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HIGHER HOMOTOPY COMMUTATIVITY OF //-SPACES
AND THE MOD/7 TORUS THEOREM

YUTAKA HEMMI

The concept of the C-space by F. Williams is generalized to the
one defined on the category of higher homotopy associative //-spaces.
This generalized concept is used to obtain the mod/? version of the
torus theorem by J. Hubbuck.

1. Introduction. In 1969 J. Hubbuck proved the following theorem:

THE TORUS THEOREM ([7, Theorem 1.1]). Let X be a connected
finite CWJ-complex. If X admits a homotopy commutative multiplica-
tion, then X has the homotopy type of a torus.

The above property depends essentially on the mod 2 structure of
X. In fact, Hubbuck used the 2-localized ΛMheory to prove the above
theorem. Later J. Lin reproved the above theorem by using another
method. In the paper he gave the explicit mod 2 version of the above
theorem which is stated as follows:

THE MOD 2 TORUS THEOREM ([12, Theorem 1]). Let X be a sim-
ply connected CW-complex whose mod 2 cohomology H*(X;Z/2) is
finite. If X admits a homotopy commutative multiplication, then

H*(X;Z/2) = 0.

Beside the above theorem, Iriye and Kono [8, Th. 1.3] also showed
that the mod 2 structure is essential for the homotopy commutative
//-spaces. They proved that if p is an odd prime, then any /?-localized
//-space admits a homotopy commutative multiplication.

In this paper we describe the odd prime version of The Torus Theo-
rem. To do so we generalize the homotopy commutativity of //-spaces
to the higher ones. The concept of the higher homotopy commuta-
tivity was first introduced by M. Sugawara [21]. He used it to give a
criterion of a homotopy commutative //-space to be the loop space of
an //-space. Later F. Williams [25] considered another type of higher
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homotopy commutativity which is weaker than Sugawara's one. Both
concepts are defined on the category of associative //-spaces. We
generalize the concept of Williams to the one which is defined on
the higher homotopy associative //-spaces. We call these generalized
spaces the quasi Cn -spaces. In this sense if a space is a homotopy
commutative //-space, then it is a quasi C2-space, and if a space is
the loop space of an //-space, then it is a quasi C^-space. Then our
main theorem is stated as follows:

THEOREM 1.1. Let X be a simply connected CW-complex with the
finite mod/? cohomology H*(X Z/p) for a prime p. If X is a quasi
Cp-space, then

H*(X;Z/p) = 0.

In the above theorem, the condition Cp cannot be relaxed to Cp-\.
In fact we show in §2 that the /7-localized odd sphere S^1 is a quasi
Cp_i-space.

Now Theorem 1.1 implies The Mod 2 Torus Theorem since a ho-
motopy commutative //-space is a quasi C2-space (Proposition 2.3).
Furthermore since the loop space of an //-space is a quasi CVspace
for all n (Theorem 2.2), Theorem 1.1 implies the following theorem
which was originally proved by Aguade and Smith.

THEOREM ([2]). Let X be a simply connected CW-complex with the
finite mod/7 cohomology H*(X; Z/p) for an odd prime p. If X has
a homotopy type of the loop space of an H-space, then

H*(X;Z/p) = 0.

Recently McGibbon studied the higher homotopy commutativity of
Sugawara type. Then he got the similar results to Theorem 1.1 under
the assumption that X is a C^-space in the sense of Sugawara ([15,
Th. 3]). Since a Cp-space in the sense of Sugawara is also a quasi
Cp-space (cf. [15, Prop. 6]), Theorem 1.1 generalizes his result.

Now the explicit definition of the quasi Cπ-space is given in §2,
and we state in Theorem 2.2 that our definition generalize Williams'
one which is proved in §5. We also study the localized spheres as
the examples in §2. Section 3 is for the preparation of the proof of
our main theorem. We study the cohomology of the exterior An-
spaces. Then we generalize BorePs result about the primitivity of the
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generators of the cohomology of homotopy associative //-spaces. We
give the proof of our main theorem in §4.

