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GAP SEQUENCES AT A SINGULARITY

R. F. LAX AND CARL WIDLAND

The notion of Weierstrass gap sequence is extended to singular
points on an integral projective Gorenstein curve. There are many gap
sequences at such a point and the nongaps need not form a semigroup.

1. Let X denote an integral, projective Gorenstein curve of arith-
metic genus g > 1 defined over an algebraically closed field k. In
previous articles ([6,11]), we have defined Weierstrass points on such
a curve if k = C. We stated that the notions of Weierstrass gaps and
nongaps did not seem to apply at a singular point P, since one is now
interested in all 0-dimensional subschemes supported at P and not
the Weil divisors nP. Here, we present a generalization of gaps and
nongaps to singular points by considering certain chains of ideals in
the local ring at P.

Let P be any closed point of X. Let ffp denote the local ring
at P and let mp denote the maximal ideal of @p. Then <f> is a
one-dimensional Gorenstein domain. If / is any nonzero ideal of
&P , then the quotient ring ffpfJ is a finite-dimensional vector space
over k. We will let col(/) denote the colength of / , which is the
dimension of the vector space &p/J.

(1.1) DEFINITION. By a Weierstrass chain in <9p, we will mean a
chain %> of ideals

g*: mp = J\ D J2 D - D Jig-i

such that col(«4) = k for k = 1, 2, . . . , 2g - 1.

First, we will see that every ideal of colength at most 2g-l occurs
in some Weierstrass chain.

(1.2) LEMMA. Let J be a proper ideal of @P with col(/) = n.
1) There exists an ideal J1 of @P such that J c Jf and col(J') =

n-l.
2) There exists an ideal J" of (fp such that J D J" and col(/") =

n + l.

I l l
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Proof. We will prove (2). The proof of (1) is similar and is given
in [11].

First, note that there are ideals of finite colength that are properly
contained in / ; for example, πipJ cannot equal (0), since @p is
a domain, and mpJ cannot equal / by Nakayama's Lemma. Let
/ " be an ideal that is properly contained in / and has minimum
colength (necessarily at least n + l). Choose x e J with x £ J". It
suffices to show that the image of x generates the subspace / / / " of
the vector space @p/J". By the choice of J", we have J" + (x) = J.
Suppose y e J. Then there exists z e @p such that y - xz e / " .
Write z = a + 1 , where t e rπp and a is either 0 or a unit in @p . We
claim that xt e J". If xt φ J", then we would have / " + (xt) = / .
Hence, there would exist ue&p such that x - xtu = x(l - tύ) e / " .
But since t e mp, we have that 1 - tu is a unit, so this would imply
that x e J". Therefore, xt e / " . Since y - xz — y - ax - xt e / " ,
we may conclude that y — ax e J". Thus the image of x in / / / "
generates / / / " as a vector space over k . D

(1.3) COROLLARY. Every ideal of @p of colength at most 2g - 1
occurs in some Weierstrass chain.

The next ingredient we need is a Riemann-Roch theorem for sub-
schemes on a Gorenstein curve. If Z is a proper closed subscheme
of X and if J is the sheaf of ideals defining Z , then the degree of
Z , denoted d(Z), is given by

d(Z)= Σ colPc?).
QGSupp(Z)

Let ω denote the sheaf of dualizing differentials on X. Since X is
Gorenstein, ω is locally free. With this notation, we have

(1.4) THEOREM, dim^ Honv {^f, @χ) - άimk H°(X, J" ®@ ω) =
d(Z) + l-g.

X

Proof [U]. (Also, see [4].) D

The elements of Hom^ {S, <fx) may be identified with rational
functions on X. Indeed, we have

QeX

and H o n v ( J ^ , <9Q) is the fractional ideal (&Q : J*Q) in the quotient

field of ^ f o r each QeX (cf. [10], p. 37). Thus, if Q is a smooth
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point and J" is the invertible sheaf defining the divisor nQ, then
H o n v ^ , 0X) is just the space H°(X, 0(nQ)).

