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NONPOSITIVELY CURVED HOMOGENEOUS SPACES
OF DIMENSION FIVE

MARI{A J. DRUETTA

In this paper we classify, in terms of the rank, the simply connected
homogeneous spaces of nonpositive curvature and dimension five. In
particular, an affirmative answer is given to the conjecture “An irre-
ducible homogeneous space of nonpositive curvature and rank k£ > 2
is a symmetric space of rankk ”.

We exhibit examples in dimension five of rank one homogeneous
spaces of nonpositive curvature having totally geodesic two-flats iso-
metrically imbedded. Moreover, these examples show that the rank in
a Lie group is not invariant under the change of left invariant metrics
of nonpositive curvature

Introduction. In this paper we study, in terms of the rank, the simply
connected Lie groups G of dimension five with left invariant metrics
of nonpositive curvature (K < 0). The results obtained are then used
to get a classification of the simply connected homogeneous spaces of
nonpositive curvature of rank two and dimension five. We exhibit on
G, the Lie group of 3 x 3 upper triangular real matrices of determi-
nant one, many different left invariant metrics of K < 0 and rank
one. We remark that G also has a unique, up to a positive constant
factor, left invariant metric of K < 0 and rank two which turns it
into a symmetric space. Thus we obtain examples of rank one homo-
geneous spaces of nonpositive curvature having two-flats isometrically
embedded. Moreover, we show that a Lie group (of dimension five)
may admit different left invariant metrics of nonpositive curvature of
different ranks.

In §1 we classify the simply connected five-dimensional homoge-
neous spaces H of nonpositive curvature with no flat de Rham factor
and rank two. We show that, either H = H? x T3 where H? is a two-
dimensional space of constant negative curvature and T is a rank
one homogeneous space of K <0, or H = SL(3, R)/SO(3) the irre-
ducible symmetric space of noncompact type and rank two, provided
that we multiply the metric by a suitable positive constant.

Section 2 is an auxiliary section needed to complete the classification
given in §1. Here, we study a particular example in dimension five that
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corresponds to studying all the left invariant metrics of K < 0 on the
group G of 3 x 3-upper triangular real matrices of determinant one.

In §3 we exhibit many different metrics turning G into rank one
homogeneous spaces having 2-flats isometrically imbedded. Further-
more, a comparison result between the symmetric metric on G and
non-symmetric ones is obtained.

Preliminaries. Let H be a complete simply connected Riemannian
manifold of nonpositive curvature (K < 0). If y is a unit speed
geodesic in H, rank(y) is defined to be the dimension of the vec-
tor space of all parallel Jacobi fields along y. The minimum of
rank(y) over all geodesics y of H is called rank of H and denoted
by rank(H). This definition was introduced in [3] and coincides with
the usual one if H is a symmetric space.

Assume that H is a homogeneous space. Then rank(H) is the
minimum of rank(y) over all geodesics y of H such that y(0) = p
for some p in H. In this case, H admits a simply transitive and
solvable group of isometries (see [1]) and hence, H can be represented
as a solvable Lie group G with a left invariant metric of nonpositive
curvature.

Given a Lie group G with Lie algebra g and left invariant metric
(,),werecall thatif X, Y, Z € g then the Riemannian connection
V is given by

2VxY,Z)=(X, Y], Z)- (Y, Z]) +([Z, X], Y).

If R(X,Y)=[Vx, Vy]—Vx,y; is the curvature tensor associated
to V, the sectional curvature K is given by

IXAYPPK(X,Y)=(R(X, Y)Y, X)
= %IU(X’ Y)'z - %(U(X’ X)’ U(Ya Y)) - %I[X’ Y]IZ
- %([[Xs Y]a Y]’ X) - %([[Y’ X]9 X], Y)

where U(X, Y) = (ady)*Y + (ady)*X, and (ady)* denotes the ad-
joint of ady.

Let G be a solvable simply connected Lie group with a left invariant
metric of nonpositive curvature. If a is the orthogonal complement
of [g, g] in g with respect to the metric, it follows from [1, Theorem
5.2] that it is an abelian subalgebra of g which is also totally geodesic
(VxY €a forall X,Y € a). Moreover, 4 = expa, the connected
Lie subgroup of G with Lie algebra a, is a dima-flat in G.

In general, a k-flat in H is defined to be the image of a totally
geodesic isometric imbedding of R¥ into H.
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1. Homogeneous spaces of K < 0 and dimension five. In this section
we characterize, in terms of rank, the simply connected homogeneous
spaces of nonpositive curvature (K < 0) and dimension five.

Let G be a solvable and simply connected Lie group with a left
invariant metric of nonpositive curvature. If g is the Lie algebra of
G, then g =[g, g]®a where a, the orthogonal complement of [g, g]
with respect to the metric, is an abelian subalgebra of g.

If g’ is the complexification of g’ = [g, g] then we have a direct
sum decomposition g'° =}, g%, where

g = {U e ¢*: (adgy —A(H))*U = 0
for some k > 1 and for all H € a}

is the associated root space for the root A € (a*)¢ under the abelian
actionof a on g'. If A=a=xif isarootof a in g' (thatis, gff # O)
the generalized root space is defined by g, g = o, - g=9nN (g T g <)
and g¢' is the direct sum of the ad,-invariant subspaces g,

We assume that G has no de Rham flat factor. Then, it follows from
[2, Theorem 4.6] that the above condition is equivalent to gj = Zg,o ,
and ag = {H € a:a(H) =0 for all roots a + if} are zero. '

The following formulas about sectional curvatures will be used fre-
quently; we include the proofs for the sake of completeness. In the
sequel, if H € a we will denote by Dy and Sy the symmetric and
skew-symmetric part of ady respectively with respect to the metric

(s

LEMMA 1.1. Assume g' abelian.
(1) Let {H;}*_, be an orthonormal basis for o and set D; = Dy,

i=1,...,k. Then,
k
(R(X, Y)Y, X) =Z (DX, Y)?—(D;X, X)(D;Y,Y))
forall X,Y eg.

