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HARMONIC MAJORIZATION
OF A SUBHARMONIC FUNCTION
ON A CONE OR ON A CYLINDER

H . YOSHIDA

To Professor N. Yanagihara on his 60th birthday

For a subharmonic function u defined on a cone or on a cylinder
which is dominated on the boundary by a certain function, we gener-
alize the classical Phragmen-Lindelδf theorem by making a harmonic
majorant of u and show that if u is non-negative in addition, our
harmonic majorant is the least harmonic majorant. As an application,
we give a result concerning the classical Dirichlet problem on a cone
or on a cylinder with an unbounded function defined on the boundary.

1. Introduction. Let R and R+ be the sets of all real numbers and
all positive real numbers, respectively. The ra-dimensional Euclidean
space is denoted by Rm (m > 2) and O denote the origin of it. By
dS and 5 , we denote the boundary and the closure of a set S in
Rm . Let \P - Q\ denote the Euclidean distance between two points
P, Q G R m . A point on Rm (m > 2) is represented by (X, y), X =
(*i > *2 > > Xm-\) We introduce the spherical coordinates (r, θ ) ,
θ = [θ\, Θ2, . . . , 0/ιι-i), in Rm which are related to the coordinates
(X,y) by

χι —r (Π/Li s ^ n Qj)' y —rcos 0i >

Xm+i-k = r (lΊ;=/ sin θ/j cos ^ ( m > 3 , 2 < f c < m - l ) ,

where 0 < r < +cx) and - ^ π < θm-\ < \π (m > 2), 0 < θj < π
( m > 3 , 1 < j < m — 2). The unit sphere and the surface area
2πm/2{Γ(rn/2)}~1 of it are denoted by S™"1 and sm (m > 2), re-
spectively. The upper half unit sphere {(1, θ ) e S™"1 0 < θ{ < f
(if m = 2, then 0 < 0! < π)} is also denoted by S^"1 (m > 2).
For simplicity, a point (1, θ) on S m - 1 and a set S, S c S m - 1 , are
often identified with θ and {θ (1, θ) G S}, respectively. For two
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sets Eι c R+ and E2 C S m - 1 , the set

in Rm is denoted by EγxE2. Given a domain Ω on Sm~ι (m > 2),
the set R+ x Ω is called a cone and denoted by C(Ω). The special
cone C(S+~ !) (m > 2) called the half-space will be denoted by Ύm .
For a positive number r, the set {r} x S m - 1 is denoted by Sm(r) and
Sm(r)ΠΊm by 5+(r).

In our previous paper [12, Theorem 5.1], we gave a harmonic majo-
rant of a certain subharmonic function u{P) defined on a cone C(Ω)
with a domain Ω having smooth boundary, such that

(1.1) ΠE u(P)<0
PeC{Q)PQ

for every Q e <9C(Ω) - {0} . It can be regarded as one of the general-
izations of the classical Phragmen-Lindelόf theorem. We also showed
in [12, Corollary 5.2] that if the function u(P) is non-negative in ad-
dition, our harmonic majorant is the least harmonic majorant. In this
paper, we shall consider generalizations of these results, by replacing
0 of (1.1) with a general function g(Q) on #C(Ω) - {O} . They were
motivated by the following Theorems A, B, C and D, which are special
cases of our results (see Remark 5).

Nevanlinna [10] proved

THEOREM A. Let g(t) be a continuous function on R such that

and let f(z) be a regular function on T2 such that

Πm

for any t e dT2. If

(1.3) l im- Γlog+ f(reiθ)\sinθdθ =
r~=^o r JO V / I

then

for any z = x + iy e Ί2.
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In the slightly different form from Theorem A, Boas [2, pp. 92-93]
also stated

THEOREM B. Make the same assumption as in Theorem A. If

1™ τMog i/i (r) < +oo (Mlog m (r) = sup log \f{z) \) ,
r-oo^ V |z|=r,Im(z)>0 /

then

for any z = x + iy eτ2, where

af=- lim - Γ l o g | / ( r ^ ) | s i n θdθ.

Keller [7] proved an analogous result for a harmonic function on

τ 3 .

THEOREM C. Let g(Q) be a continouus function on <9T3 such that

/

oo / r3π/2 / π \ i \

r2{L/2\
g(r>2>θ2)\dθήdr<+0°

Let h{P) be a harmonic function on T3 such that

for any Q 6
(I) There exists

iΛ = lim - / h+(P) cos θ\ dσ~, 0 < bh+ < +00,

h+(P) = max{/?(P) ,0} (P e Sf(r)) and dσ-p = sin θx dθx dθ2

is the surface element on S2 at the radial projection P = (1, θ\, θ2)
ofP = (r,θι,θ2)<=S+(r).

(II) For any P e T3,

h{P) <^fdτ S{Q)\P ~ Q\

where dQ is the area element on <9T3.
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With respect to the least harmonic majorant of a subharmonic func-
tion on T m , Kuran [8, Theroem 3] proved

THEOREM D. Let c < 0 and let u(X, y) be subharmonic on

{(X, y) eRm XeRm~ι, y > c}

such that w > 0 on Ύm.

