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ORDERED GROUPS AND CROSSED PRODUCTS
OF C*-ALGEBRAS

G. J. MURPHY

We define and analyse the concept of a crossed product of a C*-
algebra A by a semigroup. For a large class of semigroups we show
that the crossed product is primitive if A is, and our constructions
also give rise to simple C* -algebras. Conditions are given for when
the crossed product is type I or nuclear, and when covariant rep-
resentations of a C* -dynamical system give rise to faithful and/or
irreducible representations of the crossed product.

Introduction. The theory of crossed products of C*-algebras by au-
tomorphism groups is a deep and interesting area of the modern the-
ory of operator algebras, as well as being a rich source of examples.
It is natural to try to extend the ideas of this area to a more gen-
eral setting. One way to do this is to consider crossed products by
semigroups, and this paper develops some aspects of the theory. Sur-
prisingly (or perhaps not) if the semigroup does not look much like
a group the results turn out to be radically different in many respects
from the classical case. For instance, the group C*-algebra of an
abelian group is of course itself abelian, and so, from the point of
view of C*-theory, not very interesting. But for a large and natu-
ral class of semigroups (namely the positive cones of abelian ordered
groups) their C*-algebras are not only non-abelian but actually primi-
tive. This is useful because the primitive (and the simple) C*-algebras
are in a sense the building blocks of C* -theory.

If we come down to very concrete detail, and look at the additive
semigroup N of natural numbers, we find that its C* -algebra is the
Toeplitz algebra, i.e. the C*-algebra generated by all Toeplitz op-
erators with continuous symbol on the unit circle. Indeed, for any
cone as above, its C*-algebra can be faithfully represented as a C*-
algebra of Toeplitz operators in a generalized sense (see [12]). For the
related situation of C*-algebras generated by multivariable Wiener-
Hopf operators see [11] and [15]. The papers [4], [10] and [21] are
also relevant. Indeed a very interesting theory of crossed products by
semigroups is developed in [10]. This theory is quite different from
ours however as the crossed product in [10] is in general a non-self-
adjoint algebra. If (A, α, G) is a separable C*-dynamical system with
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G a discrete abelian group, then a special case of the Olesen-Pedersen
spectral theory ([16], [17]) asserts that the cross product A xa G is
simple (respectively prime) if and only if A is (/-simple (respectively
G-prime) and the Connes spectrum Γ(α) is equal to the dual group
G. If we now suppose that G is totally ordered by some positive cone
G+ then the results for the crossed product A xa G+ are very different.
Firstly, A xa G+ can never be simple if G is not trivial, and secondly
A x α G+ is primitive provided only that A itself is primitive. In this
case therefore one is spared the often quite difficult task of having to
compute the Connes spectrum. In fact, however, we give necessary
and sufficient conditions that A xa G+ be prime which are similar to
the Olesen-Pedersen conditions above, but which require one to com-
pute the Connes spectrum not of a but of a certain action γ of G on
a C*-algebra 0{G)®A. Here O(G) is a certain C*-algebra reflecting
the order structure of G.

Although AxaG
+ is usually not simple (except where the order

on G is trivial), we do get new simple C*-algebras arising from these
constructions. There is a canonical map ε from AxaG

+ to AxaG,
and in the case where G is an ordered subgroup of R and A is simple
the kernel of ε is simple. In the special case where A = C the class of
simple C*-algebras that one gets was first investigated by Douglas in
[4]. Recently the AΓ-theory of these algebras has been computed (see
[7], and for a simple special case [13]).

It is of interest to observe that a certain class of the algebras we
study in this paper have already been used in Λ>theory. If a is
an automorphism on a unital C*-algebra A then one can show that
A xa N is isomorphic to the generalized Toeplitz algebra of a (in the
sense of Pimsner-Voiculescu). An important step in deriving the
six-term exact sequence for the ^-theory of A xa Z is showing that
Kj(A x α N) = Kj(A). The computation of the ^-theory of the alge-
bras A xa G+ in general would seem to be an interesting question.

We now give a brief section-by-section guide to this paper.
In § 1 we construct the crossed product and induced covariant repre-

sentations. The results here are basic to the rest of the paper, but this
section is most like the classical theory. In §2 we introduce pre-ordered
groups, and associate with each such group a certain C*-algebra which
reflects its order and group structure. In §3 we use this algebra, and
a dilation theorem of McAsey and Muhly, to represent A xaG

+ as
a full hereditary subalgebra of a certain crossed product by G, and
from this in turn we derive conditions on when A xa G+ is type I or
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nuclear and some other of the results already mentioned in this intro-
duction. In §4 we analyse the covariant representations for ordered
groups in detail, and from this deduce that A xa G+ is primitive when
A is, and the results on simple algebras stated earlier.

1. Construction of the crossed product. Let M denote a monoid,
with unit e, and let B be a unital C*-algebra. We call a map
W\ M —• B, x ι-> Wx, an isometric homomorphism if each Wx is
an isometry and Wxy = WxWy for all x, y e M (necessarily then
We=l). If B = B(H) for a Hubert space H we call (H, W) an
isometric representation of M.

If M is left-cancellative, then isometric representations exist. To be
specific, let H be a non-zero Hubert space and let / 2(M, H) denote
the Hubert space of all norm-square-summable maps / from M to H
(i e

 ΣXEM il/(χ)ll2 < +°°) wit*1 t^ e norm and scalar product given

by | | / | | = (ΣXEM II/MII2)1'2> and (/, s) = Σ*6A/</(*) > *(*)> • F o r

each x e Λf we define an isometry Wx on 12(M, /f) by the equation:

The map W\ M -* B(12(M, i/)), x H> ψ x , is an isometric homo-
morphism. We call (12(M, if), W) the canonical isometric represen-
tation of M on / 2(M, if). It is clear that W is injective.

If a monoid M admits an injective homomorphism into a C*-
algebra, then obviously M is left-cancellative.

A C*-dynamical system will refer in this paper to a triple (A, a, M)
where 4̂ is a C*-algebra, Λf is a left-cancellative monoid, and a is
a homomorphism from M to Aut̂ 4 (so aε = id). We shall say
(A, α, M) is nontrivial if 4̂ is non-zero and Λf is not a singleton,
separable if ^ is separable and M countable, and classical if M
is a group. If B is a C*-algebra with multiplier algebra M{B), a
covariant homomorphism from (A, a, M) to 5 is a pair (φ, W)
where φ: A —• ϋ? is a *-homomorρhism and W:M -^ M(B) is an
isometric homomorphism, and #>, W interact via the equation

(*) φax(a)Wx = Wxφ(a) (xeM,aeA).

If B = B(H) for H a Hubert space we call (H, φ, W) a covariant
representation of (̂ 4, α, Af). If (A, a, M) is classical then (*) is
equivalent to the equation

(**) φax(a) = Wxφ(a)W;
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(as all Wx are then necessarily unitary), but for monoids which are
not groups (*) and (**) may be inequivalent. This will be apparent
in examples we shall be considering later.

As in the classical case each representation of A induces a covari-
ant representation of {A, a, M). Its construction is similar to the
classical case, but its theory is radically different for monoids which
are not groups. Let (H, φ) be a representation of A, and suppose
the Hubert space H is nonzero. Let (12(M, H), W) be the canoni-
cal isometric representation of M on 12(M, H). For a £ A define
φ(a) e B(12{M, H)) by the formula:

for all fel2(M,H) and all x e M. The map

φ: A-+B{12{M,H)), a^φ(a),

is a *-homomorρhism, and it is readily verified that (12(M ,H),ψ,W)
is a covariant representation of (A, a, M), said to be induced by
(H, φ). Note that if {H, φ) is a faithful (respectively non-degenerate)
representation of A then (12(M, H), (p) is also a faithful (respec-
tively non-degenerate) representation of A .

Let (A, a, M) be a C*-dynamical system where A is non-zero to
avoid trivialities, an assumption we shall make tacitly henceforth. If
F is the free *-algebra on the set A U M, let / be the smallest self-
adjoint ideal of F for which F/I is unital, the map p:A —> i 7 //,
α ι-+ a +1, is a *-homomorphism, the map V: M —• F / / , X H ^ X + / ,
is an isometry-valued homomorphism, and pax(a)Vx = Vxp{a) {a e
^4, x G Af). That such an ideal / exists follows from the fact that
{A, a, M) admits a covariant representation (H, φ, W) where #? is
non-zero (use the induced covariant representation corresponding to
a faithful representation of A).

