is a symmetric space.

Conversely, assuming G symmetric (i.e., Vi? = 0) we get a =
β = e/2 = γ/y/3. This follows by a straightforward computation of
Veχ{R{e\, ^2)̂ 1) ? Ve2(i?(£i, ^2)̂ 3) and Veι(R(e\, ^2)̂ 4) using Vi? =
0 and (1) and (2) above.

The following lemma is proved in [7]. We state it here since it
is applied in Lemma 2.2 to obtain an expression for the sectional
curvature that will be used repeatedly.

LEMMA 2.1. Let g be a solvable Lie algebra with an inner product
( , ) such that α, the orthogonal complement of g' is abelian. If
ad// |fl/ is symmetric with respect to ( , ) for all H e a, then

{R{X + H, Y + T){Y + T),X + H)

= {R(X9 Y)Y,X)-\[H9 Y]-[T,X]\2

- ([H9 Y] - [T9 X]9 [X, Y]) + ([[H9 Y] - [T9 X]9X]9 Y)

-([[H9Y]-[T9X]9Y]9X)

for all X, Y e 0' and H,Tea.
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LEMMA 2.2. Let a, b, c, r, s, t be real numbers and H, T ele-
ments in α then

(R(aex + be2 + ce3 + H, rβ\ + se2 + te3 + T)(re{ + se2 + te3 + T),

ae\ + be2 + ce3 + H)

= [(cs - bt)2K(e2, e3) + ε(cs - bt)(aλ,(T) - rλx(H))

- {aλ{{T) ~ rλx{H))2]

+ [(at - cr)2K(e{, e3) + ε(at - cr)(bλ2(T) - sλ2(H))

-{bλ2{T)-sλ2{H))2]

+ [(as - br)2K(ex, e2) + e(as - br)(cλ3(T) - tλ3(H))

- (cλ,(T) - tλ3(H))2]

where λ; (/ = 1, 2, 3) are defined by

(U,γe4 + ae5), λ2(U) = (U, -γe4 + βe5) and

= (λι + λ2)(U) = (a + β)(U, es) for all Uea.

Proof. First of all we show that,

(R(ae\ + be2 + ce3, re\ + se2 + te3)(re\ + se2 + te3), ae\ + be2 + ce3)

= (as - br)2K(eι, e2) + t2(a2K(eι, e3) + b2K(e2, e3))

+ c2(r2K(ex,e3) + s2K(e2,e3))

- 2ct(arK(ex, ez) + bsK(e2, e3)).

Let X = ae\ + be2 and Y = re\ + se2. Applying the linearity of R
and using that R(X, Y)e3 is an element in o (see (2)) we have,

(R(X + ce3,Y + te3)(Y + te3), X + ce3)

= (R(X, Y)Y, X) + 2ct(R(X, e3)Y, e3) + t2(R(X, e3)e3,X)

+ c2(R(e3,Y)Y,e3).

Now, since R(e\, e3)e3 is a multiple of e\ (see (2)), an easy calcu-
lation shows that

(ii) (R(X, e3)e3, Y) = arK(ey, e3) + bsK(e2, e3).
Hence, (i) is deduced from (ii) and the equality

(R(X, Y)Y,X) = \X/\Y\2K(ex, e2) = (as - br)2K(ex, e2).

Now, the formula stated in the lemma follows by a straightforward
computation using Lemma 2.1.

Next, in the two propositions below we find necessary and suf-
ficient conditions for G to have nonpositive curvature in terms of
a, β, γ, ε.
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PROPOSITION 2.3. If G has sectional curvature K < 0 then the
following relations among α, β, γ, ε hold: ε2 < 2β(a + β), ε2 <
2α(α + β), γ2 < \ε2 + aβ. Jft particular, K(e2, ^3), ^ ( ^ 1 , e3)
^(^1 ? ^2) #re ## strictly negative.

Proof. We first show that if ε2-2β(a+β) > 0 (or e 2 -2α(α+£) > 0)
then there exists a plane π in Q with sectional curvature J5Γ(π) > 0.
In fact, if we take H = 0, T = λe4 we have λ3 = A3(Γ) = 0 and
λi = λi(7") = -yλ with λi 7̂  0 for any nonzero real λ. Hence, by
applying the curvature formula given by Lemma 2.2, we get

{R(ae\ + ceτ>, e2 + λe4)(e2 + λe4), ae\ + ce?)

= c2K(e2, e3) + a2(K(ex, e2) - λ\) -

for any real numbers a, c. If we consider this expression as a poly-
nomial of second degree in α (K < 0, λ\ Φ 0) its discriminant Δ is
given by

Δ = c2(λ2(ε2 + 4K(e2, e3)) - 4 / ^ , ^ 2 ) ^ ( e 2 , e3)).