If / is a proper ideal of @p, let *f(J) denote the sheaf of <9χ-
ideals defined by S(J)P = J and S(J)Q = @Q for all Q φ P. Put

h(J) =

(1.5) LEMMA. (1) h(mP) = 1.

(2) If J is a proper ideal of <$p and col(/) > 2g - 2, then h{J) =

Proof. The first assertion is Lemma 1 of [11]. (This basically says
that ω is base-point-free.) The second assertion follows from The-
orem (1.4) if we can show that H°(X, <y{J) ®@χ ω) = 0. Suppose
a G H°(X, <y{J) ®@ co). Then the image of σ in ωp lies in Jωp.
If τ generates ωp, then locally at P we may write σ = fτ, with
f e J. If σ ^ 0, then we have

ordp σ = ord/> / = dim<?/>/(/) > col(/) > 2# - 2.

But ordρ σ > 0 for all QφP,so this would contradict the fact that
the degree of a dualizing differential is 2# - 2. Thus

ω) = 0. D

(1.6) LEMMA. Suppose J\, /2 ^r^ nonzero ideals of @p such that

Jx D h and col(/2) = col(/i) + 1.

Then either h(J2) = h{Jx) or h(J2) = h{Jx) + 1.

Proof. Applying the functor Hom^( 9ffχ) to the exact sequence

we obtain the exact sequence

0 -

The quotient sheaf ^{J\)l^{Ji) is 0 at all points except P and its
stalk at P is J1/J2 = k. Since ^> is a one-dimensional Cohen-
Macaulay ring, we have H o m ^ ( J r ( / 1 ) / J Γ ( / 2 ) , 0χ) = Hom^(A:, <9P)
— 0 by [9, Thm. 17.1]. And since @p is a one-dimensional Gorenstein
ring, we have Ext^ (S{J\)lS(Ji)90χ) = Ext^ {k,0P) = k by [9,
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Thm. 18.1]. It now follows from (*) that we have an inclusion

Hom^(^(/ 2 ) , ^ ) / H o m ^ ( J V i ) , *x) ̂  k.

Thus, either h(J2) = h(J\) or h(J2) = h(Jχ) + 1. D

The above lemmas are analogous to results one needs in the smooth
case to prove the Weierstrass Gap Theorem. We can now give a gen-
eralization of this theorem to integral, projective Gorenstein curves.

(1.7) THEOREM (Weierstrass Gap Theorem for Gorenstein curves).
Given any Weierstrass chain

J\D J2D o J2g-\

in (fp, there exist precisely g integers

l = γι<γ2<γ3<-'<γg<2g-l

such that h{Jγk) = h(Jγk-ι) for k = 2, 3, . . . , g.

Proof. From Lemma (1.5), we know that h(mp) = 1 and h(J2g-\)
= g. The Theorem now follows from Lemma (1.6). D

(1.8) DEFINITIONS. We call the integers γ^ , k = 1, 2, . . . , g, the
Weierstrass gaps of the Weierstrass chain Ψ and the sequence 1,
Ϊ2 > 9 7g will be called the Weierstrass gap sequence of g7. A nongap
of the chain £f is any nonnegative integer that is not a gap. The weight
of the chain &, denoted w(&), is defined by

k=\

(1.9) THEOREM. Assume k = C and g > 1. If P is a singular point
of X, then there exists a Weierstrass chain in &p of positive weight

Proof. Under the given assumptions, we showed in [6] and [11] that
every singular point of X is a Weierstrass point and that a point P
is a Weierstrass point if and only if there exists an ideal / of ^>
such that col(/) = g and h(J) > 1. By Corollary (1.3), there is a
Weierstrass chain in <9? in which / occurs. Since h(J) > 1, there
must be a nongap of this chain that is less than or equal to g. It"
follows that this chain has positive weight. D

2. We will give two examples to illustrate phenomena that may oc-
cur in the singular case, but do not occur in the smooth case. First,
there may be many different gap sequences possible at a singular point.
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Secondly, the nongaps of a chain at a singular point do not necessarily
form a semigroup.