Note that p(A) U F M generates i 7 //, where VM = { Vx \ x e M} . If
γ is any C*-seminorm on F/I, then α H+ y{p(a)) is a C*-seminorm
on Λ, so y(/Kα)) < | | α | | . Also, γ(Vx)

2 = y(K;Fx) = y(l) < 1. It
follows that F/I admits a greatest C*-seminorm, γ0 say. Hence
/ = {c e F/I I γo(c) = 0} is a self-adjoint ideal of F/I, and the_
quotient *-algebra A) is a normed *-algebra with C*-norm given-
by \\c + J\\ = γo(c) (c e F/I). Let D be the C*-completion of
DQ and π the canonical *-homomorphism from F/I to D given by
π(c) = c + J. Any *-homomorphism from F/I to a C*-algebra can
be factored uniquely through D via π .
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For a e A let p(a) = πβ(a), and for x e M let W^ = πVx.
We denote by A xa M the C*-subalgebra of D generated by all
p{ά)W^ (a e A, x e M). Clearly the map p: A -+ A xa M,
a H-+ p(a), is a *-homomorphism. One easily verifies that if {uχ) is an
approximate unit for A, then (p(uχ)) is one for A xa M. Hence if
beAxaM, so is bW'x (=]imλbp(uλ)W£). Similarly W^beAxaM.
Thus we can define a multiplier Vx € M(>4 x α Af) by Vxb = W£b,
bVx = £W^. The map V: M -+ M(A xaM), x \-*-yx, is an isomet-
ric homomorphism, and (p, V) is a covariant honiόmorphism from
(A, a, M) to AxaM.

We call AxaM the crossed product of A by M under the action α,
or the covariance algebra of the C*-dynamical system (A, a, M), and
we call /> and V the canonical maps. We summarize the important
universal property of A xa M in the following result:

PROPOSITION 1.1. Let (A,a,M) be a C*-dynamical system. The
canonical maps p and V are injective, and the C*-algebra AxaM is
generated by all p{a)Vx {a &A, x € M). If (φ, W) is any covariant
homomorphism from {A, a, M) to a C*-algebra B there exists a
unique ^-homomorphism φ xW\ AxaM -* B such that

(φ x W){p{a)Vx) = φ{a)Wx (aeA,xeM).

Proof Let F9I9D9 p, V9 π , W'x be as above. Let (φ9 W) be a
covariant homomorphism from {A, a 9 M) to B. There is a unique
*-homomorphism ψ: F -+ B such that ^(α) = $?(a) (a G -4) and
iy(x) = ^ ( x G l ) , Since ψ(I) = 0 we get an induced *-homomor-
phism ψ: F/I —• J5 , and hence a *-homomorphism ψ:D -+ B such
that ψπ = ψ. Observe that

= ψπp(a) = ^/f(α) = ^(α) = φ(a) (aeA)9

and

^ ( ^ ) = ψπ(Vx) = ^(Kx) = y(x) = » i (x € M).

Hence ψ(p(a)Vx) = ψ(p(a)JV£) = ^(^)W^, so the map

φ x W\ AxaM —• 5 , έ »-

is the unique *-homomorphism such that (φ x W)(p(a)Vx) = φ{a)Wx

for all aeA and X G ¥ .

Now let (H, φ) be a faithful non-degenerate representation of A
and (12(M, H)9ψ9 W) the induced covariant representation of
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(A, a, M). Since φ is injective so is ψ. If 0 = p(a) then 0 =
(ψ x W)p(a) = ψ(a), so 0 = a. Thus p is injective. If Vx = Vy

then φ(a)Wx = (φ x W){p{a)Vx) = (φ x ΪK)(p(α)Ky) = ?(*)»$,, for
all <z E A, so by non-degeneracy of the representation (12(M, H), p)
of y4 we have Wx = Wy, and therefore x = y. Thus F is injec-
tive. D

If (A,a9 M) is a C*-dynamical system we can, and do henceforth,
regard p as an embedding of A in A xaM. Thus we identify a and
/?(<z), and view A as a C*-subalgebra of 4̂ x α Λί. Any approximate
unit for A is one for ^ x α ¥ also. In particular if A is unital so is
A xaM.

In the classical situation where M is a group, 4̂ x α M is the usual
crossed product (as defined in [18] for example). In this case AxaM
is the closed linear span of all aVx (a e A, x e M), as the linear
span is a *-subalgebra. This is not true for our more general crossed
products. We shall give a counter-example presently.

If M is any left-cancellative monoid and a: M -»AutC the trivial
homomorphism we set C*(Af) = C xa M. This algebra is unital
and the canonical map V:M H-> C*(M) is the universal isometric
homomorphism: if W: M —• B is an isometric homomorphism into
a unital C*-algebra B then there exists a unique *-homomorphism
φ: C*{M) -> 5 such that p F = W. (Set p = ^ x W where ^ is
the unital homomorphism from C to B.)

Note that VM generates C*(Af).
If M is the additive monoid N then C*(N) is generated by the

nonunitary isometry V\, so we can identify C*(N) with the Toeplitz
algebra, the C* -algebra on the Hardy space H2 generated by all
Toeplitz operators with continuous symbol. This is in fact the mo-
tivating example for our more general theory. The element V{* is not
in the closed linear span of all Vn = Vf (n > 0), as V{V{ φ Vx V*,
so C*(N) is not this closed linear span. Thus C*(N) is the counter-
example we promised a moment ago.

We close this section with some trivial but useful remarks. Sup-
pose that (A, a, M) is a C*-dynamical system and that (φ, W) is a
covariant homomorphism from (A, a, M) to a C*-algebra B. Then!

(φ x W)(bVx) = (φ x W)(b)Wx

and

(φ x W){Vxb) = Wx{φ x W){b)
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for all b e AxaM and all x € M. These equations hold because if
{uχ) is an approximate unit for A then

(φ x W)(bVx) = lim(φ x

and similarly

(φ x fF)(F*δ) = lim(p x W){Vxuλb)
A

limφax(uλ)Wx(φ x
A

If (A, a, M) is a C*-dynamical system and ^: ^ xα M -> if is
a surjective *-homomorphism onto a C*-algebra B then there exists
a unique covariant homomorphism (φ, W) from (A, a, M) to 5
such that φxW = ψ. Uniqueness is obvious by the preceding remark.
To see existence, set φ(a) = ψ{ά) (aeA), and set Wxψ(b) = ψ{Vxb),

if Z ? e ^ x α M and xeM.

2. Ordered groups. Inthispaperapr^-or^reύf^rawpisapair (G, <)
consisting of a discrete group G and a pre-order < on G (that is,
a reflexive transitive relation) such that if e is the unit of G and
G+ = {xeG\e<x} then

(a) The inequality x < y implies zxt < zyt for all x, y, z, t e G
(b) The cone G+ generates G.
Note that Condition (b) is equivalent to the assertion that every

element x of G can be written in the form x = u~ιv for some
u,v eG+.

If < is a partial order (respectively a total order) we call ((?, <)
a partially ordered group (respectively an ordered group). We shall
be principally interested in the latter, as it is the case in which the
strongest results can be obtained.

Pre-ordered groups exist in great abundance. We list a few examples
here.
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The additive group R is of course an ordered group with its usual
order, as are all its subgroups. We shall always assume subgroups of
R are endowed with the usual order.

All free groups can be made into ordered groups [1],
An abelian group can be made into an ordered group if and only if

it is torsion-free [9]. It is well-known that a discrete abelian group is
torsion-free if and only if its Pontryagin dual group G is connected
[20, p. 47]. In general a group can admit many translation-invariant
total orderings for which the corresponding ordered groups are not
isomorphic (as ordered groups).

If P is a cone in Rn such that Rn = P - P and we define x <p y
to mean y - x e P then (Rn, <P) is a partially ordered group with
positive cone Rw + = P.

if {Gλ)λeA is a family of pre-ordered groups the product group
G is a pre-ordered group where for (xλ) and (yλ) in G we define
(Xλ) < (yλ) t 0 mean xλ < yχ for all λeA.

In particular Zn is a partially ordered group with positive cone Nw .

REMARK 2.1. If x\, . . . , xn are arbitrary elements of a pre-ordered
group G then there is a positive element u in G such that x, < u
for all j . To see this write Xj = uJιVj where Uj, Vj belong to G+,
set u = V\--vn, and observe that Xj <Vj <u.

We shall need some results from a paper of McAsey and Muhly
[10], so we introduce some of their terminology. If W is a map from
a discrete group G to B(H) where H is a Hubert space we say W is
positive definite if We = 1 and for every finite set X\, . . . , xn in G the
matrix {Wχ-iχ)ij is positive in Mn(B(H)) = B(H^). If moreover

(A9a,G) is a C*-dynamical system and (H, φ) is a representation
of A then (i/, φ, W) is a positive definite covariant triple if (fF is
positive definite and)

φotχ(a)Wx = Wxφ{a) (aeA,xeG).