(i) (R(X,Y+H)(Y+H), X)=(R(X,Y)Y, X)+(R(X, H)H, X)
forall X,Y e€g and H € a.

In general, we have (R(X,H)H, X) = |SgX|? - |[H, X]? (1,
Lemma 3.4)).

Proof. Let X,Y eg and Hea.
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(i) We note that since g’ is abelian, U(X, Y) €a and (U(X, Y),
H) = —2(DyX,Y). Hence, UX,Y) = -2 (D;X, Y)H;; the
assertion follows from the curvature formula.

(i) Since VygX € ¢ and VxY €a we have R(X, Y)H € a; from
this (ii) follows easily.

REMARK 1.2. If there exists an orthonormal basis {Hi}{.‘:l of a
such that D; (i = 1, ..., k) are all positive semidefinite, we have
K(X,Y) <0 for all X,Y independent in g'. Moreover, we get
K(X,Y)<0 ifforsome j=1,..., k, D; is positive definite.

THEOREM 1.3. Let H be a simply connected homogeneous space of
nonpositive curvature and dimH = 5. If H has no de Rham flat
factor then, either rank(H) = 1 or rank(H) = 2 and it is one of the
following spaces

(i) H = H? x T3, where H? is a two-dimensional space of con-
stant negative curvature and T3 is a rank one homogeneous space of
nonpositive curvature.

(ii) H =SL(3, R)/SO(3), the irreducible symmetric space of non-
compact type and rank two, up to multiplying the metric by a positive
constant.

We recall that in a three dimensional homogeneous space of non-
positive curvature, rank one and the visibility axiom are equivalent.
These spaces were completely characterized in [6] (see Corollary 2.5
and Remark 4.3).

Proof. Let G be a solvable Lie group that acts simply and transi-
tively on H. Then, we may assume that H = G is a solvable and
simply connected Lie group of dimension five with a left invariant
metric of K <0 with no flat de Rham factor.

Let g = g’ ® a, a the orthogonal complement of g with respect
to the metric ( , ). We only need to consider the case dima =
2. In fact, in the case dima = 1 it follows from [7, Theorem 1.5]
that G has rank one. If dima = 3, there exist at most two roots
of a in ¢ (dimg’ = 2) and consequently we may choose H € a
satisfying a(H) = 0 forall o with a+if root; this implies that G has
de Rham flat factor (see the remark at the beginning of this section).
If dima = 4, g is the example given in [6, Example 3.4] and G is
isometric to R3 x H?2.
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Henceforth we assume that dima = 2. Note that counting accord-
ing to multiplicities, there are three roots of a on g'. Their real parts
span the dual space a* (otherwise a; would be nonzero). Thus there
are two cases: either

(1) two real parts are proportional and the third is independent of
them, or

(2) the three real parts (necessarily roots) are pairwise independent.

We first show the following lemma.

LeEMMA. If ¢ is not abelian, then a has three real roots A, A, and
Az on g such that A, and A, are independent and A3 = A1 + A3.
Moreover the center 3 of g is the root space of A3.

Proof. Note that 3 # 0 because g is solvable and hence g’ is nilpo-
tent. Since 3 is one-dimensional and ad,-invariant we have ; = g},
the root space associated to a nonzero real root 4 (g = 0). We ob-
serve that there is no complex root y = a+ if, a # 0; if this is the
case, g° = gf@gy®gy with 0 # [gf, g5] C g}, 5 = g5, . Thus 4 =2a,
implying that G has de Rham flat factor. Hence, since g’ is not
abelian we have real roots 41, 4, and A; + 4, (0 # [gj11 , gﬁz] C gﬁl +,12)
where A; and A; are independent.

Case 1. The lemma shows that g’ is abelian. It follows from the
direct sum decomposition of g’ in generalized root spaces that there
is an ad, invariant orthogonal direct sum decomposition g’ = g} @ g
(see [1, §5.3]) in which

(i) g¢; has dimension i (i=1, 2).

(ii) There is a basis {y, a} of a* such that y is the (necessarily
real) root of a on g} and the real part of every root of a on g} is
proportional to a.

We define H;, H, € a by y(H) = (H, H;) and o(H) = (H, H,)
for all H € a. It follows from Lemma 5.4 (iv) of [1] that (H;, Hp) >
0. Thus, there are two cases to consider: either

(1.1) (Hy, H) =0
or
(12) <H1,H2) > 0.

Case 1.1. In this case it turns out that G is isometric to a Riemann-
ian product. Let t = g) ® RH, and h = g} ® RH;,. Then t is an
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ideal of g, b is a subalgebra, and g is the orthogonal direct sum of
t and g. Note that adH ,is almost normal and has purely imag-
inary eigenvalues because a(Hl) (Hy, Hy) = 0. It follows from
Lemma 4.4 of [1] that adHl|g; is skew symmetric. Since g’ and a are
abelian, it now follows that ady|; is skew symmetric for every X €.
Hence, G is isometric to the Riemannian product 73 x H? where
T3 and H? are the connected Lie subgroups of G with Lie algebras
t and bh respectively, and left invariant metric induced by the one
of g (see [6, Lemma 4.1]). Moreover, H? has sectional curvature
K =K(e;, Hy) = —|H;|? (e; is a unit vector in g}) and T3 is a rank
one homogeneous space of K < 0 since it has no flat de Rham factor
(see [7, Theorem 1.5]).

