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AN INTRINSIC CHARACTERIZATION
OF A CLASS OF MINIMAL SURFACES

IN CONSTANT CURVATURE MANIFOLDS

GENE DOUGLAS JOHNSON

Let X be an iV-manifold of constant sectional curvature. A class
of minimal surfaces in X, called exceptional minimal surfaces, will
be defined in terms of the structure of their normal bundles. It will be
shown that these surfaces can be characterized intrinsically in a way
that generalizes the Ricci condition for minimal surfaces in Euclidean
3-space. It will also be shown that these surfaces are rigid when N
is even and belong to 1-parameter families of isometric surfaces when
N is odd.

0. Introduction. Let XN(c) denote an TV-dimensional manifold of
constant sectional curvature c, and suppose that M is a minimal
surface in XN{c) with Riemannian metric ds2 and Gauss curvature
K. The classical theorem of Ricci, as extended by Lawson [3], says
that when N = 3 minimal surfaces of X3(c) are characterized by
the conditions that K < c and at points where K < c the metric
ds2 = yjc — k ds2 is flat. Moreover, for each minimal surface M in
Z 3 ( c ) , there is a 1-parameter family of isometric minimal surfaces
Mτ, 0 < τ < 2π, such that M is congruent to one of the members
of this family.

This paper will describe a class of minimal surfaces in XN{c), called
exceptional minimal surfaces, and a sequence of functions A\,AC

2, . . .
on each surface such that when N = In +1, these surfaces are charac-
terized by the conditions that Ac

r > 0, 1 < r < n, and at points where
each Ac

r > 0, the metric ds2 = (Ac

n)
ι^n+ι^ ds2 is flat. This reduces

to the Ricci-Lawson condition when n = 1, in that A \ = c - K. The
exceptional minimal surfaces in X 2 w + 1(c) will be seen to belong to
1-parameter families of isometric surfaces, just as happens in X3(c).

In X2n+2{c), the exceptional minimal surfaces will be characterized
by the conditions that Ac

r > 0, I <r < n9 and Ac

nJrl = 0. Addition-
ally, in X2nJr2{c) the exceptional minimal surfaces will be rigid. These
results given here for the case where N = 2n + 2 are actually implicit
in [2], although they are stated there in terms of minimal immersions
of the 2-sphere S2 into X2n+2(c).
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Sections 1 and 2 summarize the structure equations for minimal
surfaces and some results from [2] that are needed here. Section 3
contains the statements of the theorems, which are proved in §§4 and
5. Section 6 contains two corollaries on isometric minimal surfaces.

1. Structure equations of surfaces. Suppose M is a Riemannian
surface with Gauss curvature K. Let e\ ,e2 be a local orthonormal
frame field on M, and let θ\, θ2 be the coframe dual to e\, e2. Then
the structure equations of M are

(1) dθ\ =ωi2Λ02> dθ2 =-(O12ΛΘ2, and dω\2 = -KθιΛθ2,

where ω\2 (= -ω2\) is the connection form on M, and K is the
Gauss curvature of M.

If /: M -• R is a smooth function, let /1, /2 be given by

df = fχθι+f2θ2.

Taking the exterior derivative of this expression and applying Cartan's
Lemma gives fn , fn, /21, and f22, with / π = /21, such that

dfl + flCOn = /2101 +

If Δ is the Laplace-Beltrami operator of M, then Δ/ =
Let β/ = (/1 + //2)/2 and ^ = 0i + /02. Then

(2) Δ/9? Λ φ =

Note that this is not the usual d -operator. If z = x + iy gives local
isothermal coordinates on M\ then there is a positive function λ
such that ds2 = λ2\dz\2. The 9 defined here is λ times the usual
^-operator.

2. Structure equations and normal planes. Suppose M is a minimal
surface in XN{c). When clear from context, this latter manifold will
be denoted simply as X. Assume that M lies fully in X, i.e., does
not lie in a totally geodesic submanifold of X. Let the integer n be
given by N = 2n + 1 or In + 2, and let indices have the following
ranges unless otherwise indicated:

1 < 7 , f c < 2 , 3<a, β <N, 1<A,B,C<N,

1 <P, Q,r < n.