The key fact concerning (H 9 φ, W) is that it can be dilated to get a
covariant representation of (A, a, (?):

THEOREM 2.1 {McAsey-Muhly [10]). i>* (A, a, G) be a C*-dynams
ical system where G is a discrete group, and let (H, φ, W) be a pos-
itive definite covariant triple for (A, a, G). ΓAefl ί/zere w # covariant
representation (Hf, ^ ' , W7) of (A, α, (?) αnrf <z« isometry V: H —•
//' swc/* ίΛflί p(α) = F V ( α ) K /or all a e A and Wx = V*WXV for
all xeG.
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The result is asserted and proved in [10] in considerably more gen-
erality than we have stated it here. (The blanket second-countability
assumption in [10] is irrelevant to Theorem 2.1.) For related material
on dilations see [2], [6] and [8].

PROPOSITION 2.2. Let G be a pre-ordered group, and W\ G+ -+ B
an isometric homomorphism into a unital C*-algebra B. Then there
is a unique extension W\ G —• B such that Wu-ιχ = W*WX for all
u G G+ and x e G. Moreover if X\, . . . , xn e G then the matrix

\γ)u is positive in Mn(B).

Proof. Uniqueness is clear from Condition (b) of the definition of
a pre-ordered group.

Suppose that w, υ and uv~ι belong to G + . Then Wu = Wuv-\Wυ,

so W* = W*Wuv-χ. Now suppose that an element x of G has two

expressions of the form x = u\ιV\ = w^ 1 ^ where Uj, Vj E G+.

Then W*WVι = PFM* H^2. This follows from our preceding observa-

tion and Remark 2.1, since there exists u e G+ such that uu\x and

UU21 belong to G + and then W*WVγ = W^Wuu-χWVχ = W*WUX =

W*Wuu-xWVi = Ĥ w* Wy2. It is therefore clear that we can extend W

to G in such a way that Wu-\x = ^ w *^c for all ueG+ and x e G.
If Xi, . . . , xn is an arbitrary finite set in G use Remark 2.1 to

choose u e G+ such that y7 = w c, e G + for 1 < y < n. Then
'^.)//,so (W-ι)jj is positive. D

Suppose that {A, α, G) is a C*-dynamical system where G is a
preordered group, that (H, φ, W) is a covariant representation of
the C*-dynamical system (A, a, G+), and that (to avoid ambiguity
here) W denotes the canonical extension of W to G. Then as we
have just seen W is positive definite, and it is easy to check that

(*) φax(a)Wx = Wxφ{a) (aeA.xeG).

Thus (H, φ, W) is a positive definite covariant triple for (A, a, G)
and therefore by Theorem 2.1 has a dilation to a covariant represen-
tation (Hf, #>', W) of (A 9ct,G). This v/ill be of crucial importance
for the sequel.

We shall use V to identify H as a closed vector subspace of H1.
If T G 5(if') we denote its compression to H by 7 # . It is easy to
verify that H is invariant for $/(-4) from the fact that φf(a)π = φ{a)
and therefore φt{a)Hφ'{b)H = <Pf(ab)n for all a, b eA. Similarly 7/
is invariant for all the unitaries Wx (x E G+) since the compression
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of a unitary to H is an isometry implies that H is invariant for the
unitary. ^

We make a^ew further observations on the extension W of W to
G: Firstly, Wχ-\ = W* for all x G G, and secondly, it is easy
to see using equation (*) that the linear span of all the elements
φ{a)WXχWXi -WXn {a e A, xλ, . . . , xn e G) is a *-subalgebra of
iπί{φ x W), so its closure is iva(φ x W), since the elements φ(ά)Wx

(aeA, x e G+) generate im(^ x W).
In particular, AxaG

+ is the closed linear span of all aVx Vx VX

(aeA, xu...,xneG).
We shall be using these elementary observations frequently and tac-

itly.
To avoid ambiguity, having denoted the canonical map from G+

to M(A xa G+) by F , let us denote the canonical map from G
to M(A xa G) by U. If U+ is the restriction of U to G+ and
p: A —• M(A xa G) the inclusion map, then (/?, U+) is a covariant
homomorphism from (A, a, G+) to A xa G. We set e = p x U+,
so ε: A xa G+ —• A xa G is the unique *-homomorphism such that
ε(aVχ) = aUx {a G A9 X G G+). Since ε is surjective we call it the
quotient map. It gives us a means of relating the representations of
AxaG with some of those of A xa G+ . Far more important for our
purposes is to relate all of the covariant representations of (A, a, G+)
with covariant representations of (A, a, (?), as we shall do using The-
orem 2.1.

We need to introduce a certain "universal" C*-algebra 0((?) which
reflects the order structure of G, and indirectly, the group structure
also.

Suppose that ((?,<) is a pair consisting of anon-empty set G and a
pre-order < on G. Let i 7 be the free *-algebra on G and let / be the
smallest self-adjoint ideal containing the elements x - x* and y-xy
for all X J E G such that x < y. Set px = x + I, and denote by
Sf the *-subalgebra of i 7// generated by the projections px (x e G).
If 7 is a C*-seminorm on 5' then yCp^)2 = γ(px), so y(/?£) < 1. It
follows from this observation that Sf admits a greatest C*-seminorm
y0 The set / of all b e Sf such that yo(δ) = 0 is a self-adjoint ideal
of Sf, and we can define a C*-norm on the *-algebra S'/J by setting
\\b + J\\ = γo(b) for all b e Sf. We denote the C*-completion of
S'/J by <9(G, <) or O(G). Let P x = p'x + J. It is clear that P x is a
projection and that the C*-algebra O(G) is generated by the elements
Px (x G G). Note also that the map I H P X is decreasing.
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The universal property of O(G) is given by the following:

PROPOSITION 2.3. Let G be a non-empty set and < a pre-order on
G. If θ: G —• B is a decreasing map from G into the projections on a
C*-algebra B then there is a unique *-homomorphism φ: O(G) —> B
such that φ(Px) = θ(x) for all xeG.

Proof. Uniqueness is clear since the projections generate O(G).
To see existence let F, /, S', 70 > J be as above. There exists a *-
homomorphism ψ: F -* B such that ψ{x) = θ(x) for all x e G,
and since θ(x) = θ(x)* and θ(x)θ(y) = θ(y) if x < y we have
ψ{x - x*) and ψ(xy - y) = 0. Hence / c ker(^), so there is an
induced *-homomorphism ψ: Sf -+ B. The map

S * - > R + , b~\\ψ(b)\\9

is a C*-seminorm on Sf

 9 so it is dominated by γo, that is, ||^(/>)|| <
Yo(b). Hence ψ(J) = 0, and we obtain a norm-decreasing ^homo-
morphism φ: S'/J -+ 5 such that ^(P x) = θ(x) for all x 6 (?. By
density of S'/J in O(G) and continuity of φ we can extend φ to
obtain a *-homomorρhism on O(G). D

Observe that C^G) can be badly behaved in general. For example,
let H be an infinite-dimensional Hilbert space and let G denote the
set of projections on H. Let < be the reverse of the usual partial
order on B(H)sa restricted to G. Then the inclusion map G —• B(H)
is decreasing, and therefore induces a *-homomorphism φ: O(G) —•
B(H) such that φ(Px) = x for all x e G. Since the closed linear
span of the projections is B(H), φ is surjective. Hence O(G) is not
nuclear, since B(H) is not.

Now suppose that G is an arbitrary pre-ordered group. For each
x € G the map

is decreasing, and therefore by the universal property of O(G) there
is a unique *-homomorphism βx: O(G) —• O(G) such that βx(Py) =
Pxy for all y e G. It is easily checked that βx e AutO(G) and that
the map

β: G->AutO(G), x^->βχ,

is a homomorphism. We shall call β the canonical action of G on
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In the next section we shall represent A xa G+ in terms of the
algebras 0{G) and A and the actions β and α of G.

The algebra O(G) is abelian if G is a totally ordered set. This
implies that O(G) is nuclear in this case, and this will be important for
some results in the sequel. We can realize O(G) in a more "concrete"
fashion in this situation. Let Ω(G)~ denote the set of decreasing
functions from G to {0, 1}. We define a linear order on Ω(G)~
by setting ω < ω' if ω(x) < ω'(x) (x e G). Denote by +oo, -oo
the functions on G that are constantly 1, 0 respectively, so ±oo e
Ω(G)~ and -oo < ω < +oc for all ω e Ω(G)~. For x e G define
3ceΩ(G)~ by

, ify<x,

, ify>X.

The map G -> Ω(G)~ , x h-> x , is strictly increasing.
We endow Ω(G)~ with the relative topology from the product space

{0, \}G, and as the product is compact Hausdorίf, it follows that
Ω(G)~ is also a compact Hausdorίf space (as it is a closed subset).
Hence Ω(G) = Ω(G)~\{-oo} is a locally compact Hausdorff space.