Note that ε2 + 4K(e2, ^3) = 2(e2 - 2β(a + β)). Thus, by choosing
λ so that

we get Δ strictly positive for any nonzero real c. For this λ and
nonzero c, a real number a can be chosen satisfying

K(aex + ce3, e2 + λe4) > 0.

The other statement follows in the same way by interchanging the roles
of e\ and e2 . Hence, the first two inequalities follow.

Now we prove the last one. In the same way as above, if we take
T = λ{-βe4 + γe5) with λ φ 0 (hence, λ2 = λ2{T) = 0 and λ3 =
A3(Γ) = Λy(α + β) φ 0) and applying the curvature formula again, we
have

(R(be2 + ce3, ex + T){ex + T), be2 + ce3)

e3) - A2) - ελ3bc,

which considered as a polynomial (of second degree) in c has dis-
criminant

Δ = b2(λj(ε2 + 4K(eι, e2)) - AK{ex, e2)K{ex, e3)).
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Note firstly that ε2 + 4K(e\, e2) = 2(-e 2 + 2(y2 - aβ)). Thus, if we
assume 2(γ2 - aβ) - ε2 > 0 (or y2 > ε2/2 + aβ), taking λ in such a
way that

) 2 - λ\) X 3

for any nonzero real b we get Δ > 0. Hence, a real c can be chosen
such that K{be2+ce?>, e\+T) > 0. The assertion follows since K < 0.

PROPOSITION 2.4. 77*e conditions ε2 < 2β(α + β), β2 < 2α(α + β),
72 < ^e2 + oίβ are sufficient for G to have sectional curvature K < 0.

Proof. We note from the curvature formula given in Lemma 2.2
that each term in between brackets is a polynomial of second de-
gree {K(e\, e$), K(e2, £3) and K(e\, ^2) are negative) in (cs - 6ί),
(at - cr) and (αj - br) respectively, with discriminant

(bλ2(T)-sλ2(H))2 (ε2 + 4K(eue3)), and

(cλ3(T) - tλ3(H))2 (ε2 + 4K(eue2)).

Under our assumption, ε2 < 2J?(Q: + β), ε2 < 2α(α + jff) and
72 < \ε2 + aβ, these discriminants are nonpositive and therefore
each polynomial is also nonpositive. Thus,

K(aex + be2 + ce3 + H, rex + se2 + te3 + T) < 0

for any real a9b,c,r9s9t and H, Tea. Hence, K < 0.

Next, under the assumption K < 0, we will get some conditions
for G to have rank one.

PROPOSITION 2.5. The real number ε must satisfy ε < a+β. More-
over, G has rank one if ε < a + β.

Proof. The condition ε < a + β follows immediately from the first
two inequalities of Proposition 2.3. We note that {a+β)2 < 2a(a+β)
or (α + β)2 < 2β(a + β) depending on whether β < a or a < β
respectively. Consequently, ε < a + β if and only if ε2 < 2a(a + β)
or ε2 <2β(a + β).
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Next we check the last statement. Using Lemma 2.2, for each Y e g '
orthogonal to e3 and T e a, we have

(R(ex + e2,Y + te3 + T)(Y + te3 + T),e{+ e2)

= t\K{ex, e3) + K(e2, e3)) - tε(λx - λ2)

-λ2-λ2 + \(ex+e2)ΛY\2K(ex,e2).

This expression is a polynomial p(t) of degree two in t whose dis-
criminant Δ is given by

A = e2{λx-λ2)
2

+ 4(K(ex, e3) + K(e2, e3))(A? + λ\ - Ifo + e2) Λ Y\2K(ex, β2)).

Now, we assume ε < α + β . Since ί < 0 we have

Δ < δ 2 ^ ! - λ2f + 4(K(ex, e3) + K(e2, e3))(λ2

ι + λ\).

If we substitute the expressions for K(e\, e$) and K(e2, e$) into the
expression above, we get

Δ < ε2{λλ - λ2)
2 + 4 (\ε2 - (α + ^ ) 2 ) (λ2 + λ\)

= ^2(A! - A2)
2 + 2e2(λ2 + ̂ ) - 4(α + ^)2(Af + ^ )

= ε2(3A? + 3A| - 2λ{λ2) - 4(α + ^) 2 μf + λ\).

