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HARMONIC MAJORIZATION
OF A SUBHARMONIC FUNCTION
ON A CONE OR ON A CYLINDER

H. YosHIDA
To Professor N. Yanagihara on his 60th birthday

For a subharmonic function % defined on a cone or on a cylinder
which is dominated on the boundary by a certain function, we gener-
alize the classical Phragmén-Lindel6f theorem by making a harmonic
majorant of u and show that if u is non-negative in addition, our
harmonic majorant is the least harmonic majorant. As an application,
we give a result concerning the classical Dirichlet problem on a cone
or on a cylinder with an unbounded function defined on the boundary.

1. Introduction. Let R and R, be the sets of all real numbers and
all positive real numbers, respectively. The m-dimensional Euclidean
space is denoted by R™ (m > 2) and O denote the origin of it. By
S and S, we denote the boundary and the closure of a set .S in
R™. Let |P — Q| denote the Euclidean distance between two points
P, QeR™. Apointon R™ (m > 2) is represented by (X, y), X =

(x1, X2, ..., Xm—1). We introduce the spherical coordinates (r, 0),
®=(0,,0,,...,0,_1),in R™ which are related to the coordinates
(X, ) by

xlzr( ;-”;llsinej), y =rcos 0,

Xppilak = r([ﬁ?;l’ sin Hj) cosfpy (m>3, 2<k<m-1),

Xy =rcos 0;, y = rsin 6, (m=2),

where 0 < r < +oo and —§n < 0,1 <3n (Mm>2),0<60;<n
(m >3, 1< j< m-2). The unit sphere and the surface area
27m/2{T'(m/2)}~! of it are denoted by §"™~! and s, (m > 2), re-
spectively. The upper half unit sphere {(1,0) e s™!; 0< 6, < %
(if m = 2, then 0 < 6; < =)} is also denoted by 87! (m > 2).
For simplicity, a point (1, ®) on "~ ! and aset S, S C ™!, are
often identified with © and {©; (1, ©) € S}, respectively. For two
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sets E; C R, and E, C S"™~!, the set
{(r,®)eR", reE, (1,0)eE,}

in R” is denoted by E; x E; . Given a domain Q on 7! (m >2),
the set Ry x Q is called a cone and denoted by C(Q). The special
cone C(S™!) (m >2) called the half-space will be denoted by T, .
For a positive number r, the set {r} x$™~! is denoted by S,,(r) and
Sm(r)NTm by Sih(r).

In our previous paper [12, Theorem 5.1], we gave a harmonic majo-
rant of a certain subharmonic function u(P) defined on a cone C(Q)
with a domain Q having smooth boundary, such that
(1.1) Pec(lglzl)l:lp_'g u(P)<0
for every Q € 9C(Q)— {0} . It can be regarded as one of the general-
izations of the classical Phragmén-Lindelof theorem. We also showed
in [12, Corollary 5.2] that if the function #(P) is non-negative in ad-
dition, our harmonic majorant is the least harmonic majorant. In this
paper, we shall consider generalizations of these results, by replacing
0 of (1.1) with a general function g(Q) on dC(Q)—{0O}. They were
motivated by the following Theorems A, B, C and D, which are special
cases of our results (see Remark 5).

Nevanlinna [10] proved

THEOREM A. Let g(t) be a continuous function on R such that

(12) /oo |g(t)| tzig(_t)l dt < +00

and let f(z) be a regular function on T, such that
lim log|f(2)| < g(t)

Im(z)>0,z—t¢

forany t€0T,. If

1 (" A
(1.3) lim - log+lf(re’9)‘sin 0do=0,
r—oo ' Jo
then
y [T g
(1.4) log |f(2)] < n/_oo i

forany z=x+Iiy€T,.
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In the slightly different form from Theorem A, Boas [2, pp. 92-93]
also stated

THEOREM B. Make the same assumption as in Theorem A. If

1
im —Migg|1)(r) < +00 (Mlogm(r) sup loglf(z)|> ,
rooo I |z|=r,Im(z)>0
then
y [T g
. <= —_—
(1.5) loglf(z)|_n/_°o (t—x)2+y2dt+afy

forany z=x+1iy € Tz, Wwhere

ar== 2 lim 1 / log | f(re’®)|sin 6 d6.

T r—oo 1

Keller [7] proved an analogous result for a harmonic function on
Ts.

THEOREM C. Let g(Q) be a continouus function on dT; such that

[7r ([0 (5 00) o) ar <o
(Q= (r, g, 02) eaT3) .

Let h(P) be a harmonic function on T3 such that

pe Thm h(P) < g(Q)

forany Q € 0T;.
(I) There exists

by = lim = L h*(P) cos 01daA 0 < by+ < 400,
r—oo r S+(r)

where h*(P) = max{h(P), 0} (P € S5(r)) and dos =sin 6,d6,d0,

is the surface element on S* at the radial projection P = (1, 6;, 6,)
of P=(r, 0, 6) € S5(r).
(IT) For any P € Ty,

- 3
wp <5 [ L S@P-017d0+ by,

where dQ is the area element on 0Tj;.
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With respect to the least harmonic majorant of a subharmonic func-
tion on T,,, Kuran [8, Theroem 3] proved

THEOREM D. Let ¢ < 0 and let u(X, y) be subharmonic on

{(X,»)eR"; X eR™ !,y >}

such that u>0 on Ty,.