For x e G let Px e Co(Ω(G)) be the projection defined by Px(ω) =
ω(x). Clearly x < y if and only if Px > Py . If A: V j ; = max{x, y}
we therefore have PxPy — Pxyy for all x, y G G. This implies
the linear span of all P x (x e G) is a (separating) *-subalgebra of
Q(Ω(G)), and therefore by the Stone-Weierstrass theorem, it is dense
in C0(Ω(G)).

PROPOSITION 2.4. Suppose that < is a total order on a non-empty set
G. Then there is a unique ^-isomorphism φ from O(G) to Q(Ω(G))
such that φ(Px) = Px for all x e G.

Proof. Since the map G —> Q(Ω(G)), x ^ Px , is decreasing there
is a unique *-homomorphism from 0{G) to Q(Ω(G)) such that
φ(Px) = Px for all x e G. We shall construct an inverse for φ.
First observe that O(G) is abelian since PxPy = PxVy = PyPx, for
all x, y e G (this uses the fact that G is totally ordered). If τ is a
character on O(G) define τ ; e Ω(G)^ by setting τ'(x) = τ(Px). Thu^
for xι, . . . , xn G G and λi, . . . , λn e C we have

/=! /=! /=!
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Hence

1=1

We therefore have a well-defined linear map ψ from the linear span
of all Px (x e G) to O(G) given by ψ{Σ!i=\λiPχ) = Σ ? = i V V
Clearly ψ is a *-homomorphism, and norm-decreasing by the in-
equalities above. Therefore we can extend it to a *-homomorphism
from C0(Ω(G)) to O(G). Since ψ(Px) = Px for all x e G, the maps
ψ and φ are inverse to each other, and so the result is proved. D

If G is not a singleton then Ω(G)\{+oo} is non-empty. For x,y e
G set [x,y) = {ωe Ω(G)~ \ x < ω < y}. These sets [x, y) ( X J G
G) form a base of compact open sets for the topology of Ω((?)\{+oo},
so Ω(G)~ is totally disconnected, as can also be seen by noting that
{0, \}G is totally disconnected. If G admits no greatest or least ele-
ment then {x I x e G} is dense in Ω(G)~ .

Observe that even if G is only a pre-ordered group (that is, < may
not be a partial order) the algebra 0{G) is still abelian if every pair
of elements of G can be compared (x < y or y < x). For example
if Z 2 is endowed with the pre-order defined by (m, ή) < (mf, n9) if
n <n9, then O(Z2) is abelian.

The algebra O(G) is not abelian for all partially ordered groups. In
particular, if G = Z 2 is endowed with the product partial order, so
Z2+ = N 2 , then 0{G) is non-abelian. To see this let u, v be a pair of
commuting isometries on a Hubert space H whose range projections
uu* and vv* do not commute. (For instance, take H = H2 the
Hardy space on the circle, and let u, v be the Toeplitz operators on
H with symbols z and (A—z)/(l—Az) where A is a non-zero number
of modulus less than 1, and z is the inclusion map of the circle in
the plane.) If (m,n) e Z2 define the projection P{m9n) t 0 be 1 if
(m, ή) φ. N 2 and to be umυnum*vn* if (m, n) G N 2 . Then the
decreasing map G -+ B(H), x H^ PX , induces a *-homomorphism
φ: O(G) -> ^(//) whose range is not abelian since it contains uu*
and vv*. Hence O(G) is non-abelian as claimed.

3. The corner crossed product representation. If A and B are C*-
algebras we denote the maximal C*-tensor product by A® B. We
shall need to use the universal property this enjoys, namely, if C is
a C*-algebra and φ: A -+ C and ψ: B -* C are *-homomorphisms
whose ranges commute then there exists a unique *-homomorphism
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π: A® B —• C such that π(a ® b) = φ(a)ψ{b) for all a e A and

Suppose (̂ 4, α, (?) is a C*-dynamical system where G is a pre-
ordered group. If Zo = #((?) ® A we have a C*-dynamical system
(Zo, 7, (?) where 7* = /?* ® α* (x G (?). Let Z denote the crossed
product ZoxγG and let £/: (? —• M(Z) be the canonical homomor-
phism.

Choose an approximate unit for ZQ (and hence for Z) of the form
(fλ ® «A) where (^) is an approximate unit for O(G) and (uλ) is
one for ^4. If x e (? and b e Z one readily verifies that the nets
i(Pχfλ ® wA)&) and (b(fλPx ® wλ)) are convergent in Z . One way to
see this is to show that the set B of all b e Z for which these nets
converge is a C*-subalgebra of Z containing all {f®ά) Uy (/ G O(G),
α e ^ , y G (?), and so 5 = Z , as the elements (/'®a)Uy generate
Z . We can thus define Px G M(Z) by the equations

Pxb = ]im(Pxfλ®uλ)b,
A

bPx = \\rab{fλPx®uλ).

It is easily checked that Px is a projection, that the map x >-> Px is
decreasing, and that Px(f ® α) = i * / ® α, and (/<g> α)P x = fPx ® α
for all / € <9((?) and α e A. We have UyTxU* = F ^ ( X J G G ) .

To see this it suffices to show that if / € 0{G) and a € A then
UyPxUy-i(f<S>a) = Pyx(f®a), and this follows from the equations

= Pyxf ® Λ

For Λ: € G"1" set Ŵ  = ,p£/d? where p = Pe, and observe that
pUxpU* = P~eP~x = 7χ =JJxpU*,jx> pUxp = Uxp^Hence for all
x, y e G+ we have W*WX =p, We = p, and ^ 3 , = Wxy. We
define Wx € M(pZp) for x € G+ by setting Ĥ Z? = H^έ and bWx ='•
bWx, if b e pZp. The map W: G+ -» M{pZp), x ^ Wx,is an
isometric homomorphism.

If φ denotes the *-homomorphism A —• pZp, α \-+ Pe ® α, it
is easily checked that (φ,W) is a covariant homomorphism from
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(A, a, (?+) to pZp . We call the *-homomorρhism φxW the canon-
ical map from A xa G+ to pZp . It is useful also to give p a name:
it is the distinguished projection of M{Z).

THEOREM 3.1. Let (A, a, G) be a C*-dynamical system where G
is a preordered group, let Z = (O(G) ® A) xγ G, and let p be the
distinguished projection of M(Z). Then the canonical map from Axa

G+ to pZp is a ^-isomorphism.

Proof. We retain our previous notation.
We show first that φ x W is surjective. The algebra Z is the closed

linear span of the elements bUx (b e Z o , x G G), and therefore the
closed linear span of the elements of the form

(*) (Px ®0>\)' '(Pχ ®Q>n)Ux (x , Xj G G, aj G A),

since the products Px - Px have closed linear span O(G). If b is
1 n

an element of the form in (*) we claim that pbp G im(^ x W), and
this will show that φ x W is surjective. To prove the claim observe
that we can write b in the form

b = u;UZiφ{a\)U;UZiφ{a'2) • • • u;UZn<p(a'n)U*yn+UZn+i

for some y} , Zj G G+ and a'j e A, where we use the facts that
Px®a = Ux(Pe ® aχ-\(a))Uχ-i and that every element of G can be
written in the form y~ιz for some y, z e G+ . Hence

pbp = W* Wz φ{a\)W* Wz φ(af

2) W* Wz φ(a')W* Wz ,

since pφ{a)p = φ(a) for all a G A, and Uxp — Wx if x E G + . It
follows that pbp G im(^ x W) and the claim is proved.

Now we show that φ x W is injective. Represent M(A xaG
+)

as a C*-subalgebra of B{H) for some Hubert space H with id// G
M(A xa G + ) . Let /?: A —• 5(//) be the inclusion map. The triple
(//,/?, F) is a covariant representation of (A, α, G + ) , where F de-
notes the canonical map from G+ to M(A xaG

+), so by the dilation
theorem of §2 there exists a covariant representation (//', pf, F') of
(̂ 4, α, G) dilating (H, p, V), where // is a closed vector subspace
of H' invariant for p'(a) {a G A) and P^ (Λ: G G1"^).

Let Q G #(//') be the projection onto H. Then of course the
invariance properties of H mean that Qpr(ά) = p\a)Q for all βGi4
and βF^Q = F '̂Q f° r aU ^ G G + , and the dilation property means
that pf(a)π = p{d) for all a e A and (F '̂)// = ^ f° r a ^ ^ G G+ .
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For an arbitrary element x of G set Qx = V^QV^. Then Qx is a
projection, Qe = Q, and the map x H+ QX is decreasing since if x < y
then β ^ = VIQV^VJQV;* = F^^_ l y QK;* = ViV^lyQV» (as

y y

x " V E G+ impl ies t h a t QV'Q = Γ . , 0 ) . H e n c e QxQy = Qy.
Λ y Λ y

It follows from Proposition 2.3 that there exists a *-homomorphismψ0: 0{G) -f ^(/f') such that ^ 0(Λ) = Qx(xeG).
If x € G and α € A then /?'(α) commutes with ^ o ( ^ ) , since

= p'(a)ψo(Px).