Now, we consider the two cases, T Φ 0 and Γ = 0. If T Φ 0, since
λ\(T) and ^2(Γ) are not simultaneously zero, 3λ2 + 3λ2 -2λ\λ2 >
(λ\ - λ2)

2 > 0. Hence, if e < a + β , we get

Δ < (a + β)2Oλ\ + 3λ2

2 - 2λxλ2) - 4(α + β)2(λ\ + λ\)

= -(a + β)2(λι+λ2)
2<0,

and then p(t) < 0 for all real t, T Φ 0 in α and 7 in g' orthogonal
to e3.

If T = 0, />(ί) = t2{K{ex, β3)+ΛΓ(e2, e3))+\{eλ+e2W
2K{ex, ^2) <

0 whenever t Φ 0 or y , orthogonal to ^3, is independent of e\ + e2.
(Note that K(e{ +e2,Y) = K(ex, e2) < 0.)

Therefore, K(ex+e2, Y+te3 + T) < 0 for all real number ί, Γ G α,
7 E J ' orthogonal to 3̂ and independent of ex + e2. Thus, the
geodesic y in G satisfying γ(0) = e and /(0) = βi + e2 has rank
one.

PROPOSITION 2.6. The numbers a, β, γ satisfy the inequalities γ2-
2αjS - β2 < 0 αnrf y2 - 2αβ - α 2 < 0. Moreover, if γ2 - 2aβ - β2 < 0
or y2 - 2α/? - a2 < 0, G /zαs raw/:

Proof. The first two inequalities follow immediately from Proposi-
tion 2.3 (γ2 -aβ < e2/2).
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Now, we will show the last assertion. Applying Lemma 2.2, for each
Tea and Y in Q' orthogonal to e2, we have

(R(eι +e3,Y + se2 + T)(Y + se2 + T)9ex+ e3)

= s2{K{eλ, e2) + * t e , *3)) + se(λx + A3) -λ\-λ\

+ \(eι+e3)ΛY\2K(eι,e3)=p(s),

where A; = Λ, (Γ) (/ = 1, 3) are defined as in Lemma 2.2.
Note that p{s) is a polynomial of degree two in s whose discrimi-

nant Δ is given by

Δ = ε2{λλ + A3)2 + A{K{ex, e2) + K(e2, e3))

x(λ2

ι+λl-\(eι+e3)ΛY\2K(eue3)).

Substituting K(eχ, ^2) a n d ^(^2 5 ^3) for its expressions, and since
K < 0 we get,

Δ < e2(λι + A3)2 + 4 (-^ε 2 + γ2 - 2αj? - £ 2 ) (A? + Â )

= ε2(λv + A3)2 - 2ε2(A? + λ\) + 4(γ2 - 2α£ - )52)(A? + λ\)

= -β2(A! - A3)2 + 4(γ2 - 2α)ff - β2)(λ2 + A2).

To prove that G has rank one we will see that if γ2 - 2aβ - β2 <0
then K(eι+e3, Y+se2 + T) < 0 for all s, T in α, F E g ' orthogonal
to 2̂ and independent of e\ + e3. We first consider the case T Φ 0
since Ai(Γ) / 0 we have Δ < -ε2(Ai - A2)

2 < 0 and hence, the
polynomial p satisfies p(s) < 0 for all s9 T Φ 0 in α and Y e tf
orthogonal to e3. If T = 0,

p(j) = J2(ΛΓ(^ , e2) + ΛΓ(e2, ^3)) + l(*i + ^3) Λ Y\2K{ex, ^3) < 0

whenever ί / 0 or 7 e j ' 5 orthogonal to ^3, is independent of
ei + e3 (K(e\, ^3) < 0 and iΓ(^2, £3) < 0). Therefore, the assertion
is proved and consequently, the geodesic γ in G such that y(0) = e
and /(0) = 1̂ + e3 has rank one.

If γ2 - 2α/? - a2 < 0, interchanging the roles of e\ and e2, we also
obtain that G has rank one.

We summarize the preceding results in the following:

THEOREM 2.7. Let G be the simply connected Lie group with Lie
algebra associated to (a, β, γ, e) and left invariant metric as defined
above. Then G has sectional curvature K < 0 if and only if

F2

ε2 < 2a{a + β), ε2<2β(a + β) and γ2<-γ + aβ.
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Moreover, G has rank one if any of the following conditions hold:

ε<a + β, γ2-2aβ-a2 < 0 , γ2 - 2aβ - β2 < 0.

COROLLARY 2.8. If G has nonpositive curvature, then G has rank
one or two and in the latter case, a = β = ε/2 = γ/y/3.