(2.1) EXAMPLE. Let X be the projective plane curve over C defined
by y3z = x4. Then X is the image of P 1 via the map

and X has arithmetic genus 3. Let P denote the point ( 0 , 0 , 1),
which is the only singularity of X. Let (9 denote the local ring at P
and let & denote the normalization of &. Then we have

A basis for H°(X, ω) is given by dt/t2, dt/t3, dt/t6. According
to the definition in [6] (or [11]), the point P is a Weierstrass point of
weight 22. To see this, note that the dualizing differential τ = dt/t6

generates ωP. We then write dt/t6 = 1 τ , dt/t3 = t3τ, dt/t2 = t4τ.
In the notation of [6], we then have F\ 9\ = 1, F\ >2 = t3, F\ 9 3 = t4 in
a neighborhood of P. To compute the "wronskian" in [6], we must
differentiate "with respect to τ . " For example, we have dF\^ =
3t2dt = 3 ί 8 τ , and so i%2 = 3ί 8 . The wronskian section p in a
neighborhood of P is given by

p = 0 3ί8 4t9

0 24t13 36ί14

= 12ί2 2.

The point ( 0 , 1 , 0 ) at infinity is a (smooth) Weierstrass point of
weight 2.

We will give examples of three Weierstrass chains in &, each having
a different gap sequence. For the first chain, consider

<2? . //3 ,4\ -^ (A t6\ -, (f6 ft *8\ -^ (fl ,8 f9\ -^ //8 f9 Λ0\# 1 . \t , t ) D (t , t ) D [t , t , t ) D (t , t , t ) D (t , t , t ) .

We then have the following table:

TABLE 1

(*V)

( ί 6 , ί 7 , ί 8 )

(t\t\t9)

co\(J)

1
2

3
4
5

Basis of

H°(X,S(J)®ω)

t\,t4τ
t4τ
0
0
0

Basis of

Hom(S(J), ^ )

1
1

1

l . Γ 1

l,Γι,Γ2

h(J)

1
1

1
2
3
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Therefore, the gap sequence of this chain is 1, 2, 3. This shows that
there can be chains with zero weight at a singular point.

Now consider the chain

ίT 2 : {t\ t4) D (t\ tβ) D (t\ t9) D (t\ t\t9) D (t\ t9, t 1 0 ) .

By proceeding as above, it can be seen that the gap sequence of
this chain is 1 , 2 , 4 . (Note that if / = (t4, t9), then a basis for
H o m ( J r ( / ) , &χ) is 1, Γι.) For a third chain, consider

^ 3 : (t3, t4) D (t4, t6) D (t4, t9) D (t4) D (f , t*).

Then the gap sequence of this chain is 1, 2, 5. (Note that if / = (t4),
then a basis for Hom(J Γ (/), @x) is 1, Γ1, Γ4 .) Therefore, all three
possible gap sequences that can occur at points on smooth nonhyperel-
liptic curves of genus 3 occur as gap sequences of Weierstrass chains
in the local ring of this singularity.

The example above of a weight 0 Weierstrass chain at a singularity
can be generalized as follows.

(2.2) PROPOSITION. Suppose X is rational and has precisely one sin-
gularity P. Let cP denote the conductor of @P in its integral closure
&P . Then any Weierstrass chain in @p in which cP occurs has zero
weight

Proof. Since 0? is a one-dimensional Gorenstein ring, we have by
[5] that col(cp) = dimktfp/tfp. Since X is rational and P is the only
singularity, it follows that co\(cP) = g, the arithmetic genus of X. It
now suffices to show that h(cp) = 1, for then any Weierstrass chain
in which cp occurs must have gap sequence 1,2, ... , g.

We claim that Hom^(cp, &P) = @P. From the definition of cP, it

is easy to see that @p c Hom^ (c/>, (9P). Now, suppose s generates

cP in <fp and let / e Hom#p(cP, &P). Then fs<9P = fcP C <9P.

