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SETS OF UNIQUENESS AND SYSTEMS
OF INEQUALITIES HAVING A UNIQUE SOLUTION

J. H. B. KEMPERMAN

Suppose a number of X-ray pictures is taken of the same object,
but from different directions. One typically likes to know to what
degree the pictures determine the object and exactly when an object
is uniquely determined. Replacing picture taking by projections, that
is, images relative to specified mappings, these same problems are
easily formulated for higher dimensions and even for abstract spaces.
The objects on hand might be data structures.

With this general framework, starting from an arbitrary but fixed
collection of mappings, we study a new and very useful class of objects
(sets) each of which is uniquely determined by its projections. In
the process, we disprove a previously conjectured characterization of
uniqueness relative to the one-dimensional projections in Rn . For all
situations where the underlying space is finite, a complete and rather
simple characterization of uniqueness is obtained.

1. Introduction. Suppose an X-ray picture is made of an object S
in R3 of uniform unit density. This corresponds to the creation of
an image of S on a photographic plate Y by means of a central or
parallel projection π: R3 -• Y. The darkness of the image at y e Y is
directly related to the length \LπS\ of the part of L inside S\with L
as the straight line L = π~ι{y} = {x e R3: πx = y}. Hence, having
such a π-photograph of S is equivalent to knowing the precise value
λ(S Π A), for each set of the form A = π~ιB = {x e R3: πx e B}.
Here, B can be any subset of Y while λ is Lebesgue measure on R3.

Given any finite class of such photographic maps πy.R3 —• Yj, we
would like to know exactly what subsets S of R3 are such that S is
uniquely determined by its set of images.

The subset S of R3 can be identified with the measure μs on
R3 defined by μs{A) = λ(S Π A). Thus μs has its density relative
to Lebesgue measure λ equal to the function ls(x) on X (1 on S
and 0 on its complement Sc). If π:R3 —• Y is any map then the π-
projection of μs onto Y (also nonchalantly called the π-projection of
S) is the mass distribution (measure) nμs on Y, whose mass inside
any subset of B of Y equals μs(A) = λ(SΓ\A) with A = π~ιB =
{x e R3: πx e B}. Knowing the π-photograph of S is the same as
knowing the projection πμs of μs.
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More generally, let X be any space supplied with a reference mea-
sure λ. Let further {π; , j e /} be a fixed finite or infinite collection
of maps πμX -> Yj. A subset S of X will be identified with the
associated measure dμs = \sdλ on X, (carried by S and having a
uniform density there). In particular, subsets S and T equal a.e.
[λ] are identified. The π;-projection of S is defined as the measure
πjμs on Yj whose mass \πjμs){B) inside any subset B of Yj equals
μs(A) = λ(S n A) with Λ = [n^B = {x e X: πμ e B}.

In the literature, much attention is given to the following situa-
tion, which we will refer to as the classical case. Here, X = Rn

supplied with ^-dimensional Lebesgue measure λ = mn and projec-
tions u\, ... , πn , with %j as the orthogonal projection of Rn onto
the 7'th coordinate axis. Relative to this classical case, knowing the
πy-projections of a subset S of Rn (j = 1, ... , n) is the same as
knowing the (n - 1)-dimensional volume of the cross section of S
with each hyperplane Xj = c perpendicular to one of the coordinate
axes.

Going back to the general case, we will be interested in the class
of subsets S of X that are uniquely determined by the associated
collection {πjμs\j e /} of projections of dμs = \5dλ. It is always
assumed that λ(S) < oo. We say that S is a weak set of uniqueness
(relative to X, λ and the π,) if there is no other set T such that
Ujμj = 7tjμs, for all j e J. Here, we identify sets which are equal
a.e. [λ]. And we call S a (strong) set of uniqueness if besides μs

there does not exist any measure μ of the form dμ = φdλ, with
φ: X —• [0, 1], such that πjμ = %jμs, for all j e J.

These notions are distinct if X is discrete, see [2]. On the other
hand, the two notions of uniqueness coincide in the important case
that X = Rn with λ of the form λ(dx) = q(x)dx while {π/J e J}
is an arbitrary but finite set of linear or central projections π ;:i?

w —•
Yj, see [1], [4], [5]; (dim Y) < n-1). This includes the above classical
case.

An important class of sets of uniqueness are the so-called additive
sets, first introduced for the classical case by Fishburn et al. [1], [2].

Let F(S) denote the class of all f:X -> R of the special form

(1.1) /(x)

with the fj as functions fj\ Yj —> R(j e. J) satisfying the integrability
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condition (2.10). The importance of this class is due to the fact that

(1.2) [ fdμ= ί fdμs= [ fdλ, for any / e F(S),
JX JX Js

and any measure / / o n l having the same marginals as μs (relative
to the Uj j e / ) . A subset S of X with λ(S) < oo, is said to be
additive if it admits a representation of the form

(1.3)

with / as a suitable function f e F(S) as in (1.1). One easily shows
that each additive set S in X is a (strong) set of uniqueness, see
Lemma 2.14.

An easy illustration, relative to the classical case, would be any prod-
uct set S = A\ x x An in Rn with m\(Aj) < oo. For, then S is of
the form (1.3) with fj(ξ) = +1 or -n, depending on whether ξ e Aj
or ξ £ Aj, respectively, (ζ € R). Or choose S as an ellipsoid in
Rn having its axes parallel to the coordinate axes. On the other hand,
if S is an ellipsoid S = {x e Rn'.ΣijaijXiXj < 1} with axk φ 0
for some k > 2 then S is not a set of uniqueness, in fact, it has the
same projections as the ellipsoid T obtained by replacing all a\j by
-aij U > 2).

Naturally, one wonders whether conversely all sets of uniqueness
might be additive. This was shown to be true for the classical case
with n = 2 independently by Fishburn, Lagarias, Reeds and Shepp
[1] and by Kuba and Volcic [7], [9], each making an essential use of
the results due to Lorentz [8]. And for a while it was conjectured, for
the classical case, that the converse is always true.

One goal of the present paper is to show that this converse is false.
In §3, for the classical case with n > 3, we construct a large class of
sets S of uniqueness which are definitely not additive. One example
with n = 3 (see 3.22) has S as a subset of R3 equal to the union of a
tetrahedron, a prism, and two rectangular blocks parallel to the axes.

Our construction is based on a new generalized notion of additivity.
Ordinary additive sets are said to be additive of degree 1. A (stepwise)
additive set S of degree < 2 has the form S = {x e X: either
f(x) > 0 or f(x) = 0; g(x) > 0} with / , g as suitably chosen
functions in the class F(S). In an analogous way, one defines the
notion of an additive set S of degree < m, see Definition 3.1. It is
shown that each such generalized additive set S is a (strong) set of
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uniqueness, see Theorem 3.1. Whenever the latter set S can be shown
to be non-additive, one has an example of a set of uniqueness which
is not an additive set. In §3, this program is worked out in detail for
the classical case with n > 3, starting with a suitably chosen additive
set of degree < 2. There are still many open problems here.

Let us now restrict ourselves to the case where the set X is fi-
nite, though we allow for the possibility of infinitely many projections
ny.X —> Yj (j e J). In this situation, generalized additivity is the
same as ordinary additivity, see Lemma 3.8. Moreover, a subset S
of X is a (strong) set of uniqueness if and only if it is additive, see
Theorem 4.50. For the special case that X = [1, 2, . . . , N]n with
coordinate projections x —• Xj• (j = 1, . . . , ή), the latter result is due
to Fishburn, Lagarias, Reeds and Shepp [2]. The analogous result for
weak sets of uniqueness is false, see [2] for a counterexample.