This research was made while the author was visiting the University
of California, San Diego. The author would like to express his hearty
thanks to Jim Lin for his hospitality.

The author would also like to thank Chuck McGibbon for his help-
ful discussions.

2. Quasi Cj-spaces. In this section we define a quasi d-form on
an ^4n-space. We follow the techniques of Iwase [9] on ^-space.

Let X be an y^-space (n > 2) with the projective /-spaces XP{ί)
(i < ή) (see §5). Then XP(i)/XP(i - 1) is naturally homeomorphic
to Si Λ XΛ ( / ), where YA& is the ί-fold smash product Y Λ Λ Y
of a space Y. Since there is a natural homeomorphism Si Λ XA^ —•

(S1)AWΛXA® -±+ (Sι ΛX)AW -> (ΣΛΓ)AM, we have the induced map

pii XP{i) -> (ΣX)AW, where

λ{Sχ 9 . . . 9 S i 9 X ι 9 . . . , X i ) = ( S ι 9 X ι , . . . 9 S i 9 X i ) .

Let S?{ϊ) be the ith symmetric group. Then τe<9*(i) acts on YA®
by τ{yι9...9yί) = 0>τ-i(1), •••»V1!/))- Denote by (Γ)/ the /th
James reduced product space of Y.

DEFINITION 2.1. Let X be an ^-space (2 < n < +oo). Then a
quasi Cn-form on X is a family of maps {φc. (LX)f -> XP(i)}\<i<n

so that the following conditions are satisfied:
(1) 9>i=idΣ Λ r,

(2) 9i\pX)t-i = ϊi-iΛ-i (2 < / < Λ) ,
where i/.i: XP(/ - 1) -• XP(i) is the inclusion,

(3) PiΨi * (Στerwήξi 9

where ξii (ΣX)i -• (ΣX)Λ(/) is the natural projection, and the sum-
mation on the right-hand side is defined by using the obvious co-if-
structure of (ΣX)AW.

An ^n-space with a given Cπ-form is called a quasi Cn-space.
The above definition is a generalization of Williams' d-form de-

fined on associative i/-spaces ([25]). In fact it is noted in [25, Remark
19] without a proof that an associative /f-space X is a Cn-space in
the sense of Williams if and only if there is a map φ: (ΣX)n —• XP{ή)
with φ I ΣX = iΛ-i ii. Here we give a proof of the following

THEOREM 2.2. Let X be an associative H-space. Then X admits a
Cn'form in the sense of [25] if and only if X admits a quasi Cn-form.
Thus in particular the loop space of an H-space is a quasi Coo-space.
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The above theorem is proved in §5.
The quasi C2-space is closely related to the homotopy commutative

//-space. In fact we have the following proposition which can be
proved by [19, Th. 1.9] and [6, Prop. 3.4].

PROPOSITION 2.3. A homotopy commutative Hspace is a quasi C^-
space. Furthermore the converse holds if the multiplication is homotopy
associative.

Now as examples of the quasi Cn -space, we consider the ^-localized
spheres S^ , where p is a prime. Since no even dimensional spheres
are //-spaces, we only consider the odd dimensional ones. Then we
prove the following theorem which is the best possible since by the
results on the existence of ^4m-forms on the p-localized spheres ([1],
[20, §5], [22, §4]).

THEOREM 2.4. (1) S^ admits a quasi Coo-form for any p.

(2) S}fzι admits a quasi Cp-\-form for any p and t> 1.

(3) S(

3

2) and Sfa admit no C2-forms.

(4) Let t be a divisor of p-\ with t > 1. Put n = (p-l)/t. Then

S?*Γι with any Aoo-form admits a quasi Cn-form, and S^1 with no

Ap-form admits a quasi Cn+\-form.

Proof. Since Sι is the loop space of an /f-space, (1) follows from
Theorem 2.2. (This fact is noted and used by Toda [24].) Furthermore
(3) follows by Theorem 1.1. Thus we prove (2) and (4) for t > 1.