Proof. We note first that the roots of α in g' are given by λ\(H) =
(H9γe4 + ae5), λ2(H) = (H, -γe4 + βes), λ3=λ{+λ2 for all He a,
where λ\ and λι are independent with associated root spaces g'λ =

Re, (/ = 1, 2, 3). Thus, go = 0 = αo and hence G has no de Rham
flat factor. Then, it follows from Theorem 1.3 of [7] that G has rank
one or two. If rank(G) = 2, Theorem 2.7 implies that ε = a + β and
γ2 - 2aβ - β2 = 0 = γ2 - 2aβ - a2. Hence, a = β = ε/2 = γ/y/3.

REMARK 2.8. It will be shown in §3 (3.1) that when a = β = ε/2 =
y/v/3, G coincides with the symmetric space SL(3, R)/ SO(3), pro-
vided we multiply the metric by a suitable positive constant.

3. The group of 3 x 3 upper triangular real matrices of determinant

one.

3.1. Let G be the solvable simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one. Its Lie algebra β
consists of the 3 x 3-upper triangular real matrices having trace zero
and has a basis {Ei}5

i=ι given by

l =

0
0
0

: 1

0
0

: i
0

o

1
0
0

—

0
1
0

0
0
0.

0
2
0

5

0'
0
1

o :

0
2

E2 =

and

and

0
0

.0

£5

El

0
0
0

= 1

=

0
1
0.

(i

•2
0
0

, Eι =

^5+El),

0 0
- 1 0

0 - 1

0
0
0

0
0
0

1
0
0

where

Let a, β, γ, ε be any positive real numbers. Setting e\ = 2aE\,
e2 = 2βE2, e3 = (4aβ/ε)E3, e4 = γ/3E4 and e5 = \{βE\ + aE2

5),
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we obtain a basis {e*}^=1 of g satisfying:

= 0 = [e2> ^]>
[̂ 4, ^3] = 0 = [e4, <?5],
[*5, ^3] = (α + β)e3.

That is, 0 is isomorphic, as a Lie algebra of matrices, to the Lie
algebra associated to (a, β, γ, ε) which was studied in §2. I learned
of this realization from [9]. Thus, considering on 0 the inner product
( , ) such that {ei}5

i=ι is an orthonormal basis of 0, we see that
any choice of (α, β, γ, ε) gives us a left invariant metric on G.
Moreover, almost all these metrics are not isometric. Note, since 0'
is nonabelian, it is deduced from the proof of Theorem 1.3 that any
left invariant metric on G of K < 0 is, up to an isometry, the metric
associated to some (α, β, γ, ε) .

In the case a = β = ε/2 and y = (λ/3/2)ε, provided that we
multiply the metric by a suitable positive constant, G is isometric
to the irreducible symmetric space of noncompact type and rank two
H = SL(3, R)/SO(3). In fact, G = NA where N = expn, n is the
Lie algebra of 3 x 3-strictly upper triangular real matrices and A is the
group of diagonal real matrices of determinant one. Since SL(3, R) =
SO(3)ΛOί is an Iwasawa decomposition for SL(3, R), it is well known
(see [1, Lemma 2.4] and [10]) that G acts simply transitively on H.
Now, if p is the orthogonal complement of so(3) in sί(3, R) with
respect to the Killing form B on sl(3, R) (B(X ,Y) = 6 tτ(X, Y)), p
may be identified with the tangent space to H at o = ISO(3), and the
metric on T0H corresponds to the restriction of the Killing form to
p. If θ is the Cartan involution in sί(3, R) relative to so(3) (Θ(X) =
—X*) then the inner product in 0 = n θ α, where α is the Lie algebra
of A, obtained from the metric on p is given by

(X+H, Y+T) = -\B(X, ΘY)+B(H, T) forX, Y en, H, Tea.

It is a straightforward computation to see that the metric given
by a = β, fi = 2α and y2 = 3α2 (that is, {EiyEj) = 0, i φ j ,
| ^ | 2 = \E2\

2 = | £ 3 | 2 = l/4α 2 , | £ 4 | 2 = 3/α2, \E5\
2 = 1/α2) is a

multiple of the metric ( , ) . Moreover, ( , ) = 12α2( , ) .

3.2. Next we will obtain a comparison result between the symmetric
metric on G and nonsymmetric metrics. The idea is to compare the
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curvature associated to the 4-tuples (a, β, γ, ε) and
2αo) where the last one corresponds to the symmetric case.

Let α, β, γ, ε be positive real numbers and let {Ei}5

i=ι and {̂ /}̂ =1

be as in (3.1). We consider the inner product ( , ) on 9 such that
iei}l=i i s a n orthonormal basis of 9. Then we have:

I 2 * 117 |2 _

l = 7 T T l£2i
2 = 9.