@ If
(1.6) / (1 + [XP)~12my(X , 0)dX < +oo,

Rm-—l

then there exists the limit
I, = lim 2ms;,1r‘”"1/ yu(Q)dag, 0< 1/, < +oo0,
r—0o0 S+(”

m

o _1» dX is the (m — 1)-dimensional vol-
ume element at X = (X1, ..., Xp—1) ER™ (m > 2) and dag is the
surface element of the sphere S,,(r) at Q = (X, y) € S};(r). Further
if
(1.7) ly < 400,
then
(1.8) Ly+ 2s;,‘y/ |P—Q|™™u(X, 0)dX

Rm—l
(P=(X,y)€Tn, Q=(X,0)€0Tn)

is the least harmonic majorant of u(P) on Ty,.
(II) If u possesses a harmonic majorant on Ty, , then (1.6) and (1.7)
hold.

where |X| = \/xlz+'~+x2

As an application, we shall give a result concerning the classical
Dirichlet problem on a cone with an unbounded function defined on
the boundary. Our method in this paper can be applied to a subhar-
monic function u(X, y) defined on an infinite cylinder

{X,y)eR"; XeD,y€eR},
where D is a bounded domain in R”~! (m > 2). We shall state
some results in the cylindrical case.

2. Preliminaries. Let A, be the spherical part of the Laplace op-
erator

0r  9? 02 02
Ay = — F+ — e — >2
e tant T Tar MY
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relative to the system of spherical coordinates:
m-198 02

_m-10 0" 2
Ay = p 6r+8r2+r Ay,
Given a domain Q on $™~!, consider the Dirichlet problem
(2.1) (Am+A)F =0 onQ,
F=0 ondQ.

We denote the least positive eigenvalue of it by Ag) and write fq(0©)
for the normalized positive eigenfunction corresponding to Ag) , when

they exist. Thus
(2.2) | f&©)doe =1,
Q

where dog is the surface element on §”~!. Two solutions of the
equation
2+m-2t-20 =0
are denoted by aq, —fa (aqg, Bo >0).
Let ®(r, ©®) be a function on C(L2). For any given r (r € R,),
the integral

| o, ©)a®)dos
is denoted by Ng(r), when it exists. The finite or infinite limits

. — . ﬂ
rlirrolor aNg(r) and }E%r 2 Np(r)

are denoted by ue and ng¢ , respectively, when they exist. The maxi-
mum modulus Mg(r) (0<r < +o00) of ®(r, ©) is defined as

My(r) = ggg@(r, 0).

We denote max{®(P), 0} and max{—P(P), 0} by ®*(P) and
®~(P), respectively.

This paper is essentially based on some results in Yoshida [11].
Hence, in the subsequent consideration, we make the same assumption
on Q asinit: if m > 3, then Q is a C?-%-domain (0 < ¢ < 1)
on S™-! surrounded by a finite number of mutually disjoint closed
hypersurfaces (e.g., see Gilbarg and Trudinger [4, pp. 88-89] for the
definition of C?:?-domain). Then there exist two positive constants
L, and L, such that

2.3) L, dis(®, Q) < fo(©) < L, dis(®, 8Q) (BeQ)
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(by modifying Miranda’s method [9, pp. 7-8], we can prove this in-
equality).

REMARK 1. Let Q=87"! Then ag=1, fo=m—1 and

_ ([ @2ms;)2cos 6, (m > 3)
fa(®) = < 2in 6 (m = 2))

=@mH (m22).

Let X = (x1, X3, ..., Xm—1) be a point of R”~! (m > 2). Given a
bounded domain D in R™~! (m > 2), consider the Dirichlet problem

(Ap—1+4)F=0 onD,
F=0 ondD.

Let Ap be the least positive eigenvalue of it and let fp(X) be the
normalized eigenfunction corresponding to Ap. As in the conical case,
we assume that the boundary 6D of D ¢ R”™~! (m > 3) is sufficiently
smooth. The set

DxR={X,y)eR™"; XeD,yeR}

in R™ is called a cylinder and denoted by I'(D) (m > 2). Let
Y(X, y) be a function on I'(D). The integral

/D WX, p)fo(X)dX

of (X, ) is denoted by NL(y) when it exists, where dX denotes
the (m — 1)-dimensional volume element. The finite or infinite limits

lim e‘\/EyN\y(y) and lim e\/gyN\y(y)
y—00 y——00

are denoted by ui, and nl, respectively, when they exist.

Let Gq(P, Q) (resp. Gp(P, Q)) be the Green function of a cone
C(Q) (resp. a cylinder I'(D)) with pole at P € C(Q) (resp. P €
I'(D)), and let 8Gq(P, Q)/0n (resp. OGp(P, Q)/dn) be the differ-
entiation at Q € 8C(Q) — {0} (resp. Q € 8I'(D)) along the inward
normal into C(Q) (resp. I'(D)). It follows from our assumption on
Q (resp. D) that 8Gq(P, Q)/0n (resp. 0Gp(P, Q)/dn) is contin-
uous on dC(Q) — {0} (resp. OI'(D)) (see Gilbarg and Trudinger [4,
Theorem 6.15]).
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Let g(Q) be a locally integrable function on 8 C(Q) — {O} (resp.
0T'(D)) such that

(2.4) /+°o r~%~1 (/ag lg(r, G)Idae) dr < +00,

/rﬂn‘1 (/ lg(r, O)ldae) dr < +o0,
0 aQ
(resp.

@s) [ evay ([ 16X pldox ) dy < +o0),

where dog (resp. doy) is the surface area element of 0Q (resp.
dD) at © € 9Q (resp. X € 8D). If m =2 and Q = (y, d) (resp.
D= (y, d)), then

/m|g(r, ©)|dae (resp. /6D|g(X, y)lda-X)

= |g(r, )|+ |g(r, 8)| (resp. |g(¥,¥)|+(g(d,¥)]).