The proof of Theorem 4.50 is largely based on a new set of nec-
essary and sufficient conditions in order that a solution x° of an ar-
bitrary finite system of linear inequalities of type Σ 7 ayXj > bf (i =
1, . . . , m) OL} < Xj < βj (j = 1, . . . , ή) be the only such solution.
One necessary condition is that x° be additive in a certain sense. See
Theorem 4.15 for further details.

2. Sets of uniqueness. Let X be a measurable space and / an
arbitrary index set. For each j e / , let Yj be a measurable space and
πμX —• Yj a measurable map. The collection π = {π}-\ j e J} of
projections is kept fixed from now on. If μ is any measure on X then
its so-called π7-marginal (or ^-projection) is the measure π,μ on Yj
defined by (πjμ)(B) = μ(π~ιB). It follows that, for each measurable
function gj: Yj -» i?,

/ gj(πjx)μ(dx) = / gj{y)(πjμ)(dy)9
Jx JYj

provided gj is either nonnegative or (π/μ)-integrable. In particular,
this integral is fully determined by the marginal πjμ of μ. Thus,
if another measure î  on I has the same marginals as μ, that is,

(j G / ) , then

(2.1) ί g(x)u(dx)= f g(x)μ(dx)
Jx Jx

if g:X -+ R is of the form g(x) = ^ gj(πjx).

Here, the gj\ Yj —• R are assumed to be measurable such that
Is \gj(njX)\μ(dx) < oc.
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2.2. In the sequel, A is a fixed finite or σ-finite measure on X. We
shall identify functions on X (or subsets of X) which are equal a.e.
[λ]. Define MQ as the collection of measurable functions

Mo
= lφ:X-+R;0<φ(x)< 1 (x e X)\ ί φdλ < ooj

(the latter condition is automatic when λ is finite). Further M will
denote the associated class of (finite) measures dμφ = φdλ on X
having density φ e Mo. If φ = ls is the indicator function of a subset
S of X then μφ is also denoted as μs thus, μs{dx) = l5(x)A(rfx).
In the sequel, £ always denotes a measurable subset of X satisfying
λ(S) < oc. Hence, ls eM0, equivalently, μs e M.

For each μ e M, let

(2.3) M(μ) = {ue M: πj-μ = πju for all jeJ}9

be the collection of all v e M having exactly the same marginals as
μ. Similarly for φ e Mo, let M0(φ) be the set of all ψ e Mo such
that μψ has the same marginals as μφ that is, μψ e M(μφ). In
particular, μ e M(μ) and φ € Mo(φ).

2.4. DEFINITION. We will call a function φ:X —• i? a uniqueness
function if φ e Mo and, moreover, Mo(0) = {^}. Equivalently,

We will say that a set S is a w#zA: set of uniqueness if there exists no
measurable subset T of X distinct from S, such that dμj = Iγdλ
has the same marginals as dμs = lsdλ. Equivalently, M 0 ( l s ) con-
tains no indicator function 1^ different from ls. But we do not rule
out the possibility that ψ e MQ(\S) for some non-indicator function
0 < ψ < 1 distinct from \s. If also that possibility is ruled out then
we will say that S is a set of uniqueness. In other words, a subset S
of X is a (strong) sef of uniqueness if its indicator function 15 is a
uniqueness function, equivalently, if Afo(ls) = {ίs}

All these notions are relative to the given choice of the measure λ
on X and maps π/. X -+ Yj (j e J) and the standing assumption
that λ(S) < oo.

2.5. Since we identify sets *S, Γ or functions φ, ψ differing only
on a Λ-null set, one could identify a measurable set S or a function
φ e Mo with the corresponding measure dμs = UrfA or φdλ, re-
spectively. For instance, one could speak of the marginals of S or
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φ. These marginals of S are analogous to the X-ray pictures from
different directions of an object in i? 3 .

The set S is a set of uniqueness set precisely when there is no
ψ E MQ different from 1^, such that dμψ = ψdλ has exactly the
same marginals as dμs = \sdλ. It implies that S is also a weak set
of uniqueness, meaning that there exists no other subset T of X can
have the same marginals as S.

In many applications, the two notions are equivalent, in other words,
any weak set S of uniqueness is also a (strong) set of uniqueness. This
equivalence holds, for instance, when X, λ and π, (j e /) are as in
the following Example 2.76 and moreover, λ is finite, see [1] and [4].
However, it fails in Example 2.7, see [2].

2.6. EXAMPLE. The following system {X, λ, Uj (j e /)} will be
referred to as the classical case. Here, mn(dx) = dx denotes n-
dimensional Lebesgue measure on Rn , while 'measurable' is the same
as mw-measurable. Namely, choose X as a measurable subset of
Rn and λ as an (absolutely continuous) measure λ(dx) = q{x)dx.
Often one will choose λ as the restriction of mn to X it would be
finite when mn{X) < oc. In addition, choose / = {1, . . . ,«} and
%j\ X —• R as the projection which maps x = (x\, . . . , xn) to its j th
coordinate xj- (j = 1, , ή).

We are interested in finite measures μ on X of the form dμ =
φdλ = φ(x)q(x)dx; 0 < φ < 1, (often φ = ls). In the present
example, the π^μ (j = 1, , n) are precisely the one-dimensional
marginals of μ. Clearly, π/μ is an absolutely continuous measure on
R with density function

hj(ξ) = / φ(x)q(x)dx{ dXj-XdXj+x

(xj = ξeR 9j= 1,...,/ι).

Moreover, 0 is a uniqueness function precisely when no other func-
tion 0 < ψ < 1 leads to precisely the same marginal densities hj (j =
1, , Λ ) .

2.7. EXAMPLE. Let X = {1, 2, . . . , a}n and choose / and the π,
as in Example 2.6. Let λ(x) = λ({x}). Presently, the 7th marginal

of a measure dμ = φdx on Z is the measure on {1, . . . , a}
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with discrete density function

hj(ξ) = (πjμ)({ξ})

{ξ= 1 , . . . , a j = 1, . . . , n}.

2.8. DEFINITION. Given a set 5 with A(5f) < oo, let -FOS) denote
the linear set consisting of all functions f:X —> R having the special
form

(2.9) f(x) Σ

with the fy. Yj —• R (j e /) as measurable functions such that

(2.10) Σ f\fj(πjX)\λ(dx)< oo.
jeJ J s

Note from (2.1) that each / e F(S) is integrable relative to each
μ G M(μs) while, moreover, the corresponding integral / fdμ is
fully determined by the marginals π 7μ 5 (7 e /) of //5.

Let further F be the class of all f:X -+ R of the form (2.9) and
satisfying

Σ ί \fj(πjX)\λ(dx) < ex).
jeJ J x

The latter condition requires in particular that fj is (π7A)-integrable,
as happens when λ is finite and fj is bounded. Clearly, F{S) D F
for any S. Further each / e i 7 is integrable relative to each μe M.
Of special interest is the case that all but finitely many fj (j e J) are
identically zero.

2.11. DEFINITION. A subset S of X is said to be additive if S is
measurable, with λ(S) < 00, and, moreover, S is of the form

(2.12) S = Sf = {x e X: f(x) > 0}, for some / e F(S).