(The symbol i will be reserved for Λ/—T.)
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Let eA be a local orthonormal frame field on X, and let ΘA be the
coframe dual to 8A Then the structure equations of X are

(3) dθA = 7 &>AB Λ ΘB and dώAB = > ώ/*c Λ ώr# — cθA Λ ##

where the ώAB (= -ώBA) are the connection forms on X. If ( , •)
is the Riemannian metric on X, then ώAB = (rfe^, eB).

Suppose that ^i, 2̂ is a frame on M as described in the previous
section and that the frame eA is chosen so that on M, βj = βj,
and the ea are normal to M . Then differential forms on M can be
identified with differential forms on X restricted to M:

θj = ΘJ\M and ω\2 = C&ΠIJI/.

To simplify the notation, when forms and vectors on X are restricted
to M, let them be denoted by the same symbol without tilde:

ΘA will denote ΘA\M ,

ωAB will denote &>AB\M, and

eA will denote ^ | M

Then θa = 0 on M since the eα are normal to M. When the rela-
tion dθa = 0 is expanded using the structure equations (3), Cartan's
Lemma can be applied to show that there are functions hajk such that

(4) ωaj = Σ hajkθk, hajk = hakj.
k

The hajk are the coefficients of the second fundamental form. The
assumption that M is a minimal surface is equivalent to assuming
that the second fundamental form has zero trace:

(5) han+ha22 = 0.

Let TXM and TXX denote the tangent space to M and X, respec-
tively, at a point x. Curves on M through x have their first deriva-
tives at x in TXM, but higher order derivatives will have components
normal to M. The space spanned by the derivatives of order up to
r is called the rth osculating space of M at x, denoted T^M. If
for all r, T^M § TXX at all x in a neighborhood of M\ then that
neighborhood would lie in a totally geodesic submanifold of X ([4],
p. 241). The assumption that M lies fully in X means that for some
r, TJcr)M = TXX at generic points of M.
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The rth normal space of M at x, denoted Nor^Af, is the orthog-
onal complement of T^M in T^ι)M, so

The results in §2 and §3 of [2] show that at generic points of M, the
dimension of Nor^Af is 2 when 1 < r < n - 1, and the dimension
of Nor^Af is 1 or 2, depending on whether N is odd or even. Those
normal spaces that have dimension 2 will be called the normal planes
of M. Let βπ denote the number of normal planes possessed by M
at a generic point:

βN = _ __

Choose the normal vectors ea so that Nor^Af is spanned by

{e2r+i, *2r+2>, 1 < r < βN. When N = 2n + 1, Nor^Af will be

spanned by {e2n+\}. The derivatives of vector fields in T^M must

lie in Tχ+{>}M, so de2r-\ and de2r cannot have any eα components

for α > 2r + 2. Since ctf̂ # = (deA, ^5) and CUAB
 = ~~ωBA ?

^2r-i ,4 = <̂ 2r,Λ = 0 when A > 2r + 2 and when A < 2r - 3.

When r = 2, these relations imply that

(6) hajk = 0 when a > 4.

Set //α = ha\ι + iha\2 for α = 3 and 4. Then using (5), (6), and the
form φ = θ\ + iθ2, equations (4) can be written

ωa\ + iωa2 = Haψ for a = 3, 4,

ω α 7 = 0 for α > 4.

Now applying the structure equations (3) to the relation ω$\+iω$2 = 0
leads to

(i/ 3 ω 5 3 + H4ω54) Λ ψ = 0.

So for some /is,
//3CU53 + //4CU54 = H$φ,

Applying this argument inductively to the relations

G>2r+l,2r-3 + ^2r+l ,2r-2 = 0?

for r = 2, . . . , n, produces Ha such that

(7) H2r.
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for a = 2r + 1 and 2r + 2. This relation extends to the case where
r = 1 by setting H\ = 1, and Hi = /•.