Hence, by the definition of cp, we have fsecp = s@p and so / e

&P. Now, if / e Hom^(J r (cp), &x), then it follows that / is a

global regular function on the normalization of X, hence / must be_

constant. Therefore, we have h(cP) = 1. D

We note that cP = (t6, t1, t*), as an ideal of @, in Example (2.1).

(2.3) EXAMPLE. In this example, we show that the nongaps of a
Weierstrass chain do not necessarily form an additive semigroup. Let
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X' be a nonsingular curve of genus 6 over C with a Weierstrass point
P' such that the gap sequence at P' is 1, 2, 4, 5, 7, 8. (For compact
Riemann surfaces, it was shown by Maclachlan [8] that every possible
Weierstrass gap sequence with first nongap 3 actually occurs.) Let t
denote a local coordinate on X' centered at P'. Let ψ\, φ2, . . . , <Pβ
be the basis of the regular differentials on X' such that locally at P'
we have

φi=dt, φ2 = tdt, φ3 = t3dt, φ4 = t4dt,

Now form a curve X with arithmetic genus 7 by creating a cusp at
P' i.e., X will have a point P such that X\{P} = X'\{/>'} and the
local ring at P will be

Then a basis for H°(X, ω) is τ, 0>i, ^ 2 > > Ψβ > where locally at P
we have

τ = dt/t2

y φ{=t2τ, φ2 = t3τ, φ3 = t5τ,

Consider the Weierstrass chain in @p consisting of the ideals in the
first column of Table 2.

As can be seen from this table, the gap sequence of this Weierstrass
chain is 1 , 2 , 3 , 5 , 6 , 8 , 9 . In particular, 4 is a nongap, but 8 is a

TABLE 2

{t1 , t3)

{P, r4)
(Λ ί5)
( ί 5 , ί6)

(t6 , ί7)

( ί 7 , ί8)

( ί 8 , ί9)

( ί 9 , /1 0)

(t10 , ί1 1)

( ί 1 1 , tn)

{tu, ί1 3)

( ί 1 4 , ί 1 5 )

col(/)

1

2

3
4

5

6
7

8

9

10
11

12

13

Basis of

H (X, <y{J) ® ω)

φι,φ2,φ3,φ4iφ5, φ6

<p2, φ3, φ4, φ5, φ6

φ3, φ4, φ5, φ6

φ3, φ4, φ5, φ6

CO A , CO e , C0£

CD r

0

0

0

0

0

h(J)

1
1
1

2

2

2

3
3

3
4

5

6
7
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gap. We therefore have

(2.4) PROPOSITION. The nongaps of a Weierstrass chain at a singular
point do not necessarily form an additive semigroup.

We note that a possible reason for the failure of the semigroup
property is that the colength of the product of two ideals in the local
ring at a singularity need not equal the sum of the colengths of the
two ideals.

3. On a more positive note, we will extend a well-known result in
the smooth case by showing that if 2 is a nongap of a Weierstrass
chain, then the curve is hyperelliptic. (We call an integral, project!ve,
possibly singular, curve X hyperelliptic if there exists a morphism
φ : X —• P 1 of degree 2. Such a curve is necessarily Gorenstein [1].)

(3.1) LEMMA. Suppose / j D ^ Ό Jig-\ ^ a Weierstrass chain
in @p. If 2 is a nongap of this chain, then J2 is a principal ideal

Proof. We may suppose that P is a singular point of X. Since 2 is
a nongap, there exists a nonconstant function / in Hom(J Γ (/ 2 ), &x)
Note that / e <?P> for all P' φ P. Let π: X -> X denote the nor-
malization. If / were in the local ring at every point of the fiber
n~ι(P), then / would be in the local ring at every point of X and
hence / would be constant. Thus, since / is nonconstant, there exists
Q e n~x{P) such that ord β / < 0.