This implies that p'(a) commutes with all ψoif) (f G 0{G)). Hence
there is a unique *-homomorphism ψ\. ZQ —• B(H') such that
ψλ(f® a) = Ψo(f)ρ'(a) for all / € 0{G) and a e A.

If A: , y e G a n d aeA t hen

CV ® β)) = Ψl(Pχy

Hence for all b e Z o , ^i(^(*)) = V^ψx{b)V^\ so (//', ^ , F') is
a covariant representation of (ZQ , γ, G). Observe that if / e 0{G)
and a e A then we have {ψ\ x V'){(f ® ά)p) = ψo(fPe)p'(a) =
Ψo(f)Qp'(a) = Ψo(f)p'(a)Q = ((Ψι x F')(/® α))β. Hence

= (^i x V')(b)Q for all * € Z.

It follows that

ίy2: pZp '

is a *-homomorphism.
The composition ψi(φγ.W): A xα G

+ —»• .#(#) is just the inclusion.
To see this we need only show this map leaves aVx fixed for each
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aeA and x eG+, and this follows from the equations

Ψ2(<P x W){aVx) = ψ2{φ(a)Wx)

= (ψιxV')((Pe®a)UxPe)H

= (ψιxV')((Pe®a)Ux)QH

= (ψi(Pe®a)Vx')H

= aVx.

Since ψi{φ x W) is injective, so is φ x W, and this means we have
shown p x l f is a *-isomorρhism. D

It is well known that if (A, a, (?) is a classical C*-dynamical sys-
tem where 4̂ is nuclear and G is amenable, then AxaG is nuclear
also.

THEOREM 3.2. Let (A9a9 G) be a C*-dynamical system where G
is an amenable ordered group and A a nuclear C*-algebra. Then
AxaG

+ is nuclear.

Proof. Since 0{G) is abelian, and A is nuclear, the algebra O(G)®
A is nuclear. Hence Z = (O(G) ® A) xγ G is nuclear, as G is
amenable. It follows that the hereditary C*-subalgebra pZp is nu-
clear, and therefore so is A xa G+. D

Of course, using the same proof, Theorem 3.2 is true if G is only
assumed to be a pre-ordered amenable group for which O(G) is nu-
clear.

Some of the deepest results of the theory of C* -algebras are con-
cerned with giving conditions on a C*-dynamical system which en-
sure the crossed product is simple or prime. This is important as the
simple and the prime C*-algebras play a role in the CMheory analo-
gous to that played by factors in the theory of von Neumann algebras.
Incidentally there are some indications which suggest that prime C*-
algebras (i.e. those in which every pair of non-zero closed ideals have
a non-zero intersection) are the more appropriate analogue of factors,
rather than simple C*-algebras. It turns out that while it is "hard" for
A xaG to be simple it is impossible for A xa G+ to be so if G is
non-trivial and partially ordered. However, while it is still "hard" for
AxaG to be prime, it seems to be "easier" for Axa G+ to be prime
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(compare C*(Z) which is not prime, with C*(N) which is). More
evidence for this claim will be given in §4.

PROPOSITION 3.3. Let (A9a,G) be a non-trivial C*-dynamical sys-
tem where G is a partially ordered group. Then AxaG

+ is not simple.

Proof. Suppose that A xa G+ is simple, and suppose that the maps
V: G+ -> M{AxaG+), U: G -+M{AxaG), and e: AxaG+ -> AxaG
are canonical. If x e G+ and b\, b2 £ A xaG+ with Z>i^ = ^2**
then e(b\)Ux = ε(b2)Ux, so ε(&i) = β(^) (as ί/x is unitary). Hence
bλ = bι, as ε is injective (its kernel must be zero by simplicity of
A xa <?+).

Suppose that (H, φ) is a faithful non-degenerate representation
of A and (12(G+, H)9ψ9 W) is the induced covariant representa-
tion of {A, a, G+). Then (12(G+ 9H)9φ) is also faithful and non-
degenerate. If b e A xa G+ then (bVxVJ)Vx = bVx, so v5 xF x* = b,
and therefore ψ(b)WxW* = ^(&) By non-degeneracy WXW* = 1,
that is, J^c is a unitary for all x e G+ .

Now choose a non-zero element η of H, and let / be the element
of 12{G+,H) such that f(e) = */ and f(y) = 0, y > e. Choose
Λ: > ^. Then there exists g e 12(G+, H) such that P ^ ^ = / , so
(J*JC£)(£) = /̂ 7̂  0, implying ^ € x G + , a contradiction since (? is
partially ordered. This proves the projection.

REMARK 3.1. The partial order assumption cannot be dropped in
the preceding proposition. For example let G be a group endowed
with the trivial pre-order such that G+ = G. Then of course A xa

G+ = AxaG is just a classical crossed product, and therefore it may
be simple.

Let (A, a, G) be a C* -dynamical system where G is a pre-ordered
group, and let / be a G-invariant closed ideal of A. The closed linear
span / of all a>VχιVχ2'"Vχn {a e /, X\, . . . , xn e G) is an ideal of
AxaG+, and any approximate unit for / is one for / also. Hence
AnJ = I. In fact / is the closed ideal of A xa G+ generated by / .

Recall that a classical C*-dynamical system (A,a9G) is G-prime
if for every pair of non-zero G-invariant closed ideals of A thejr
intersection is non-zero.

PROPOSITION 3.4. Let (A,a,G) be a C*-dynamicalsystem where
G is a pre-ordered group and the crossed product AxaG

+ is prime.
Then {A, a, G) is G-prime.
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Proof. Let I\, I2 be non-zero G-invariant closed ideals of A gen-
erating the closed ideals J\, J2 respectively in A xa G+. As J\, Ji
are non-zero, J\ n /2 contains a non-zero element, 6 say. Let {uχ)
and (t;^) be approximate units in I\ and I2 respectively. Then
b = limλμbuχυμ, so for some indices λ and μ the product Uχvμ

is non-zero, and since uλvμ e IiΠh this shows that I\ Π /2 is non-
zero. D

We recall some definitions and results of the classical theory. Sup-
pose that (A9a9G) is a non-trivial separable C*-dynamical system
where G is an abelian group. The Arveson spectrum Sp(α) of α is
the set of all γ eG (where G is the dual group of the discrete group
G) such that there exist unit vectors an e A for which

lim \\ax(an)-γ{x)an\\ = 0 (xeG).
n—κx)

The set Sp(α) is closed in G and its annihilator Sp(α) 1 is the set of
all elements x of G for which ax = id. If B is a G-invariant C*-
subalgebra of A we get a new C*-dynamical system (B, a \ B, G) by
restricting a to B. The Connes spectrum of α is a closed subgroup
of G defined by the equation

Γ(α) = p |Sp(α| i?)

where 5 runs over all non-zero G-invariant hereditary C*-subalgebras
of A. The following conditions are equivalent.

(a) The crossed product AxaG is prime (respectively simple);
(b) The algebra A is G-prime (respectively G-simple) and Γ(α) =

G.
These results can be found in [16] and [17].
If G is a pre-ordered group, the corresponding equivalences for the

C*-dynamical system (A, a, G+) do not hold. This is not surprising,
as Condition (b) makes no reference to the order structure of G. For
example, consider the C*-dynamical system (C, a, Z) (a trivial, of
course). The algebra C x α Z + = C*(N) is prime (it is the Toeplitz
algebra, as we saw already), but Γ(α) φ Z . If instead a is the usual
action by an irrational rotation of angle θ on the circle group T,
then (C(T), α, Z) is G-simple and Γ(α) = Z, as is well known, but
C(T) xa Z + is not simple (Proposition 3.3).

THEOREM 3.5. Let (A, a, G) be a non-trivial separable ^-dynami-
cal system where G is an abelian pre-ordered group. The following are
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equivalent conditions:
(a) The crossed product AxaG

+ is prime;
(b) The tensor product 0{G)®A is G-prime for the action γ = β®a,

and Γ(γ) = G.

Proof. Let Z o = 0(G) Θ A and Z = Zo xγ G, and let p be the
distinguished projection of M(Z).

Suppose / is a closed ideal of Z containing pZp. Then / con-
tains p(Pe ® a)p = Pe® a for all a e A. Hence if U:G —> Af(Z)
is the canonical map, / contains Ux(Pe <8>a)U£ = βxiPβ) ® α*(fl) =
-PJC ® ttjc(fl) It follows that Z o c / , and so Z = / . Thus ^ Z ^ is a
full hereditary C*-subalgebra of Z .