(I) If

(1.6) [ (1 + \X\2)-χl2mu{X, 0)dX < +oo,

then there exists the limit

lu = lim 2ms~lr-m-1 f yu(Q)dσQ, 0 < lu < +oo,

where \X\ = Jxj H h x^l_i, dX is the (m - \ydimensional vol-

ume element at X = (x\,... 9 xm-\) Ξ Rm~ι (m > 2) and dσg is the

surface element of the sphere Sm(r) at Q = (X, y) e S+(r). Further

if

(1.7) / w < + o o ,

then

(1.8) luy + 2s-ιyί \P - Q\~mu(X, O)dX

(P = (X,y) eτm, Q = (X, 0) edτm)

is the least harmonic majorant of u{P) on Ίm.
(II) If u possesses a harmonic majorant on Ίm, then (1.6) and(U)

hold

As an application, we shall give a result concerning the classical

Dirichlet problem on a cone with an unbounded function defined on

the boundary. Our method in this paper can be applied to a subhar-

monic function u(X, y) defined on an infinite cylinder

{(X,y)eRm;XeD,yeR}>

where D is a bounded domain in R m - 1 (m > 2). We shall state

some results in the cylindrical case.

2. Preliminaries. Let Λm be the spherical part of the Laplace op-
erator

d2 d2 d2 d2 , ^ λ
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relative to the system of spherical coordinates:

m » l 9 d2 _2Λ
m = r ΊΓr + Jr2+r m'

Given a domain Ω on S m - 1 , consider the Dirichlet problem

(2.1) (Am + λ)F = 0 onΩ,

F = 0 on <9Ω.

We denote the least positive eigenvalue of it by λ$ and write fn(Θ)

for the normalized positive eigenf unction corresponding to λ$ , when

they exist. Thus

(2.2) f /&{e)dσe=U
JΩ

where dσ^ is the surface element on Sm~ι. Two solutions of the
equation

2 {] = 0

are denoted by α Ω , -βΩ ( α Ω , βςi > 0).
Let Φ(r, θ) be a function on C(Ω). For any given r (r e R+),

the integral

/(
Ω

is denoted by iVφ(r), when it exists. The finite or infinite limits

lim r~anNφ(r) and limr^iVφ(r)

are denoted by //φ and ^/φ, respectively, when they exist. The maxi-
mum modulus Mφ(r) (0 < r < +oo) of Φ(r, θ ) is defined as

Afφ(r) = s u p Φ ( r , θ ) .
θΩ

We denote max{Φ(P),0} and max{-Φ(P), 0} by Φ + (P) and
Φ~(P), respectively.

This paper is essentially based on some results in Yoshida [11].
Hence, in the subsequent consideration, we make the same assumption
on Ω as in it: if m > 3, then Ω is a C2jCΓ-domain (0 < σ < 1)
on Sm~ι surrounded by a finite number of mutually disjoint closed
hypersurfaces (e.g., see Gilbarg and Trudinger [4, pp. 88-89] for the
definition of C2 'σ-domain). Then there exist two positive constants
L\ and Li such that

(2.3) Lx dis(θ, <9Ω) < / Ω ( θ ) < L2 dis(θ, dΩ) ( θ e Ω)
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(by modifying Miranda's method [9, pp. 7-8], we can prove this in-
equality).

REMARK 1. Let Ω = S+" 1 . Then a& = 1, βΩ = m- I and

h (m>3) '

Let X = (x\, x2, ... , Xm-ι) be a point of Rm~ι (m>2). Given a
bounded domain D in Rm~ι (ra > 2), consider the Dirichlet problem

O onD,

F = 0 on

Let A/) be the least positive eigenvalue of it and let fn(X) be the
normalized eigenfunction corresponding to λ&. As in the conical case,
we assume that the boundary dD ofDc Rm~ι (m > 3) is sufficiently
smooth. The set

in Rm is called a cylinder and denoted by Γ(D) (m > 2). Let
', y) be a function on Γ(D). The integral

Ψ(X,y)fD(X)dX
D

of Ψ(X 9 y) is denoted by Nψ(y) when it exists, where dX denotes
the (m - 1)-dimensional volume element. The finite or infinite limits

lim e~WjVψ();) and lim
y—too y—*—oo

are denoted by μ£ and η§, respectively, when they exist.
Let GΩ(P, Q) (resp. GD(P , Q)) be the Green function of a cone

C(Ω) (resp. a cylinder T{D)) with pole at P € C(Ω) (resp. P €
Γ(£>)), and let dGa(P, Q)/dn (resp. dGD{P, Q)/dn) be the differ-
entiation at Q e ΘC(Ω) - {0} (resp. Q e dΓ(D)) along the inwacd
normal into C(Ω) (resp. T(D)). It follows from our assumption on
Ω (resp. D) that dGΩ{P, Q)/dn (resp. dGD{P, Q)/dn) is contin-
uous on 0C(Ω) - {0} (resp. dΓ(£>)) (see Gilbarg and Trudinger [4,
Theorem 6.15]).
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Let g(Q) be a locally integrable function on dC(Ω) — {0} (resp.
dΓ(D)) such that

(2.4) J+COr-a»-' (Jθa\8(r,B)\dσθ^ dr < +00,

frβa~X(( \g(r,Θ)\dσθ)dr< +00,
JO \JdΩ J

(resp.