The rth normal plane, Noii^Af, of M will be called exceptional if
/72r+2 = ±iHir+\. (Note that the sign can be reversed by reversing the
orientation of N o r ^ M . Note also that when N = In + 1, Nor?}Λf
is a line, not a plane, and the notion of exceptionality does not apply.)
The minimal surface M will be called exceptional if all of its nor-
mal planes are exceptional. Minimal immersions of the 2-sρhere S2

into X2n+2{c) are always exceptional [2]. (These surfaces are called
"superminimaΓ by Bryant [1].)

For the remainder of this paper, assume that M is an exceptional
minimal surface. The orientations of the normal planes of such a
surface can be chosen so that Hιr+2 = +iHιr+\ for 1 < r < /?#.
Then equations (7) become

(8) #2r-

for r = 1, . . . , βx, together with

when N = 2n + 1.

3. The theorems. For each real number c, the quantities Ac

p are
defined as follows:

Ac

0 = 1/2 for all c,

i f Λ £ > 0 ,

), otherwise.

THEOREM A. Suppose M is an exceptional minimal surface lying
fully in XN(c). Let K denote the Gauss curvature of M, ds2 its
Riemannian metric, and let n be given by N = 2n + 1 or 2n + 2.
Then Ac

p > 0 for 1 < p < n, with equality only at isolated points.
If N = 2n + 2, then Ac

n+X = 0, and if N = 2n + 1, then at points
where each Ac

p>0, the metric ds2 = (A^)ι^n+ι^ ds2 is flat (has Gauss
curvature K = 0).

THEOREM B. Suppose M is a smooth Riemannian surface with
Gauss curvature K and Riemannian metric ds2. Suppose Ac

p > 0
for 1 < p < n in some neighborhood of x0 e M. If Ac

n=ι = 0, set
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N = 2n+2. If the metric ds2 = (A€
n)

ιKn+V ds2 is flat, set N = 2n +1.
Then there is a neighborhood U of Xo and an isometric immersion
f: U -* XN{c) such that f(U) is an exceptional minimal surface
lying fully in XN(c).

The theorems will be proved in §4 and §5. Both proofs will use the
following:

LEMMA. The condition that ds2 = (Ac

n)
ι^n+ι^ ds2 should be flat is

equivalent to

(10)

Proof. Recall that if ds2 = λ2\dz\2 for isothermal coordinates z =
x + iy, then the Gauss curvature is given by K = -ΔlogΛ,. If ds2 =
{Ac

n)
ιH»+V ds2 = λ2(Ac

nyttn+V\dz\2, then K = K-[Mo%{Ac

n)]/2(n+l)
so K = 0 if and only if (10) holds. D

4. Proof of Theorem A

LEMMA 4.1. If M c XN{c) is an exceptional minimal surface, then

(11) dωlr-li2r = 2[|/f2r+1 |
2/|^2r-l|2 - |//2r-l|2/l^2r-3|2]^l Λ θ2

for r = 2, ... , /?ΛΓ , whenever the denominators are not zero.

Proof. From the first equation in (8),

#2r-l(G>2r+l,2r-l + iθ)2r+\ ,2r) Λ //2r_i(a>2M-l ,2r-l ""

= -H2r+\H2r+l<P Aψ.

Since φ Λψ = -2iθ\ Λ 02 > this implies that

(12) ω2r-l,2r+l Λω2r+l,2r = [|^2r+l|2/|^2r~l|2]01 Λ

Similarly,

(13) ω2,-l,2r+2Λω2r+2,2r = [\Hlr+i\2l\H2r-l\2]θχ Λ

From (8) with r replaced by r - 1,

The real part of this expression simplifies to

r-1, 2r~3 Λ ω 2 r -3, 2r + ω 2 r -1, 2r-2 Λ ω 2 r-2, 2r

Now (11) follows from the structure equation (3) for dω2r-\i2r and
from (12), (13), and (14). ' D
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L E M M A 4.2. For each r = 1 , . . . , / ? # + 1 , there is a G2r-\ such that