Note that ls and S attain the suprema

(2.13) supjΎfφdλ:O<φ<

= J f+dλ = sψy^fdλ} = J^fdλ,

(where f+ = max(0, / ) ) . For instance, relative to Example (2.6), the
closed unit ball S in Rn is an additive set, as is seen by choosing
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f(x) = l-Σjx] = 1 - | M I 2 In fact, S maximizes fτ{\ -\\x\\2)dx\

therefore, S minimizes fτ\\x\\2dx among subsets T of Rn volume
fτdx = fsdx.

The following result is a straightforward generalization of a result
due to Fishburn et al. [2].

2.14. LEMMA. Each additive set S is also a (strong) set of unique-
ness.

2.15. Proof. Let S be of the form (2.12), with λ(S) < oc, and
suppose that dv — ψ dλ with 0 < ψ < 1 has the same marginals as
dμ = ls dλ (thus, u(X) = μ(X) = λ(S) < oc and ψ e Mo). We must
show that v = μ, that is, ψ(x) = ls(x) a.e. [λ]. It follows from
(2.1) that ffdu = ffdμ, that is,

f(x)(ls(x)-ψ(x))λ(dx) = O.
x

From 0 < ψ < 1 and the definition of S, the latter integrand is
nonnegative and thus zero a.e. [λ]. This shows that ψ(x) = ls(x) a.e.
[λ] outside D = {x e X:f(x) = 0}. Here, S D D thus λ(D) < oo.
Moreover,

f (1 - ψ(x))λ(dx) = f (ls(x) - ψ{x))λ{dx)
JD JD

= [{ls(x)-ψ(x))λ(dx) = 09Jx
the latter since / dμ = / dμ = λ(S) < oc. Here, 1 - ψ(x) > 0 hence
ψ(x) = 1 = ls(x) a.e. on D.

2.16. Property (A). We will say that the system {X, λ\ πj (j e J)}
has property (A) when, conversely, each set S of uniqueness in X is
necessarily additive.

2.17. In this direction, we can report the following results.

(i) Property (A) does hold in the classical case (Example 2.6) when
n = 2 and X = R2 while λ is two-dimensional Lebesgue measure^
This result is essentially due to Lorentz [8]; see Fishburn et al. [1];-
Kuba and Volcic [7], [9] for related results.

(ii) Property (A) will be shown to be false in the classical case
(Example 2.6) when n > 3 even when X = [0, 2]n and λ is Lebesgue
measure. See §3 for details.
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(iii) Property (A) does hold for the discrete case of Example 2.7, as
was shown in [2].

(iv) More generally, property (A) holds whenever X is finite (even
when / is infinite). This result is obtained-in §4 as a corollary to a
uniqueness result for systems of linear inequalities.

3. Generalized additivity. Here, we use the notations of §2. We
always assume that λ(S) < oc. Recall the linear classes F(S) and F
of functions f:X -• R defined in 2.8. Further, an additive set S is
a subset of X such that S = {x e X:f(x) > 0} for some / e F(S).
From Lemma 2.12, each additive set is a set of uniqueness.

3.1. DEFINITION. Let S be a subset of X with λ(S) < oo. We will
way that S is (stepwise) additive of degree < 2 if it is of the form

(3.2) S = {xeX:f(x)>0}u{xeX:f(x) = 0; g(x)>0},

for some f,geF(S). More generally, S will be said to be (stepwise)
additive of degree < m (with m as a positive integer), if it has the
following structure relative to a suitably chosen m-tuple of functions

(i) An element x eX belongs to S if and only if the first non-zero
element (if any) in the sequence βι\x), . . . , βm\x) is positive.

(ii) In particular, x e S whenever f^r\x) = 0 for all r = 1,
... , m.

Equivalently, S is said to be additive of degree < m if it is of the
form

(3.3) S = Uι U U2 U U Um U Zm ,

for some choice of the functions / ( r ) e F(S) (r = 1, ... , m). Here,

(3.4) Ur = {x e X:f{k){x) = 0 for 1 < k < r fir\x) > 0}

Zr = {x G X:βr)(x) = 0 for 1 < k < r}.

3.5. We will further use the notation

(3.6) Qr = {x e X: f{k)(x) = 0 for 1 < k < r f^(x) φ 0}.

m

Note that X is the disjoint union of the sets Q\, ... ,Qm and Z
If S is defined as in (3.3) and x e Qr, then x e S if and only if
/( ' ) (*)> 0 ( r = 1 ,2 , . . . , m).

Additivity of degree < m implies additivity of degree < m + 1.
This can be seen by choosing /( m + 1 ) = / ( m ) , in which case Qm+\ and
thus Um+\ is empty. We will say that S is additive of degree m if
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it is additive of degree < m and, moreover, m is minimal, that is,
S fails to be additive of any degree < m1 for each 1 < m1 < m.
In particular, additivity of degree < 1, additivity of degree 1 and
ordinary additivity (as in Definiton 2.11) are all equivalent.

3.7. Analogously, one defines the notion of a subset S of X to be
additive of degree < oo. This means that, for some infinite sequence
/ ( r ) e F{S) (r = 1, 2, . . . , ), S happens to the union of all the
associated sets Ur (r > 1) as in (3.4), together with the set Z ^ =
{x e X:βr\x) = 0 for all r > 1}. If the latter set S is not additive
of any finite degree, we will say that S is additive of infinite degree.

The following result shows that additivity of higher degree is no
more general than ordinary additivity in the special case that X is
finite; (one may as well assume that λ(X) < oo). Another proof for
this discrete case would be as follows: (i) Theorem 3.11 below shows
that an additive set of degree < m is always a set of uniqueness, (ii)
Theorem 4.50 below shows that each set of uniqueness is additive, as
long as X is finite.

3.8. LEMMA. If X is finite then any subset S of X which is additive
of degree < m, for some 1 < m < oo, is already additive {that is,
additive of degree 1).

3.9. Proof. Let 1 < m < oo and suppose S is additive of degree
< m as in (3.3), (3.4), (or 3.7 when m = +oc), where / ^ e F(S).
Functions / ^ , such that Qr is empty, serve no purpose and may
as well be dropped. In other words, one can assume without loss of
generality that all sets Qr are non-empty (1 < r < m). But X is
finite and the Qr are disjoint, hence, m can be assumed to be finite.
Let

{

b = sup{|/(r)(jc)|}; thus 0 < a < b < oo,

(where, x e X 1 < r < m). Choose further 0 < p < a/(a + b) thus
p/(l - p) < a/b, and consider

/ = /(I) + pji2) + pip) + . . . + pr-ljir) 9 h e n c e f f

It suffices to show that S coincides with the additive set

T = {xeX:f(x)>0}.
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If XQ G Z m , that is, flk'(xo) = 0 for 1 < k < m then clearly
x0 e SnT. Next, let x0 <£ Zm and define r = r(x0) by 1 < r <
m\ βk)(x0) = 0 for 1 < k < r and /^(*o) Φ 0. From (3.3),
one has XQ G S or XQ € Sc depending on whether /^H ̂ o) > 0 or
βr\xo) < 0> respectively. It suffices to show that in these cases one
has f(xo) > 0 or f(xo) < 0, respectively (to the effect that XQ G T or
xo £ T, respectively). And that property follows immediately from

Σ pk~
r<k<m

3.10. Let us return to the general case as in §2. For the classicial
case described in Example 2.6 (with n > 3), Theorem 3.11 will enable
us to construct sets of uniqueness which are not additive.

3.11. THEOREM. Let S be a subset of X which is additive of degree
< m, for some 1 < m < oc. Then S is a (strong) set of uniqueness.