Choose ( J G ί ί o ( I , / ( / 2 ) 0 θ ) ) such that ordg σ is minimal (view-
ing σ as a rational differential on X). Since a € J2ωp and / G
Hom(J Γ (/ 2 ), &x), we have that fa e H°(X, ω). Since oτdQfσ <
ordg o, we must have fa φ Jiω? . We claim that this implies that
fa generates ωp . Indeed, by Theorem (1.4),

dimH°{X, J?(J2) ® ω) = g - 1,

so we may choose a basis σ2, . . . , ag of H°(X, <y{Jι) <8> co) such
that fa, a2, . . . , ag is a basis of H°(X, ω). Since a2, . . . , ag are
in mpωp and since h(mp) = 1, we have that fσ £ mpcop. It
follows that fσ generates ωp.

Now write α — f\fα for some f\ e ffp. Note that f\ is not a
unit in @p since / $. &p. Now, given any / e J2, we have / =
(//)/i, where / / e &P since / £ Hom(J Γ (/ 2 ), &x) - It follows that
Ji Q fi&p . But / 2 has colength 2 and the maximal ideal of ^> is not
principal, so we conclude that J2 — f\@p . D
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We note that Example (2.1) shows that Lemma (3.1) fails if "2" is
replaced by "3" .

(3.2) THEOREM. Suppose k = C. The following are equivalent:
(1) X is hyperellίptic.
(2) At every Weierstrass point of X, there is a Weierstrass chain with

2 as a nongap.
(3) At some Weierstrass point of X, there is a Weierstrass chain with

2 as a nongap.

Proof (1) => (2): Suppose φ: X —• P 1 is a morphism of degree
2 and let P be a singular point of X. By composing φ with an
automorphism of P 1 , we may assume that φ{P) = 0. Let θ: C(Γ) —•
ϋΓ(JΓ) be the field homomorphism associated to φ and suppose / =
Θ(T). Then f e mP. Since P is singular, ord/>/ > 2, and since φ
has degree 2, we conclude that ord/> / = 2. It follows that / has no
other zeros on X and so φ~ι(0) = {P}. Then the ideal J generated
by / in <9? has colength 2 and f~ι is a nonconstant element in
Honv (S{J),(?χ). Thus 2 is a nongap of any Weierstrass chain in
@P that contains / .

Now we need to show that 2 is a nongap at every smooth Weierstrass
point of X. Let π: X -• X denote the normalization of X and
let g denote the genus of X. Then φ o π: X -> P 1 has degree 2.
Let <2i, . . . , £?2£+2 be the ramification points of φ on. (These are
exactly the Weierstrass points of X if g > 1.) Put Pi = π(Qz ),
z = 1, . . . , 2g + 2. Some of the P/'s may be smooth points and
some may be (unibranch) singularities. If P/ is a smooth point of X,
then the Weierstrass weight of P, will be (g - l)g/29 just as in the
classical case. We need to see that the smooth points among the P/'s
are precisely all the smooth Weierstrass points of X and to see this,
we need to compute the Weierstrass weight (as in [6] or [11]) of the
singular points among the P/'s.

So, suppose P is a unibranch singularity of X such that π~ι(P)
is a branch point of φ o π. Let ψ: X1 -• X denote the partial nor-
malization of X at P and let Q denote ψ~ι{P). The genus of X'
is g' = g-δp, where δP = άim@Ql@P. Let / e ΛΓ(JΓ) = A^JT) be
a rational function with order 2 at P (and at Q) and no other zeros.
We may choose a basis σ\, σι, . . . , σg< of H°(Xf, ω Z ' ) and a local
coordinate t on X' centered at Q such that locally at Q we have
σ/ = fj~ι dt for 7 = 1, 2, . . . , g'. Now, it is not hard to see that the
local ring at P is of the form
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A basis of H°(X, ω) is then o\, . . . , σg<, σg<+x,

where locally at P we have

σ * = - 7 ^ 7 for /c = g' + 1 , . . . , # .