The Poisson integral PI;(P) (resp. PI{;(P)) of g relative to C(Q)
(resp. I'(D)) is defined as follows:

1 0
PI,(P) = — —Gq(P, Q)d
(P = [y @GP, Qda

(resp. PL,(P) = em Jor g(Q)%GD(P, Q) daQ) ,
where
_ 2n (m = 2) s
m‘{m—mm (m >3)

and dog is the surface area element on dC(Q)—{O0} (resp. I'(D)).
REMARK 2. Let Q =871, Then
P-QP™m—-|P-Q*™ (m23),
Gap, = { M O O
—log|P - Q[ +1og|P - Q| (m=2),
where Q = (X, —y), that is, Q is the mirror image of Q = (X, y)
with respect to 9T,,. Hence, for two points P = (X, y) € T,, and
Q e aTm 9
9 2(m-2)|P - Q™™"y (m23),
—Gq(P, Q)=
grlar @ ={ 3000 (m=2)
3. Statement of results. The following Theorem 1 is a fundamental
result in this paper.
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THEOREM 1. Let g(Q) be a locally integrable function on 6 C(Q) —
{O} satisfying (2.4) and let u(P) be a subharmonic function on C(Q)
such that

) lim - <
(3.1) PeC(lflzl)T,lPaQ{u(P) PI,(P)} <0
and
(3.2) PeC(lslzI)I,lP-»Q{u (P) =Pl (P)} <0

Jforany Q € dC(Q) — {O}. Then all of the limits u,, n,, Wy and
Mu (O < sy s Myr < 400, =00 < fhy, My < +00) exist, and if

(33) n,+ < +00 and N+ < +00,
then
(3.4) U(P) < PLg(P) + (uur®a + nur~Fa) fo(©)

forany P=(r,0)e C(Q).

REMARK 3. It is evident that (3.3) follows from
(3.5) lim r~%M,(r) < 400 and limrfaM,(r) < +oo.

r—o00o r—0

It is proved in Yoshida [12, Remark 9.1] that if

lim u(P)<0,
PeC,(Q),P—Q

for any Q € 0C(Q) — {0}, (3.5) also follows from (3.3).

REMARK 4. If u(P) is a positive harmonic function on C(Q),
then (3.3) is always satisfied. To see it, apply (I) of Lemma 2 (which
will be stated in §4) to —u(P). We immediately obtain that —oo <
Uy s N—y < 400, so that u,+ = uy < +oo and 7,+ =1y < +00.

The following Theorem 2 generalizes a result of Yoshida [11, The-
orem 5].

THEOREM 2. Let g(Q) be a continuous function on 8C(Q) — {OF
satisfying (2.4) and let u(P) be a subharmonic function on C(Q) such

that
(3.6)
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Jorany Q € 0C(Q) — {O}. Then all of the limits p,, N, uy and
Me (0L e, My < 400, —00 < Uy, Ny < +00) exist, and if

(3.7) U+ < +oo andn, < +oo,
then
(3.8) u(P) < PIg(P) + (ur® + nur~Pa) fo(©)

forany P=(r,08)e C(Q).

COROLLARY 1. Let g(Q) be a continuous function on 0T,, (m > 2)
such that

+00
(3.9) / r2 ( /(9 o 80 G)Idae) dr < +oo.

Let u(P) be a subharmonic function on T,, such that
(3.10) lim Qu(P) <g(0)

PeT, ,P—
for any Q € 8Ty,. Then both of the limits u,» (0 < u,+ < +o0) and
Uy (—00 < Uy < +00) exist, and
(11 uP)<25;! [ gQIP - 0" dog + (2msy)Puyy

T,

forany P=(X,y)€Ty. If
lim r~'M,(r) < 400,

r—00

then
(12)  w(P)<25;! [ Q)P - Q"™ dog+ (2msy!) Puy
T,
forany P=(X,y)€Ty.
REMARK 5. Let f(z) be a regular function on T,. Put m =2 and

u(P) = log|f(z)| in Corollary 1. Then (3.9) is equal to (1.2). Since
(1.3) gives

Fogr111 =0,
(1.4) follows from (3.11). Since

2. 1 (" —
Miog|f| = 7 Hm = /0 log|f(re'®)|sin 6 d6 =
(3.12) gives (1.5). Thus we obtain Theorems A and B.

T
397
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Next, to obtain Theorem C, put m = 3 and u = 4 in Corollary 1.
From (3.11), we have

1/2
wp) s 3 [ s0IP 0o+ () e

for any P = (X, y) € T;. Since

3 1/2
Hp+ = (55) by

(Remark 1 with m = 3), we immediately obtain Theorem C.

EXAMPLE 1. Let Ag) be the second least positive eigenvalue of (2.1)

and let F(©) be a normalized eigenfunction corresponding to Ag) .
Let Aq be the positive solution of the equation

2+ (m—-2)t -2 =0,
The harmonic function
H(P)=r%Fo(8) (P=(r,®)€ Cn(Q))
on 9C(Q) has the property

(3.13) H(P)=0,

lim
PeC(Q),P—Q
for any Q € 9C(Q) — {0} . Since A2 > 24, it is evident that

lim r~®Myg(r) = +o0.
r—oo

Hence it follows from Remark 3 that
(3.14) Up+ = +00.