3.12. Proof. Let S be of the form (3.3) (or as in 3.7 when m =
+oc), λ(S) < oc. Let 0 < ψ < 1 be such that the measure dv = ψ dλ
has the same marginals as dμ = Isdλ. In particular, from (2.1) and
/ « eF(S), one has / / ^ dv = f /W dμ, that is,

m.(3.13) f βr\x)(ls(x) - ψ(x))λ(dx) = 0, for all 1 < r <

One must show that v = μ, that is ψ(x) = ls(χ) a e W
Let Z r be as in (3.4) (as in 3.7 when r = oo), ZQ = X, and let (?r

be as in (3.6). In particular, ZQ = X is the disjoint union of the m + \
sets Qr and Z m (1 < r < m r < oo). We first prove, by an induction
on r, that ψ(x) = ls(x) a.e. [A] on Qr (r = 1, ... , m r < oc). Let
1 < r < m r finite, and suppose we already know that ψ(x) = ls(x)
a.e. [λ] or (^, for 1 < k < r and, thus, on the full complement
Qι U U Qr-ι = X/Zr_i of Z r_i. Hence, (3.13) yields that

(3.14) [ f(r\x)(ls(x)-ψ(x))λ(dx) = 0.
J

Here, Zr_i = QruZr with Qr and Z r disjoint. If x G Z r then
/(r)(x) = 0. On the other hand, if x e Qr (thus / ( r )(x) Φ 0) we have
from (3.3) and (3.4) that x belongs to S if and only if βr)(x) > 0.
Therefore, the integrand in (3.14) (where 0 < ψ < 1) is nonnegative
and thus equal to zero a.e. [λ] on Zr_i and thus on Qr. Hence,
ψ(x) = ls(x) a.e. [λ] on (?r which completes our proof by induction.
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We now know that ψ(x) = ls(χ) a e W o n t n e full complement
<2i U • U Qm = X/Zm. Further,

I/(JC) = ί ψdλ= ίlsdλ<oo, thus ί (ίs(x)-ψ(x))λ{dx) = 0.
rn.

But S D Zm, thus, the latter integrand is nonnegative, showing that
ψ(x) = \s a.e. [λ] on Zm . This completes the proof that ψ(x) = I5
a.e. [A] on X.

3.15. REMARK. Theorem 3.11 and its proof even generalizes to sets
S which are additive of degree < a, with a as any countable ordinal
number. Here, an additive set S of degree < a would be a subset
S with λ(S) < 00, which is determined in the following manner by
a suitable family {/W r < a] in F(S)9 with r running through the
ordinal numbers r < a. If x e X is such that βr\x) = 0 for all
r < a then x e S. Otherwise, let r = r(x) be the smallest ordinal
number with βr\x) Φ 0 and assign x to S or Sc, respectively,
depending on whether βr\x) > 0 or βr\x) < 0, respectively. If a
is minimal (given S) one would say that S is additive of degree a. It
would be interesting to know (for instance, in the classical case 2.6) for
what ordinal numbers a there does exist a subset 5 of I , which is
additive of degree a. And also what systems {X> λ, %j (j G /)} have
the following Property (B): To every set S of uniqueness in X there
corresponds a countable ordinal number a, such that S is additive of
degree < a. This property is of a similar type as Property (A), which
was discussed in 2.16 and 2.17.

The proof of Theorem 3.11 also yields that T = U\ U U2 U U Um

is a set of uniqueness. However, this is nothing new, in fact, T is
additive of degree < m + 1, as is seen by introducing /( m + 1 ) = - 1 .

3.16. A non-additive set of uniqueness. From now on, in this section,
we will restrict ourselves to the classical case as in 2.6. We will take X
as a bounded subset of Rn supplied with Lebesgue measure. Further
the Kjμ (j = 1, ... , n) are the one-dimensional marginals of dμ =
φdλ, with 0 < φ < 1. Assuming that n > 3 (as is necessary by 2.17),
we would like to have an example of a subset of S of Rn which i$
additive of exact degree 2. This means that:

(i) S is additive of degree < 2, (as in (3.2)). Thus, from Theorem
3.11, S is also a set of uniqueness.

(ii) S is not additive.
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3.17. Construction. Let m be a fixed integer, such that 2 < ra <
n - 1 (as is only possible when n > 3). We will choose X as the
block

X = [ 0 , 2 ) w x [ 0 , \)n~m

= {x e Rn:0 < Xj < 2 for j < m\ 0 < Xj < 1 for > m}.

The reference measure λ is chosen as Lebesgue measure mn restricted
to X. One has F(S)DF with F as the class of all / : X -> i? of the
form / ( * ) = Σjfj{Xj) with /} integrable on [0, 2) or [0, 1).

It will be convenient to regard the block X as the disjoint union of
the 2m unit cubes Xδ defined by

χδ = {x G X: <J7 < Xj < δj + 1, for j = 1, . . . , m}

(δj e {0, 1}). Here, δ runs through all the 2m sequences δ =
(δ\, ... ,δm) with δj• e {0, 1}. The choice <S = 0 leads to the spe-
cial unit cube Xo = {x e Rn: 0 < Xj < 1, for j = 1, . . . , ή). Let
Ss = SnSs denote the part of S in Sδ .

The subset S of X will be defined as in (3.2), with f,geF;
hence S is additive of degree < 2. Here, / and g are chosen to be
of the special form

(3.18) f(x) =
7=1 j=\ 7=1

Thus, /Jr = 0 for m < j <n. Further

(3.19) fj(Xj) = 0 if 0 < jcy < 1

/ y ( ^ ) = ̂ - ( ^ - l ) if 1<XJ<29 (j=U - , m ) ;

(much more general functions / and # would work equally well, see
Remark 3.32 below). Observe that f(x) = 0 for all x e Xo. Hence,
from (3.2),

(3.20) So = S n Xo = {x 6 Xo: *(*) > 0}

= {xeX0:xι + -- + xn > n - 1}.

Clearly, So is a simplex (pyramid) in i?w having the points (0, 1, . . . ,
1) , (1, . . . , 1, 0) and (1, . . . , 1) as its n + 1 vertices.

Ignoring the set {x e S/Xo f(x) = 0}, which has mw-measure
zero, the remaining part of S is of the form

0 = {xeX:f(x)>0}
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and thus independent of the function g. Let δ Φ 0 where δ =
(δ\, . . . , δm) {δj G {0, 1}). It is immediate, from the definition of
Xδ and (3.19), that Sδ = S ΠXδ consists of all x e Rn satisfying

(i) 0 < Xj < 1 when j > m or δj = 0 (j = 1, , ή)
(ii) If δj — 1 then 1 < Xj < 2 (j = 1, , m) in such a way that

(3.21) J2{xj - 1: <5, = 1 1 < ./ < m} < <af/m.

Here, d = \δ\ = δ\-i \-δm hence, I <d < m. Thus, Sj is a prism
Sj = i?^ x [0, l ) " "^ having as its base Bδ a simplex in Rd, with
vertices (JΊ , . . . , yj) for which yj = 1, with at most one exception,
in which case y}• = 1 + β?/m. If rf = 1 this base is an interval and
Sδ is a rectangular block. For instance, if η = (1, 0, . . . , 0) then
^ = [1,1 + 1/m) x [0, I ) * " 1 . If d = 2 then the base 5 j is a
triangle.