In order to compare the metrics associated to different (a, β, 7, β)
it is convenient to multiply the metric ( ) by the factor 4α 2 β 2 /ε 2 .
Then the orthonormal basis with respect to the new metric, that we
also denote by {e/} and ( , ) is given by

e{ = -=Eι, e2 = -E2, e3 = 2E3,
p a

Now, observe that the metric on 3 = RE3, the center of gf, does
not depend on (a, β, γ, ε) that is, if Z\, Z 2 G 3 then (Zi, Z2) =
(Zi, Z2)o where ( , )o is the metric associated to (αo > Λ) ? 7o ? £0)
Therefore, since [g;, gf] = [ί1, 31] C 3 (3 1 is the orthogonal comple-
ment of 3 in g'), for X, Y e 0' and //, Γ e α, the curvature formula
given in Lemma 2.1 tells us that the last three terms of its expression
do not depend on (a, β, γ, ε).

Let X = aEχ+ bE2 and Y = Yf + dE3 with Y' e 3^ . Then, from
(i) in the proof of Lemma 2.2, we get

Substituting for K(e\, e2), K(e\, e$) and K(e2, £3) and taking into
account that the metric was multiplied by Aa2β2/ε2, we get

γ\-A2

Λ ) — ——~

4ε2
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where Δ 2 , defined by the expression \X Λ Yf\2 = (a2β2/ε4)A2 does
not depend on (a, β , γ, ε).

If we write [//, Y] - [T, X] = r£Ί + s £ 2 + tE3, we have

Therefore, if i?o denotes the curvature tensor associated to the metric
( , ) 0 , we get

H,Y + T)(Y+T),X + H)

= {R(X, Y)Y, X) - {R0(X, Y)Y, X)o

- \[H, Y] - [T, X]\2 + \[H, Y] - [T, X]\l

Δ2 (γ2 -aβ yl~
F2 F2

16 [4 [a2 al)+ 4 ^ 2 βij

2 (β Pθ\ r
~a \a~^ΌJ~ \β βo,

\εo b ) Vεo b J

Now, if we choose a$ = βo, εo = 2αo and γ$ = 3αg, the right hand
side of (*) becomes

A2fγ2-aβ 1\ d2 (a2 b2\(ε2

4 \ e2 2) ' 16

Hence, if (a, β, γ9 ε) satisfies the conditions ε < 2α, ε < 2β and
y2 < ε2/2 + aβ , it follows that

, Y+T)(Y+T),X + H)

Γ), X + H)o < 0.

If R(π) = (R(X + H,Y + T)(Y + T), X + H), where π is the

plane spanned by {X + H, 7 + T} , we get ίΓ < 0 and the stronger
condition R(π) < Ro(π) for every plane π c g.

Conversely, if i?(π) < i?o(^) for all plane π c 0, considering
the planes spanned by {X, 7} (X, 7 e 3 1 ), {ex + T, ex + H) and
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{e2 + T, e2 + H) (T and H such that λx{T) φ λx{H)) respectively,
we get in each case γ2 < ε2/2 + aβ , ε < 2β , ε <2a. Thus, we have
the following:

PROPOSITION 3.2. Let G be the simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one with the left invariant
metric associated to (a, β, γ, ε). Then, R(π) < i?o(π) for cill plane
π C g if and only if γ2 < ε2/2 + aβ, ε <2a and ε < 2β. Moreover,
R(π) = Ro(π) for all plane π c g if and only if γ2 = ε2/2 + aβ,
ε = 2α α«ύf ε = 2β {that is, G is symmetric).

In particular, G is not symmetric if R(π) < Ro(π) for some plane
π c g.

3.3. It follows from Theorem 2.7 that:
(i) G admits many different metrics of nonpositive curvature of

rank one and only one metric, up to multiplication by a positive con-
stant, of rank two. So the rank in a homogeneous space is not invariant
under the change of homogeneous metrics of nonpositive curvature.
This situation does not occur for Hadamard manifolds which are com-
pact or have finite volume (see [4]).

(ii) G with the left invariant metrics of rank one, gives us examples
of homogeneous spaces of rank one having two-flats. In fact, A =
exp(α) is a flat totally geodesic submanifold isometrically imbedded
in G of dimension two.

Acknowledgment. I would like to thank the referee for very detailed
suggestions which helped to improve the exposition of this paper,
shortening the proof of Theorem 2.1 and strengthening the statement
of Theorem 2.7.
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