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THE REMAINDER TERMS ASPECT OF THE THEORY
OF THE RIEMANN ZETA-FUNCTION

KA-LAM KUEH

Assuming the Riemann hypothesis for Riemann zeta-function ζ(s),
let R(u) and S(t) denote the remainder terms for the prime number
theorem (suitably normalized) and the zero counting formula for ζ(s)
respectively. We analyze the relation between R(u) and S{t), which
generalizes A. Guinand's work.

0. Introduction. In this paper, the general form of transform T on
L 2(0, oo) defined by a kernel φ is given by

Γ / ( ί ) = lim / f{u)φ{tu)du inL 2 (0,oo)
U-*oo JQ

for / G L 2 (0, oo). Throughout this paper, we assume the Riemann
hypothesis for the Riemann zeta-function ζ(s). It is concerned with
the remainder terms R(u) in the prime number theorem (suitably
normalized) and S(t) in the zero counting formula for the Riemann
zeta-function; see (2.1) and (2.4). Gallagher's version [2, Theorem 1]
of the Guinand's summation formula, (0.0) below, gives a symmetric
relation between R(ύ) and S(t):

poo roo

(0.0) / f(u)dR(u)= f{t)dS{t)
Jo Jo

where f(t) = /0°° f{u) cos tu du, for a suitable class of functions f(u)
with "good" growth condition on f(u). In particular, it is possible to
take as /(•) in (0.0) the characteristic function of the interval [0,w],
and on taking integration by parts, we get

(0.1)

where

S*(t) = S(t) - S(0+) and k{θ) = \/-"d

IθΊ
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A. Guinand [3] observed that k(θ) is the kernel of a Hankel trans-
form of order 3/2, which is an involution on L2(0, oo). So we have

since S(t) = <9(logί/loglogί) due to Littlewood [6], andhence S*(t)/t
EL 2(0,oo).

Equations (0.1) and (0.2) suggest a symmetric relation between
R(u) and S(t). For a function f{x), the Riemann-Liouville frac-
tional integral is defined by

(0.3) UiX) = Ux) = \w)[{χ-yr~lmdy {a>Oh

{ f(x) (α = 0)
and we have

for α > 0, β > 0. For α an integer ^(JC) turns out to be an it-
erated integral. As a generalization of Guinand's work, we consider
the Riemann-Liouville fractional integral on R(u) and S(t), and con-
struct the kernel

/ f ( ^ ) ™ + 1 ^ (β>o,
where m is an integer and a is real, and the equation similar to (0.1)

<° 4>
Note that S\(t) = 0(logί/(log log t)1) due to Littlewood [6], and

hence

(0.5) S^(ί) = Sm{t) - ^S(0+)tm = O(n (t - +oo)

for m > 1, and

(0.6) ^ ( ί )

for m > 0.
We give first in Theorem 1 the conditions on a, m for which equa-

tion (0.4) holds good, and then in Theorem 2 the conditions on a, m
for which i£(α, m, 0) defines a bounded and invertible transform on
L2(0, oo). In particular, K(m, m, θ) for m > -1 is an involution
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on L 2 (0, oo). Thus corresponding to (0.2) we will be able to show in
Theorem 3

for suitable a and m, and furthermore

(0.8)
t>n+\

dt
_ 2 f°

~ * Jo
Rm(u)

um+\
du

for m = 0, 1, 2, 3, ... .

1. Averaging operators. To pursue the object of this paper, we have
to introduce the averaging operator.

For / G L2(0, oo), we define the transforms Aa and Bβ by

Aaf(χ) = χ~a Γya-ιf(y)dy (α
./o

Γ
Jx

β-ι f(y)dy

LEMMA 1.1. The Aa and Bβ are bounded operators on L2(0, oo)
and

\\Aa\\2<{a-\)-\ \\Bβh<{\-β)-1.

Proof. By (9.9.8) and (9.9.9) of [4], the results follow immediately.

LEMMA 1.2. For all values of a and β for which Aa and Bβ are
defined, we have

A<*AB =

Aβ - Aa

a- β

Proof. Note first that the unitary involution / , defined by

intertwines the operators Aa and £ i _ Q : JAa = B\-aJ.
It suffices to prove the first two equations on the left. The first

equation on the right then follows by conjugation by / , the second
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equation on the right by symmetry, and the third pair of equations
follows from the second pair by conjugation by / .

