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CURVATURE CHARACTERIZATION
AND CLASSIFICATION OF RANK-ONE

SYMMETRIC SPACES

QUO-SHIN CHI

We characterize and classify rank-one symmetric spaces by two
axioms on R( , v)v , the Jacobi part of the curvature tensor.

1. Introduction. In his book [3], Chavel gave a beautiful account
of the rank-one symmetric spaces from a geometric point of view up
to the classification of them, which he left for the reader to pursue
as a matter in Lie group theory. The purpose of this paper is to
extend ChaveΓs approach to fill in this last step by classifying these
spaces, on the Lie algebra level, based on geometric considerations.
To be more precise, for each unit vector v , define the Jacobi operator
Kv = R( , υ)υ, where R(X, Y)Z denotes the curvature tensor. Then
for a compact rank-one symmetric space one notes that (1) Kv have
two distinct constant eigenvalues (1 & 1/4) for all v if the space is
not of constant curvature, and (2) E\(υ)9 the linear space spanned by
v and the eigenspace of Kv with eigenvalue 1 is the tangent space of a
totally geodesic sphere of curvature 1 (a projective line in fact) through
the base point of υ , and consequently E\(w) = E\(υ) whenever w is
in E\(v). These two properties will be adapted in the next section as
two axioms, and we will prove then that they turn out to characterize
locally rank-one symmetric spaces. Indeed, motivated by [5] and [8],
we prove that the curvature tensor, under the two axioms, induces a
certain Clifford module, from which the curvature components and
the dimension of the space can be read off. It then follows that the
space must be locally rank-one symmetric, and the list of such spaces
falls out in a natural way.

We would like to mention that there is another interesting geomet-
ric classification of the compact symmetric spaces by Karcher [11].
Karcher's construction of the Cayley plane rests on some intriguing
properties of isoparametric submanifolds and he has to assume the
space is symmetric of positive curvature for the classification, whereas
all our results follow from the the two axioms and the technique re-
quires essentially no rίiore than linear algebra. Our analysis reveals by
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fairly simple constructions why such spaces are closely related to the
four standard algebras R, C, H, and the Cayley algebra Ca.

This paper is part of the author's Ph.D. dissertation. He would like
to thank Professor Bob Osserman for direction and encouragement,
and Professor Hans Samelson for discussions.

2. A curvature characterization of locally rank-one symmetric spaces.
We start out with two axioms.

Axiom 1. Let Kυ( ) = R( , υ)v for v in SM, the unit sphere bun-
dle of M. Then Kv has precisely two different constant eigenvalues
independent of v (counting multiplicities).

Axiom 2. Let b, c be the two eigenvalues. For v e SM, denote
by Ec(v) the span of v and the eigenspace of Kv with eigenvalue c.
Then Ec(w) = Ec(v) whenever w eEc(v).

REMARK. 1. Axiom 2 is redundant if dimEc(v) = 2.
2. It's not hard to show (cf. [3]) that a two-point homogeneous

space of constant curvature must be RPn or the space forms.

THEOREM 1. Locally rank-one symmetric spaces not of constant cur-
vature are characterized by the two axioms.

We need a few lemmas to complete the proof.

LEMMA 1. If y is perpendicular to Ec(v), then so is Ec(y). In
particular Mp, the tangent space at p, can be decomposed into per-
pendicular subspaces of the form Ec(v).

Proof. Since y is perpendicular to Ec(v) and since Ec(w) = Ec(v)
for all unit w in Ec(v) by the second axiom above, one sees that
Kw(y) = by for all such w, which in turn implies Ky(w) = bw
hence Ec(y) is perpendicular to Ec(v). D

LEMMA 2. Let

Mp = Ec(x) ® Ec(y) Θ Ec(z) ® .

Then

(i) R(y,xι)x2 = -R(y,x2)x\ for * i , x2 in E c ( * ) .
(ϋ) R(x,y)z = 0.

(iii) i?(*!, x2)*3 = 0 if xι, x 2 , *3 e £ c ( x ) .
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Proof. For (i), one considers w = (x\ +xj)l\JΪ. One has Kw(y) =
by since w is in Ec{x). This implies (i) by expanding

To prove (ii), let w = (y + z)/y/2. One has Kx(w) = bw since
-K"jc(y) = &y and Kx(z) = bz; hence Λ^(.x) = bx, which gives, after
expanding Kw(x),

R(x,y)z = -R(x,z)y.