This H(P) shows that (3.6) with a continuous function on dC(Q) —
{O} satisfying (2.4) does not always give (3.7). Further, let g(Q) be
a continuous function on dC(Q) — {0} satisfying (2.4). Put

I(P) = H(P) + PI,(P)

on C(Q). Then we see from (3.13) that I(P) is a harmonic function
on C(Q) satisfying

I(P) = g(Q)

lim
PeC(Q),P—Q
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for any Q € 90C(Q)— {0} (see Lemma 3 and Lemma 6). Hence (3.6)
is valid for the function g(Q) on dC(Q) — {O}. However it is easy
to see that (3.8) is not true. Since F(O) is orthogonal to fo(®) and

Ny(r)=0 (0<r<+4o00),
it follows from Lemma 3 that
ur=pg+upr, =0, nr=ng+np =0.

Since
I(P)> H*(P) - Pl (P)

on C(L), we see from (3.14) and Lemma 3 that
Up+ 2 U+ = +00.
Hence this 7(P) shows that (3.8) does not always follow without (3.7).

ExXAMPLE 2. There exists a subharmonic function #(P) such that
(3.7) is satisfied and (3.6) holds for no locally integrable function g(Q)
on 9C(Q) — {0} satisfying (2.4). Let ¢ be a number satisfying 0 <
¢ <% and let

Q={0=(01,0:,.... 9n-1) €85 |01 <E < 5}

Consider the subharmonic function
v(r, ©) =r%

on C(Q) and any locally integrable function g(Q) on 8C(Q) - {O}
such that L
<
peclm, V0, ©) < £(Q)

at every Q = (r, ©) € 0C(Q) — {0} . Then we always have

+o00
/ r=ca=1 (/ |g(r,6)|dae) dr = +co.
oQ -

On the other hand, we have that
lim r~%M,(r) =1,

r—o0o
so that u,+ < 4o00.
Let W be a domain in R” and let g(Q) be a function on oW .
A harmonic function on W satisfying

Peprmlg Qh(P) g(Q)
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for any Q € 6W is called the solution of the classical Dirichlet prob-
lemon W with g. In comparison with a result of Keller [7, Satz in p.
25], from Theorem 2 we obtain the following Theorem 3 which gives
a kind of uniqueness of solutions of the classical Dirichlet problem on
an unbounded domain C(Q). It must be remarked that the classical
Dirichlet problem on unbounded domains has no unique solution (e.g.
see Helms [6, p. 42 and p. 158]).

THEOREM 3. Let g(Q) be a continuous function on 8C(Q) — {0}
satisfying (2.4)

(I) The Poisson integral Plg(P) is a solution of the classical Dirichlet
problem on C(Q) with g.

(II) Let h(P) be any solution of the classical Dirichlet problem on
C(Q) with g. Then all of the limits uy, n, (—oo < Uy, Ny < +00),
Uin| and M| (0< Hinl> My < +o00) exist, and if

(3.15) Uiy < +00 and Ny < +00,
then
(3.16) h(P) = PLg(P) + (upr®a + nyr—Fa) fo(8)

forany P=(r,0)e C(Q).

REMARK 6. The harmonic function /(P) in Example 1 is one of
the solutions of the classical Dirichlet problem on C(Q), which do
not satisfy (3.15). In fact, (3.14) gives

Wi = Hip1, +H| = +00,

because
Hp =0
from Lemma 3 and

M PL +H| 2 MiH| — WPL | 2 B+ — HPL| = Ky

COROLLARY 2. Let g(Q) be a continuous function on 8 C(Q)—{0}
satisfying (2.4). If h(P) is a positive harmonic function on C(Q) which
is the solution of the classical Dirichlet problem on C(Q) with g, then
(3.16) holds.

The following Theorem 4 generalizes a result of Yoshida [12, Corol-
lary 5.2].
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THEOREM 4. Let u be subharmonic on a domain containing C(Q)—
{O} and let
u>0 onC(Q).

(D If &t = u|loC(Q) — {O} (the restriction of u to 6C(Q) — {0O})
satisfies (2.4), then both of the limits u, and n, (0 < tn, My < +00)
exist. Further, if

(3.17) Uy < +oo0 and 1y < +oo,
then
h(P) = PIz(P) + (uur®a + nur~a) (@) (P =(r, ©) € C(Q))

is the least harmonic majorant of u on C(Q).
(II) If u possesses a harmonic majorant on C(Q), then i satisfies
(2.4) and (3.17) holds.

REMARK 7. When u(P) satisfies the additional condition

lim u(P)=0
PeC(Q),P—Q

for any Q € 0C(Q) — {0}, we extend u(P) to R” — {O} by defining
u(P) =0 forany P € R" — C(QQ) — {O}. Then u(P) is subharmonic
onR” — {O}. From Remark 3 and (I) of Theorem 4, we obtain a
result of Yoshida [12, Corollary 5.2].

COROLLARY 3. Let u be subharmonic on a domain containing T,
(m > 2) and let
u>0 onTy.

(0) If &t = u|0Ty, satisfies

+00
(3.18) / r? (/ a(r,@)dae) dr < +o0,
as!

then the limit u, (0 < u, < +oo) exists. Further, if

(3.19) ,Uu < +OO,

then

(3.20) 2551y / #(Q)|P — Q™" dag + (2ms;!) 2,y
oT

is the least harmonic majorant of u on Ty, .
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~

(II) If u possesses a harmonic majorant on Tp,, then i satisfies

(3.18) and (3.19) holds.

REMARK 8. Theorem D immediately follows from_ Corollary 3. In
fact, u is bounded above on any compact subset of 7}, . Hence (3.19)
is equivalent to (1.6). We also see from Remark 1 that

L= (2msy") P py
and (3.20) is equal to (1.8).