(2) Put X = S2^1 and Ω = Ω 2 ^ 1 , and let / : X -> Ω be the
natural map. Then X admits an ^_i-form so that / preserves the
Ap-\-forms (cf. [26, §1]). Now since Ω is a double loop space, it
admits a quasi Coo-form {^: (ΣΩ), —> ΩP(/)}/<oo by Theorem 2.2.
Furthermore the homotopy fiber of the induced map XP(i) —> ΩP(/)
is (2tp - 3)-connected. Thus we have a quasi C^-i-formon X which
is a lift of {φi(Σf)i}.

(4) Suppose that t divides p - 1. Then by considering the homo-
topy group of X = S ^ " 1 , we can easily show that if it <p, then both.

XP(i) and (ΣX)i have the homotopy type of Sfa V Sfa V V Sffi.
Thus a quasi Cn-foτm {<Pi}i<n is defined as the family of maps in-
duced from the self maps of Sfy V V Sfy which have degree 7! on
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Next suppose to the contrary that X has an ^-form admitting a
Crt+i-form. It is well known that the cohomology H*(XP(i) Z/p) is
a truncated polynomial algebra of height i+ί generated by a single
generator of dimension It:

H*(XP(i);Z/p) = Z/p[u]/(ui+ι).

Furthermore the homomorphism induced from the inclusion

ιp-l .ιn+ι:XP(n+l)-+XP(p)

preserves their generators. Now &>ιu = up φQ in H*(XP(p) Z/p).
Thus

for some nonzero c e Z/p in H*(XP(p);Z/p), and also in
H*(XP(n + 1); Z/p). Here by Lemma 4.8, which will be proved
in §4, we have that

&>ιu e &>ιDH2t(XP(n + 1) Z/p) = 0,

where D denotes the decomposable module. This is a contradiction,
and (4) is proved. D

3. Cohomology of An -space. In the rest of this paper p denotes
a fixed prime, and #*(•) = #*(• Z/p). Furthermore, if p = 2, we
assume that &n means Sq 2 w .

Let X be a simply connected An -space with multiplication μ: X x
X -> X . Suppose that the mod/? cohomology of X is generated by
finitely many odd dimensional generators:

(3.1) H*(X) = A(xx , . . . , * * ) , dim*/: odd.

Then we prove the following theorem which is a generalization of [3,
Th. 6.6]:

THEOREM 3.2. The generators jc,, 1 < Ϊ < k, in (3.1) are chosen to
be in the image of

where σ: H*~ι( ) -• H*(Σ ) is the suspension isomorphism.

Proof. The case of n = 3 is due to [3, Th. 6.6] since the theorem
in this case is demanding that xi9 1 < / < k, are primitive. Thus we
assume that n > 3 and xt?, ί <i <k, are primitive.
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Let {EfJ,dr} be the modp cohomology spectral sequence associ-
ated to the filtration ΣX c XP(2) c C XP{n). Then

(3.3) £*' '=* Cotor^.'(χ)(Z/;>,Z//>) f o r s < w - l .

Furthermore, if we identify H*{X) with E\'*, then x € H*{X) is
in the image of σ~xι\ ή if and only if dr(x) = 0 for r < j ([20,
Th. 5.1]). Thus to prove the theorem we show that dr{xΐ) = 0 for
r <n-2.

First of all, d\{xι) = 0 since x, is primitive. Furthermore if 2 <
r < n - 2, then E}+r'2s~r = 0 for any 5 by (3.3). Thus </,(*,•) = 0
(r < n - 2), and the theorem is proved. D

Now to state the next theorem we recall the spectral sequence used in
the above proof. This spectral sequence is constructed by the following
diagram:

(3.4)

0 ( '" H*(ΣX) <—-— ••• «—^— H*(XP(n))

«, / \ fix "2 / \ /».-! "n /

H*{X) H*{X)®2 H*{X)®n

where A®1 = A® ®A (ί-folds) for any Z/p-module A, degα, =
- άe%βi = i, βioti = -ft* ® l ® ® l + l ® / ί * ® ® l , and
ai is the suspension isomorphism σ. We define a submodule D(ί)
in H*(X)^ by

ΪJ*(X)®j <

Put S(i) = α/(2>(/)) C H*(XP(i)). Then by Theorem 3.2 we have the
following

THEOREM 3.5. There exist classes y{t)t € H*(XP(ή) for 1 < t <
n-\ and 1 <i<k so that the following properties hold:

(1) ι*t_x{S{t)) = 0,and S(t) • H*{XP(ή) = 0 for 1 < t < n.