If C is a non-zero C*-algebra let Prim(C) denote its primitive
ideal space. Then C is prime iff every two non-empty open sets of
Prim(C) have non-empty intersection.

As pZp is full and hereditary in Z , the map

Prim(Z) -+ Fήm(pZp), / *-+ J ΠpZp,

is a homeomorphism, and therefore Z is prime iff pZp is prime.
The theorem now follows using the Pedersen-Olesen results applied to

γ, G), and the *-isomorphism of A xa G+ with pZp. D

If G is an abelian partially ordered group the Toeplitz algebra T(G)
of G as defined in [12] is just the algebra C*(G+). It was shown in
[12] that C*((?+) is primitive if G is totally ordered. The central
idea of the proof is essentially a use of the special case of Theorem
3.5 when A = C.

If (A,a,G) is a non-trivial C*-dynamical system where G is a
preordered group, then as we saw in the proof of Theorem 3.5, pZp
is a full hereditary C*-subalgebra of Z . Hence Z is type I iff pZp
is type I. Otherwise put, Z is type I iff A xa G+ is type I.

Incidentally, if (A, α, G) is separable then A xa G+ (= pZp) is
stably isomorphic to Z by a well-known result of Brown [3] on full
hereditary subalgebras.

We are now going to need the following result:

THEOREM 3.6 {Zeller-Meier [22]). Let {A, a, G) be a classical sep1

arable C*-dynamical system, where G acts freely on A (the spectrum
of A). The following conditions are equivalent:

(a) A xa G is type I;
(b) A is type I and every G-orbit in A is discrete.
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If a group G acts on sets Ωi, Ω2 we get an action of G on Ωi x Ω2
by setting x(co\, ωi) = (xco\, XCO2)

THEOREM 3.7. Let (A,a, G) be a non-trivial separable ^-dynami-
cal system where G is an ordered group acting freely on Ω(G) x A.
Then the following conditions are equivalent

(a) A xa G+ of type I;
(b) A is type I and the G-orbits in Ω(G) x A are discrete.

Proof. By [5] there is a canonical homeomorphism θ: ZQ —• Ω(G) x
A where as usual Zo = O(G)®A. One easily checks that θ(xω, xt) =
xθ(ω, t) (fi)GΩ(G), ί e l , J C G G ) . Also A is type I iff 0{G)®A
is type I. The result is now immediate from Theorem 3.6. D

4. Covariant representations. The theory that we develop in this
section is concerned only with the totally ordered case. Although some
fragments can probably be done in greater generality, we shall give
counter-examples to show that the principal results do not extend to
the partially ordered case. Thus for ease of exposition we shall confine
our attention to totally ordered groups throughout.

We shall be principally concerned with the question of what con-
ditions on a covariant representation (H, φ, W) ensure the corre-
sponding representation (H, φ x W) is faithful. However we begin
with a result on irreducible representations.

THEOREM 4.1. Let (A9a,G) be a C*-dynamical system where G
is an ordered group. Let (H9 φ) be a non-zero irreducible representa-
tion of A and suppose that {12{G+, H), ψ, W) is the induced covari-
ant representation of (A, a, G+). Then (12(G+, H), ψ x W) is an
irreducible representation of {A, a, ( J + ) .

Proof. Let P be a projection in the commutant of im(Jp x W), so
t h a t Pφ{a)Wx = φ { a ) W x P (aeA9 x e G + ) . S i n c e ( / 2 ( G + , H ) , φ )
is nondegenerate we have PWX = WXP. (To see this choose an ap-
proximate unit (uλ) for A and note that (ψ(uλ)) converges strongly
to I o n /2(G+ ,H).)

For xeG+ and η e H define ηx e 12(G+, H) by

, ify = x,
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If x9 z G G+ we have Wzηx = ηzx, and if x < z , then W*ηx =
0. It follows that if η, ηf G H and y, z e G+ with y φ z then
( P ^ 9η'z) = 0 (for example, if j ; < z, then (Pηy, ^ ) = (JF /fy, ι£)
= {PW*ηy, ι£) = 0). In particular, if z > e we have 0 = (Pηe, ι/'z)
= ((Pηe)[z), >/'), for all ? / ' € / / . Hence (Pηe)(z) = 0. Thus there is
a unique element Qη e H such that Pife = (Qη)e. Clearly the map
Q: H —• H, 7/1-+ Q*/, is continuous and linear.

Let 5 G B(12(G+, if)) be the diagonal operator given by (Sf)(y) =
Q/00 (/ G / 2 (G +

 5 f f ) j G G + ) . I f ^ E / ί w e have Pf/y = PWyηe =
Wy{Qη)e = (Qf/)y = Sί/y. Hence P = S. It follows that Q is a
projection. Now if a G A then /^(α) = ψ(a)P, so if ?/ G ΛΓ we have
Pψ(a)ηe = ψ(a)Pηe implies Qφ{a)η = φ(a)Qη. Hence Q G (im^) ;,
and therefore (? = 0 or 1 by irreducibility of (//, φ). Thus P = 0
or 1, and hence {12{G+, H)9ψxW) is irreducible. D

Let (A, α, (?) be a non-trivial C*-dynamical system where G is
an ordered group. We say a covariant representation (H 9φ 9W)
of (̂ 4, α, (?+) is 5/:̂ v̂  if for a e A and x G ( J +

5 the equality
φ(ax(a)) = Wxψ{a)W^ implies that α = 0 or x = e. If (H9 φ, W)
is skew then φ is injective, and Wx is non-unitary for x > e. If
(//, φ) is a faithful representation of A then (l2(G+,H),φ, W)9

the induced covariant representation of (A9 a, G+)9 is skew. For if
x > e and aeA are such that ψax(a) = Wxlp{a)W*, then given any
/ G 12(G+,H) we have (?<**(<!)/)(*) = (Wxφ(a)W*f)(e) = 0 (as
e ^ x(?+), so φax(ά)f(e) = 0. Hence p α ^ α ) = 0, so α x(α) = 0,
and therefore a = 0.

It follows that ax{ά) = J^tfJ^* =>α = 0 orjc = e,for aeA and
JC G ( J + . (Take a faithful representation of 4̂ and apply the induced
covariant representation to the above equation.) Hence if (H 9 φ, W)
is any covariant representation of (A9 α, G+) where φ x W is in-
jective we must have (H, φ, W) skew, for if φax(a) = Wxφ(ά)W*
we have (p x JΓ)(αx(α)) = (φ x W)(VxaV*), so α x(α) = FX^FX*,
implying that α = 0 or x = e.

Now suppose that (A, α, G) is a C* -dynamical system where G is
an abelian ordered group. Let G denote the Pontryagin dual group of
G. Of course, as G is discrete, G is compact. If γ G G then the map
F3": G+ —• M(^4x α G + ), x *-» y{x)VX9 is an isometric homomorphism.
Letting p: A -> AxaG+ be the inclusion map, (p9 Vy) is a covariant
homomorphism from (A9a9 G+) to A xa G + , so δy = p x Vγ is a
*-homomorphism from i x α G + to itself. Since δy is the unique
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*-homomorphism such that δγ(aVx) = y{x)aVx (a eA, x e G + ) , it is

clear that δyδy> = δγγ' for all γ9γ' GG. Thus δγ G Aut(A x α G + ) , and

δ: G —• Aut(-4 x α G + ) , γ κ+ δγ, is a homomorphism. We call δ the

(ύfwα/) action of (J on v4 x α (? + , and we say a subset £ of A xa G+

is G-invariant if <J?(S) = S (y G G).
Let us say that a covariant representation (H9φ9W) of (A, a, G+)

is amenable if there is a homomorphism J: G —> Aut(im(^ x f f ) ) ,
γ H + < 5 y , s u c h t h a t δ γ ( φ ( a ) W x ) = γ ( x ) φ { a ) W x (a G A , x G G + ,
y G G). Clearly J is unique. We call it the action of G on
im(^ x W). We shall use the same symbol δ for this action, and for
the action on A xa G+—there should no risk of confusion. The reason
for the terminology amenable will be apparent shortly. We shall see
that δ plays a crucial role in analysing the covariant representation
(H,φ,W).

A routine argument shows that a covariant representation (H,φ,
W) of (A9 α, G+) is amenable if and only if ker(^ x W) is G-
invariant. If there exist unitaries Uγ G φ(A)r such that the Weyl
commutation relations

UyWx = γ(x)WxUγ (xeG+,γeG)

hold, then it is clear that im(^ x W) is invariant under Ad Uγ. Letting
δγ be the restriction of Ad Uγ to im(^ x W) we get an action δ of
G on ivsi(φ x W), so (H, φ 9 W) is amenable.