This same relation holds if we cyclically permute x, y, z . Now the
first Bianchi identity finishes the proof. The proof of (iii) is similar
to that of (ii). D

DEFINITION 1. The type number τ = dim£ c (x) - 1.

Clearly τ is well-defined since dim2sc(Λ;) is constant for all unit x.
Given XQ e SM, choose X\, Xι, . . . , xτ so that x$, X\, . . . , xτ

form an orthonormal basis for EC(XQ) . Define, for 1 < / < τ ,
//: Ec{xo)L -• Ec(xo)1 by

(1)

where ^(^o)" 1 is the subspace perpendicular to Ec(xo). (That
sends Ec(x)± to itself follows from Lemma 2, (iii).)

LEMMA 3. G/vefl a fixed unit vector yo-L^r (*o) > the map R(XQ , )yo

Ec(xo) —̂  ̂ ( ^ o ) 1 satisfies \\R(xo, -x^oll
pendicular to x0.

. Let tί; = ( X Q + ^ O ) / ^ , and let Mp = Ec(xo)®Ec(yo)®Ec(z)
® . Let (Xi) and (y/), / = 0, 1, . . . , τ , be orthonormal bases for
EC(XQ)

 a n d Ec(yo) respectively. It's directly checked, using Lemma
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2, that
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*W '

b + c 3

_ —>• bz.

This precisely says that the restriction of Kw to the subspace V gener-
ated by {Xi, yi}τ

i=ι has b and c as eigenvalues with equal multiplicity
τ by axioms 1 and 2.

When written in matrix form relative to {XJ , }>i}]=l, Kw restricted
to V assumes the form

b+cψl

where Atj = (R(xt, yo)xo > yfl. Hence

so that the null space of Kw - cl is

which has dimension τ since it is the eigenspace of Kw with eigen-
value c.

Now (2) is nothing but

It follows that y = £-cAx and A1 Ax = (^)2x. Since the null
space under consideration has dimension τ and x and y are τ x 1
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matrices, one concludes that A1 Ax = {^ψ)2x for all τx 1 matrices x

perpendicular to XQ , meaning \\R(x, )>o)*oll = ̂ 7 ^ Now the lemma
follows by noting that R(XQ , x)yo = -2R(x, yo)xo by Lemma 2. D

From now on we normalize the metric so that

(3) \b-c\ = \.

PROPOSITION 1. The operators /,-: E^XQ)1 -> l^Cxo)1 defined in
(1) sα/w/F

(i) •/? = - / .
( i i ) JiJk = -JkJi for iφk,

(iii)

Proof. Let Λfp = ^(xo) θ Ec{y) θ 2sc(z) θ . By Lemma 2,
/,•: 2scCv) -* Ec(y)> Ji' Ec(z) —• 2sc(z) etc.; these restrictions of J\
are orthogonal by Lemma 3 and (3). On the other hand // is skew-
symmetric since the curvature tensor is; hence (//)2 = •//// = —//// =
—/ on Ec(y), and so (//)2 = - / on Ec{xo)L since EC(XQ)1 is the
direct sum of subspaces of the form Ec{y), proving (i). To prove (ii)
first note that (JiJkiy) > y) = —(Ji(y) ? Jkiy)) = 0 if / ̂  /c by Lemma
3. It then follows that (JiJk(v) 9v) = 0 for all v G E^-(XQ) hence set-
ting v =y+z,onehas (JiJk{y), z) = -{JiJk(z),y) = -(z, JkJi(y)),
which is (ii). (iii) is clear from Lemma 2. D

PROPOSITION 2. 77*e Γype number τ = 1,3, or 7. If τ = 7, d imM
= 16.

Proof. Notation is as in Proposition 1. Let Mp = EC(XQ) ®Ec(y)ξb
Ec{z)®" - . Proposition 1 implies Ec(y), which has dimension τ + 1 ,
is a Clifford Cτ module induced by the operators //. Hence τ = 1, 3,
or 7 (cf. [10]).

To prove the second statement, first note that d imM = (τ+ l)s for
some s since Mp = EC(XQ) θ Ec(y) θ .