For continuous f(x) with compact support in (0, oo), we have
PX POO

AaBβf{x) = χ-« y°-iy-β z^xf{
JO Jy

= x~a

+ x

Jo a~

y=x

y=0

AaAβf(x)=χ-a Γ
Jo

-ιy=x

Jy=O

-χ~ι ^—Ξyβ~ιf(y)4y
Jθ OL- μ

from which the first two equations on the left follows. The general
cases then follow by continuity of bounded operators.

LEMMA 1.3. The operator Id-(2α — ϊ)Aa is unitary on L 2 (0, oo)
for each a > \ .

Proof. We show first

(1.1) A*a = BX-a for α > 1/2.

It suffices by continuity to show that

(Aaf9g) = (f,Bl-ag)

for continuous functions / , g with compact support. The left is

Γx~a Γya-ιf(y)dyg(x)dx
Jo Jo

POO PX POO

= - / / ya'ιf(y)d z-°g(z)dz.
JO JO Jx

On integrating by parts, the integrated terms drop out, leaving
7*00 POO PX

/ / z-*g(z)dzd ya~lf(y)dy
Jθ Jx Jθ

POO POO

= / f(x)x°-1 / z-«g(z
Jθ Jx

which is the right side.
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Now for each real a > 1/2, we have by (1.1)

(Id-(2α - \)Aaγ = Id-(2α - l ) ^ ^

and by Lemma 1.2

{lά-{2a-\)BX-a){lά-{2a-\)Aa)

= Id-(2α - l)i?i-α - (2a - \)Aa + (2a - l ) 2 ^ ^ " "

= Id,

which proves Lemma 1.3.

Let h be a bounded measurable function on (0, oc). For each
function / e Lι(0, oo), we define

(Hf)(x)= Γ f(y)h(xy)dy.
Jo

Provided in addition H is a bounded operator on Lι(0,oo) n
L2(0, oo),i.e.

(1.2) | | # / | | 2 « | |/| |2 for fe Lι(0, oo) nL 2 (0, oo)

we may extend the operator i/ by continuity to a bounded operator
on all of L2(0, oc). In particular, in this case

/o
(Hf)(x) = lim / /(y)A(xy) dy in L2(0? oc)

for each / € L2(0, oc).

LEMMA 1.4. Let H be the bounded operator on L2(0, oo) defined
as above by a bounded measurable kernel h satisfying (1.2). Then for
each a> 1/2, we have

(1.3) AaH

Moreover, the operator (1.3) is defined as above by the kernel Aah.

Proof. We observe first that Aah is a bounded measurable function.
Next, for / e Lι n L 2 , we have

/•x z oo

= χ-a ya~ι h(yz)f(z)dzdy
Jo Jo
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and

roo roo

HBX-af(x)= h(xy)y«-1

 Z-«f{z)dzdy
Jo Jy

with both interchanges justified by Fubini's theorem. Each of the
factors {• } reduces to Aah{xz) = Aag{x) where g(x) = h(xz).

Denoting by Ha the operator defined by Aah on Lι Γ\L2, we thus
have

(1.4) Haf = A

for / € L1 Π L2 . For such / ,

with an implicit constant depending onα. It follows that Ha is a
bounded operator on LιΓ\L2 and thus Ha extends by continuity to a
bounded operator on L2. By continuity, the equation (1.4) now holds
for / G L2, giving the assertions of Lemma 1.4.

2. An explicit formula. It is known that (s - 1 )£(•$•) is an entire
function and

(2.0) U ) = _ ^ ^ 2 (Rβ J >i)
n = l

where Λ(«) is the von Mangoldt function.
Put

= -2 sinh ^

the prime on the summation here and in the following means if eu is
an integer, then the last term is weighted with 1/2. A version of thg
prime number theorem states that Σn<χMn) = χ + O(xι/2log2 x)
see Davenport [1].

Define

(2.1) R(u) = P(u)-Q(u).
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We have that R(u) = O(u2) which implies the prime number theorem
with remainder term, and for a > 0

(2.2) Ra(u)= -^ — *
n<eu

+ s i n h α ί - w j / ( - )

note that Ia(f)\cy = cala{g)\y where g(y) = f(cy).
Now define for t > 0 not an ordinate of a zero of ζ(s)

= 0, 0 < γ <

and N(t) = j(N(t+) + N(t~)) for t the imaginary part of a zero
of ζ(s). By the argument principle, we see that for T > 0 not an
ordinate of a zero of ζ(s)

where Γ Γ is the line running from oc + iT to ^ + /Γ to - /T to
oc - iT 9 and a Cauchy principal value is taken at each zero of ζ(s)
on Γj.