3.23. Consider the special case n = 3 where m = 2. Then our
set S of uniqueness in i?3 consists of: (i) The pyramid (tetrahedron)
with vertices ( 1 , 1 , 1 ) ; ( 0 , 1 , 1 ) ; ( 1 , 0 , 1 ) ; ( 1 , 1 , 0 ) . (ii) The rect-
angular blocks [ l ,3/2)x[0, l )x[0, 1) and [0, l ) x [ l , 3/2) x[0, 1).
(iii) The prism B x [0, 1) with B as the triangle B = {(x\, X2):x\ >
1 *2 > 1 *i + *2 < 3}.

3.23. THEOREM. The set S of uniqueness as constructed above is
not additive.

3.24. Proof. On the contrary, suppose there exist measurable func-
tions h\, . . . , hm on [0, 2) further measurable functions hm+\, . . . ,
hn on [0,1) and a subset N of X, with mn(N) = 0, such that if
x = (# ! , . . . , xn) e X/N then

(3.25) J2 hλχj) ^ ° i f a n d o n l y i f x e s

j

In the sequel, indices j , r and s will run through {1, . . . , n};
{1, . . . , m} and {m + 1, . . . , n}, respectively. We write x =
(xι,...,xn)eRn as A: = (y, z), where y = (j i, . . . , ym) = (xx, . . . ,
xm) and z = (zm+χ, . . . , zn) = (xm+ϊ, . . . , xn). Let further

r{yr)\ H2(z) =
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Thus, (3.25) can be written as if {y, z) e X/N then

(3.26) H{ (y) + H 2 ( z ) > 0 i f a n d o n l y i f (y,z)e S.

In particular, (3.20) implies that if (y, z) e XQ/N then

(3.27) Hl(y) + H2{z)>0 if and only if Lx{y) + L2{z) > n - 1.

Next, let us apply (3.26) for points (y, z) e Xζ where ζ =
(1, . . . , 1). Note that Xζ = [1, 2)m x (0, 1)""™ = e + X0, where
e e Rn has coordinates er = 1 (r = 1, . . . , m) and es = 0 (s =
m + 1, . . . , n). We see from (3.21) with δ = ζ (thus d = \δ\ = m)
that

S Γ)Xζ = ίx € Xζ:Σ(xr - 1) < Λ = e + {(y, z) € Xo .L^y) < I}.
K γ )

Hence, it follows from (3.27) that if [y, z) e ΛT0/iVi then

(3.28) ^ 1 ( j ) + 7/ 2(^)>0 if and only if LX(Y) < 1.

Here,

E ^ ) where *,(<?) = * r ( l + ί ) ( r = l , . . . , m )

(J € [0, l)m ί G [0, 1)). Further, N{ = {x e X0:e + x e N} thus
mn{Nχ) = 0. Note that {(y 9 z) e Xo:Lχ(y) = 0} has mw-measure
zero and can be ignored.

We will show that (3.27), (3.28) together lead to a contradiction.
In the sequel, y ranges through Im and z through 7 w " m , where
/ = [0, 1). Put

(3.29) a = essinf\H2(z)}: β = esssup{H2(z)};

thus, a < β , (possibly a = -oc or β = +oo). We claim that a < β .
Suppose not, equivalently, a is finite and Hι(z) = a a.e. on In~m .

Since mn(N) = 0, there exists a subset E of In~m with mn-m(E) =
0, such that, for each z e In~m/E, one has (j;, z) ^ iV for almost
all y G / m . Note that the linear function Li(j ) = Σryr on Im

takes all values in [0, m), while the linear function L2(z) = Σs

zs
on / Λ ~ w takes all values in [0, n - m). Clearly, there exist z9, z" G
In~m/E such that /f2(z') = H2{z") = α further L2(zf) < L2{z") and
π - m - 1 <L2(z") <n-m. Next, there exists y elm such that

0 ; ,z ' )£ΛU}; ,z")£;V and

/i - 1 - L2(z") < Lx{y) < n - 1 - L2(z')
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(just choose y such that Lx(y) is slightly larger than the value p =
n - 1 - L2{z"), which satisfies m - 1 <p < m). Applying (3.27), we
see that (y, z') φ. N and Lx(y) + L2(zf) <n-\ imply Hx(y) + a<

0. Similarly, (y, z") £ N and Li(y) + L2{z") > n - 1 imply that
# i (j) + oί > 0 and we have a contradiction. This proves that a < β .

Since mn{N\) = 0 there exists a subset /) of 7 m of (m-dimensional
Lebesgue) measure zero, such that, for each y e ΰ , one has (y, z) έ̂
# i for almost all z e In~m . It follows from (3.28) and (3.29) that

(3.30) if yeIm/D and Lx(y) < 1 then KX{Y) + a > 0;

if y e / m /i) and Z,! (y) > 1 then Kx (y) + β < 0.

Here, Lx(y) = ^Zyr takes all values in [0, m), thus, a and β are
finite. Let Δ = β - α; thus Δ > 0. At least intuitively, (3.30)
seems impossible. For, it would imply that, roughly speaking, Kx (y) =
Σ r kr{yr) makes a downward jump of size > Δ everywhere across the
hyperplane Lx{y) = X)j;r = 1. Here, r = 1, . . . , m where m>2.

Let us write y € Im as y = (w,ί/), where u = (u\9 ... 9 um-X) =
(>Ί, .-- , J>m-i) 6 7"2-1 and v = ym e I = [0, 1). Thus Lx(y) =
Lx(u, v) = L0(y)+v where L0(w) = ux-\ hwm_i. Further Kx{y) =
ΛΓI(M, V) = ^ O ( « ) + ^ ( V ) , where K0(u) = kx(ux) + •• + km-χ(um-ι)
and k(v) = fcm(^).

Let C be a subset of I = [0, 1) of full measure mx(C) = 1 such
that (u,v) £ D, for almost all w e Z'^" 1, whenever v e C. Let
υ' 9υ" e C with v' < v" be fixed for the moment. There exists
u e lm-χ such that (u, v') φ D; (w, v/;) £ 2) and 1 - v" < Lo(w) <
1 - 1 / (after all, L0(w) is a linear function on Im~ι taking all values
in (0, m - 1) and thus all values in (l—υtf, \-υ')\ it is mainly here
that m > 2 is used). Since (w, t;7) φ D and Li(w, ι;;) = LQ(U) +
v1 < 1, it follows from (3.30) that Kx(u, v') = K0(u) + k{v') > -a.
Similarly, since (w, v/;) έ̂ D and Lo(w)+^" > 1, one has that K0(u)+
k{v") < -β. Consequently, k{v") - k{v') < -β + a = - Δ < 0
whenever υ', v" € C with v' < v". Choosing v/ e C with v' <
vx < -" < vM-ι < v", it would follow that k(y") - k(vf) < MA for
M arbitrarily large and this is clearly impossible. This completes the
proof of Theorem 3.23.

3.31. REMARK. Omitting the proof, we assert that (3.25) restricted
to XQ (which is the same as (3.27)) has only trivial solutions h =
(hx, . . . , hn)9 provided n > 3. More precisely, suppose that hf.I =
[0, 1) —• R (j = 1, , ft) are measurable functions such that, for
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all x e In/N, one has £ ; hj(xj) > 0 if and only if £ \ */ > /i - 1.
Here, the subset JV of In satisfies mn(N) = 0. Then there exist
constants a > 0 and δ, such that hj(xj) = α*/ - bj for almost all
x̂ r = / (j = 19 ... ? n). Naturally, X); &7 = (n - \)a. The analogous
result with « = 2 is false. After all, for each choice of the strictly
increasing function 0:[O, 1] -> i?, X\ + x2 > 1 a.e. on [0, I ) 2 is
equivalent to θ(x\) -θ(l-x2)>0 a.e. on [0, I ) 2 .