SUBLEMMA. If S > 3, ίΛ̂ W (/iΛ//(y) , y) = (///jfc//(z) , z)

, z m J

Proof of Sublemma. Since 5 > 3, M^ =
••• . Since jKy(z) = fez and ϋΓz(y) = fey for y e Ec{yo) and
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z G EC(ZQ) , we have

therefore (JiJkJι(y-z), y+z) = 0 by (iii) of Proposition 1. Similarly,
0 = (JiJkJι(y), z) = (JiJkJι(z), y) for the same reason. In particular
we have

0 = (JiJkJι(y -z),y + z) = (JiJkJι(y), y) - WMz), z),

so that (JiJkJι(y)>y) = (JiJkJι(z)>z) for all z perpendicular to
£c(*o) θ-EcCvo), and all y in 2sc(;yo) as well, proving the sublemma.

Now fix y0 e Ec(xo)-1 and let yt = Ji(y0) so that y0, y i , ... , yτ

form an orthonormal basis for 2?cO>o) Define a product "•" on
Ec(yo) so that i^Cvo) under this product is isomorphic to one of
the three algebras C, H, and the nonassociative Cayley algebra Ca
corresponding to the type number τ = 1, 3, 7 respectively (cf. [13]),
namely, y0 y, = y, , and y,- yk = Jt{yk) for iφk. Now let //4(y 0)
= Σjα/fcΛϋ>o) T h e n Λ/jt = -(JsJiJk(yo), yo), which is a constant
by the above sublemma. It follows that JiJk{y) = Σs ds

ikJs[y) for all
y in £c(}/o), and hence (yt j ^ ) yx = y/ (y^ y z), so that Ec(y0)
under the product is associative, and therefore τ Φ 7. In other words,
if τ = 7 then 5 = 2, and so dimM = (τ + l)s = 16. D

We now make a convention that if 0 < a, /? < τ , we denote by
α/? the number ±7 such that ±ey = e α ^ , where eι 's are the basis
elements in the standard multiplication tables for the three algebras
above (cf. [13]). Also denote X-a = —Xa for vectors with subscripts.

LEMMA 4. In a neighborhood U of each point p, given a unit
vector field Xo, one can pick an orthonormal frame xo, X\, . . . , xτ

yo, y\, - > yτ z0, ... such that for q eU, one has Mq = Ec(x0) ®
Ec(yo) ® Ec(zo) - with xi e Ec(x0), y, € ^ (yo ) , eίc, 5wcA that

= -zβa, etc.

Proof. Recall that τ is the type number of the space. That Mq =
Ec(xo)@(yo)@' follows from Lemma 1. Pick smooth fields X\, . . . ,
xτ such that x0, X\, . . . , xτ form an orthonormal basis for Ec(x0).
Define for 1 < / < τ , -yj = R(xo, Xj)yo> -Zj = R(xo, *j)zo, etc.
For τ = 1, it is readily checked that R(xo> xa)yβ = -yβa ? etc. For
τ = 3, let dimΛf = (τ + l)s = 4s. If s > 3, then by the sublemma
in Proposition 2 span(Id, J\, J2, /β) = H, where // =



RANK-ONE SYMMETRIC SPACES 37

follows easily that /i /2 = ±^3 Changing XQ into —JCO if necessary,
one may always assume J\ Jι = J$ in other words, R(XQ , xa)

^ ( * 0 , */?) = ^ ( * 0 , Xaβ) i f 1 < « > A < 3 , i.e., i?(X 0 , Xα)j>jί = J>αjJ =

- ) % etc., which is the conclusion. On the other hand if τ = 3 and
dimΛf = 8, then Mq = Ec(x0) Θ Ec(y0). Now Ec(y0) is isomorphic
to H under the product y\-yj = Ji{yj) = JiJj(yo). Therefore again it
is easy to see that yγ >y2 = ±y^, i.e., J\ Jiiyo) = ±/3(ĵ o) We may
assume Jihiyo) = ^3(^0) by changing XQ into —xo, so that once
more R(x0, xa)yβ = - j ; ^ α .

If τ = 7, then dimM = 16, and Mq = Ec(x0) Θ ̂ (yo) Although
Ec(yo) is isomorphic to the Cayley algebra Ca under the product
yt . yj = JiJjζyo), it might happen that y/'s are not the standard
basis elements for Ca in general. However one observes that )>o> ̂ l > ̂ 2?
y\ - y2 form a standard basis for H, and by picking a smooth
unit vector field w perpendicular to them one verifies that y^,y\,yi,
yi-yi, tϋ yo, w y i , it; y 2 , w ( Vi y2)

 f o r m a standard basis;
let's call this new basis (vo = yo, Vi, . . . , υΊ) so that va-Vβ = vaβ .
Let v/ = X^j=0 djίyj Define 3P/ = X^]=o ̂ y/ ŷ A straightforward
computation gives R(xo,xa)R(xo,Xβ)yo = R(xo>xaβ)yo f o r

a, βφ§. Now let yα = R(x0, x α )y 0 , one has i?(x0, ^ α ) ^ = 7aβ =
-y^ α , proving the lemma. D

LEMMA 5. Let M be a Riemannian manifold. If for every geodesic
r(t) the operator Kv with v = r(t) is parallel then the entire curvature
tensor is parallel along r(t) and M is locally symmetric.