In view of ζ(s) — ζ(s), we have

(2.3) N(T) = M(T)+S(T)

where

(2.4)

l r1 / 2 c l
5(Γ) = - / Im y ( σ + J T ) rfσ = - argC(i + iT).

The argument is defined by continuous horizontal movement from
oo + iT to j + iT starting with the value zero. Meanwhile, comparing
(2.3) with the zero counting formula shown in Davenport [1], we see
that

(2.5) M(ί) = i [arg (~ + it) +

= ^ ( l o g ^ - l ) + 0(1) for large t,
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and

(2.6) Mf(t) ~^-log t.

Our first object is to construct the following "explicit formula."

PROPOSITION 1. For a > 0, we have

Before proceeding with the proof of Proposition 1, we need several
lemmas.

LEMMA 2.1. // α > 0, u>0, and f(v) = esv, then

(Iaf)(u) = γ±

for s on the slit plane cut along the line from the origin to -zoo and
sa is defined by analytic continuation starting with la = 1. More-
over, (Iaf)(u) is a holomorphic function on the entire plane of s with
L(a, s,u) « α ua-χl\s\ + (\σu\a~ι + l)/\s\a, σ = Res, and we define

Proof. We start by considering, for a > 0,

u v ) e d v = =ϊ
o Γ(α) Jo

i i rsu

W/α Γ(α) 7o
rσu

r-σu

the estimate of this remainder term will be given at the end of this
section. This proves Lemma 2.1 by taking, for a > 0,

1 pSU ( rσu roo Λ

L(a,s, M) = - — ~ \ / va-le~vdv+ / υa'ιe'vdv\ .

REMARK. We see by Lemma 2.1 that1 f
(2.7) :F 7-T / (w - v)

esu e~su

u

) a ~ ι
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where L(a, s, u) is bounded by

and L(0,s, u) = 0.

L E M M A 2.2. Consider, for a > 0 and u > 0 , ( s inh α s)(u) as defined
by (2.7) on the slit plane in Lemma 2.1. Then for c>0, α > 0 , η>0

l im —

= {0 (u <η) or (u = η, a>0),

2

. The result follows by (1.5.3) of Titchmarsh [7] and (2.7).

Proof of Proposition 1. Consider, for c > 1 and Γ > 0 not an
ordinate of a zero of ζ(s),

2πz y 51 \ ζ

note that (sinhα5)(w)/^ is an even function of s.

Since £(s) < (log | ί |)2 for s = σ + /f(-j < σ) and a suitable se-
quence of t with infinity the limit of \t\, we have that by computation
of residues and for large T

Σ
0<y<Γ

C(l/2+ί»=0

since (sinα t)(u)/t = sma(tu)/ta+ι. On the other hand, by using

τ-ω = -
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we have

λ rc+ α ( ) ) )

n)n-1^ f A αV V) κ >e-<β-im**»ds.
^ π ι Jc-iT S — •*

r c + i τ Γ s i n h α ( s - ^ j j (u)

n=\ — Jc-iT S-%

By virtue of Lemma 2.2, (2.2), and making T —• oo, we get

a{U) - ^

This completes the proof of Proposition 1.

We now give the estimate of the remainder term in the proof of
Lemma 2.1. It is based on the following

PROPOSITION 2. If s = σ + it is on the slit plane cut along the line
from the origin to -zoo, then, for a > 0,

roo+it

/ va-ιe~v dv = Oa(e~a(\s\a-1 + 1))
Jσ+it

with t > 0, or t < 0 and σ > 0, and

r—oo+it

I va~ιeυ dv = Oa(e~σ(\s\a-1 + 1))
Jσ+it

with t > 0, or t < 0 and σ < 0.

Proof, We only prove the first assertion, and the second assertion
will follow by a similar argument.

If - 1 <σ < 1, then, for |ί| < 1,

oo+it

va'ιe~v dv = 0(1) = O(e~σ),

and for \t\ > 1, by integrating by parts [a] times,

roo+it v=oo+it roo+it

Jσ+it v=σ+it Jσ+it

v=oo+ιt roo+it
vdv

v=σ+it
( roo+it

o /

( roo+it
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So, for -1 < σ < 1, we have

roo+it

(2.8) / va-ιe~v dv = O(e-σ(\s\a-1 + 1)).
J σ+it

If 1 < σ, then |s| > 1 and

roo+itroo+it v-oo-tii roo+U

/ v e dv = — e v + (α — I) / u ^ αf

Jσ+it v=σ+it Jσ+it

= 0{e-°\s\a-{) + O

I roo+it

= O(e-σ\s\a~ι) + 0\e-σ \v\a-[a]~2dv

χι—o+it

O roo+it
f
σ+it

roo+it

Finally if σ < - 1 , then \s\ > 1 and

roo+it r — l+it roo+itroo+it p — i+it roo+it

j υa-ιe~vdv= υa-ιe~vdυ+ va

Jσ+it Jσ+it J-l+it
ί—\+it

α - l ) / va

Jσ+it

~v dv

v=-\+it ί—\+it

/ ~2e~vdv
v=σ+it Jσ+it

+ O(e-σ(\l + it\a~l + 1)), by (2.8)