Case 1.2. In this case it turns out that G has rank one. We will
prove this in the two following steps:

(1) (R(X,Y)Y, X) <0 whenever X, Y € g’ are independent.

(2) There is X € g’ with (R(X, H)H, X) < 0 for all nonzero
Hea.

Hence, applying Lemma 1.1-(ii) we get K(X,Y + H) < 0 for all
Y independent of X in g’ and all H € a; consequently the geodesic
y in G satisfying y(0) = e, »'(0) = X has rank one and therefore
rank(G) = 1.

Step 1. This will be done by showing that Dy is positive definite
and the unit vector Hy € a with (Hy, H;) = 0 and (Hp, H;) >
0 gives Dy, positive semidefinite. Then by applying Remark 1.2,
assertion (1) follows.

Note that the choice of Hp means that ady hasa positive eigen-
value on the one-dimensional space g} and has purely imaginary
eigenvalues on g), (y(Hp) = (Hp, Hi) > 0 and o(Hp) = (Hy, Hy) =
0). By the argument explained above in Case 1.1, one sees that ady,
is skew symmetric on g,. Thus, Dy vanishes on g, and hence it is
positive semidefinite on g’.

Since (H;, Hy) > 0, it follows that Dy is positive definite on g .
It remains to show that Dy, is positive definite on g, . We observe first
that if ca is the real part of a root of a on g’ it follows from Lemma
5.4 (iv) of [1] that ¢ > 0 (¢’ is abelian). Hence, both eigenvalues of
ady ;- have positive real part and since Tr(Dy ;) = Tr(ady ;1) > 0,
we have that Dy ., cannot be negative definite. Thus, it suffices to
prove that Dy . 1s definite. If this is not the case, then there is
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X € g, with Dy X = 0. Since Dy vanishes on g, it follows that
DyX = 0 for all H € a, which is impossible because the only one-
parameter subgroups which are geodesics are exptH, H € a (see [8,
Theorem 3.6]).

Step 2. Since Dy is positive definite, we can choose a nonzero
vector e; € g, such that Dy e, is a nonzero multiple of e, (DHzlg; is
symmetric). Let e; be a nonzero vector in g} and let X =e¢; +e;.
For any H € a, Dye; and Dgye, are orthogonal, and Dye; = 0,
Dye, =0 if and only if H is orthogonal to H;, and H is a multiple
of Hj respectively (Hj is the same as in Step 1). Since (Hy, H;) =0
and H;, H, are independent, it follows that Dy X # 0 for all nonzero
Hea.

Now, we observe that (DyX, SyX) = 0 for all H € a (Sye; =
0, DHOIQQ =0, Dy e, is a multiple of e).

Hence K(X, H) = |SgX|* - |[[H, X]|*> = —|DygX|*> < 0 for all
nonzero H € a.

Case 2. We will show that either G has rank one or G is an irre-
ducible symmetric space of rank two.

Case 2.1. g’ abelian with three pairwise independent real roots
}»1 s Az and /13 .

We prove next that G has rank one. By permuting 4;, 4, and 43,
one can assume that A3 = al; + bi, with both a and b positive.
In fact, we define H; € a by A;(H) = (H,H;) (i =1,2,3) for
all H € a. Then the H,’s are three nonzero vectors in the two-
dimensional space a and since (H;, H;) > 0 (see [1, Lemma 5.4(iv)])
the angle between any two of them is at most 7#/2. We assign the
indices so that H; and H, are the two outer vectors and Hj lies in
between.

Since g} (i = 1,2, 3), the root space associated to 4;, is one-
dimensional and the roots A; are pairwise independent, we have an
orthonormal basis {e;, e;, e3} of g’ (see [1, §5.3 (iii)]) such that:

(H,el=A(H)ey, [H,e)]=x(H)e, [H,e]l=A(H)es

for all H € a. Hence ady is symmetric for all H € a and its matrix
with respect to the basis {e;, e;, e3} is given by

(H, Hy) 0 0
ady = 0 (H, Hyp) 0
0 0 (H, aH; + bH>)
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Let Hy be a unit vector in a such that (Hy, H;) =0 and (Hy, H,)
> 0. Observe that Dy = ady, is positive semidefinite and restricted
to g, 3 = gﬁz ® gﬁj is positive definite. Also, D, = ady 1is posi-
tive semidefinite and restricted to g} ; = 9111 @ 9:13 is positive defi-
nite. Hence, if X = ce; + de, + ee3 is a unit vector and Y € ¢,
it follows from the curvature formula given in Lemma 1.1-(i) that,
(R(X, Y)Y, X)=0 ifand only if P|g Y is proportional to de,+ee;
and p!g Y is proportional to ce; +ee3 , where p denotes the orthog-
onal prOJectlon onto the indicated subspaces.