3.32. REMARK. The proof of Theorem 3.23 is quite robust and uses
very few of the properties of the functions f,geF defining S as in
(3.2). Let us maintain the structure of X and also the assumptions
that 2 < m < n - 1 and

m

f(x) = Σ MXJ)' w i t h •£(*/) = 0 if 0 < xy < 1
7=1

n

7=1

In particular, /) = 0 if j > m. One has /(#) = 0 for all x e l o =
[0, l ) w , thus, So = SnXo = {xe Xo: g(x) > 0} is determined by the
restrictions gf [0, 1) —• R (j = 1, , ή).

Writing j c e l o a s x = ( y ) z ) with y 6 [0, l ) m and z G [0, I ) " " " 2 ,
we want that the property (y, z) € 5Ό depends in an essential way on
z. This in order that, as in the above proof, a and β as in (3.29)
will satisfy a < β. It would be sufficient that

gs(zs) < -^gr{yr) < e s s s u p ^ & ( z s ) , z G [0, Ί—m

( r - 1 , . . . , m s = m + 1 , . . . , ή) holds for a set of points y e [ 0 , l ) m

of positive measure. For each such y, the set {{y, z): z € [0, \)n~m}
meets both 5 and Sc in a set of positive measure.

The above method of proof easily leads to a contradiction (from
the assumption that S is additive), provided that, in addition, the
functions f\, . . . , fm are continuous on (1,2) in such a way that

m-\ m-\

E Mχr) < -f(χm) < -f(ym) < Σ /'ύv),

for at least one choice of the numbers xr, yr £ (1, 2) (r = 1, . . . , m).
This is a rather weak assumption. We omit the details.
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4. The finite case. Here, we characterize systems of linear inequali-
ties having a unique solution. Let m and n be fixed positive integers
and / = {1, . . . , m} / = {1, . . . , n). Unspecified indices / and
j run through / and / , respectively. Further A = (α^ ) e Rmn is
a given m x n matrix and b = (b\, . . . , bm)τ G Rm a given column
vector. We will be interested in the system of inequalities Ax > b,
with x = (xι, . . . , xn)

τ. That is,

(4.1) Σ auχj ^ bi > f o r a 1 1 * G 7

In addition, we impose the conditions

(4.2) aj < Xj < βj, for all j G /.

Here, and from now on, the α7 and βj are given extended real num-
bers such that

(4.3) -oc < α, < βj < +oc {j e J)

(the case α7 = βj, where Xj = α7 is prescribed, can be eliminated by
lowering n).

Specifically, we shall be interested in characterizing the situations
where (4.1), (4.2) have a unique solution x°. The special case where
(4.2) is void (that is α ; = -oo βj = +oo, for all j G /) leads to the
following definition.

4.4. DEFINITION. The matrix A = (αy) is said to be a matrix of
uniqueness if

(4.5) x G Rn Ax > 0 imply that x = 0.

Naturally, this would be equivalent to Ax < 0 implying that x = 0.
Since the matrix A represents a map Rn -+ Rm , one is not allowed

to identify all empty matrices (having m = 0 or n = 0). In fact, (4.5)
forces the convention that an empty matrix with m = 0 and n > 1 is
never a matrix of uniqueness. It will be convenient to regard an empty
m x n matrix with n = 0 columns as being a matrix of uniqueness.
The following result is known.

4.6. LEMMA. In order that A be a matrix of uniqueness it is neces-
sary and sufficient that

(4.7) for each z eRn there exists y eRm

such that y > 0 and yA = z.

Here, y and z are row vectors.
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4.8. Proof. Assume property (4.7) and let x e Rn satisfy Ax > 0.
Applying (4.7) with z = -xτ, there exists y € Rm with y > 0 and
yA = -xτ. Hence,

0 < y(Ax) = {yA)x = -xτx = - | | x | | 2 , thus, x = 0.

Next, suppose property (4.7) is false. That is, some ZQ € Rn is not
contained in the convex cone K = {yA:y > 0} . It follows that K
is contained in some closed half space H+ = {z e Rn: zc > 0} with
c G Rn as a non-zero column vector. Thus y(Ac)c > 0, whenever
y > 0; hence, Λlc > 0 contradicting (4.5).

4.9. REMARK. Geometrically, Lemma 4.6 is very intuitive. For
(4.5) requires that the finite collection of closed half spaces ]£/ auχj ^
0 (/ e /) has intersection {0}. And property (4.7) says that the convex
cone spanned by the associated normals (the rows of A) is all of Rn .

4.10. REMARK. The system of equalities Ax = 0 would be equiva-
lent to Bx > 0, where B is the 2m x n matrix B = ( ^ A ) . Clearly,
B is a matrix of uniqueness if and only if A has rank n. Condition
(4.7) applied to B (instead of A) says that the rows of A span all of
Rn.

4.11. In the sequel, x° is & fixed solution of (4.1) and (4.2), while
7° and J° denote the associated index sets

(4.12) 7°

(4.13) J° = {jeJ:aj<x]<βj}.

Further A0 denotes the (possibly empty) associated submatrix of A
defined by

(4.14) / = { α i i ; ί G / 0 ; j G / 0 } .

4.15. THEOREM. Let x° be a fixed solution o/(4.1), (4.2) with
associated 1°, J° and A0 as above. Then in order that x° be the only
solution 0/(4.1), (4.2), it is necessary and sufficient that x° satisfies
the following two conditions.
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(i) There must exist a vector f' = (/i, ... , fm) of the form

(4.16) /; = Σ > ^ 7 ' >Ί > 0 ( / € / ) ; yt = 0 (/ φ 7°)
iel

and satisfying

(4.17) fj<0 iffx^ = aj;

fj>0 iffx^βj;

fj = 0 z#α ; < x°j < βj ίΛαί is, iff) e J°.

(ii) The matrix A0 defined by (4.14) is a matrix of uniqueness.

4.18. REMARKS. Note that the above uniqueness criterion depends
on beRm only through the index set 7° defined by (4.12). The vec-
tor / in (ii) is often far from unique. Condition (ii) is automatically
satisfied when J° is empty, that is, when Xj e {α,, βj} for all j e / .

The necessity of condition (ii) is easily seen. For, if (ii) were
false then, from Definition 4.4, there would exist a non-zero func-
tion z:J->R carried by J° (that is, Zj = 0 if xj = α, or xj = βj)
such that Σj atjZj > 0 for all i el°. Replacing x° by x = x°+pz,
with /? > 0 small, one obtains a different solution of (4.1), (4.2).

4.19. As a simple illustration, let n = 1. Here, x e R is subject to
<3/* > bj {i e I) and a < x < β (where a < β). A solution x° is
unique if and only if one of the following happens. Here, 7° = {/ e
I:aiX° = bi}.

(i) One has a < x° < β, that is, J° = {1}, and, moreover, there
exist r,sel° with ar < 0 and α,y > 0. Here, the above assertions
hold with yt = 0, and thus / = Σi yiai = 0.

(ii) One has a = x° < β (thus J° is empty) and, in addition,
ar < 0 for some r e 7° (thus arx° = 6Γ). Then choose yr = 1 and
yι = Q{ίφr)\ hence, / = Σ / J ^ / = αr < 0.

(iii) One has a < x° = β (thus /° is empty) and ar > 0 for some
r G 7°. Then choose y r = 1 and y; = (/' Φ r) so that / = ar > 0.