(15) dH2r-\ + iH2r-i(rωi2 - ω2r-i,2r) =

Proof. When r = 1, Hx = 1, so Gλ = 0. Suppose (15) holds
when r = p. Set r = p in the two equations in (8) and take their
exterior derivatives using the structure equations (3). (Note that dψ =
iω\2Λψ.) In both cases, the result is

{dH2p+i + iH2p+ι[{p + I)α>i2 - ω2p+ϊf2p+2]}Λψ = 0,

so for some G2p+\,

dH2p+i + iH2p+λ[{p + I)ωi2 - ω2/?+i,2/7+2] = <?2/>+i^

and the lemma follows by induction. D

COROLLARY. If H2r-\ is not identically zero, then its zeros are iso-
lated.

Proof By (15),

dΈ2r-X - iΉ2r-i(rωi2 - ω2r-i,2r) = 0 (modp),

and the corollary follows from the theorem in §4 in [2]. D

LEMMA 4.3. If M c XN(c) is an exceptional minimal surface, then

(16) ^ = 2 2 - 1 | i / 2 r + 1 | 2 , r = 09...,βN9

and the zeros of each Ac

r are isolated.

Proof. The preceding corollary shows that the zeros of Ac

r are iso-
lated whenever (16) holds. Clearly (16) holds when r = 0. To show
(16) when r = 1, note that the structure equations (1) and (3) give
two ways of computing dω\2:

4

dω\2 = -Kθ\ Λθ2 = Σ ωiλ A coa2 - cθ\ Λ θ2.

Expanding the summation using equations (8) with r = 1 and then
extracting the coefficients of θχAθ2 yields

Now proceed inductively: suppose that for some p, (16) holds for
r < p. If Ac

p_x = 0, then Ac

p = 0 by definition. Also, -Hip-i = 0 by
(16), so H2p+ι = 0 by (8), showing that (16) holds for r = p. Since
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the zeros of the A's propagate along the sequence, the only other case
to consider is Ac

 2 ψ 0 and Ac

 x φ 0. By Lemma 4.1,

(17) p p p

Using this, the exterior derivative of (15) when r = p is

(18) {dG2p-ι + iG2p-ι[(p + \)ωn - ω2p-l>2p]} Aψ

-Ac

p_1/A<p_2 + 2pK]θιAθ2.

By Lemma 4.2, the exterior derivative of Ac

p_χ = 22p~3H2p-\ϊϊ2p-ι
is

(4_! ) i0 i + (Ac

p_x)2θ2 =

Wedging this with φ and comparing coefficients of iθ\ A θ2 yields

(19)

By (2), (15), and (19),

(20) AAc

p_ιφAψ =

x {dG2p-\ + iG2p-ι[{ρ

A φ + 22p-ι\G2p-ι\2φAψ.

Note that by (19) and the inductive hypothesis,

Combining this with (20) and (18) shows that

+ \\dAc

p_ι\\2l2Ac

p_ι.

Thus,

= Ac

p_λ[Mog{Ac

p_x) + Ac

p_xIAc

p_2 - 2pK]
p

— Λ c

completing the induction. D

To finish the proof of Theorem A, consider first the case N = 2n+2.
Calculations analogous to those in the proof of Lemma 4.1 show that

- l \2]ΘX Λ θ2 = -\Ac

nl2Ac

n_χ\dχ Λ θ2.
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Using this in the proof of Lemma 4.3 with p = n + 1 shows that

= Ac

n[Alσg{Ac

n) + Ac

n/Ac

n_x - 2{n + \)K] = 0.

The proof of Theorem A when N = 2n + 1 follows by modifying
the arguments in the proofs of the lemmas to apply to (9) instead of
(8). Using (9) in the proof of Lemma 4.1 when r = n yields

dω2n-U2n = 2[\H2n+ι\
2/2\H2n.ι\

2 - \H2n_{\
2/\H2n_3\

2]θ{ Λ θ2.