By a simple computation we deduce that if e # 0, (R(X, Y)Y, X)
= 0 if and only if Y is proportional to X. Hence, choosing d #
0, e #0 (or ¢ # 0) for any Y independent of X in g we get
(R(X, Y)Y, X) <0. Moreover, for any nonzero vector H € a,

(R(X, H)H, X) = —|[H, X]|?
= —c?A(H)* = d*Ay(H)? — e*A3(H)? < 0

since A;(H) and A3(H) (or Ay(H)) cannot be simultaneously zero.
Therefore, if y is the geodesic in G with y(0) = e, y'(0) = X, y has
rank one and hence rank(G) =1.

Case 2.2. Assume g nonabelian. It turns out that either G has
rank one or G is an irreducible symmetric space of rank two.

It follows from the lemma that there are three real roots A;, A,
and A; = A; + A, with A; and A, independent. Moreover, 3 is the
eigenspace associated to A3. By the same argument as in Case 2.1
we get an orthonormal basis {e;, e;, e3} of g’ such that [H, ¢;] =
Ai(H)e; (i=1,2,3) forall H€a.

Let H; be defined by A;(H) = (H, H;) (i =1,2), H€ a. We
consider a unit vector Hy in a such that (Hy, H; + H;) = 0 and
(Hy, H)) > 0. If H=(H,+H,)/|H, + H,|, the matrices of adg and
ad with respect to the orthonormal basis {e;, e;, e3} are given by

—(HOa Hl) 0
adHo = 0 (H09 H2> 0

0 0 0

[(H,H) 0 0
adz=| 0 (H,H) _ 0

L 0 0 (H: Hl + HZ)

Since g’ is nonabelian, [e;, e;] = ee. ([gﬁ11 , gﬁz] C 951, i, = 3) and we
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may assume that ¢ > 0 (otherwise we change e;3 to —e3;). Set e; =
Hy, es=H, o = (H,H), p=(H, H,) and y = (Hy, H) > 0.
Then, {e;, e,, €3, €4, es} is an orthonormal basis of g satisfying:

[e1, el = ¢e3, [e1, e3]1 =0=[ey, e3],
[es, e1] =ye;, [es, e2] = —ver, [es, e3] =0 =[ey, es],
[e59e1]=ael9 [35,€2l=ﬂ€2, [e59e3]=(a+ﬂ)e3

with ¢ >0, y >0 and a+ 8 > 0. Moreover, a >0 and § > 0 since
K(er, e3) = je2 —a(a+ B), K(ey, e3) = 362 — B(a+ B) (see §2, (3))
and the sectional curvature K < 0. This special case will be studied in
detail in §2. As we will see, G is isomorphic to the Lie group of 3x 3
upper triangular real matrices of determinant one, and it follows from
Corollary 2.8 that G has rank one or two. In the latter case, provided
that one multiplies the metric by a suitable positive constant, G is
isometric to the irreducible symmetric space of noncompact type and
rank two SL(3, R)/SO(3) (see Remark 2.8).

By examining all the cases, Theorem 1.3 follows. Note that G sat-
isfies visibility or not depending on whether dima =1 or 2.

COROLLARY 1.4. The simply connected homogeneous spaces H of
nonpositive curvature, with no flat de Rham factor, with dim(H) <
5 and rank(H) = 2 are H* x T?, H* x T3 or H an irreducible
symmetric space of noncompact type.

Proof. 1t is immediate by Theorem 1.3 and Corollary 4.4 of [6].
H?, T? and T3 are as in the statement of Theorem 1.3.

2. Example. Let g be the Lie algebra of dimension five generated
by {e;};_, and Lie bracket given by

[e1, el =¢e3, [er,e3] =0=][ey, e3],
les, er]l =ver, [es, €] = —ves, [es, €3] =0 =[e4, es],
les, e1]l=cae;, [es, ex] = fey, [es, es] = (a+ B)es

where a, B, y, € are positive real numbers. (Note that g’ is spanned
by {ei, ez, e3}.) We will say that such a g is associated to (a, S,
v, E).

Let (, ) be the inner product in g with respect to which {e;};_,
is an orthonormal basis of g, and let G be the simply connected Lie
group with Lie algebra g and left invariant metric associated to ( , ).
By a straightforward computation, using the connection formula and
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the definitions of R, K we get:

(1) V, e = ve, +aes, Vele2=%se3, Ve]e3=—%ae2,
Ve,r = —vey + fes, V, ey = jee, Ve ey =(a+Bes,
Vele4 = —vye,, VeI es=—ae,, V82e4 =ye,,
Ve,e5 = —Bey, Ves =0, Ve,es = —(a+ fe;.
2 2 2 2
(2) R(e,, ey)e; = (%s +af -y )ez, R(e,, e))e, = (y —af -3¢ )el,
R(e;, ey)e; = —1e(a + Bes, R(e,, e))e; = Le(ve, + aey),
2
R(e,, ey)e, =( %e +,Ba+ﬂ))e3, R(e,, e3)e; =(%s - a+ﬂ))e2,
R(e,, e)e, = (—4e +ala+ §) e5, Rley, e)e, = delve, — Bes),
2
R(e ey)e (% a(a+ B) )
2,2
(3) K(e,, e)) =3 +7 —aB, Kle,e;) =1 —ala+p),
2
K(e,, e;) = 48 - Bla+B), K(ey,e)=K(e,,e)=-7",
K(e,, e;) =0, K(es, e) = —a’,
2 2
K(€5,62)=—ﬂ s K(e5,e3)=—(a+ﬂ) .

We note that in all computations above, «, f, ¥ and ¢ may be arbi-
trary.

(4) We remark that it will be shown in §3.1 thatif a = =¢/2 =
v/+/3 then G is a symmetric space.