Finally we shall state some results in the cylindrical case.

THEOREM 5. Let g(Q) be a continuous function on 8T'(D) satisfy-
ing (2.5) and let u(P) be a subkarmom'c Sfunction on T'(D) such that

u(P) < g(Q)

PeF(D) P—Q
for any Q € dT(D). Then all of the limits pl.nl.puj, and n; (0 <
pho, ml < oo, —oo < ul, mf < +o0) exist, and if

ur. < +oo and nL. < 4oo
then
u(P) < PLg(P) + (ufeV™? + e VAY) fo(X)
forany P=(X,y)eI(D).

THEOREM 6. Let g(Q) be a continuous function on 8I'(D) satisfy-
ing (2.5).

(I) The Poisson integral Plg (P) is a solution of the classical Dirichlet
problem on I'(D) with g.

(II) Let h(P) be any solution of the classical Dirichlet problem on
I'(D) with g. Then all of the limits u}, ni (—oo < ul, n} < +00),
”Il;ll and ”ll;zl (0< ”ll;tl , ”III;I < +00) exist, and if

u,l;,] <400 and nll,;, < 400,
then
(3.21) h(P) = PIL(P) + (uf eV + nfe V) fp(X)
forany P=(X,y)eI(D).

COROLLARY 4. Let g(Q) be a continuous function on 8I'(D) sat-
isfying (2.5). If h(P) is a positive harmonic function on T'(D) which
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is the solution of the classical Dirichlet problem on T'(D) with g, then
(3.21) holds.

THEOREM 7. Let u be subharmonic on a domain containing I'(D)
and let

u>0 onI(D).

(I) If &t = u|oI'(D) (the restriction of u to OI'(D)) satisfies (2.5),
then both of the limits ul and nl (0 < ul, L < 4o00) exist. Further,
if
(3.22) ul < 400 and 1yl <400,

then
PLL(P) + (uleVE? + nle VR fp(X) (P =(X,y) eT(D))

is the least harmonic majorant of u on I'(D).
(II) If u possesses a harmonic majorant on I'(D), then @ satisfies
(2.5) and (3.22) holds.

4. Proof of Theorem 1. For a domain Q ¢ S"~! (m > 2) and a
number ¢ (0 <t < +00), the sets
{(r,®)erR™;0<r<t, ©€9Q} and
{(r,®)erR™;r>t, ®coQ}

are denoted by Sg(f) and S{(¢), respectively. For two numbers ¢,
and 1, (0<t <t <+00),let Sq(t;, t;) denote the set

{(r,®)€erR™;ty<r<t,, ©€oQ}.

For a point Q € R™, the set {P € R"; |P - Q| < p} (p > 0) is
represented by U,(Q). We write GL(P, Q) for the Green function
of
Cl(Q)=("",j)xQ  (jis a positive integer)

with pole at P. For an upper semicontinuous function ¢(Q) on
dC/(Q), the Perron-Wiener-Brelot solution of the Dirichlet problem
with respect to C/(Q) is denoted by Hj,(P) (e.g. see Helms [6]).
Since the harmonic measure w(P, E) of E C 8C/(Q) with respect
to C/(Q) is equal to

/ 9 Gi(P, Q)day



384 H. YOSHIDA

(see Dahlberg [3, Theorem 3]), we know that H/ (P) is equal to

- é]
C’”I/ gl , ¢(Q)%GJ (P, Q)dap.
SGTLHUET IxQUETIXQ)

To prove Theorem 1, we need some lemmas.

LEMMA 1. There exist two positive constants k, and k, (resp. ks
and k4 ) such that

klr%f/’n‘lfg(@) (resp. ksr~Fat®a™! f5(©))
9 Go(P, Q) < kar®arha~! f5(8)

8
(resp. kar~Par®a™! f5(©))
for P =(r,0) e C(Q) and Q = (¢, ®) € 0C(Q) — {0} satisfying
0<r<it(resp. 0<t<ir).

Proof. These immediately follow from Azarin’s inequalities [1,
Lemma 1] and (2.3).

LEMMA 2 (Yoshida [12, Theorem 3.31]). Let u(P) be a subharmonic
function on C(Q) (m > 2) such that
lim u(P)<0
PeC(Q),P—-Q
forany Qe dC(Q) - {0}.
(I) Both of the limits u, and 1, (—oco < My, Ny, < +00) exist.
(I1) If n, <0, then r~*N,(r) is non-decreasing on (0, +00).

(III) If u, <0, then rPaN,(r) is non-increasing on (0, +o0).

LEMMA 3. Let g(Q) be a locally integrable function on 9 C(2)—{O}
satisfying (2.4). Then Pl (P) (resp. Plg(P)) is a harmonic function
on C(Q) such that both of the limits 1Pl and Pl (resp. 1P, and
nplg) exist, and

ppr, =mnpr =0  (resp. upr = 1np1, = 0).