(2.5) Γ°°e-Vh\y\([ \g(X,y)\dσx)dy<+00),
J-00 \JdD /

where dσ& (resp. doχ) is the surface area element of 5Ω (resp.
dD) at θ e δ Ω (resp. X e dD). If m = 2 and Ω = (7, <5) (resp.
D = (γ, δ)), then

ί \g(r,θ)\dσθ (resp. / \g(X,y)\dσx
JdΩ V ^9Z)

= \g(r,γ)\ + \g(r,δ)\ (resp.

The Poisson integral Plg(P) (resp. PlJ(P)) of g relative to C(Ω)
(resp. Γ(D)) is defined as follows:

IdΓ(D)

where

•{
2π (m = 2),
(m - 2)sm (m > 3)

and β?σβ is the surface area element on <9C(Ω) - {0} (resp.

REMARK 2. Let Ω = S^"1. Then

G (p O) =
Ω( ' ^ I -log |P-(21 +log | P -

where Q = (X, —y), that is, Q is the mirror image of Q = (X, y)
with respect to dΊm. Hence, for two points P = (X, y) e Tm and
Q e dτm,

d r ίP ΠΛ (2(m-2)\P-Q\-my (m>3),

3. Statement of results. The following Theorem 1 is a fundamental
result in this paper.
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THEOREM 1. Let g(Q) be a locally integrable function on <9C(Ω)-
{O} satisfying (2.4) and let u(P) be a subharmonic function on C(Ω)
such that

(3.1) Πm { w ( P ) - P I . ( P ) } < 0

and

(3.2) ΠH {w
PeC(Ω),P->Q

/or any Q E dC(Ω) - {0}. 77ze/7 all of the limits μu+, ηu+, μu and
Άu {0<μu+, ημ+ < +oc, - o c < μu, ηu < +CXD) exwί,

(3.3) μu+ < +00 αnrf f/w+ < +oo,

then

(3.4) w(P) < PI^(P) + (μur* + ηur-β

for any P = (r, Θ) e C(Ω).

REMARK 3. It is evident that (3.3) follows from

(3.5) lim r~a*Mu(r) < +oo and limr^oAfM(r) < +oc.
r—κx> r—•O

It is proved in Yoshida [12, Remark 9.1] that if

ϊϊϊή u(P)<0,
(Ω)PQ

for any Q e dC(Ω) - {0}, (3.5) also follows from (3.3).

REMARK 4. If w(P) is a positive harmonic function on C(Ω),
then (3.3) is always satisfied. To see it, apply (I) of Lemma 2 (which
will be stated in §4) to -u(P). We immediately obtain that -oo <
μ_w, η-u < +oo, so that μu+ = μu < +oo and ηu+ = ηu< +oo.

The following Theorem 2 generalizes a result of Yoshida [11, The-
orem 5].

THEOREM 2. Let g(Q) be a continuous function on dC(Ω) - {θj
satisfying (2 A) and let u(P) be a subharmonic function on C(Ω) such
that

(3.6) EE w(P) < g(Q)
PeC(Ω),P-+Q
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for any Q e dC(Ω) - {0}. Then all of the limits μu+, ηu+, μu and
ηu ( 0 < μu+, ηu+ < +00, -00 < μu, ηu < +00) exist, and if

(3.7) μu+ < +00 and ηu+ < +00,

then

(3.8) u(P) < Plg(P) + (μur
a» + ηur-β

for any P = (r, Θ) e C(Ω).

COROLLARY 1. Let g(Q) be a continuous function on dΎm (m > 2)
such that

(3.9)

Let u(P) be a subharmonic function on Ύm such that

(3.10) pJim_^QU{P) < g{Q)

for any Q e dτm. Then both of the limits μu+ (0 < μu+ < +00) and
μu (-00 < μu< +00) exist, and

(3.11) u(P)<2s-ι[
Ja
[
aτm

forαny P = {X,y)eτm. If

lim r~xMu{r) < +00,

(3.12) u(P)<2s-ιf

for any P = (X,y)eτm.

REMARK 5. Let f(z) be a regular function on T2. Put m = 2 and
u{P) = log|/(z)| in Corollary 1. Then (3.9) is equal to (1.2). Since
(1.3) gives

/*log+|/| = °>
(1.4) follows from (3.11). Since

l̂ogi/i = - r l ΰ n - J log\f{reiθ)\ sin θdθ = ^af,

(3.12) gives (1.5). Thus we obtain Theorems A and B.
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Next, to obtain Theorem C, put m = 3 and u = h in Corollary 1.
From (3.11), we have

h{P) s s L , s m P ~ β|~3 d"θ + ( έ ) "2 ft*"
for any P = (X, y) e T3. Since

(Remark 1 with m = 3), we immediately obtain Theorem C.

EXAMPLE 1. Let λ^ be the second least positive eigenvalue of (2.1)
and let -Fh(θ) be a normalized eigenfunction corresponding to $
Let Aςi be the positive solution of the equation

The harmonic function

tf(P) = r^F Ω (θ) (P = ( r , θ ) e C w ( Ω ) )

on dC(Ω) has the property

(3.13) lim H(P) = 09

PeC(Ω)PQ

for any Q e dC(Ω) - {0}. Since λ$ > λ^ , it is evident that

lim r~anMH(r) = +oc.
r—•oo

Hence it follows from Remark 3 that

(3.14) ^ = +00.