4.20. Consider the case that 7° is empty, that is, Ax° > b. Then
Ax > b holds for all x in a sufficiently small neighborhood of x 0 ^
showing that x° cannot possibly be a unique solution of (4.1), (4.2),""
which must mean that either (i) or (ii) is false. Indeed, A0 is not a
matrix of uniqueness unless possibly J° is empty, (see 4.4). But in
the latter case, (i) is false. Namely, (i) with 7° empty would imply
that fj = 0 for all jeJ, thus, that Jo = Jφ0.
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4.21. Proof of Theorem 4.15. Sufficiency. Suppose x° satisfies not
only (4.1), (4.2) but also (i) and (ii). Consider any solution x of
(4.1), (4.2). Multiplying (4.1) by yι > 0 and summing, and using
(4.16), one finds that f(x) := Σj fjχj > Σ / ^ Λ = f(χ0) > a n d t h u s >
Σj fji*® - xj) < 0. But, in view of (4.2) and (4.17), each term in the
latter sum is nonnegative. Consequently, Xj = xj whenever f} Φ 0,
that is, whenever j' $ J°. This already implies the uniqueness of x°
when J° is empty.

Otherwise, it suffices to prove z = 0 with z as the restriction of
x - x° to J°. In fact, Σj aijχj > bi = Σ ; <*ijXj > f o r e a c h * e 7°.
We already know that Xj = x®, for j φ. J°, and hence A°z > 0. But
this implies z = 0 since 4̂° is a matrix of uniqueness.

4.22. Necessity. The necessity of condition (ii) was already estab-
lished in 4.18. It remains to show that (4.16), (4.17) hold for some
vector / = (/i, . . . , / „ ) . The proof will be by induction with respect
to n = \J\. The case n = 0 is trivially true, while the case n = 1 was
verified in 4.19.

Decreasing Xj, α7 and βj by xj (j e J) and decreasing bi by
Σjauxj (* £ Ό> o n e m aY without loss of generality assume that
x° = 0. Thus, x° = 0 is the unique solution of (4.1), (4.2). Therefore

<*j<0< βj U e / ) ; /° = {j G / : α ; < 0 < jS7};

i / < 0 ( / e / ) ; 70 = {/e7 Λ = 0}.

We first observe that x° = 0 is also the unique solution of (4.2)
together with the (homogeneous) system

(4.23) Σ*ijXj>0 for all ι e 7°
jeJ

(itself a subsystem of (4.1)). For, otherwise, there would exist x Φ 0
satisfying both (4.2) and (4.23). Since b\ = 0 (/ e 7°) and bj < 0 (i ^
7°), x' = /?x = (1 - p) - 0 + px would satisfy both (4.2) and the full
system (4.1), as soon as 0 < p < 1 is sufficiently small. But then
x° = 0 would not be the unique solution of (4.1), (4.2).

The just established uniqueness property says that K n Q = {0},
where

K = Ix e Rn:J2auxj > °> f o r a11 i e 7° |

and
Q = {xe Rn: aj < Xj < βj, for all j e J}.
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Here, K is a closed and convex cone in Rn, possibly of the form
K = {0}. Further Q is a closed and convex subset of Rn having a
non-empty interior int(Q) (because aj < βj for all j eJ). One can
separate K and Q by a hyperplane as soon as K is disjoint from
int(β).

First, consider the case that K is not disjoint from int(β). Since
K Π Q = {0}, this is equivalent to 0 G int(β), that is, α ; < 0 < βj
for all j G J equivalently, J° = J. But then property (i) holds with
)>i = 0 for all i el\ thus, /} = 0 for all j e / .

It remains to consider the situation that Kπint(Q) is empty. Then
there exists a hyperplane H = {x G Rn:Σj fjχj = 0} * n ^ " λvith
/ = (fι, ... , fn) non-zero such that Γ̂ is a subset of //+ = {x G
i?«: £ \ /7JC ; > 0} and Q is a subset of //_ = {x e Rn: Σj fj*j < °}
From a classical result, see Gale [3], p. 44, the fact H+ D K implies
that there exist numbers j// (iel) as in (4.16).

Next, the fact H- D Q means that α ; < x7 < βj (j e J) implies
Σj fjχj ^ 0 Recall that a) < 0 < βj (j e / ) . Choosing all but one
Xj equal to zero, we have, for each j e / , that α7 < Xj < βj implies
fjXj < 0. Equivalently,

fj < 0 implies α ; = 0 /) > 0 implies βj = 0.

Since J° = {j e J: aj < 0 < βj}, it follows that

JDJ/DJ0, where // = {j e J:fj = 0}.

Note that // is a proper subset of J since fjφO for at least one
j e J. The required property (4.17) (with xj = 0) holds as soon as
Jf = J°. In particular, one is ready if // is empty. However, it is
quite possible that // is strictly larger than J°, that is, there might
exist indices j G / , such that // = 0 and either α7 = 0 or βj = 0.

Since χ9 = 0 (j e J) is the unique solution of (4.2), (4.23), it
follows that xj = 0 (j e J) is certainly the unique solution of (4.2),
(4.23) but with / replaced by the proper subset // of / . Therefore,
our induction assumption implies the existence of numbers z, > 0 (/ e
I) with Zj = 0, for / $ 1°, such that the associated numbers gj =
Σi Ziβij U e /) satisfy

(4.25) gj<0ifaj = 0 9 gj >0 if βj = O\ gj = 0 if αy < 0 < βj,

provided j e Jf. Now let p > 0 be small and consider ηt =
yι + pzt (i G /) and the associated numbers φj = Σi Άi^ij = fj> + PSj
(j G / ) . One has ηt > 0 (/ G /) and ηt = 0 (i e 7°). Choosing
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p > 0 sufficiently small, one has fj + pgj < 0 when f}< 0 and fj +
pgj > 0 when // > 0. Using (4.24) and (4.25), one now easily veri-
fies that (4.16), (4.17) are true for yt replaced by ηt (i e I) and fj
replaced by φj (j e J). This completes the proof of Theorem 4.15.

4.26. REMARK. Another necessary and sufficient condition for the
uniqueness of the solution x° of (4.1), (4.2) would be the existence
of a vector / = (/ί, . . . , fn) as in (4.16) satisfying

xj = aj if fj < 0; JCJ = βj if fj > 0; and

A-f = (dij i e 1° fj = 0) is a matrix of uniqueness.

In particular, J° is a subset of Jf = {/ e J fj? = 0}. The necessity
follows from Theorem 4.15 which shows that one can even attain that
/ / = /O. The sufficiency follows by the same reasoning as before, see
4.21.

4.27. THEOREM. Let x° e Rn satisfy

(4.28) aj < Xj < βj (j e J).

Let further J° = {; e J:otj < xj < βj}. Then in order that x° be
uniquely determined by the vector Ax° together with the bounds (4.28),
it is necessary and sufficient that (i) Some linear combination

(4.29) fj = Σy^J (yteR iel)
iel

of the rows of A has property (4.17).
(ii) The submatrix A0 = (au iel'JeJ0) of A has full rank \J°\.

Equivalently, if Az = 0 and Zj = 0 for j £ J° then z = 0.

4.30. Proof. Apply Theorem 4.15 with A replaced by B = (_^)

and b replaced by ( *b) with b = Ax°. Presently, 7° = / . The

matrix B° associated to B is a matrix of uniqueness if and only if
A0 has rank|/° | (see 4.10).

4.31. COROLLARY. Let x°eRn satisfy

(4.32) xje{aj9βj}9 foralljeJ.