Proof. See [2]. D

LEMMA 6. Assume the same conditions as in Lemma 4. Then

^0^0, yj)

etc., where R(x, y,z,w) = (R(x9 y)z, w), provided x 0 is tangent
to the geodesies emanating from p.

Proof. We'll prove (VXoΛ)(y/, x0, xo, Zj) = 0. The proof of the
others are similar. Since R(yι, XQ , xo, zj) = 0 by Lemma 2 and since
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VXQXO = 0 by the way Xo is chosen, one sees that

i, x 0 , xo, yd = 0,

in view of Lemma 2 and KXo(Xi) = cxt, KXo{y{) = 6y, , KXo(zi) = bzt,
etc. D

Now we prove the promised characterization theorem.

Proof of Theorem 1. Here in this proof x 0

 a s in Lemma 6 is tan-
gent to the geodesies emanating from p e U. Let XQ!9 x\, ... , xτ;
yo 9 y\ 9 ? 7τ ZQ9 ... be as in the previous lemma. We only have
to show that

(VχoR){χi,χo,χo,yj) = 0,

in view of Lemmas 5 and 6. In fact it suffices to check

since R(xo, Xα)^^ = -^^α saYs that one may rename the yι 's so that
yβ becomes yo. Now a direct computation using R(XQ , xa)yp =
-yβa > (i) of Lemma 2 and the first Bianchi identity, and (3) gives

depending on whether c > b or c < b. In particular

(VXoR)(Xi, xo, ^o, yo) = ±(V^oΛ)(y/, yo, J>o >

Now the second Bianchi identity says

{VXoR)(yi9yo,yo> xo) = (VχQR)(yo, xo, yt, yo)

= - ( V ^ i ? ) ^ , ^o, yo, xo) - (VyoR)(yo 9 xo, ^o, y/) = 0,

in view of the proof of Lemma 6. Hence (Vx R)(xt, Xo, xo, yo) = 0 >
and the space is locally symmetric; therefore it must be of rank one
by the constancy of eigenvalues of the Jacobi operator Kυ . D

3. Lie algebra classification of rank-one symmetric spaces. Our anal-
ysis has been based primarily on Lemma 4, where the curvature struc-
ture of the space under consideration was partially displayed. Using
Lemma 2, Lemma 7 and Corollary 1 in this section, which give explic-
itly all the curvature components in their full generality, it will then be
a straightforward matter, with the aid of the fact that the Lie algebra
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of the isotropy group of a symmetric space is the linear span of all
R(x, y) at the origin (cf. [9]), to write down the Lie algebra structure
of the space to see that a compact symmetric space of rank one must
necessarily be either a sphere or one of the projective spaces. We shall
thus be brief, and leave the details to the reader.

Let Mp = EC(XQ) θ Ec(y0) ® Ec(z0) θ as in Lemma 4 so that

(4) R(x0, xa)yβ = -yβa -

By the symmetry of the curvature tensor one has

(5)

LEMMA 7. Assume c > b. Then R(xa,Xβ)yγ = -y(γβ)a, where
aφβ and βφO.

Proof. We may assume a Φ 0 by (4). Fix δ and let w =
(xo+ys)/V2. Then

(6) Kw(xβ±ySβ) = R(xβ±yδβ, w)w

= \\cxβ ± byδβ + bxβ ± cyδβ + R(xβ, xo)ys

± R(yδβ, xo)yδ + R{xβ, yδ)xo ± R(ysβ, ys)xo\

Now R(Xβ, Xo)^ = ^ ^ by (4). And by the first Bianchi identity

yδβ = R(xβ, xo)y<*

= i?(x^ , yδ)x0 - i?(x0, ys)Xβ

= 2R(xβyyδ)x0,

by (i) of Lemma 2. Similarly -R(y^^, yδ)xo = ^ by (5) and
R(yδβ > Xo)ys = Xβ/2 by (i) of Lemma 2 and the Bianchi identity.
Hence the right-hand side of (6) is