Conversely, assuming G symmetric (i.e., VR = 0) we get o =
B =¢€/2 =7y/\/3. This follows by a straightforward computation of
Ve, (R(er, e2)e1), Ve (R(ey, e2)e3) and Ve (R(er, e2)eq) using VR =
0 and (1) and (2) above.

The following lemma is proved in [7]. We state it here since it
is applied in Lemma 2.2 to obtain an expression for the sectional
curvature that will be used repeatedly.

LEMMA 2.1. Let g be a solvable Lie algebra with an inner product
(, ) such that a, the orthogonal complement of g is abelian. If
ady |y is symmetric with respect to ( , ) for all H € a, then

(RX+H,Y+T)Y+T),X+H)
=(R(X,Y)Y,X)-|[H, Y]-[T, X]]?
—([H, Y]-[T, X], [X, YD +([[H, Y] - [T, X], X], Y)
—(llH, Y]-I[T, X], Y], X)
forall X, Yeg and H,T €.
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LEMMA 2.2. Let a,b,c,r,s,t be real numbers and H, T ele-
ments in a; then

(R(aey + bey +ces + H, re; +sey +tes+ T)(re; +se; +tes+ T),
ae, + be, + ces + H)
= [(cs — bt)* K (e, e3) + e(cs — bt)(ar(T) — ri(H))

— (aA((T) - ray(H))*]

+ [(at — cr)?K (e , e3) + e(at — cr)(bAy(T) — sA2(H))
— (bAx(T) = s22(H))?]

+ [(as — br)*K (e; , e3) + &(as — br)(cAs(T) — tiz(H))
— (c23(T) - tA3(H))*]

where A; (i =1, 2, 3) are defined by

A(U) = (U, yes +aes), i(U)=(U, —yes+ Bes) and
MU)=A1+A)U)=(a+ p){U,es) foral Uce€a.

Proof. First of all we show that,
(R(aey + be, + cez, re| + sey + tey)(rey + se; + tes) , aey + be, + ces)
= (aS - br)zK(el > eZ) + tz(azK(el ) 33) + sz(eZ > 33))
+cA(r’K ey, e3) + s°K (e, e3))
—2ct(arK(ey, e3) + bsK (e, , e3)).
Let X =ae, + be, and Y = re; + se; . Applying the linearity of R
and using that R(X, Y)e; is an element in a (see (2)) we have,
(R(X +ce3, Y +te3)(Y +tes), X + ces)
=(R(X, Y)Y, X)+2ct{R(X, &3)Y , e3) + t*(R(X, e3)e3, X)
+c*(R(es, Y)Y, e3).
Now, since R(e;, e3)e3 is a multiple of e; (see (2)), an easy calcu-
lation shows that
(i) (R(X, e3)e3, Y) = arK(e;, e3) + bsK(ey, e3).
Hence, (i) is deduced from (ii) and the equality
(RX, Y)Y, X)=|XAY|?K(e1, ;) = (as — br)’K (e, , e2).
Now, the formula stated in the lemma follows by a straightforward
computation using Lemma 2.1.

Next, in the two propositions below we find necessary and suf-
ficient conditions for G to have nonpositive curvature in terms of

a,p,r,¢.
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ProrosITION 2.3. If G has sectional curvature K < O then the
following relations among o, B, 7, €& hold: &* < 2B(a+ B), & <
20(a+ B), y* < 3e* +aB. In particular, K(e,, e3), K(e,, e3) and
K(ey, ey) are all strictly negative.

Proof. We first show that if e2—28(a+8) > 0 (or e2—2a(a+) > 0)
then there exists a plane 7z in g with sectional curvature K(zn) > 0.
In fact, if we take H = 0, T = Aeq we have A3 = 43(T) = 0 and
A1 = A(T) = —yA with A; # 0 for any nonzero real 4. Hence, by
applying the curvature formula given by Lemma 2.2, we get

(R(aey + ces, ey + Aeg)(ea + Aes) , aey + ce3)
=c’K(ez, e3) + a*(K(ey, e2) — A}) — eAyac,

for any real numbers a, c¢. If we consider this expression as a poly-
nomial of second degree in a (K <0, 4; # 0) its discriminant A is
given by

A= c*(A3(e? + 4K (ey, €3)) — 4K (1, e2)K (€2, €3)).

Note that &2 + 4K(e;, e3) = 2(e2 — 2B8(a + B)). Thus, by choosing

A so that
4K (ey, e3)K(ey, €;)

2(e2-2(a+ B))
we get A strictly positive for any nonzero real ¢. For this A and
nonzero ¢, a real number a can be chosen satisfying

Ay =At>

K(ae, + ce;, e, + Aeg) > 0.

The other statement follows in the same way by interchanging the roles
of e; and e,. Hence, the first two inequalities follow.

Now we prove the last one. In the same way as above, if we take
T = A(—Pes + yes) with 4 # 0 (hence, 4 = A5(T) = 0 and A3 =
A3(T) = Ay(a+ B) # 0) and applying the curvature formula again, we
have

(R(bey +ces, e +T)(ey+T), bey + ces)
= b’K(e;, 1) + c*(K(ey, €3) — A3) — eAsbc,

which considered as a polynomial (of second degree) in ¢ has dis-
criminant

A = b?(J3(e* + 4K (e, e3)) — 4K (e1, e2)K ey, €3)).
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Note firstly that &2 + 4K (e;, ;) = 2(—&2 + 2(y?> — af)). Thus, if we
assume 2(y* —af) — €2 >0 (or y2>¢%/2+af), taking A in such a
way that
4K(el ’ eZ)K(el s e3)

&2 +4K(ey, e3)

for any nonzero real b we get A > 0. Hence, a real ¢ can be chosen
such that K (be,+ce;, e;+7T) > 0. The assertion follows since K < 0.