Ig? lgl

Proof. Take any P = (r, ©) € C(Q) and two numbers R;, R;
(Ri < 3r, Ry >2r). Then by Lemma 1

(4.1) C’;’I/wml | ~Ga(P, Q)dog

+00
<k [t ( NG <I>)|da<p> dt
R oQ

2
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where ks = kyc;,'r%a fo(0), and
_ 0
(4.2) i [ 18(Q)I55Ga(P, @)dag
n (Rx) on

Rl
sks/ tha”! (/ Ig(t,d>)|daq>> dt
0 219

where kg = kacy,'rPa fo(0). Hence we see from (2.4) that PIjg(P)
and PI,(P) are finite for any P € C(Q). Thus PI;(P) and Pl (P)
are harmonic on C().
Let vy p(E) and v{p(E) (0 < R < +00, P € C(Q)) be two
positive measures on BC (Q) — {O} such that
(1) —
n(B) =it [ - 2 Ga(P, Q)dog

and
0

2 —
V}(Q’)P(E)zcml/EnS GnalP, Q)dog

for every Borel subset E of C(Q)—{O}. Then PI,(P) is the sum
of two positive harmonic functions:

(4.3) Pligi(P) = hy,r(P) + M2 r(P),

where
h P —-—-/ dv(l)
1,r(P) D C()—{ }|g| R,P

hy R(P) = / @,
,R(P) 6C(Q)_{0}lg| R.P

Let r; (r; > 0) be a number and let ¢ be any positive number. From
(2.4) we can choose a number r* (r* > 2r;) so large that

(4.4) /sg(r 18(t, D)l P dop < S e (@=(,9))

and

By applying Lemma 1, we see from (4.4) that

Ny, .(n) < 5erie
and hence
(4.5) PN, () 2 —e.
Since

r=%aNp _(r)
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is non-decreasing from (II) of Lemma 2, (4.5) gives that
(4.6) 0<r %N, (r)< %e (r2r).

By using Lemma 1 again, we obtain that

Ny (F) < kgr—Pa /0 Pa=1 </69|g(t, d:)[d@) di  (r>2r).

2,r

By (2.4) we can choose a number r, (r, > 2r*) so large that
(4.7) 0<r el (N<ze  (r2n)

We finally conclude from (4.3), (4.6) and (4.7) that
0<r™®aNp (r)<e  (rzn),

which gives the eixstence of Hpr1, and

(4.8) tpy = 0.

In the same way we can also prove the existence of e, and
(4.9) ner, =0

Since

Nep () = Nppp ((r) 2 [Npg ()] (0 <7 < +00),

it immediately follows from (4.8) and (4.9) that both limits Hpr, and
Mp1, exist and are zero.

LEMMA 4 (Yoshida [12, Theorem 5.1] and Remark 3). Let u(P) be
a subharmonic function on C(Q) (m > 2) such that

lim u(P)<0
PEC(Q),P—Q

Jor every Q € 0C(Q) —{0}. If (3.3) is satisfied, then
u(r, ©) < (uur*e + nur~—a) fo(8) on C(Q).

Proof of Theorem 1. Consider two subharmonic functions
U(P) =u(P)—PI,(P) and U*(P)=u"(P)—Plgy(P)
on C(Q). Then we have from (3.1) and (3.2) that

lim U(P)<0 and lim

lim U*(P)<0
PeC(Q),P—Q PeC(Q),P—Q
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for every Q € 0C(Q) — {O}. Hence it follows from (I) of Lemma 2
that four limits uy, nu, py- and fy- (—o0 < uy, Hu, py+, Ny <
+00) exist. Since

Nu(r) = Nu(r) = Ner () and  Ny-(r) = Nyo(r) = Nex_ (),

Lemma 3 gives the existence of four limits xy, 7y, u,+ and 7,+, and
that

(4.10) Hu =Ry, Nu="MNu, Uy =HUzs, Ny =My

Since
Ut (P) <u™(P)+ (PLlg)~(P) onC(Q),

it also follows from Lemma 3 and (3.3) that

Uy < U+ < 400,  Ny+ < M+ < +00.
Hence by applying Lemma 4 to U, we can obtain from (4.10) that
U(P) < PLg(P) + (ur®e +mur~#0) fa(©) on C(Q) (P =(r, 8)),
which is (3.4).

5. Proofs of Theorems 2 and 3, Corollaries 1 and 2. The following
lemma is not obvious for unbounded functions.

LEMMA 5. Let g(Q) be an upper semicontinuous function on 8 C(QQ)
— {0} satisfying (2.4). Then
lim <
peclm,_PL(P) < £(Q)
forany Q€ dC(Q) - {0},

Proof. Let Q* = (r*, ©*) be any point of 0C(Q) — {O} and let ¢
be any positive number. Take a number 6 (0 <dJ < r*). From (2.4),
we can choose a number R;, R; > 2(r* + ) (resp. R}, 0 < R} <
%(r* —0)) so large (resp. small) that

+00
{01 (/ t, D)|d )a’t<c—mr*+5‘%e
/. [ la(t, @)l doy ) di < (" + )

-
! ﬂﬂ_l cm * Bg
(resp. /0 t (/ag|g(t, <I>)|da<p> |dt < 8k4KQ(r o) 8) ,

where

Kq = max fo(©).
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From (4.1) and (4.2), we obtain that

- 0 €
(5.1) i [ ) 8@l GalP, Q)dog < §
and

_ 0 €
(52) ' [, g $@lg50alP, Qoo < g

forany P = (r, ©) € C(Q)NU;s(Q*). Let ¢ be a continuous function
on 9C(Q) — {0} suchthat 0< ¢ <1 on 9C(Q) - {0} and

1 on Sq(R7, R3),
{ 0 onSE(2R;)US, (3R}).
Since the positive harmonic function Go(P, Q)— e o(P, Q) on C/(Q)

converges monotonically to 0 as j — co, we can ﬁnd an integer Jj,
(o' <27'R%, jo>2R%) such that

53 g 0(Q)2(Q)]
So(27'R7,2R})

0 .j 0 €
X on Q(Ps Q)_ EEGQ(Pa Q) dO'Q < Z
forany P = (r, ©) € C(Q)NUs(Q*). It follows from (5.1), (5.2) and
(5.3) that
0
5.4 *‘/ Go(P, Q)d
54 &' | o o 8@ 7 CalP. Q) dog