If (i/ 9 9>) is a representation of 4̂ then the induced covariant rep-
resentation (l2(G+,H),φ,W) of (A,a,G+) is amenable. (De-
fine unitaries Uγ G φ(A)f by setting (Uγf){x) = γ(x)f{x) (/ G
/ 2((?+, / / ) , x G (?+). Then £ / y ^ = y{x)WxUy (x e G+, γ e G).
Hence (/2(G!+

 9 H)9ψ9 W) is amenable by the remarks above.)
Not all covariant representations are amenable. We present an easy

counter-example. Let G be non-trivial. If φ: C —> B(C)9 λ H^ λl,
and JΓ: G -+ 5(C), x H-> 1, then (C, φ9 W) is a non-amenable
covariant representation of (C, α, (?+) (of course α is the trivial
action on C).

Again suppose that {A9a9G) is a C*-dynamical system where G
is an abelian ordered group. Let {H 9φ9W) be an amenable covariant
representation of {A, a, ( J + ) . Then for each b eB = im(0? x HP) the
map G -» 5 , y H-> <Jy(fe), is continuous. This is so because the set
of all £ G 5 for which the above map is continuous is a C*-algebra
containing the generators φ{a)Wx {a G A, x G G+) of i?, and hence
this algebra is B itself.
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Let dy denote normalized Haar measure on G. For b eB we set

μ(b)= (δy{b)dy.
JG

We call the map μ: B —• B, b H-> μ(b), the mean associated to the
covariant representation (H, $?, W). Clearly μ is linear and norm-
decreasing. We define

Bδ = {b eB \δγ(b) = b(γ

This is a C*-algebra of B, which we call the fixed-point algebra of 5 .
Clearly <^(μ(6)) = μ(b) ( y e G ) , so μμ(Z>) = μ{b) (b e B). Hence
μ2 = μ and μ(£) = Bδ . It is clear that if £ e B+, then μ(Z>) > 0, and
if additionally μ(6) = 0 then 6 = 0. This strict positivity of μ will be
a key point in our result on skew covariant representations. We now
need to identify the algebra Bδ more closely. Set Qx = WXW* for
x e G. Then Qx is a projection, Qx = 1 if x < e, and QyQx =
for )>, z e G.

If b e B and x eG it is easily checked that

= y{x)δy{b)Wx.

Hence if 6 = φ{a)WXχ - WχH with α G A and Xi, . . . , xn e G we
have

0, iϊxi -xnφe.

A simple induction argument on n shows that Wx -Wx is of the
1 n

form Q x for some x eG if Xi xn = e. Hence μ(&) = ^(α)Q c or
μ(£) = 0. In either case μ(b) is in the closed linear span C of all the
elements φ(a)Qx (a e A, x e G). As B is the closed linear span of
all elements φ{a)WXχ --WXn (a e ^4, X\, . . . , x« € G), so μ(£) c C,
and obviously C C JM(5) , so C = μ(J5).

Explicitly, we have just shown that Bδ is the closure of the linear
span Co of all φ(a)Qx (a e A,x e G+). Note also that Co is
obviously a *-subalgebra of Bδ, as φ(a)Qx = Qxφ(a).

If we regard Af(^4, x α , G+) as a C*-algebra on some Hubert space
K with id# G Λ/(i4 xa G+) and let /?:^ -> 5(AT) be the inclu-
sion map then (ϋΓ, p, F) is an amenable covariant representation of
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(A, a, G+) and p x V: AxaG+ -+ B{K) is the inclusion map. We call
(K9 p, V) the identity covariant representation of (A, α, (?+). We
therefore have a mean μ: AxaG

+ —> AxaG+ and fixed-point algebra
(A xa G+)δ. Also, (K, p, V) is skew if ( 4 , a, G) is non-trivial.

A few general remarks are needed before the next lemma. Let C
be a C*-algebra. If p\, . . . , pn are pairwise orthogonal projections in
C then

ι=l

= max \\PiCPi\\
l<ι<n

(ceC).

If 0i, ... , qn are projections in C such that 01 > 02 > > 0«
then 0i — ft > > Qn-\ - Qn, Qn are pairwise orthogonal projections.
Moreover, if C\,... , cn e C and we set bx? = Ci H h cz (1 < / < «)
then

« 71—1

ι = l / = 1

LEMMA 4.2. Lei (-4, a, G) &e α non-trivial C*-dynamical system
where G is an abelian ordered group, and suppose that (H\ φ,W) is
an amenable skew covariant representation of (A, a, G+). Then there
exists a unique ^-isomorphism θ: (A xa G+ ) δ -+ (im(p x W))δ such
that θ(aVxVx*) = φ{a)WxW* (aeA,xeG).

Proof, Uniqueness of θ is obvious. Put Px = VXV* and Qx =
WXWX . To see existence of θ it suffices to show

Ϊ = 1 ι = l

for a\, . . . , an e A and X\, . . . , xn e G. We may even suppose that
e < xι < - - - < xn, so that PXχ > > PXn and QXχ > > QXn.

CLAIM. | |^(α)βχ| | = | |α | | = \\φ(a)(Qx - β y ) | | if e < x <y and

The result follows easily from the claim, because

ι=l

= max
\<i<n

7=1

7=1
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by the remarks preceding this lemma. To prove the claim, let us
first note that for e < x < y the maps from A to B(H) given by
a h-» φ(a)Qx and by a H+ φ(a)(Qx — Qy) are *-homomorphisms, so the
claim is proved if we show they are injective. Now if φ(a)Qx = 0 then
Wxφaχ-\[a)Wx = 0, so φaχ-ι(a) = 0, implying that a = 0, by injec-
tivity of φ . On the other hand if φ{a)(Qx-Qy) = 0, set z = x~ιy (so
z > e), and observe that Wxφaχ^\a)W* = WxWzφazχ-(a)W*W*, so
for 6 = α~J(α) we have φaz(b)Wzφ(b)W*, implying that Z? = 0 by
skewness of (i/, 0>, W). Hence α = 0. D

THEOREM 4.3. Lβί (̂ 4, α, G) be a non-trivial C*-dynamical sys-
tem where G is an abelίan ordered groupy and let (H, φ, W) be a
covariant representation of (A, a, G + ) . The following statements are
equivalent:

(a) φ xW is injective,
(b) (H, φ, W) is amenable and skew.

Proof. We have already seen that (a) => (b). Assume therefore that
(b) holds. Let μ and v be the means associated to the identity covari-
ant representation of (A, α, G+) and to the covariant representation
(H,<p,W) respectively. Let Px = VXVX* and Qx = WXW* (x e G).
By Lemma 4.2 there is a *-isomorphism

θ: (A xa G+)s -• (im(p

such that θ(αPχ ) = φ{a)Qx {a e A,x e G). We claim that

v{φ xW) = θμ. Ίo see this it suffices to show that

(*) v{φ x W){aVXχ • VXf) = θμ{aVXχ VXJ

for all X\, . . . , JCΠ G G1 and β G i . But if ΛΓI xn Φ e then both
sides of (*) are obviously zero. So we may suppose that X\--xn = e
in which case aVXι -VXn is of the form aPx for some x e G. Then
ιs(φ x W)(aPx) = v{φ(ά)Qx) = ^(α)Q x = 0(ai>*) = θμ(aPx). Thus
(*) holds and the claim that v{φ x W) = θμ is proved.

Now suppose that b e keτ(φ x W). Then u(φ x W)(b*b) = 0,
so θμ(b*b) = 0. Hence μ(b*b) = 0 (as 0 is a *-isomorρhism)?

from which b*b = 0 (by strict positivity of μ), and so b = 0. Thu§
ker(ζp x W) — 0 and we have shown that (b) => (a). D

REMARK 4.1. If G is an abelian partially ordered group recall that
the algebra C*(B+) = C x α G + , where the action α is (necessar-
ily) trivial. Let H2(G) be the closed linear span in the Hilbert space
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L2(G) of the elements (εx)xeG+ where for x e G the map εx: G-+Ί
is defined by setting ex(γ) = y(x). For x e (?+ let Wx be the isome-
try in B(H2(G)) defined by setting Wx(f) = ε*/ (/ e H2(G)). The
map W: G+ -• B(H2(G)), Λ: H-> W^ , is an isometric homomorphism,
and it is easy to check that (ψ, W) is an amenable skew covariant
homomorphism of (C, α, G+), where ψ: C -> B(H2(G)) is the uni-
tal homomorphism. However if G is not totally ordered then ψ xW
is not necessarily injective. For example, take G = Z , with the pos-
itive cone G+ = N\{1}. Then G is a partially ordered group and it
is shown in [12] that in this case ψ x W is not injective. Thus the
totally ordered assumption in Theorem 4.3 cannot be weakened to a
partially ordered condition.