22y + B)? =13 >

PROPOSITION 2.4. The conditions €2 < 2f(a+ f), & < 2a(a+ f),
y* < $e2+ap are sufficient for G to have sectional curvature K < 0.

Proof. We note from the curvature formula given in Lemma 2.2
that each term in between brackets is a polynomial of second de-
gree (K(e;, e3), K(ey, e3) and K(ey, e;) are negative) in (cs —bt),
(at — cr) and (as — br) respectively, with discriminant

(aA((T) — ray(H))* (% +4K(e, €3)),
(bAy(T) — sAy(H))? (e +4K(e, e3)), and
(cA3(T) — tA3(H))? (e2 + 4K (ey, €2)).

Under our assumption, &2 < 2f(a + B), & < 2a(a + B) and
y* < 32 + ap, these discriminants are nonpositive and therefore
each polynomial is also nonpositive. Thus,

K(ae, +bey +ces+ H,re; +se;+tes+T)<0

for any real a, b,c,r,s,t and H, T €a. Hence, K <O0.

Next, under the assumption K < 0, we will get some conditions
for G to have rank one.

PROPOSITION 2.5. The real number ¢ must satisfy ¢ < a+ . More-
over, G hasrankoneif e<a+ f.

Proof. The condition ¢ < o+ B follows immediately from the first
two inequalities of Proposition 2.3. We note that (a+ f)? < 2a(a+f)
or (a+ f)* < 2B(a+ B) depending on whether 8 < a or o <
respectively. Consequently, ¢ < o + # if and only if &2 < 2a(a + B)
or e2<2B(a+p).
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Next we check the last statement. Using Lemma 2.2, foreach Y € ¢
orthogonal to e3 and T € a, we have
(R(ey+ey, Y +tes+T)Y +tes+T), e; +e3)
=*(K(er, e3) + K(e2, €3)) — te(A1 — A2)
— 27 =23 +|(e1 + e2) AYPK(er, €2).
This expression is a polynomial p(¢) of degree two in ¢ whose dis-
criminant A is given by
A=g*(Ay —A)?
+4(K(er, e3) + K(ez, €3) (A7 + 43 — |(e1 + e2) AYPK(e1, €2)).
Now, we assume ¢ < a+ f. Since K <0 we have
A< (A —A)* +4(K(er, e3) + K(e2, €3)) (4] + 43).
If we substitute the expressions for K(e;, e3) and K(e,, e3) into the
expression above, we get
A< (0 = 1) +4 (462 = (a+ §)) (B} +43)
= e%(A1 — 2)? + 26% (AT + A3) — 4(a + B)* (AT + 43)
=e2(3A2 + 343 — 241 4y) — 4(a + B)* (A2 + A3).

Now, we consider the two cases, 7 # 0 and 7T =0. If T # 0, since
21(T) and A(T) are not simultaneously zero, 342 + 313 — 24,4, >
(A1 —42)? > 0. Hence, if ¢ < a+ f, we get

A< (a+ B)*(343 + 323 = 2414) —d(a+ B2 (A2 + A3)
= —(a+B)* (A1 +42)* <0,
and then p(z) <0 forallreal t, T#0 in a and Y in g’ orthogonal
to e3.

If T=0,p(t)=12(K(ey, e3)+K(ez, e3))+|(e;+e2)AY [*K ey, €3) <
0 whenever ¢ # 0 or Y, orthogonal to e3, is independent of e; +e¢;.
(Note that K(e; + e, Y)=K(e, e3) <0.)

Therefore, K(e;+e,, Y+te3+T) < 0 for all real number ¢, 7 € a,
Y € ¢ orthogonal to e¢; and independent of e; + e,. Thus, the
geodesic y in G satisfying p(0) = e and »'(0) = e; + e; has rank
one.

PROPOSITION 2.6. The numbers o, B, y satisfy the inequalities y*—
20 — B2 <0 and y*—2af —a? < 0. Moreover, if y2—2af— 2 <0
or y2-2af —a* <0, G has rank one.

Proof. The first two inequalities follow immediately from Proposi-
tion 2.3 (2 —apf < ¢%/2).
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Now, we will show the last assertion. Applying Lemma 2.2, for each
T €a and Y in ¢ orthogonal to e,, we have
(Rley+e3, Y +sex+T)Y +sex+T), e; +e3)
=s%(K(er, e2) + K(ez, €3)) + se(A1 + 43) — 4 — 13
+|(e1 +e3) AY K (e, e3) = p(s),
where A; = A;i(T) (i =1, 3) are defined as in Lemma 2.2.

Note that p(s) is a polynomial of degree two in s whose discrimi-

nant A is given by
A=e* (A1 +43)* + 4(K(e1, €2) + K(e2, e3))
X (A7 +23 - |(e1 + e3) A YK (e1, €3)).
Substituting K(e;, e;) and K(e;, e3) for its expressions, and since
K <0 we get,
A< &2y +3)2 +4 (=62 + 92 - 208 - B2) (3 + 23)
= &2 (Ap + A3)? — 262(A2 + A3) + 4(y* — 228 - B2)(A3 + A3)
= —&%(21 — 43)2 + 407> - 228 — B3 (A} + 43).