1 9
<q' [ e an, Q@5 GE(P, Q)dog

+

_ o .
o /S - ZR;)(ﬂ(Q)g(Q)%GQ(P, 0)day

14)
_ 1 -
c /s e 2Rp«»(Q)g(Q) 5, Ga(P, Q) dag

. 9
#2650 [ 18(@)5:GalP, 0)dog

0
+2c"1/ —Go(P,0)d
m SS;(RI‘)Ig(QMan (P, Q)dog

—1 Jo
<a' [, R 0(Q)2(Q)2-GY(P, Q) dog

FNE

+ —¢€
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for any P = (r, ®) € C(Q) N Us(Q*). Consider the upper semicon-
tinuous function
9(Q)8(Q) onS(27'R}, 2R3),
V
@-{¢ s
(Z = Sa(jz", 27'R}) USa(2Rs , jo) U ({J5 '} x @) U ({o} x Q))
on 9C/(Q). Since
lim H(P)< lim V(Q) = g(Q*
pec@ -0 TS o)y gng V() = 8(Q)
(e.g. see Helms [6, Lemma 8.20]), we finally obtain from (5.4) that

L]

im 0
lim C‘I/ —G P’ do, < ).
pec@),P-0" ™ Joci)-10) 8(Q)5,Ga(P, Q)dog < g(Q°)

From Lemma 5, immediately follows

LEMMA 6. If g(Q) is a continuous function on 8 C(Q) — {0} satis-
fying (2.4), then
peclim, | PIs(P) = 2(Q)
for every Q € 0C(Q) —{0}.

Proof of Theorem 2. First, we see from Lemma 6 that

peciolp_oFlslP)=¢€(Q) and  lm Pl |(P) =|2(Q)]

for every Q€ 0C(QQ) — {0} Hence we see from (3.6) that

pec i, (u(P) = PLy(P)} <0

and

pecim,_ (u"(P) = Plig(P)} <0

for every Q € 0C(Q) — {O}. Theorem 1 immediately gives Theo-
rem 2.

Proof of Corollary 1. Put Q =s™"! in Theorem 2. Since g(Q) is
continuous at @ = O of 8Ty, , |g(Q)| is bounded in the neighborhood
of Q = 0. Hence we see from Remark 1 and (3.9) that g(Q) is
admissible on 9T, and from (3.10) that n, <n,+ =0. If u, = +oc0,
then (3.11) is evidently satisfied. When u,+ < +00, (3.11) also follows
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from (3.8), Remark 1, Remark 2 and the inequality u, < pu,+. It is
easily seen that Remark 3 and (3.8) give (3.12).

Proof of Theorem 3. It follows from Lemma 3 and Lemma 6 that
PI;(P) is one of the solutions. To prove (II), put u(P) = h(P) and
—h(P) in Theorem 2. Then Theorem 2 gives the existence of all limits

Bhs Mhs B> My s

(5.5) ﬂ(_h)Jr = ﬂh— and ﬂ(_h)+ = ”h—.
Since
(5.6) B+ M- = Wpp - and e + M- = Ny,

it follows that both limits u, and 7, exist. Suppose that 4 satisfies
(3.15). Then we see from (5.5) and (5.6) that u;+, p_,+, m,+ and
H—p* < +oo. Hence, by applying Theorem 2 to u(P) = h(P) and
—h(P) again, we obtain from (3.8) that

h(P) < PLg(P) + (upr®a + nyr~Fa) fa(©)

and
h(P) > PIg(P) + (upr®a + mur=Fa) fo(©),
respectively, which give (3.16).

Proof of Corollary 2. 1t follows from Remark 4 that
Kip) = Up+ <400 and Nn = Ny < +00.
Thus Theorem 3 implies Corollary 2.

6. Proof of Theorem 4.

LEMMA 7. Let g(Q) be a non-negative lower semicontinuous func-
tion on 80C(Q) — {O} satisfying (2.4) and let u(P) be a non-negative
subharmonic function on C(Q) such that

(6.1) PGC(@% QP <8(Q)

for every Q € 0C(Q) — {O}. Then both of the limits p, and n,
(0 < uy, Ny < +o0) exist, and if u, < +oo and n, < +oo, then

u(P) < PIg(P) + (uur®s + nur~"2) fo(8)
forany P=(r,0) e C(Q).
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Proof. To apply Theorem 1, we shall show that (3.1) and (3.2) hold.
Since —g(Q) is upper semicontinuous on 0C(Q) — {0}, it follows
from Lemma 5 that

(6.2) lim  PI,(P) > g(Q)
PeC(Q),P—Q

for every Q € 0C(QQ) — {O}. Hence we see from (6.1) and (6.2) that
{u(P) — Plg(P)}

PeC Q) P—Q
< lim u(P) - lim PI,(P) < - =0
S pectilp_ P~ lm  PL(P)<£(Q) - £(Q)

for every Q € 0C(Q) — {O}, which provides (3.1). Since g and u
are non-negative, (3.2) also holds. Thus we obtain Lemma 7 from
Theorem 1.

LEMMA 8. Let u be subharmonic on a domain containing C(Q) —
{O} such that &t = u|oC(Q) — {O} satisfies (2.4) and

u>0 onC(Q).

Then
PI;(P) < h(P) on C(Q)

for every harmonic majorant h of u on C(Q).