Now, ωp is generated by τ = σg = dt/fsp. To compute the Weier-
strass weight of P we need to write each of the dualizing differentials
in the above basis as a rational function times τ and then we need to
form the wronskian by differentiating "with respect to τ . " Reordering
the basis above as σg, . . . , σg'+ι, σ\, . . . , σg>, we have that locally at
P we may write these differentials as

It is then not hard to see, as in the proof of Proposition 3 in [6],
that W{P), the Weierstrass weight of P, is W{P) = δP(g - l)g +
ordρ Wt{\, / , f2, . . . , Z ^ " 1 ) , where Wt is the usual wronskian of
rational functions obtained by differentiating with respect to t. Since
/ has order 2 at Q, we have

Therefore, the Weierstrass weight of P is (δP + l/2)(g - l)g.
Now, suppose Pi, Pi,... , Pr are the unibranch singularities of X

and Pr+\, Pr+2, . . . , Pig+2 are smooth points of X such that π~ι(Pi)
is a branch point of φ o π for / = 1, 2, . . . , 2g + 2. X may have
other singularities (necessarily double points), so let R\, . . . , Rs be
the other singular points of X. From [6], we have that for j =
1, . . . , s, W(Rj) >δR(g- l)g, where δR = dim<^ / ^ R and @R

is the normalization of && . The sum of the Weierstrass weights of

all points of X is g3 - g and the sum of the weights of the P/'s and
R/s is at least

7=1
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since g = g - Σ'^i δp. - Σ);=i &R Therefore, there are no other
smooth Weierstrass points of X.

(2) => (3): This is obvious. (3) =» (1): Suppose P is a Weierstrass
point of X such that 2 is a nongap of a Weierstrass chain at P.
If P is smooth, then (1) follows as in the classical case. If P is a
singular point, then by Lemma (3.1) there exists a rational function
/ 6 K{X) such that f~x € <*/>, ordP f~

ι = 2, and h(f~ι^P) = 2. It
then follows from Proposition 4 of [11] that there exists a morphism
φ: X -> P 1 of degree 2. D

(3.3) COROLLARY. Every integral projective Gorenstein curve of arith-
metic genus 2 over C is hyperelliptic.

Proof. Such a curve has Weierstrass points and the first nongap of
any positive weight Weierstrass chain at a point on a curve of arith-
metic genus 2 must be 2.

4. The main open problem here is to determine a relationship be-
tween the Weierstrass weight of a singular point, as defined in [6]
or [11], and the weights of the various Weierstrass chains in the lo-
cal ring of that singularity. This amounts to relating the vanishing
orders at a point of a basis of dualizing differentials with the Weier-
strass nongaps at that point. We note that in Example (2.1), where the
Weierstrass weight of P is 22, if one considers only ideals generated
by monomials in t, then there are 14 Weierstrass chains of weight 0,
five Weierstrass chains of weight 1 each, and one Weierstrass chain of
weight 2. At a cusp on a rational curve with g simple cusps, if one
considers only ideals generated by monomials in a uniformizing pa-
rameter at the smooth point on the normalization lying over the cusp,
then there are Fg-\Fg weight 1 Weierstrass chains, where Fn denotes
the «th term in the Fibonacci sequence. This number is bigger than
the Weierstrass weight of such a cusp for g > 6, so it appears that
not all the Weierstrass chains contribute to the Weierstrass weight.

Weierstrass chains should also be related to the following question.
One knows that as a family 3? —• T of smooth curves degenerates to
a singular, integral Gorenstein curve, many of the Weierstrass points
on the smooth curves tend to the singularities and the Weierstrass
weight of a singularity is the sum of the Weierstrass weights of con-
verging points on nearby smooth curves (see [7]). But what exactly
happens in the limit to the gap sequences at the Weierstrass points on
the smooth curves? Which Weierstrass chains occur as limits of the
divisors Pt, 2Pt, 3Pt, . . . , (2g - l)Pt, where {Pt)teτ is a family of
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points on the smooth curves converging to a singular point of the limit
curve? This should be related to work of Eisenbud and Harris [2, 3].
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