This H{P) shows that (3.6) with a continuous function on dC(Ω) -
{0} satisfying (2.4) does not always give (3.7). Further, let g(Q) be
a continuous function on dC(Ω) - {0} satisfying (2.4). Put

on C(Ω). Then we see from (3.13) that I(P) is a harmonic function
on C(Ω) satisfying

lim I(P) = g(Q)
Ω)PQ V J ό K ^ J
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for any Q e dC(Ω) - {0} (see Lemma 3 and Lemma 6). Hence (3.6)
is valid for the function g(Q) on dC(Ω) - {0}. However it is easy
to see that (3.8) is not true. Since FQ(Θ) is orthogonal to / Ω ( Θ ) and

NH(r) = 0 (0 < r < +oo),

it follows from Lemma 3 that

βi = βH + μ?ig = 0, ηi = ηH + η?ιg = 0.

Since

on C(Ω), we see from (3.14) and Lemma 3 that

Hence this I(P) shows that (3.8) does not always follow without (3.7).

EXAMPLE 2. There exists a subharmonic function u(P) such that
(3.7) is satisfied and (3.6) holds for no locally integrable function g(Q)
on dC(Ω) - {0} satisfying (2.4). Let ξ be a number satisfying 0 <
ζ<\ and let

Consider the subharmonic function

on C(Ω) and any locally integrable function g(Q) on dC(Ω) - {0}
such that

Πm υ(r,θ)<g(Q)
(Ω)PQ

at every Q = (r, θ) € 0C(Ω) - {0}. Then we always have

On the other hand, we have that

lim r-a*Mυ(r) = 1,
r—•oo

so that μv+ < +oc.
Let W be a domain in Rm and let £(Q) be a function on dW.

A harmonic function on W satisfying

lim h(P) = g(Q)
w p Q v y v y
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for any QedW is called the solution of the classical Dirichlet prob-
lem on W with g. In comparison with a result of Keller [7, Satz in p.
25], from Theorem 2 we obtain the following Theorem 3 which gives
a kind of uniqueness of solutions of the classical Dirichlet problem on
an unbounded domain C(Ω). It must be remarked that the classical
Dirichlet problem on unbounded domains has no unique solution (e.g.
see Helms [6, p. 42 and p. 158]).

THEOREM 3. Let g(Q) be a continuous function on dC(Ω) - {0}
satisfying (2.4)

(I) The Poisson integral ¥lg{P) is a solution of the classical Dirichlet
problem on C(Ω) with g.

(II) Let h{P) be any solution of the classical Dirichlet problem on
C(Ω) with g. Then all of the limits μ^, ηh (-00 < μh, ηh< +oo),
β\h\ and ηw (0 < μw, ηw < +oo) exist, and if

(3.15) μw < +oo and ηw < +oo,

then

(3.16) h(P) = Plg(P) + (μhr«» + ηhr'^)MΘ)

for any P = ( r , θ ) e C ( Ω ) .

REMARK 6. The harmonic function I(P) in Example 1 is one of
the solutions of the classical Dirichlet problem on C(Ω), which do
not satisfy (3.15). In fact, (3.14) gives

because

/ l | M f | = 0

from Lemma 3 and

β\ ?lg +H\ ^ β\H\ - β\ Vlg I > f*H+ ^

COROLLARY 2. Let g(Q) be a continuous function on dC(Ω)-{0}
satisfying (2 A). Ifh(P) is a positive harmonic function on C(Ω) which
is the solution of the classical Dirichlet problem on C(Ω) with g, then
(3.16) holds.

The following Theorem 4 generalizes a result of Yoshida [12, Corol-
lary 5.2].
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THEOREM 4. Let u be subharmonic on a domain containing C(Ω)-
{0} and let

u>0 on C(Ω).

(I) If u = u\dC(Ω) - {0} (the restriction of u to ΘC(Ω) - {O})
satisfies (2.4), then both of the limits μn and ηu (0 < μn, ηu < +00)
exist. Further, if

(3.17) μu < +00 and ?/w<+oo ?

then

hu(P) = PIfl(P) + (μur»* + ι/«r"^)/Ω(θ) (P = (r, Θ) e C(Ω))

harmonic majorant of u on C(Ω).
(II) If u possesses a harmonic majorant on C(Ω), then ύ satisfies

(2.4) and (3.17) holds.

REMARK 7. When u(P) satisfies the additional condition

lim u(P) = 0
PeC{Ω),P-*Q

for any Q e <9C(Ω) - {0}, we extend u(P) to Rw - {O} by defining
u(P) = 0 for any P e Rm - C(Ω) - {0} . Then u(P) is subharmonic
onRm - {0}. From Remark 3 and (I) of Theorem 4, we obtain a
result of Yoshida [12, Corollary 5.2].

COROLLARY 3. Let u be subharmonic on a domain containing Ψ^
(m > 2) and let

u>0 on Ύm.