(2) i .^cOi = y(ί-1)< α«^ y(t)i(i) o
(3) /br t < n - 1, we Aαve ίAe algebra splitting:

H*(XP(ή) 3 Γί+Itμ(ί)i, .

wΛere Tr[u\,... ,us] denotes the truncated polynomial algebra of
height r over Z/p with generators {wz}.

Tn\y(n-lh,...,y(n-l)k]
{ ' Dlmι*n_ιDDTn[y(n-ί)ι,...,y(n-l)lc].
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Proof. Since {.*/} are in the image of σ~ιι\ ι* by Theorem 3.2,
(l)-(3) can be proved by the standard method (cf. [9]). Furthermore
βi is essentially induced from a map defined on a space homeomor-
phic to ΣtXW+V. Thus we have DH*(XP(i)) c K e r β . The in-
clusion Imi*_! c Tn\y(n - l)i, . . . , y(n - 1)^] is clear, and (4) is
proved. D

4. Proof of the main theorem. First we prove the following propo-
sition which strengthens a result by Browder [4, Corollary 8.7].

PROPOSITION 4.1. Ifp = 2, then for any simply connected quasi C2-
space X with finite mod 2 cohomology H*(X)f H*(X) is an exterior
algebra generated by finitely many odd dimensional generators.

Proof. It is enough to prove that

(4.2) PH2n(X) = 0 for all n,

where P denotes the primitive module. In fact the lowest dimensional
nonzero square in H*(X) is even dimensional primitive. Thus (4.2)
implies the proposition by [11].

Now suppose to the contrary that PH2n(X) φ 0 for some n. We
choose n as the greatest such n. Take a nonzero x € PH2n(X).
Since x is primitive we have a class y e H2n+ι(XP(2)) with

σ-ιi\{y)=x.

Here a'lq Sq2n(y) = Sq2w x e PH4n(X) = 0. Thus we have that

(4.3) Sq2ny

for some w e H*(X)®2. Let λ: (ΣX)2 -• XP(2) be the composition
of ψ2 and the natural projection (ΣX)2 -• (ΣX)2. Write the element
λ*y as

λ*y = σ(x) ® 1 + 1 ® σ(x) + Σ σ(χi) ® σ(^ί)»

where dim JC/ + dim Λ J = 2« - 1 . Then for dimensional reasons and by
Sq2n x = 0 we have that λ*a2w = Sq2π λ*y = 0, and so tu + τ*w = 0
by Definition 2.1(3), where τ is the generator of ^ ( 2 ) . Thus for any
u e H2n(X) we have that

(4.4) (u <g> u, Sq1 w) = ((1 + τ*)(w Sq1 ®«), tϋ)

= (wSq1®^, w + τ*w)

= 0.
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Now we notice that

Sq1 Sq2n y = Sq2w+1 y = y2 = a2(x <S> x) (cf. [23, Th. 2.4]).

Thus there is a class z € H*(X) with

(4.5) /i*(z) = Sq 1 i t ; -

by (4.3). Here by [11], we can write x = x£ with dimx0 = 2s + 1,

t > 1. Thus x = Sq1 X\ with Xi = (Sq25XQ)XQ~2, and so

by (4.5). This means that

Sq1 z e PH4n+ι (X) n Im Sq1 = 0.