φ + c) 3 ^φ + c) 3
— 2 — X / ? 4 X / ? ^ ^ +/? 2

c)±\b-c\ \b-c\±(b + c)
2 xβ ^ 2 δβ

by (3). By assumption c> b, therefore

(7) ^ ( ^ + ysβ) = cOty +

(8) Kw{xβ - yδβ) = b(xβ -

Replacing β by α in (8) one gets

(9) tfu/(*α - ^ α ) = *(^α -
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Now Axiom 1, (7), and (9) imply

or equivalently,

/ I Λ N L / Λ b + c b + c

(10) 6(xα )

On the other hand, R(xa,Xβ)ysβ e £c(j>o) and R(ysa>yδβ)Xβ e
^c( ̂ o) by (ii) of Lemma 2. Hence comparing both sides of (10) one
concludes

-Λ(xα, Xβ)ysβ = —γ-yδa

or
2

Λ(*α, χβ)ysβ = 3 (̂

by (3). Let y = ίjS . Then γβ = (δβ)β = -δ, so that <ϊα = -
i.e.,

COROLLARY 1. Assume c > b. Let Mp = ^(-^o) θ Ec(yo) θ
' J7/ 5 z i * * * be as in Lemma 4. Then R(ya,

Proof. It suffices to show that R{yo,ya)zβ = ~ z ^ α in view of
Lemma 7. A direct computation shows

if c > έ . Hence by (ii) of Lemma 2

i.e.,
= R(x0,

= - zβa

by Lemma 4. D

Now it is well known that the symmetric Lie algebra decomposition
of the underlying space is # = /£ ®/κ, where >» is the tangent space at
the origin, and / , the isotropy algebra, is the linear span of R(X, Y)
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for all X, Y in /n with the natural Lie algebra structure. It follows
easily from Lemma 2, Lemma 7, and Corollary 1 that if the type
number τ = 1, or 3, then R{u,v) corresponds to the Lie bracket of
the matrices

0

-w*
and

0

-v*

V

0

where u and v are regarded as column vectors over C and H respec-
tively, and u* and v* their conjugates. Thus the symmetric Lie pair
must be either (u(n+l), u(ή)xu{\)) or (sp(«+l), sp(«)xsp(l)). On
the other hand let the type number τ = 7 so that Mp = Ec(xo)®Ec(yo)
with dim Mp = 16 corresponding to the Cayley algebra Ca. Recall that
if we denote by e$, e\, . . . , e% the generator of C$, the Clifford alge-
bra of rank 9, then the Lie algebra of Sρin(9) is linearly spanned by
e§ei and etβj for all 1 < / < j < 8. In view of this it is also easy to see
that e^βi and e^ej correspond to ϋ(jto,)>i) and R(xo, yi)R(xo, yj)
respectively, so that the isotropy algebra of the space is o{9) and
Lemma 7 gives explicitly the irreducible representation of o{9) on
E 1 6 . Let

= Span(i?(x0, }>/)*(*o, yj)\l < i < J < 8),

= Span(R(xo,yi)\l<i<S)9

Sf3 = Ec(y0).

Then ^ = ^ 0 0 ^ 0 ^ 2 0 ^ 3 has the property that [^0, &ΐ\ c 3i,
and \3i, 3fj\ c % > where 1 < i, , fc < 3, and i, j , k are mutually
distinct. In other words ^ is 4̂ [13], and the symmetric pair is
C/4 9 o{9)). Conversely it is well known that such symmetric pairs
give rise to the symmetric spaces of rank one.

Lastly, we would like to mention a conjecture of Bob Osserman,
which states that nonzero R( ,v)υ having constant eigenvalues with
fixed multiplicities for all unit υ characterizes locally rank-one sym-
metric spaces [5]. It follows from Theorem 1 that this conjecture
would be true if the curvature condition in the conjecture would im-
ply the two axioms in §2.

Added in proof. Recently the author received a preprint by Z. I.
Szabό and P. B. Gilkey, entitled "A simple topological proof that
two-point homogeneous spaces are symmetric", in which an elegant
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proof of what the title addresses is given. Szabό and Gilkey's re-
sult together with the characterization and classification of rank-one
symmetric spaces in our paper furnish a geometric-topological under-
standing of two-point homogeneous spaces.
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