(I) // ύ = u\dΎm satisfies

(3.18) ί °°r~2 [ ί ύ(r,Θ)dσβ) dr < +oc3

ίΛew //ze ft'm/ί μu (0 < μu < +oc) ^xwί̂ . Further, if

(3.19) μw

(3.20) 2s~ιy ί ύ(Q)\P ~ Q\~m dσQ
JdΊm

is the least harmonic majorant of u on Ίm.
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(II) If u possesses a harmonic majorant on Ύm, then ύ satisfies
(3.18) and (3.19) holds.

REMARK 8. Theorem D immediately follows from Corollary 3. In
fact, u is bounded above on any compact subset of Tm . Hence (3.19)
is equivalent to (1.6). We also see from Remark 1 that

and (3.20) is equal to (1.8).

Finally we shall state some results in the cylindrical case.

THEOREM 5. Let g(Q) be a continuous function on dΓ(D) satisfy-
ing (2.5) and let u(P) be a subharmonic function on T(D) such that

fim u(P) < g(Q)

for any Q e ΘΓ(D). Then all of the limits μ^η^μl and ηζ (0 <
μζ+, ηl+ < +oo, -oo< /£,*/£< +oo) exist, and if

μτ

u+ < +00 and η^+ < +oc

then

u(P) < ng(P) + (μΓ

ueV^y + tie->fi>y)fD(X)
for any P = (X, y) e Γ(D).

THEOREM 6. Let g(Q) be a continuous function on dΓ(D) satisfy-
ing (2.5).

(I) The Poisson integral Pl£(P) is a solution of the classical Dirichlet
problem on T(D) with g.

(II) Let h(P) be any solution of the classical Dirichlet problem on
Γ{D) with g. Then all of the limits μτ

h, η\ (-00 < μ[, η\ < +oo),

tf and ifh\ (° ^ ̂ Sι' 5̂1 ̂  + 0 ° ) exist> and *f
/^! and

then

(3.21) h(P) = PlJ(P)

for any P = (X, y) eT(D).

COROLLARY 4. Let g(Q) be a continuous function on dΓ(D) sat-
isfying (2.5). If h(P) is a positive harmonic function on T(D) which
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is the solution of the classical Dirichlet problem on T(D) with g, then
(3.21) holds.

THEOREM 7. Let u be subharmonic on a domain containing T(D)
and let

u>0 on T{D).

(I) If ύ = u\dT(D) (the restriction of u to dΓ(D)) satisfies (2.5),
then both of the limits μ£ and ηl (0 < μ£, η£ < +oo) exist. Further,
if

(3.22) μFu < +oc and γfu < +oo,

then

+ (μΓ

ue^y + ητ

ue-^y)fD{X) (P = (X, y) e Γ(2)))

harmonic majorant of u on T(D).
(II) //* w possesses a harmonic majorant on T(D), £/*£« w satisfies

( 2 . 5 ) a m / ( 3 . 2 2 ) Λ / ώ

4. Proof of Theorem 1. For a domain Ω c S m - 1 (m > 2) and a
number ί (0 < t < +oo), the sets

{ ( r , θ ) G R m ; 0 < r < ί , θ G δ Ω } and

are denoted by SΩ(t) and SQ(/), respectively. For two numbers t\
and t2 (0 <tι <t2< +oo), let SΩ(ίi, ί2) denote the set

{(r5 θ ) G R m ; ί! <r<t2, ΘedΩ}.

For a point Q e Rm, the set {P e Rm |P - Q| < />} (/> > 0) is
represented by UP(Q). We write G^(P, Q) for the Green function
of

CJ(Ω) = (7" 1, j) x Ω (7 is a positive integer)

with pole at P. For an upper semicontinuous function φ(Q) on
9C J(Ω), the Perron-Wiener-Brelot solution of the Dirichlet problem
with respect to Cj(Ω) is denoted by HJ

φ(P) (e.g. see Helms [6]).
Since the harmonic measure ω(P, E) ofEc dCJ(Ω) with respect
to Cj(Ω) is equal to

- - 1
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(see Dahlberg [3, Theorem 3]), we know that HUP) is equal to

c-J ί χ φ(Q)§-Gi

ςι(P,Q)dσQ.

To prove Theorem 1, we need some lemmas.

LEMMA 1. There exist Wo positive constants k\ and k2 (resp.
and fc4) such that

^ i (resp. k3r~^t^l

^ , Q) <

(resp.

for P = (r, θ ) G C(Ω) and Q = (ί, Φ) G <9C(Ω) - {0} satisfying

0<r < \t (resp. 0<t<\r).

Proof. These immediately follow from Azarin's inequalities [1,
Lemma 1] and (2.3).

LEMMA 2 (Yoshida [12, Theorem 3.31]). Let u(P) be a subharmonic
function on C(Ω) (m > 2) such that

ϊϊrn u(P) < 0
(Ω)P+Q

for any QedC(Ω)-{0}.

(I) Both of the limits μu and ηu (—oo < μu, *1u < +oc) exist.
(II) If ηu < 0, then r~a^Nu(r) is non-decreasing on (0, +oc).

(Ill) If μu<0, then r^Nu(r) is non-increasing on (0, +oo).