Thus in the JErterm E^* of the Bockstein spectral sequence of
H*(X), z represents a class which is primitive by (4.5). Let v e
H2n(X) be any class with {v, JC) = 1. Then

(v2

9 z) = (v®v, μ*z) = 1

by (4.4) and (4.5). These show that z represents an even dimensional
nonzero class in E^* since t;2Sq1 = 0. Thus we have a nonzero
square in E^** by Milnor-Moore [17]. On the other hand, according
to [11] H*(X) has no even dimensional generators. Furthermore, the
square of an odd dimensional class is in the image of Sq 1. Thus E%' *
is an exterior algebra, and we have a contradiction. This proves (4.2),
and the proposition is proved. α

REMARK 4.6. If we assume that the multiplication of X is homo-
topy associative, in addition, a similar result to the above proposition
can also be proved for an odd prime p. But this case was already
proved by [4, Cor. 8.9] using Proposition 2.3.

Let X be the v4n-space in §3. We use the notation T(t) for
Tt+ι\y(t)i. . y{t)k\ f o r simplicity. Then Theorem 3.5 implies

H*(XP(t))9£T(t)θS(t).

Furthermore we assume that X has a quasi Cm-form
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Then we prove the following

LEMMA 4.7. φ* | T(ί) is monomorphic if i < min{« - 1 , m, p-1}.

Proof. We prove by induction on i.
If / = 1, it is clear since ψ\ = id.
Suppose that 2 < i < min{n - 1, m, p - 1}. Take z e Γ(ι) with

^*(z) = 0. Then by the inductive assumption we have that i*_x(z) =
0, and so z is a linear combination of y = {y(/)fc(i) * m y(i)k(i) I 1 ^
fc(l) < ••• < *(0} L e t ^ : (Σ^)1' -* ^ ^ ( 0 be the composition of
^ι and the projection (ΣXγ -^ (ΣX)i. Then by Definition 2.1(3), we
have that

It is easy to prove that λ* is a monomorphism on the submodule
spanned by y since i < p - 1, and so we have z = 0.

Now we prove the key lemma:

LEMMA 4.8. Let i < min{n - 1, m, p - 1}. Then for any z e T(i)
and θ E s/(p) with i\---i*_xez = 0, there is a decomposable class
deDH*(XP(i)) with

θz = θd,

where sf{p) is the mod/? Steenrod algebra.

Proof. We prove by induction on i.
If i = 1, the lemma is clear.
Suppose that i > 2. Here we notice that DH*(XP(i)) = JDΓ(I) by

Theorem 3.5. Then by the inductive assumption, we have that

for some d1 e DT(i - 1). Take d" e DT(i) with i^d" = d', and
put

Then since ι*_xθzf = 0, we have that

θz1 = a,-(v)

for some υ e PH*{X)®11.
Now let (ΣX)[i] denote the fat wedge, i.e.,

(ΣX)[i] = {(xi,..., Xi) e {ΣXγ \xj = * for at least one j} .



104 YUTAKA HEMMI

Let Λ, : (ΣXy —• XP(i) be the map in the proof of Lemma 4.7. Since
H*((ΣX)') decomposes to the direct sum of submodules H*((ΣX)M),
(σPH*(X))®' and (σ ® ® σ)D(i), we can write

λ*z' = w + (σ ® ® σ)(u\ + M'2)

with u; € H*((ΣX)W), u\ € PH*(X)9i and u'2 G !>(/). Here
fΓ ((ΣΛΓ)W), PH*{X)®' and D(/) are all closed under the action of
sf{p). Furthermore

λ*iθz' = (σ ® ® σ) Σ (sgnτ)τ* y e

Thus ^w = θu'2 = 0, and

This implies that λ^aiθu^ = (σ ® ® σ)/!̂ wΊ = A (ilβz'). Thus by
using Lemma 4.7, we have that α,θ«Ί = /!0z', and hence

θz = θd,

where d = d" + ai(\/i\)u\. This proves the lemma. D

LEMMA 4.9. Suppose that n > m > p. Then for any t with t φ
0 mod/?, we have that

i*r--i*p_lH
2t(XP(p)) = 0.