Then in order that x° be unquely determiined by the vector Ax° to-
gether with the conditions (4.28), it is necessary and sufficient that there
exists a linear combination as in (4.29) such that

(4.33) fj < 0 ifXj = aj fj > 0 ifxj = βj.

In particular, fj φθ for all j e / .
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4.34. REMARK. Theorem 4.27 and Corollary 4.31 remain valid
when / is infinite, provided we add to (4.29) the condition that y\ = 0
for all but finitely many i e I. In such a situation, the condition
Ax = Ax° amounts to an infinite system of equalities.

It suffices to show that (i), (ii) are necessary. For each finite subset
H of / , let DH be the closed convex set consisting of all x e Rn satis-
fying (4.28) and Σ / aijχj = Σj aUxj > f o r e a c h i^H. Assuming that
f]HDH = {x0}, it suffices to show that H exists with DH = {x0},
that is, dim DH = 0. Let H* be such that dimDH* = inf# dim DH .
One easily verifies that DH = DH* for each H D H* implying that
DH* — Γ\H^H = {*°} Consequently, if x° is a vector of unique-
ness relative to (4.1), (4.2) then also relative to (4.2) together with a
suitably chosen finite subsystem of (4.1).

4.35. REMARK. Relative to the prescribed m x n matrix A = (α ί ;)
and extended real numbers α 7 , βj (aj < β} \ j E / ) , let us say that
x° e Rn is a vector of uniqueness if it satisfies (4.28) and moreover,
there is no other vector x satisfying (4.28) and Ax = Ax°. If, in
addition, x° satisfies (4.32), then we will say that x° is a special
vector (of uniqueness). Corollary 4.31 amounts to a recipe for finding
all such special vectors x. Namely, define Xj = α7 if f} < 0 Xj — βj
if fj > 0 with / as any linear combination, as in (4.29), such that
fj Φ 0 for all j e J\ (α, finite if fj < 0 βj finite if /} > 0). In
many applications, such a sequence {/}} has only a limited number
of changes of sign thus severely limiting the possible special vectors
JΓ°

4.36. As is often true, suppose there exists z e Rm such that

(4.37) Wj := Σ ziaU > ° f o r a 1 1 J e J-
iei

Then an equivalent recipe would be to define

(4.38) xj = aj iϊfj < 0; Xj = βj if fj > 0, for all j e /.

with / as any linear combination, as in (4.29), such that α7 is finite
when fj < 0 βj is finite with f} > 0.

We already know that every special vector (of uniqueness) can be
realized in this manner even with fjφO for all j € J. That every
vector of the type (4.38) (with / as indicated) is a vector of unique-
ness can be seen either by an easy direct proof (analogous to the proof
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of Lemma 2.14) or else by introducing φj = fj + pwj (j e J) with
p > 0 so small that /} < 0 implies φj < 0).

4.39. Measures determined by their marginals. Here, we change
some of the previous notations. Let X be a fixed finite non-empty set
and let πy.X —• Y, (j e /) be given mappings, (where / can have
any cardinality). Let further — oo < a(x) < β(x) < +oo, (x e X), be
given extended real numbers and let

(4.40) Mo = {φ: X -> R such that

<*(x) < φ(x) < β(x), for all x e X}.

Each such φ e MQ can also be regarded as a finite signed measure
μ on X with mass μ({x}) = 0(x) at x € I . The associated
π/-marginal (of φ or μ) is given by

The following result characterizes the φ G MQ which are uniquely
determined by these marginals.

4.42. THEOREM. Suppose X is finite. Let φeM0 and put

(4.43) X° = {xe X: a(x) < φ(x) < β(x)}.

In order that there exists no other ψ e MQ having the same marginals
as φ, // is necessary and sufficient that:

(i) There does not exist any non-zero function h:X —> R which
is supported by X° (that is, h(x) = 0 if x £ X°) and has all its
marginals equal to zero.

(ii) There exists a function f:X -+ R of the special form

(4.44) f(χ) = £ fjiπjx) with fμ Yj ->R(jeJ),

with only finitely many non-zero functions fj, and such that

(4.45) f{χ) < 0 ifφ(x) = a(x) f(x) > 0 ifφ(x) = β(x)

f{x) = 0ifxe X°.

4.46. Proof. Apply Theorem 4.27, extended as in Remark 4.34. In
the previous discussion, replace J = {I, ... 9 n} by X J° by X°
j by x ; x7 by φ{x)\ OCJ by α(x) and βj by jS(x). And finally
replace the index set / by the set of pairs (j, y) where j e J and
y € Yj. In view of (4.41), the condition that φ and ψ have the
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same marginals is analogous to Ax° = Ax with A as a matrix (one
row for each choice of j e / and y e Y}•; if / is infinite then there
are infinity many rows). Clearly, the matrix element ci(j9y),χ which
corresponds to the pair of indices (j, y) e / and x e X, equals 1
if πjX = y and equals 0, otherwise. Therefore, (4.29) now takes the
form (4.44), while condition (4.17) of Theorem 4.27 takes the form
(4.45). Finally, the present condition (i) is precisely condition (ii) of
Theorem 4.27.

4.47. Additive sets. For convenience assume that a(x),β(x)
{x e X) are finite. Call φ:X -+ R special if φ(x) e {a(x), β(x)}9

for all X G I , and further no other ψ € MQ has the same marginals
as φ. From Theorem 4.42, φ:X —> R is special if and only if

(4.48) φ(x) = a(x) if f{x) < 0 φ(x) = /?(*) if / (*) > 0,

for some f:Y -+R of the form (4.44) and such that f(x) Φ 0 for all
xeX.

As an equivalent criterion, φ:X -> R is special if and only if

(4.49) φ{x) = α(jc) if f(x) < 0 φ(x) = jί(x) if /(x) > 0,

for some f:X -> R of the form (4.44). This follows from Remark

4.36. After all, Σyau,y),χ = ^ > ^ 0 Γ a ^ ^ a n ( ^ x s o ^ a t c o n dit ion
(4.37) is satisfied.

The case a(x) = 0 β(x) = q(x) can be stated as follows, showing
that the converse of Lemma 2.14 holds when X is finite. For the case
that X and the π, are as in Example 2.7, the result is largely due to
Fishburn et al. [2].

4.50. THEOREM. Let S be a subset of X, where X is finite. Then
the following are equivalent

(i) S is a set of uniqueness.
(ii) S is additive, that is, S = {x e X:f(x) > 0}, for some

feF(S), see Definition 2.11.
(iii) S = {x € X:f(x) > 0} for some f:X -* R of the form

f{χ) = ΣjeJ fj(πjχ) > with aM but finitely many fy. Yj -• R equal to
zero.

(iv) Same as (iii), except that we require in addition that f(x) Φ 0,
for all x eX.

4.51. REMARK. The reader should keep in mind that, when X is
finite, there may exist subsets S of X such that, for no other set T



SETS OF UNIQUENESS 301

does lτdλ have the same projections as Isdλ, while nevertheless
φ = Is is not a (special) vector of uniqueness; (this cannot happen in
the situation of Example 2.6, see [1], [4]). From Lemma 2.14, such a
set S cannot possibly be additive. Natually, the explanation is that
in such a situation there exists a function ψ: X —> R, not of the form
ψ{x) € {0, 1}, such that ψdλ has the same projections as l$dλ.
An example of such a set S was given in [2]. It uses the structure of
Example 2.7 with n = 3; \S\ = 66 and X = {1, 2, 3, 4, 5}3 thus

= 125.
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