LEMMA 3. Let g(Q) be a locally integr able function on dC(Ω)-{0}
satisfying (2 A). Then PI^C^) (resp. Vlg(P)) is a harmonic function
on C(Ω) such that both of the limits μ?\ and η?\ (resp. μ?\ and
7/PI ) exist, and

μpι]g] = V?ilgl = 0 (resp. μHg = ηFιg = 0).

Proof. Take any P = (r, Θ) € C(Ω) and two numbers Rx, R2

(Rι <\r, R2> 2r). Then by Lemma 1

(4.1) c - 1 / \g(Q)\£-Ga(P,Q)dσQ

\g(t,Φ)\dσΦ) dt,
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where ks = k2C^ι

ίraafQ(Θ) , and

(4.2) c-

<k6 [Rlt^-ι([ \g(t,Φ)\dσΦ)dt
Jo \JdΩ )

where kβ = /C 4 C~ 1 Γ"^Ω^(Θ) . Hence we see from (2.4) that Fl\g\(P)
and Plg(P) are finite for any P e C(Ω). Thus PI*(P) and PI|^|(P)
are harmonic on C(Ω).

Let v^P(E) and u^p(E) (0 < R < +00 ? P e C(Ω)) be two
positive measures on dC(Ω) - {0} such that

and

for every Borel subset E of dC(Ω) - {0}. Then P I ^ i ^ ) is the sum
of two positive harmonic functions:

(4.3) H w (/>) = *,,*(/>)+ Λ2tΛ(/>),

where

= f
Jd
f
dC(Ω)-{0}

and

= ί
Jd
ί
dC(Ω)-{0}

Let r\ (r\ > 0) be a number and let ε be any positive number. From
(2.4) we can choose a number r* (r* > 2r\) so large that

(4.4) / |*(f, Φ)\rP*-1 dθς> <^ε ( β = (ί, Φ)).

By applying Lemma 1, we see from (4.4) that

and hence

(4.5)

Since
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is non-decreasing from (II) of Lemma 2, (4.5) gives that

(4.6) 0 < r~a*Nhχ rm(r) < ^ε (r > r{).

By using Lemma 1 again, we obtain that

NK Λr)<k4r-β» Γ Λ"1 ( I \g{t,Φ)\dφ) dt (r >
2'r Jo \JdΩ, J

By (2.4) we can choose a number r2 (r2 > 2r*) so large that

(4.7) 0<r-^Nh2^r)<y (r>r2).

We finally conclude from (4.3), (4.6) and (4.7) that

0 < r~anNpι (r) < ε (r > r2),

which gives the eixstence of μ?\ and

(4.8) //pr , = 0.
l]g]

In the same way we can also prove the existence of /PI and

(4-9) ηnM = 0.

Since
NFlJr) > NlFlg{(r) > \NFlg(r)\ (0 < r < +oc),

it immediately follows from (4.8) and (4.9) that both limits μ?\ and

η?ι exist and are zero.

LEMMA 4 (Yoshida [12, Theorem 5.1] and Remark 3). Let u(P) be
a subharmonic function on C(Ω) (m > 2) such that

ίϊίn u(P) < 0
PeC(Ω),P^Q

for every Q e ΘC(Ω) - {0}. If (3.3) is satisfied, then

u(r, Θ) < {μur«« + ηur-β°)Mβ) on C(Ω).

Proof of Theorem 1. Consider two subharmonic functions

U(P) = u(P) - Plg(P) and U*(P) = u+(P) - Pl\g\(P)

on C(Ω). Then we have from (3.1) and (3.2) that

ίϊϊn U{P) < 0 and Πm U*(P) < 0
PeC(Ω),P-+Q PC(Ω)PQ
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for every Q e <9C(Ω) - {0} . Hence it follows from (I) of Lemma 2
that four limits μu, ηv , μ^ and ^ (-00 < μυ, ηv, μυ*, ηv* <
+00) exist. Since

Nv(r) = Nu{r) - NFlg(r) and Nv*(r) = tfM+(r) - Λpi | f |(r),

Lemma 3 gives the existence of four limits μu , ^ w , μu+ and ^/w+, and
that

(4.10) μu = μu, Vu = Vu, μu*=μu+, ηu*=%+-

Since
C/+OP) < t/+(P) + (PI,Γ(P) on C(Ω),

it also follows from Lemma 3 and (3.3) that

βir < Vu+ < +°° > nu+ ^ V < +°°

Hence by applying Lemma 4 to U, we can obtain from (4.10) that

U(P) < ng(P) + (μur«* + ηur-β°)MΘ) on C(Ω) (P = (r, Θ)),

which is (3.4).