Proof. We prove by contradiction. Assume that the lemma is not
true. Choose t to be the greatest integer such that

i\ ι*p-XH
2t{XP(p))φ0

with t ψ Omodp. Take x e H2t(XP(p)) with z = σ~ιι\ • • • ιl_λ{x)
Φ 0. Since dim.^3'"1.* = 2(tp - p + 1), we have by the assumption
that

ιt- ι*p-ι&t~1x = 0.

Thus we have that
&>t-χι*p_ιx = &>t-ϊd

for some d e DH*(XP{p - 1)) by Lemma 4.8, and so
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for dimensional reasons. This means that (l/t)£dt~ιx = apy for some
yeH*(X)*p,andso

Here we notice that if p = 2, x2 = Sq2' x = Sq2 Sq2'"2 c+Sq2'"1 Sq1 x
= Sq2Sq2'~"2;c since Sq1 = 0 on H*{X). Thus the above equation
holds also for p = 2.

Now
= α p (z® « ® z).

Thus
z β β z - ^ 6 βp-λH

2tp-ι{XP{p - 1)).

But H2tP~ι(XP(p - 1)) c Imα^i since by Theorem 3.5(3). Thus

w

with tu € Im(/i* ® l ® ® l - l ® / ί * ® l
PH2t-i(X) with <w, z) # 0. Then

l + ) T a k e u

On the other hand, (w® ®w,w) =
2.5]. Furthermore

(u® * ® u,

since w2 = 0 by [10, Lemma

since A*x G H2t((ΣX)P) implies ^ " U * ^ = 0 for dimensional rea-
sons. (We also use the fact that Sq1 = 0 on H*(X) for p = 2.) This
is a contradiction, and the lemma is proved. D

Now we prove our main theorem.

Proof of Theorem 1.1. First we notice that H*(X) is an exterior alge-
bra generated by finitely many odd dimensional generators by Propo-
sition 4.1 and Remark 4.6. Thus we assume that X satisfies (3.1).

Suppose to the contrary that H*(X) φ 0. Let s be the smallest
integer with H2s~ι(X) φ 0. Then by (3.4) and Theorem 3.5(4), we
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have that

(4.10) /*_!: W{XP[p)) ->T(p-\) is isomorphic for t<2sp, and
epimorphic for t < 2sp + 2s - 2.

Now we prove that

(4.11) Im0 nH*(XP(p)) = 0 for any t < 2sp and for any θ e

In fact, (4.11) for the case that θ is the Bockstein operation follows,
since

H2J~ι(XP(p)) = 0 f o r 2 j - l < 2sp

by (4.10). Furthermore, by Lemma 4.9, we have that

Thus by Lemma 4.8 together with the inductive argument we have
that

ι*p_x9>ιHi(XP{p)) C &xDHJ{XP(p - 1)) = 0

for j < 2sp - 2p + 2. This shows that

Im^51 Π H\XP(p)) = 0 for t < 2sp

by (4.10). Furthermore, since ι\ • • • ι*p_xH
2^-P+ϊ\XP{p)) = 0 by

Lemma 4.9, we have that ι*p_xH
1{-sP-P+ι\XP{p)) c DT{p - 1), and

so H2(sP-P+1\XP(p)) C DH*(XP(p)). Thus

irn^Π H2sp(XP{p)) c &xDH*{XP{p))Γ\H2sp{XP{p)) = 0.

This proves (4.11) for θ = &>ι.
Now if p is an odd prime, (4.11) for the general case follows by

Liulevicius [13] or Shimada-Yamanoshita [18]. For p = 2 we need to
prove a little more. If p = 2, then by using the same method as in
[12, Prop. 2.3], we can prove by Lemma 4.9 that

QH4k+l{X) = 0, and Sq2 = 0 onH*(X).

Then by induction on r we can prove that if t = 2r + 2r+1k, then

ι\H\XP{2)) = 0, QHι-\X) = 0, and

Sq2'+1 = 0 on H*(X) (cf. [12]).