Proof. Take any P* = (r*,©*) € C(Q). Let & be any positive
number. In the same way as in the proof of Lemma 5, we can choose
two numbers R; and R, (2R; <r < 27!R,) such that

_ N 0 . e

(6.3) el /S i, [ GalP, O)dog < 5
and

(6.4) ol / 10)2-Go(P*, 0)day < &

' " Jsz(r,) an 2 ety

Further, take an integer jo (j;' <Ry and jo > R,) such that

65) ¢! /S . (Q){ 9 GaP*. Q)
0

jo * _8_
—%GQ(P , Q)} dO'Q < 3
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Since s .

c—I/ (Q)—G2(P, Q)day < HJ (P

7 [, ny (@5 CR(P @ dog < Hi(P)
for any P € C/(Q), we have from (6.3), (6.4) and (6.5) that
(6.6)  PLy(P*)— Hy'(P")

_ ) 9 .
<gi [ w0 { &GP, 0)
Sa(R,,Ry) n
8

—%GQ(P*, Q)} dag

1)
+c“/ 1(Q)=—Gq(P*, Q)do
3 (Q)an o(P*, Q)dag
0
+c—1/ 1(Q)=—Gq(P*, Q)doy < e.
" Jsim) (Q)an Q(P*, Q)dag

Here, note that H,{*’(P) is the least harmonic majorant of #(P) on
C/(Q) (see Hayman [5, Theorem 3.15]). If 4 is a harmonic majorant
of u on C(Q), then .
Hy*(P*) < h(P*).
Thus we obtain from (6.6) that
PI;(P*) < h(P*) + ¢,

which gives the conclusion of Lemma 8.

Proof of Theorem 4. Let P = (r, ©) be any point of C(Q2) and let
¢ be any positive number. By the Vitali-Carathéodory theorem (e.g.
see [11, p. 56]), we can find a lower semicontinuous function g.(Q)
on 8C(Q) — {0} such that

(6.7) Q) < g(Q) ondC(Q)-{0}
and

(6.8) Pl (P) < PIy(P) +e.
Since

PeC(@P—»Qu(P) <a(Q) < &(Q)

for any g € 0C(Q) — {O} from (6.7), it follows from Lemma 7 that
two limits u,, 71, exist and if u, < +o0o0 and 7, < +o00, then

(6.9) u(P) < Plg (P) + (mur® + nur~a) fo(©).
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Hence we have from (6.8) and (6.9) that
U(P) < PIz(P) + & + (ura + nur~%a) fo ().
Since ¢ was arbitrary, we obtain
U(P) < PIy(P) + (Hur®s + nur~%a) fa(©)

for any P = (r, ®) € C(Q). This shows that A,(P) is a harmonic
majorant of ¥ on C(Q).

To prove that A, is the least harmonic majorant of ¥ on C(Q),
let A(P) be any harmonic function on C(2) such that

(6.10) u(P) < h(P) on C(Q).
Consider the harmonic function
h*(p) = hu(P) = h(P) on C(Q).
Since
h*(P) < hy(P) on C(Q),
we see from Lemma 3 that A*(P) satisfies (3.3). We also see from

Lemma 8 that

PeC(Q) P—Q h*(P) = Pec(lglzm {PIz(P) - h(P)} <0

for any Q € 0C(Q) — {O}. We have from Lemma 3 and (6.10) that
By = th, = My = Wy — Uy < ty — py =0
and similarly #;,- < 0. Thus we obtain from Lemma 4 that
h*(P)<0 onC(Q),

which shows that 4,(P) is the least harmonic majorant of u(P) on
Cc(Q).
To prove (II), let A#;(P) be a harmonic majorant of u(P) on C(Q).
Since
Pu < pp < +oo and 1y < 7 < +00

from Remark 4, we immediately have (3.17). Fix Py = (1, ©y), O €
Q. Take any two numbers R;, R, (0 < R; <271,2 < Ry < +)
and choose a sufficiently large integer j*, j* > Max(Rl‘1 , Ry), such
that

0
! [Q(R” u(Q){ Ga(By, Q) - 2y <P0,Q>}daQ51
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and

0 0

‘n /SQ(Z,RZ) Q) {%GQ(PO’ Q) - %Gﬁ (Po, Q)} dog < 1.

Since HJ‘(P) is the least harmonic majorant of u(P) on C/ (Q),

. 8
hy(Po) > HY (P) > ¢ / 20)2GL (Py, Q) dayg
SaGt ) on

S Cm! fsn(Rl,z-‘) Q)& Gh (P, Q) dag
|t fs 0,2, Q) $Gh (Po, Q) dap.
Hence it follows from Lemma 1 that

+o00 > hy(Py) + 1
(' fSQ(Rl,Z“) a(Q)g%GQ(POa Q)dag

>k fél—l rea~l (oo i(r, ©)dag) dr
! fsn(z,Rz) a(Q)éa—nGQ(PO , Q)day

> ks [} ra=1 ([, i(r, ©) dag) dr,
which shows that # satisfies (2.4).

v

7. Proofs of Theorems 5, 6 and 7. These proofs proceed in the
completely parallel way to the proofs of Theorems 2, 3 and 4, on the
basis of two results of Yoshida [12, Theorems 7.2 and 7.5] and the
following inequality corresponding to Lemma 1:

kie=VAU" ) fi(X)  (resp. kg™ VA=) f(X))
< -8—GD(P, Q) < Khe VA ) f(X)

on
(resp. kje™ VA=) f (X))
for P=(X,y) eI'(D) and Q = (X*, y*) € 0I'(D) satisfying y* >
y+1 (resp. y* <y—1), where k| and kj (resp. kj and kj ) are two
positive constants.
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