5. Proofs of Theorems 2 and 3, Corollaries 1 and 2. The following
lemma is not obvious for unbounded functions.

LEMMA 5. Let g(Q) be an upper semicontinuous function on dC(Ω)
- {0} satisfying (2.4). Then

Πm ?lg{P) < g{Q)

for any QedC(Ω)-{0}>

Proof Let β* = (r*, Θ*) be any point of dC(Ω) - {0} and let e
be any positive number. Take a number δ (0 < δ < r*). From (2.4),
we can choose a number R*2, R2 > 2(r* + δ) (resp. R\, 0 < i?j <
2(r* - £)) so large (resp. small) that

\g(t,

( rresp.

where
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From (4.1) and (4.2), we obtain that

(5.1)

and

(5.2)

1 ί \g(Q)\4=Ga(P,Q)dσQ<j:

1 f \g(Q)\4=Ga(P,Q)dσQ<l
JS~(R*) & fϊ o

for any P = (r, Θ) e C(Ω) Π Us(Q*). Let φ be a continuous function

on 0C(Ω) - {0} such that 0 < φ < 1 on <9C(Ω) - {0} and

on oQ^ivj, -^2/'

υ on o

Since the positive harmonic function GQ(P , Q)-GJ

Ω(P, Q) on C ( Ω )
converges monotonically to 0 as j —»• oo, we can find an integer JQ
{JQX <2~ιR], JQ > 2R*2) such that

(5.3)

d_
dn

dGJΛ(P, Q) - i- , Q)

for any P = (r, Θ) € C(Ω) n Uδ{Q*). It follows from (5.1), (5.2) and
(5.3) that

(5.4) rfjβca

SO(2->R;,2R;)
φ(Q)g(Q)7r-GJ£(P,Q)dσQ

ί φ(Q)g(Q)^-GJ^P,Q)dσQ

JSa(2-χR ,2Rl

+ 2C-1 I \g{Q)\^-Ga{P,Q)doQ
Js+

a{RD on

2C-1

£c / φ(Q)g(Q)£-G%(P,Q)dσQ
Jsa(,2-'R;,2R*2) on
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for any P = (r, Θ) e C(Ω) Π Uδ{Q*). Consider the upper semicon-
tinuous function

V(O) = / Vί®^® o n s o( 2 " l j ι i ' i)'
{U) I 0 on Z

(Z = SQUO1 , 2 - ^ 1 ) U S Q (2*$, o) U (OQ" 1} X Ω) U ({j0} x Ω))

on a ά ( Ω ) . Since

peC(Ω),P-+Q* κ

(e.g. see Helms [6, Lemma 8.20]), we finally obtain from (5.4) that

From Lemma 5, immediately follows

LEMMA 6. If g(Q) is a continuous function on dC(Ω)-{0} satis-
fying (2.4), then

lim PIj(P) = g(Q)
(Ω)pQ ^ v y v '

for every Q e dC(Ω) - {0}.

Proof of Theorem 2. First, we see from Lemma 6 that

lim PIg(P) = g(Q) and lim PIlgl(P) = \g(Q)\
PβC(Ω),P->Q SK J V f PeC(Ω)P-+Q l8lK J l 6 V ^ y |

for every Q e dC(Ω) - {0}. Hence we see from (3.6) that

lim
PβC(Ω),P-^Q

and
lim {;

for every Q e 9C(Ω) - {O}. Theorem 1 immediately gives Theo-
rem 2.

Proof of Corollary 1. Put Ω = S^"1 in Theorem 2. Since g(Q) is
continuous at Q = O of dΎm, \g(Q)\ is bounded in the neighborhood
of Q = O. Hence we see from Remark 1 and (3.9) that g(Q) is
admissible on dΎm and from (3.10) that ηu < ηu+ = 0. If μu+ = +oo,
then (3.11) is evidently satisfied. When μu+ < +oo, (3.11) also follows
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from (3.8), Remark 1, Remark 2 and the inequality μu < μu+. It is
easily seen that Remark 3 and (3.8) give (3.12).

Proof of Theorem 3. It follows from Lemma 3 and Lemma 6 that
Plg(P) is one of the solutions. To prove (II), put u(P) = h(P) and
—h(P) in Theorem 2. Then Theorem 2 gives the existence of all limits

Ph > Άh , Mt > *lh >

(5.5) μ{_h)+ = μh- and η{_hγ = ηh-.

Since

(5.6) μh+ + μh- = μw and ηh+ + ηh- = ηw,

it follows that both limits μ^\ and η^\ exist. Suppose that h satisfies
(3.15). Then we see from (5.5) and (5.6) that μh+, P(-hγ ^ ^ a n c *
'/(-Λ)4" "̂  + o c Hence, by applying Theorem 2 to u(P) = Λ(P) and
-Λ(P) again, we obtain from (3.8) that

h{P) < Vlg{P) ^

and

h(P) > Vlg(P)

respectively, which give (3.16).

Proof of Corollary 2. It follows from Remark 4 that

μw = μh+ < +00 and ηw = ηh+ < +oc.

Thus Theorem 3 implies Corollary 2.

6. Proof of Theorem 4.

LEMMA 7. i>/ £(β) be a non-negative lower semicontinuous func-
tion on dC(Ω) - {0} satisfying (2.4) and let u{P) be a non-negative
subharmonic function on C(Ω) such that

(6.1) Bm
P € C ( Ω ) P Q

β € <9C(Ω) - {O}. Γ/ze« όc?ί/z of the limits μu and ηu

(0 < μu, Y]u< +oc) exist, and if μu < +oc and ηu < +oc, then

u(P) < m

for any P = (r, Θ) € C(Ω).
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Proof. To apply Theorem 1, we shall show that (3.1) and (3.2) hold.
Since -g(Q) is upper semicontinuous on <9C(Ω) - {0}, it follows
from Lemma 5 that

(6.2) lim ?lg(P) > g(Q)
P€C(Ω),P-+Q

for every Q e dC(Ω) - {0}. Hence we see from (6.1) and (6.2) that

ϊϊϊn {

< fim u(P) - lim PIg(P) < g(Q) - g(Q) = 0
PeC(Ω), P-+Q PeC(Ω), P-^Q

for every Q e 9C(Ω) - {0}, which provides (3.1). Since g and u
are non-negative, (3.2) also holds. Thus we obtain Lemma 7 from
Theorem 1.