This proves (4.11) for the case that p = 2.
Now take x e H2s~ι(X) and y € H2s(XP(p)) with ij i*_,y =

σ c 7̂  0. Then by (4.11), we have that

ap(x <g> <g> Jt) = yp = 3°sy = 0.
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Since βp^Hoάά(XP{p - 1)) c I m ^ α ^ with βp-ιap-X = μ* <g>
l ® ® l - l ® / i * ® l ® ® l + , there is a class w e H*(X)®P

so that
x <g> •• ® x = βp-\ap-\W .

Then for any primitive class w € PH2s-\(X) with (w,x) ^ 0, we
have that

= (M ® ® M, βp

= 0

since w2 = 0 by [10, Lemma 2.5]. This is a contradiction, and the
theorem is proved. D

As was shown in §2, S?lΓι has an Ap-\-form which admits a quasi
Cp_i-form. However, this v4p_i-form cannot be extended to an Λx>-
form. Thus to show that our main theorem is the best possible, we
have to find an example of a simply connected Aoo -space with non-
trivial finite mod/7 cohomology which admits a Cp_i-form for each
odd prime p. McGibbon [14] showed that Sp(2)(3) is one of such
examples for p = 3. For p > 3 the author does not know such ex-
amples. But it seems to be reasonable to conjecture that the space
B\{P)(P) 9 which is a 5^-bundle over *S^ + 1 , is an A^-space admit-
ting a Cp-i-form. In fact Sp(2)(3) has the homotopy type of Bι(3)@),
and Bχ{p)(p) is an ^ - s p a c e for any odd prime p ([5, Th. 1]).

5 Proof of Theorem 2.2. In this section we prove Theorem 2.2.
First we prepare some known facts.

Let n denote the set {1, 2 , . . . , n} for any positive integer n.
Then a partition of n is a sequence of nonempty disjoint subsets
of n, a = (A\,... , Ak), with |Jzw4z = n. We call the sequence
(#Aχ,... , #Ak) the type of α, where # denotes the cardinality. A
partition a = (Aγ,... , Ak) of n of type (n\, . . . , nk) defines a shuf-
fle τ of type (m , . . . , nk) by At = {τ(nx + + n, _i + 1), . . . ,
τ{n\ H h Πi)}. Here a shuffle of type {m\, . . . , mt) is a class /> in
&{m\ + "' + mt) so that />(/) < p(i +1) if mi + + m7 + 1 < i <
m\Λ h m ; + i for some j < t. By this correspondence we consider
any partition of n as an element in <S?{n). In particular, all parti-
tions of n of type (1, . . . , 1) correspond to the elements in S^{n)
bijectively.

Let C{n - 1) be the convex hull of {τ(sn) \ τ e c5^(n)}, where
sn = (1, 2 , . . . , « ) e Rn, and τ acts on Rn by τ(x{,..., xn) =
(χτ~ιn) > -m ' xτ-\n)} Then C(n - 1) is an n - 1 dimensional cell
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complex whose faces correspond to the partitions of n bijectively (see
[25]). Thus we also identify a partition a = (A\,... , Ak) of n with
the inclusion of the corresponding face, a: Ca -> C(n - 1), where
Ca = C{#AX - 1) x x C{#Ak - 1).

Let a = (A\9 ... 9 Ak) be a partition of n of type (n\, ... , nk).
Then for any t with 0 < t < k we define a partition α* = (2?i, ... ,
% H ) of n+1 by

{ 4,- if7 < f c - ί + 1,

{^ + 1} if 7 = fc-ί+l,

^y_i if; >k-t+ 1.

Here we define a map
by

. . . , A*.,, 1, A:^_ί+i, . . . , xk),

where α̂  is considered as the inclusion Cat —• C(Λ) , and Δ^ is the
A:-simplex with vertices {Po > > -Pfc} Then the set {&*} for all par-
titions a of n gives a decomposition of C(Λ) :

(5.1) C(/i)

We also define a map

%):A txCα-Δ/ l

by

h(a) Ij2atpt>xi> ••• ,Xk\ =Y^at{y{t)χ, ... , y ( t ) n ) ,

where ,
ΓO ifa-ι(i)>nι + '- + nk-ι + l,

Ά ) i I 1 if α - ^ O ^ Λ i + ••• + «*-/•

Then by using the decomposition (5.1), {Λ(α)} define a relative home-
omorphism:

(5.2) hn: (C(«), dC{n)) -+ (In, dln) (n > 0).
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Now we recall the definition of Williams' Cu-foπn. Let X be an
associative //-space. Then a Cπ-form on X in the sense of [25] is
defined as a family of maps {Qt: C(i - l ) x Γ ^ X}\<i<n satisfying
the following conditions:

(1) Q\=iάχ where C(0) x X is identified with X.
(2) Let a be a partition of i of type (r, s) (r + s = i). Then

Qi(a(p9σ)9xu...,Xi)

= βr(/> 5 * α ( l ) 5 5 *α(r)) * β s ( σ > xa(r+l) > > *α(i)) >

where /? € C(r - 1), σ e C(s - 1), X i , . . . , xx e X, and " " denotes
the multiplication of X.

(3) If xjf = *, then

where Dj: C(ί— 1) —• C(i-2) is the degeneracy map (see [16, Lemma
4.5]).

Finally we recall the definition of the projective n-space XP{ή)
of an associative //-space X. Stasheff [20] used his own complexes
to define XP(n). Here we use the n-simplex An since we get the
equivalent one.

Let dr An~ι -*An (0 < i < n) and sr. An -> An~ι (1 < / < ή) be
the boundary and the degeneracy operations, respectively:

( P i f i <? i ( P
Λ./DΛ - J ^ J ^ ί ? «.(DΛ - J ΓJ
Ul\rj) - n tf , -> / 5 | ^ ^ "" i P

I / +l I* 7 > I ̂  I /j-l

Then XP{ή) is defined inductively by the relative homeomorphism:

ξn: (Δrt x Z w , 9ΔW x Xn U ΔΛ x A™) -> (JΓP(n), ZP(w - 1)),

where ζn is defined by
I, X\ , . . . , .Xw)

l((7, JC2, . . . , Xn), ϊ = 0 ,

i ((7, X i , . . . , Xi - Xj+ι, . . . , xn), 1 < / < n — 1,

. , . . . , * „ ) = ξ w _ i ( 5 ; ( σ ) , Xi , . . . , Xj , . . . , Xn)

if Xj = * (I < j < n).

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. The second part is clear from the first part.
So we only prove the first part by [25, Cor. 2.6].
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Let X be an associative //-space with d-form {β/}i</<Λ. We
construct a quasi Cn-form {φ}i<n, inductively.

First we put ψ\ = i&zχ.
Next we suppose that 1 < m < n and {^/}i</<m-i are constructed.

Let a = {A\, ... , A%) be a partition of m of type (fli,... , α*) •
Then we consider the following composition:

A ^ x C Ω x Γ Λ A f c x C{aχ - l ) x Γ > x x C(α* - 1) x JΓβ*

Λ Δfc x ΛΓfc -• XP(A:) c

where τ is the appropriate switching map, and η = 1 x β f l i x x β α ; t .

By considering the above maps for all partitions of m, the decompo-

sition {ga} of C{m + 1 ) of (5.1) defines a map

C(m) xXm-+ XP(m).

Then this map together with hm of (5.2) defines a well defined map
φm which satisfies the desired properties of quasi Cm -form since there
is a natural relative homeomorphism

(Im x Xm, dlm xXmUlmx

Thus X is shown to have a quasi Crt-form.
Now suppose that X is an associative ΛΓ-space with a quasi CΛ-

form {tpi}i<n* Let i/,: (ΣJΓ)ί -* .δX be the composition of ψι and
the inclusion XP{i) -• XP(oo) = 5 X . Then since i/!: ΣΛΓ -* 5 X is
the adjoint of the natural map ε: X -> ΩBX, i// defines a map β| :
C(i - 1) x X1 -• Ω5X so that {βj}i</<π gives a Crt-commutativity
of ε in the sense of [25, Def. 25]. Thus if ψ: ΩBX -+ X denotes
the natural ^-equivalence, then we have a d-form {^βj}/<π on
X. This completes the proof. D
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