The proof of Lemma 4.2 applied to (9) implies that for some G2n+\,

dH2n+ι + iH2n+x{n + l)ωn =

The proof of Lemma 4.3 when p = n shows that

AC __ <y2n-2\ττ ι2
Λ n ~~ z | < " 2 Λ + 1 |

so that

12 = i= i[AcJAc

n_1-Ac

n_ι/Ac

n_2]θιΛθ2.

Using this, the proof of Lemma 4.3 can be repeated again with ap-
propriate modifications when p = n + 1 to show that Δlog(^4£)-
2(n + \)K = 0. By the lemma in §3, rfi2 = (Λg)1/(Λ+1)<fa2 is flat. D

5 Proof of Theorem B. Let F(M) and F(X) denote the bundles
of orthonormal frames on M and X, respectively. Consider the
manifold

P = F(M) x F(X) x C2w

where C2n has coordinates (i/3 5 . . . > fl^π+i > ^3 * > ^2^+1) Use
the projections %\\ P-+F{M) and π2: P-+F(X) to pull the forms
θj?, ω π , β^, and ώ^^ back to P , and let the pulled-back forms be
denoted by the same symbols. For example, the pull-back π\(θj) will
be denoted simply θj. Let / denote the ideal of differential forms
on P generated by the following 1-forms:

θj - θj, θa, ώi2 - ω i 2 ,

and ώ2ryA for 1 < r < βN,

and A > 2r + 2 or A < 2r - 3,

r-ι + iώ2r+2y2r) - iH2r+xφ, l<r<βN,

iH2r+i[(r+ l)ωn - ώ 2 r +i,2r+2] - G2r+Xφ\

0<r<βN,
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together with the forms

dH2n+ι + iHln+\{n + l)ωϊ2 - G2n+ιΨ,

when N = 2n + 1. Let <2 be the submanifold of P determined by
the relations

(21) Ac

r = 22r~ι\H2r+i\
2 and ΘAc

r = 2 2 ^ 1 F 2 r + 1 G 2 r + 1

for l < r < β N ,

together with

(22) ^ = 2 2 "- 2 | / ί 2 π + 1 | 2 and ΘAc

n = 2 2 w - 2 F 2 r t + 1 G 2 π + 1

when iV = 2n + 1. Lengthy calculations (most of which are outlined
in §2 and §4) show that if N = 2n + 2 and Ac

n+ι = 0, or if N = 2n +1
and Δlog(^) - 2{n + \)K = 0, then / is a closed ideal in Q, i.e.,
if η € I, then dη e I. Choose an initial point of Q by choosing
initial points Xo e M, yo e X, initial frames £/ and e^ 9 and initial
values of the i/'s and G's that satisfy (21) and (22) at x0. By the
Frobenius Theorem, there is a submanifold S c Q passing through
this initial point such that all forms in / are zero on S.

When N = 2n + 2, dimQ = 2n2 + 6n + 6 and there are 2n2 + 6n + 3
independent 1-forms in / , so dimS = 3. By a standard argument
([5], pp. 73-77) the restricted projection π\\s is locally a diffeomor-
phism from S to F(M). More precisely, there is a neighborhood
V c S and a neighborhood W c F(M) containing (JCO , e\, e2) such
that π\\y: V -+ W is a diffeomorphism. Define /L: Ĥ  —• F{X) by

Let / * ( x , ^ i 5 ^ 2 ) = ( } ; ^ i J ^ 2 5 . . . ,^2>2+2) for (x9eΪ9e2)e W. I f/*

is a bundle map, then it projects down to a map f\U-^X where
C/ c M is a neighborhood of Xo. The forms in / were chosen so
that / would be an isometry (0Z = /*(#/), where f* is the pull-back
induced by / ) and so that f(U) would be an exceptional minimal
surface. Note that since Ac

r > 0, 1 < r < n, each i/2 r+i Φ 0 by (21),
so /(I/) lies fully in X 2 / ί + 2 (c).