LEMMA 8. Let u be subharmonic on a domain containing C(Ω) -
{0} such that ύ = u\dC(Ω) - {0} satisfies (2.4) and

u>0 on C(Ω).

Then
PIδ(P) < h(P) on C(Ω)

for every harmonic majorant h of u on C(Ω).

Proof. Take any P* = (r*, Θ*) e C(Ω). Let ε be any positive
number. In the same way as in the proof of Lemma 5, we can choose
two numbers i?i and R2 (2R\ < r < 2~1R2) such that

< 6 - 3 > c »

and

(6-4) c" IS-R

Further, take an integer 70 UQ1 < -̂ 1 a n ( i Jo > -̂ 2) such that

(6.5) c-1 ί u{Q)\^-Gςϊ{P*,Q).5) c-1 ί u{Q)\^-Gςϊ{P*,
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Since

cm
X

for any P € CΛ (Ω), we have from (6.3), (6.4) and (6.5) that

(6.6) Pis (/>*) - HI°(P*)
ί* C £J

< cZ, I u{Q) i Gςι(P* , Q)
^5 (R R ) \dΆ

ύ(Q)-?-GΩ(P*,Q)dσQ<ε.
Rj on

Here, note that HJ

U°{P) is the least harmonic majorant of u(P) on
Cjo(Q) (see Hayman [5, Theorem 3.15]). If h is a harmonic majorant
of u on C(Ω), then

Hi°(P*) < h(P*).

Thus we obtain from (6.6) that

PIa(P*)<h(P*) + ε,

which gives the conclusion of Lemma 8.

Proof of Theorem 4. Let P = (r, Θ) be any point of C(Ω) and let
ε be any positive number. By the Vitali-Caratheodory theorem (e.g.
see [11, p. 56]), we can find a lower semicontinuous function gε(Q)
on dC(Ω) - {0} such that

(6.7) δ(β)<&(β) ondC(Ω)-{O}

and

(6.8) n

Since

for any q e dC(Ω) - {0} from (6.1), it follows from Lemma 7 that
two limits μu, ηu exist and if μu < +oo and ηu < +oo, then

(6.9) u(P) < ngε(P) + (μur«* + ηur~β*)MΘ).
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Hence we have from (6.8) and (6.9) that

u(P) < PIfi(P) + ε + (μur»* +

Since e was arbitrary, we obtain

u(P) < PI f l(P) + (μur<*» +

for any P = (r, θ) e C(Ω). This shows that hu(P) is a harmonic
majorant of u on C(Ω).

To prove that hu is the least harmonic majorant of u on C(Ω),
let Λ(P) be any harmonic function on C(Ω) such that

(6.10) u(P)<h(P) onC(Ω).

Consider the harmonic function

h*{p) = hu(P)-h(P) onC(Ω).

Since
h\P)<hu{P) onC(Ω),

we see from Lemma 3 that h*(P) satisfies (3.3). We also see from
Lemma 8 that

ϊΐm h*(P)= ϊίm {PΙβ(P) - h(P)} < 0

for any Q e ΘC(Ω) - {0}. We have from Lemma 3 and (6.10) that

and similarly ηh* < 0. Thus we obtain from Lemma 4 that

h*(P)<0 onC(Ω),

which shows that hu(P) is the least harmonic majorant of u(P) on
C(Ω).

To prove (II), let h\{P) be a harmonic majorant of u(P) on C(Ω).
Since

from Remark 4, we immediately have (3.17). Fix P0 = (l, θo), θo €
Ω. Take any two numbers Rx, i?2 (0 < i?i < 2 " 1 , 2 < i?2 < +oo)
and choose a sufficiently large integer j * , 7* > Max(i?^"1

5 i? 2), such
that
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and

cml / δ(Q) { —GQ(PO> Q) - n ~ G ^ ( P 0 )

Since Hi (P) is the least harmonic majorant of u(P) on CJ'*(Ω),

Hence it follows from Lemma 1 that

+00 > λi(Po) + 1

{fdΩ fl(r, Θ)

which shows that ύ satisfies (2.4).

7. Proofs of Theorems 5, 6 and 7. These proofs proceed in the
completely parallel way to the proofs of Theorems 2, 3 and 4, on the
basis of two results of Yoshida [12, Theorems 7.2 and 7.5] and the
following inequality corresponding to Lemma 1:

(resp.

< — G D ( P , Q) < k'2e~

(resp.

for P = (X,y)e Γ(D) and β = (X*, y*) € dΓ(D) satisfying y* >
y + 1 (resp. y* < y - 1), where k[ and A:̂  (resp. ^3 and kf

4) are two
positive constants.
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