THEOREM 4.4. Let (A, a, G) be a non-trivial C*-dynamical sys-
tem where G is an abelian ordered group. If (H, φ) is a faithful
representation of A and (12(G+, H),ψ, W) is the induced covariant
representation of {A, α, G+) then ψ x W is injective.

Proof. The triple (12(G+, H) ,ψ, W) is skew and amenable, so
ψ x W is injective, by Theorem 4.3. D

THEOREM 4.5. Let (A,a,G) be a non-trivial C*-dynamical system
where A is primitive and G is an abelian ordered group. Then AxaG

+

is primitive.

Proof. Let (H, φ) be a faithful irreducible representation for A.
Note that φ φ 0 as A φ 0. If (/2(G+, H), ψ, W) is the induced
covariant representation of {A, α, G+) then by Theorems 4.1 and
4.4 (12{G+, H),ψ x W) is a faithful irreducible representation of
i x Q G + , and therefore A xa (?+ is primitive. D

If G is any abelian ordered group it follows from Theorem 4.5 that
C*(G+) is primitive. This was shown also in [12] by quite different
means, using the results of [16] and [17] on Connes spectra that were
already mentioned in §3.

We can strengthen some of the results of this section in the case of
subgroups of R. First a definition: If (A, a, G) is a C*-dynamical
system where G is an ordered group, we call a covariant represen-
tation (H9φ,W) of (A, a, G+) pure if f]xeG+ WX{H) = 0. If
(H, φ, W) is arbitrary we can split it up into a pure and a "unitary"
part. To see this, set Ho = f)xeG+ WX(H) and Hι=HθH0. Clearly,
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HQ , Hi are closed vector subspaces of H and Ho © H\ = H 9 and
it is a routine exercise to show they are reducing spaces for all Wx

(x e G+) and all φ{a) (aeA). If both HQ, H\ are non-zero we can
define the maps φ^): A -> B(Hj)9 a H» φ(a)Hj, and W^h G+ ->
B(Hj), x *-+ (WX)H., and get covariant representations (Hj9 p^) ,
FPϋ)) ( = 0, 1) of (A, a, G + ) . The triple (Hx, pW, H^1)) is pure
sine ΠXGG+ WX1\H\) = 0. Clearly each W^ is unitary (JC € G+).
We thus have an analogue of the Wold-von Neumann decomposition
of an isometlry into its pure and unitary parts. Observe that φ x W =
(φW x WW) Θ (φW x ^ ί 1 ) ) . Thus φxW is injective if one of these
summands is.

THEOREM 4.6. Let {A, a, G+) be a C*-dynamical system where G
is a subgroup of Hi. Then any pure covariant representation (H, φ, W)
of (A, a, G+) is amenable.

Proof In Douglas' terminology the map x »-• Wx is a pure one-
parameter semigroup of isometries, so by his results in [4] there exists
for each t e R a unitary Ut e B{H) such that UtWx = ̂ W i ϋ i (x €
G+) , and Ut e {WXW£ \ x e G + }" . Thus Ad Ut(Wx) = eixtWx {x e
G+) and Ad Ut(φ(a)) = φ(a) (aeA), so im(9? x W) is invariant
under Ad Ut. Denote by δt the *-isomorphism of im(^ x W) got
by restricting Ad Ut. Now define γteG by γt(x) = e / x ί . For δ the
action of G on i x α G

+ we have therefore δt{φ x W) = (^ x W)<5y .
Hence / = ksx(φ x ίΓ) satisfies δγt(J) C / for all ί € R. But
Γ •= {γt I ί € R} is a subgroup of G with annihilator Γ1 = 0, so Γ is
dense in G. By the continuity of the map G —• A xa G+, γ\-* δy(b),
for each 6 e 4̂ x α G + , we conclude that b e J ^ δγ(b) e / (γ eG).
Thus / is G-invariant and so (H, φ, W) is amenable. D

THEOREM 4.7. Lei (A, a, G) be a non-trivial C*-dynamical sys-
tem where G is a subgroup ofR. If (H, φ, W) is a skew covariant
representation of (A, a, G+) then φ xW is injective.

Proof. If (H 9 φ, W) is pure the result follows immediately from
Theorems 4.3 and 4.6. If (H, φ 9 W) is not pure then for HQ =
f]x€Q+ Wχ(H) and H\ = HΘHQ we have HQ and /ίi are non-zero, so
(H9φ9W) splits into its "unitary" and pure parts (Hθ9 φm, PΓ(0))
and {Huφ^ι\ W^) respectively. Now (HΪ9 φ^ι\ W^) is easily
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seen to be skew as (//, φ, W) is, so again by Theorems 4.3 and 4.6,
(H\, φw, W^) is injective, and therefore φ x W is injective. α

If (A, α, G) is a C*-dynamical system with G an ordered group
and if ε: 4̂ x α G+ -> 4̂ x α G is the quotient map, set K(A, α, G) =
ker(ε). We therefore have a short exact sequence

LEMMA 4.8. Let (A9a9 G) be a C*-dynamical system where G is
an ordered group. Then K(A,a,G) is the closed ideal in Axa G +

generated by all a - aVxV* (aeAyxe G + ) .

Proof. Let the elements a - aVxV* (a e A, x e G+) generate the
closed ideal / . If U: G -> M(AxaG) is canonical and e: AxaG

+ -•
A xaG is the quotient map then e(a - aVxV*) = a - aUxU* = 0,
so / C K(A, a,G). Thus if B = (A xa G+)/J we get an induced
*-homomorphism έ: B -> AxaG given by e(b + J) = e(b).

Let ^ be the *-homomorphism from A to B given by p(α) =
a+J, and let W: G+ —• M(B), x »-• W^, be the homomorphism into
the unitary group given by defining Wx(b+J) = Vxb+J 9 (b+J)Wx =
bVx + J for b e A xa G+, x e G+. (That W^ are isometries is
obvious. To see they are unitaries it suffices to show that b-VxV*b e
/ if b e A xa G+. But this is clear, for if (uλ) is an approximate
unit for A then we have b - VxV*b = limλ(uλ - uλVxV*)b.) We can
obviously extend W to a unitary-valued homomorphism W: G ->
Af (2?), and it is easy to check (φ, W) is a covariant homomorphism
from (̂ 4, α, G) to 5 . The *-homomorphism φ xW\ AxaG -+ B
satisfies (p x W)e(aVx + J) = (φ x W)(aUx) = ^(fl)»i = αF x + /
for α G ̂ 4 and x e G + . Hence (^ x W)e = id, so έ is injective. It
follows that K(A, a, G) = / . D

THEOREM 4.9. Let (A, a, G+) 6e α non-trivial C*-dynamical sys-
tem where A is simple and G is a subgroup of R. Then (A, α, G) is
simple.

Proof. Let / be a closed ideal in K(A, a, G), / ^ # ( 4 , α, G),
and let ^: A xa G+ —• (A xa G + ) / / be the quotient map. As we saw
in §1, there exists a unique covariant homomorphism (φ 9W) from
(i4, a, G+) to (A xa G+)/J such that φxW=ψ.

For X G ( ? + define
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Then Ix is a closed ideal in A , so if it contains a non-zero element
it is equal to A (by simplicity of A). Let Rx = 1 - VXV*. This
is a projection and Rxa = αi?* (α £ A). Also aRx+y = αi?x +
^α~1(β)i?yϊ^c*. Using this equation one easily checks that the set

L = {xe GΓ+ \IX = A)

is closed under addition, and it is even easier to see that 0 < y <
x G L =ί> y G L (y, x e ( J + ) . By the archimedean property of G we
therefore have L = {0} or L = G+.

Suppose that #€^4 and X G G + are such that p α ^ α ) = Wxφ(a)W*.
Then ^(α*(α) - KxαKx*) = 0, so α x(α) - ax(a)VxV; eJ. If * > 0
and α ^ 0 then / x = A and L = G+. Hence 6.- bVyV* e J (b e
A,y e G+) so by Lemma 4.8, / = K(A9 a, G), a contradiction.
Thus either x = 0 or a = 0, and so {φ>W) is skew. By Theo-
rem 4.7, ^ = φ x W is injective, so / = 0. Thus K(A9 α, G) is
simple. D

REMARK 4.2. The above result does not hold for arbitrary ordered
groups. If one takes A = C and takes G to be the lexicographic prod-
uct of Z with itself then it follows from Theorems 2.2 and 2.3 of [14]
that K(A9 a9 G) contains the C*-algebra K of compact operators on
a separable infinite-dimensional Hubert space as a closed ideal such
that the quotient algebra C*(G+)/A: is isomorphic to C*(N)®C(T),
and therefore K φ K(A, a, G), since C*(G+)/K(A, α, G) = C(T 2 ).
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