To show that /* is a bundle map, let a be a complex number with
absolute value 1 and consider the action on P given by

e\ + ie2 -> a(eχ + ie2),
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with x e M, y e X, and the i/'s unchanged. This induces the
following action on forms:

01 + 102 -> 0(0i + I02) ,

where

*/p,<7 = &2p-l92q-l

The forms ω\2 and &2r+i92r+2 are unchanged. Also,

d->ad.

The submanifold Q and the ideal / are invariant under this action,
so the integral submanifolds of / are also invariant. It follows that
/* is a bundle map, which completes the proof when N = In + 2.

When N = 2n+l, dimQ = 2n2+4n+4 and there are 2n2+4n+2
independent 1-forms in /, so dim*S = 2. The initial conditions are
such that 0i Λ 02 φ 0 at the initial point and therefore in a neigh-
borhood of the initial point. Thus, there are neighborhoods V c S
and U cM such that projection from S to M is a diffeomorphism
from V to U, and / can be defined as the inverse of this projection
followed by the projection from S to X. As in the previous case, /
is an isometry and f{U) is an exceptional minimal surface lying fully
in X2n+\c). D

6. Isometric exceptional minimal surfaces.

COROLLARY 6.1. Suppose M\ and M2 are exceptional minimal sur-
faces lying fully in X2n+2(c). If M\ and M2 are isometric, then they
are congruent.

Proof. The surfaces M\ and M2 are real analytic, so it suffices to
show that they are locally congruent. By Theorem A, Ac

n+ι = 0 and
there are isometric neighborhoods U\, U2 in M\, M2, respectively,
on which Ac

p > 0, 1 < p < n. Let g: U\ -+ U2 be the isometry
and let eJ

A denote frame fields on X adapted to £/, such that έ% =
g+($l). These frames determine HJ

2r+χ and G^r+1 as in §2 and §4, and
thus determine submanifolds of P that are integral manifolds for the
ideal / . Since that ideal satisfies the Frobenius condition, its integral
manifolds are completely determined by initial conditions. Let X\ e
U\ and x2 = g(x\) e U2 be the initial points. The H's and G's
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satisfy (21), so for each r there is a value of τ such that at the initial
points, Hl+ι = eiτH\r+ι and G\γJrX = eiτG\rJrl . By (8), rotating the

vectors e\rJrX, e\rJrl counterclockwise in Nor^Mi through an angle

- τ changes H\r+λ to e~iτH^r+ι. By (15), this rotation changes G\r+X

to e~iτG\rJtl. It follows that the normal vectors e\ can be chosen so

that H}r+ι = fl|r+1 and G\r+ι = G\γJrX at the initial points. With

this choice of the frame e\, an isometry of X that takes X\ to X2

and e\ and ̂  will take U\ to C/2 and therefore M\ to ¥ 2 . D

COROLLARY 6.2. Suppose M is an exceptional minimal surface
lying fully in X2n+ι{c). Then there is a l-parameter family Mτ>

0 < τ < 2π, of exceptional minimal surfaces in X2n+ι(c) such that
every exceptional minimal surface in X2n+ι(c) that is isometric to M
is congruent to some Mτ.

Proof. As in the proof of the previous corollary, different excep-
tional minimal surfaces in X2n+ι(c) that are isometric to M can
only arise through a choice of different initial conditions, and choosing
different initial values for H$, i/5, . . . , i ί ^ - i > G3 > ^5 > ? Gin-i is
equivalent to choosing different initial normal vectors £3, . . . , em As
for H2n+\ and G^w+i, they can be replaced by eiτH2n+\ and eiτG2n+\
in (22), but this is not equivalent to a rotation in Nor* M , which is
1-dimensional. Thus, an integral manifold for the ideal / is deter-
mined by initial points in M and X2n+X{c), initial frames ej and
§A , and one value of τ to determine the initial values eiτH2n+ι and
eiτGln+\. Varying τ will produce a l-parameter family Mτ of mini-
mal surfaces and every exceptional minimal surface in X2n+ι(c) that
is isometric to M will be congruent to a member of this family. D

Added in proof. When N is even, my exceptional minimal surfaces
are also known as isotopic minimal surfaces. See [6] for an alternate
definition in this case.
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