To prove that G has rank one we will see that if y2—2af - $2<0
then K(e;+e3, Y+se;+7) <0 forall s, T in a, Y € ¢’ orthogonal
to e, and independent of e; + e3. We first consider the case T #0;
since 4;(T) # 0 we have A < —&%(A; — 43)?> < 0 and hence, the
polynomial p satisfies p(s) < O forall s,7 # 0 in a and Y € ¢
orthogonal to e;. If T =0,

p(s) =s*(K(er, e2) + K(ez, €3)) + |(e1 + €3) AY|*K ey, 3) < 0

whenever s # 0 or Y € g, orthogonal to e;, is independent of
e1+e3 (K(ey,e3) <0 and K(ey, e3) < 0). Therefore, the assertion
is proved and consequently, the geodesic y in G such that y(0) = e
and y'(0) = e; + e; has rank one.

If y2—2ap —a? < 0, interchanging the roles of e; and e, , we also
obtain that G has rank one.

We summarize the preceding results in the following:

THEOREM 2.7. Let G be the simply connected Lie group with Lie
algebra associated to (o, B, 7, €) and left invariant metric as defined
above. Then G has sectional curvature K < 0 if and only if

2
& <2a(a+f), <2B(a+f) and yzsfz—+aﬂ.
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Moreover, G has rank one if any of the following conditions hold:

e<a+pf, 7?-2af-0><0, y*-2af-p8%<0.

COROLLARY 2.8. If G has nonpositive curvature, then G has rank
one or two and in the latter case, a = =¢/2=7//3.

Proof. We note first that the roots of a in ¢’ are given by A{(H) =
(H, yes+aes), Ay(H)=(H, —yes+ fes), A3 =A1+A, forall H € a,
where A; and A, are independent with associated root spaces gfl_ =
Re; (i=1,2,3). Thus, gy =0 =ap and hence G has no de Rham
flat factor. Then, it follows from Theorem 1.3 of [7] that G has rank
one or two. If rank(G) = 2, Theorem 2.7 implies that ¢ = a+ f and
y2—=2af — f*=0=92~2af —a?. Hence, a =B =¢/2=7y//3.

REMARK 2.8. It will be shown in §3 (3.1) that when = f =¢/2 =
v/v/3, G coincides with the symmetric space SL(3, R)/SO(3), pro-
vided we multiply the metric by a suitable positive constant.

3. The group of 3 x 3 upper triangular real matrices of determinant
one.

3.1. Let G be the solvable simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one. Its Lie algebra g
consists of the 3 x 3-upper triangular real matrices having trace zero
and has a basis {E;}}_; given by

0 1 0 000 001
E1=000,E2=001,E3=000],
(0 00 000 000

(1 0 0]
E4=|0 -2 0| and Es=i(E!+E2?), where
0 0 1
1 0 0] 2 0 0
E}=]|0 1 0| and E}=|0 -1 OJ.
0 0 -2 0 0 -1

Let a, £, v, ¢ be any positive real numbers. Setting ¢; = 2aE,
e; = 2BE,, e3 = (4aB/e)Es, es = y/3E4 and es = }(BEL! + aE}),
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we obtain a basis {e;}7_, of g satisfying:

1=

[el,€2]=883, [el’e3]=0=[e2’ e3]’
[es, e1] =yer, [es, 2] = —ves, [es, e3] =0 =[ey, es5],
[es, eil=ae;, [es, e2] = Bey, [es, e3] = (a + B)es.

That is, g is isomorphic, as a Lie algebra of matrices, to the Lie
algebra associated to (a, f, ¥, &) which was studied in §2. I learned
of this realization from [9]. Thus, considering on g the inner product
(, ) such that {e;}]_, is an orthonormal basis of g, we see that
any choice of (a, B, y,¢) gives us a left invariant metric on G.
Moreover, almost all these metrics are not isometric. Note, since g’
is nonabelian, it is deduced from the proof of Theorem 1.3 that any
left invariant metric on G of K < 0 is, up to an isometry, the metric
associated to some (a, f,7,¢€).

In the case @« = B = ¢/2 and y = (y/3/2)e, provided that we
multiply the metric by a suitable positive constant, G is isometric
to the irreducible symmetric space of noncompact type and rank two
H = SL(3,R)/SO(3). In fact, G = NA where N = expn, n is the
Lie algebra of 3 x 3-strictly upper triangular real matrices and A is the
group of diagonal real matrices of determinant one. Since SL(3, R) =
SO(3)N A is an Iwasawa decomposition for SL(3, R), it is well known
(see [1, Lemma 2.4] and [10]) that G acts simply transitively on H .
Now, if p is the orthogonal complement of so(3) in si(3, R) with
respect to the Killing form B on sl(3,R) (B(X,Y)=6tr(X, Y)),p
may be identified with the tangent space to H at o = ISO(3), and the
metric on ToH corresponds to the restriction of the Killing form to
p. If @ is the Cartan involution in sl(3, R) relative to so(3) (6(X) =
—X?*) then the inner product in g = n® a, where a is the Lie algebra
of A, obtained from the metric on p is given by

(X+H,Y+T)=—-1B(X,0Y)+B(H,T) forX,Yen, H,T€a.

It is a straightforward computation to see that the metric given
by a =f, ¢ =2a and y? = 3a? (thatis, (E;, E;) = 0,i # j,
|E1|? = |Eaof? = |E3* = 1/4a?, |Egf? = 3/?, |Es)* = 1/a?) isa
multiple of the metric ( , ). Moreover, ( , )= 12a%(, ).

3.2. Next we will obtain a comparison result between the symmetric
metric on G and nonsymmetric metrics. The idea is to compare the
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curvature associated to the 4-tuples (a, B, 7, €) and (ag, ag, /3o,
2ap) where the last one corresponds to the symmetric case.

Let a, B, 7, ¢ be positive real numbers and let {E;}>_, and {e; E
be as in (3.1). We consider the inner product ( , ) on g such that
{e;}2_, is an orthonormal basis of g. Then we have:

(Ei, Ej)=0, i#],

1
m ’ |E2|2 =
9

Eol* = —

g2

2_
|E1]” = 160282

1
Z’Ff s |E3|
BEL +aE2? =

In order to compare the metrics associated to different («, £, 7, &)
it is convenient to multiply the metric { ) by the factor 4a?p?/e2.
Then the orthonormal basis with respect to the new metric, that we
also denote by {e;} and ( , ) is given by

€1=%E1, €2=£E2, e3=2E3,
&y
€4 = 604ﬂE4’ &5 = 6o B(OIE5 + ,BE5)

Now, observe that the metric on 3 = RE3, the center of g', does
not depend on (a, B, v, ¢); that is, if Z,, Z, € 3 then (Z,, Z,) =
(Zy, Z3)o where ( , )¢ is the metric associated to (ag, Bo, Y0, €0)-
Therefore, since [g’, g'] = [3%, 311 C 3 (3* is the orthogonal comple-
ment of 3 in ¢'), for X, Y €g and H, T € a, the curvature formula
given in Lemma 2.1 tells us that the last three terms of its expression
do not depend on («, 8,7, ¢).

Let X =aE, + bE, and Y =Y’ + dE; with Y’ € 3+ . Then, from
(1) in the proof of Lemma 2.2, we get

(RIX, Y)Y, X)= |X/\ Y’IZK(el , )
+ T < 2ﬂ K(€1 s 6’3) + b ——K(ez, 6’3))

Substituting for K(e;, e;), K(e;, e3) and K(e;, e3) and taking into
account that the metric was multiplied by 4a282/e?, we get

(R(X, Y)Y, X) = fzz (—éez+y2—ap)

L3 -

+ 05 (42 - pa+m)
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where A?, defined by the expression |[X A Y'|> = (a?B2/e*)A? does
not depend on (a, B, 7, ¢€).
If we write [H, Y] — [T, X]=rE; +sE, + tE;, we have

2 2

H, Y]-[T, X]]? = rZﬂ— +5 9-2- + %
Therefore, if Ry denotes the curvature tensor associated to the metric
(, )o,we get
(%) (RX+H,Y+T)Y+T), X+ H)

— (R X+H,Y+T)Y+T),X+H)

= (R(Xa Y)Ya X) - <‘R0(X’ Y)Y> X)O

—|[H,Y]1-[T, X]*+|[H, Y]-[T, X3

_A (Vz—a/f _ ?3—00/30)

- 2 2

4
d*la? (€2 & b2 (&2 &
el (E8) 5 (5
B /30 2 aQ
e (-2)-2 (5 %))
54
&5 &

Now, if we choose ag = By, € = 2a¢ and ¢ = 303, the right hand
side of (x) becomes

SO )
(L B) e (1-2),

Hence, if (a, B, y, ¢) satisfies the conditions ¢ < 2a, & <2f and
72 < ¢%/2+af, it follows that

(RX+H,Y+T)YY+T),X+H)
— (R X+H,Y+T)Y+T),X+H)<0.

If R(n) =(RX+H,Y+T)Y+T), X+ H), where n is the
plane spanned by {X + H, Y + T}, we get K < 0 and the stronger
condition R(m) < Ry(n) for every plane © C g.

Conversely, if R(n) < Ry(m) for all plane n C g, considering
the planes spanned by {X, Y} (X, Y €3), {1+ T,e; + H} and
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{ea+T,e;+H} (T and H such that A,(T) # A1(H)) respectively,
we get in each case y2 < &2/2+af, e <28, ¢ < 2a. Thus, we have
the following:

ProrosITION 3.2. Let G be the simply connected Lie group of 3 x 3-
upper triangular real matrices of determinant one with the left invariant
metric associated to (o, B,7,¢). Then, R(m) < Ro(n) for all plane
n Cg ifand only if Yy <&%/2+af, € <2a and € < 2f. Moreover,
R(n) = Ro(n) for all plane n C g if and only if y* = €2/2 + af,
e =2a and ¢ =2f (that is, G is symmetric).

In particular, G is not symmetric if R(n) < Ro(n) for some plane
nCag.

3.3. It follows from Theorem 2.7 that:

(i) G admits many different metrics of nonpositive curvature of
rank one and only one metric, up to multiplication by a positive con-
stant, of rank two. So the rank in a homogeneous space is not invariant
under the change of homogeneous metrics of nonpositive curvature.
This situation does not occur for Hadamard manifolds which are com-
pact or have finite volume (see [4]).

(i) G with the left invariant metrics of rank one, gives us examples
of homogeneous spaces of rank one having two-flats. In fact, 4 =
exp(a) is a flat totally geodesic submanifold isometrically imbedded
in G of dimension two.

Acknowledgment. I would like to thank the referee for very detailed
suggestions which helped to improve the exposition of this paper,
shortening the proof of Theorem 2.1 and strengthening the statement
of Theorem 2.7.
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