( r-l+it

e-σ \v\a-2dv

Jσ+it

This completes the proof of the first assertion of Proposition 2.

Now we obtain from Proposition 2

Γ va-χe~vdv = O^-^lσwl"-1 + 1))
J σufσu

needed in the proof of Lemma 2.1.
As for the following quantity

rσurσu

I va~le~vdv,
J su
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we apply the Cauchy integral theorem and get for σ > 0, or σ < 0
and t > 0,

rσu roo+itu rσu

I va~le~vdv = va-le~vdv+ va~xe~v dv
I su J su Joo

by Proposition 2; and if t < 0 and σ < 0, then by the Cauchy integral
theorem

rσu r-su

I va-le~vdv = (-l)a-1 va~lev

Jsu J-σu
r—Όo+itu

υa~ιevdv+ va~levdv
J-su

by the second assertion of Proposition 2.
Hence we have given the estimates in the proof of Lemma 2.1.

3. Theorems, Consider equation (Δ) in Proposition 1. On taking
integration by parts m + 1 times, we get formally

where

(3.2) κia,m,9)

Since for a > 0, by considering the Taylor series expansion of sin θ,

and the series on the right-hand side is defined for any real a e R, we
define (3.2) for any real a e R.

In this section, we give suitable conditions on real a and integer
m for which A^α ,m,θ) defines a bounded and invertible transform
on L 2 (0, oo). In view of S{t) = 0(logί/loglogO, (0.5), and (0.6);
we see that

(3.4) ^ ί ) e L 2 ( 0 > o o )

for \<a-m+\ <\, m > 0 , α > 0 .
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We show first

THEOREM 1. Equation (3.1) holds for a > m - I, a > 0, m =
0, 1,2,3, —

The following lemma is helpful in the proof of Theorem 1.

LEMMA 3.1. For a function f(x) on [0, oo), put

M(a,x)= sup |/β(ί)|.
0<Kx

Then the following estimate holds uniformly in a:

Proof Note first that if either g(x) or h(x) is monotonic on [a, b],
then

rb

I g(x)dh{x)<£ sup |g(x)| sup \h{x)\.
Ja a<x<b a<x<b

We may suppose f(x) is non-constant.
Now for 0 < λ < x

1 \a) JO

< aλa~x M(1, x) + λaM(0, x)

<M1-a(0,x)Ma(l,x),

by taking λ = aM{\, x)/M(0 ,x)<x.
This proves Lemma 3.1.

Proof of Theorem 1. It suffices to show that the integral constant
m sina(tu) ί=0°

Tt)
= 0

ί=0
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for α > m - 1, α > 0, m>0. Lemma 3.1 and the power series (3.3)
give

/ ^ x / Λ χ f m a x ^ 1 , 1 ) ,

(3.6) «n(β)« { ^

for all J S G I . Thus, the Leibniz formula yields

m a x { r w - 2 , Γa~1} (t -• +oo),

and the power series (3.3) gives

Now (3.5) follows immediately from (0.5), (0.6), and (3.7), (3.8).
This proves Lewmma 3.2 Theorem 1.

We next show the following.

THEOREM 2. The kernel (3.2) defines a bounded and invertible trans-
form on L2(0, oc) for m-\ < a <m + \, m = - l , 0 , 1 , 2, ... . In
particular, for a = m = - 1 , 0, 1, 2, . . . , it defines an involution on
L 2 (0,oo).

The proof of Theorem 2 is based on the following lemma.

LEMMA 3.2. We have

K(a+19 m+ 1, θ) = {Id-(m + a + 3)Am+2)K(a, m, θ)

for m + a + 3 > 0, -oo < a < +oo, m = - 1 , 0 , 1 , 2 , 3 , . . . .

Proof Recall (3.2) and (3.3). We see that



RIEMANN ZETA-FUNCTION

Thus

(m + a + 3)Am+2K(a , m , θ )

355

m+1

(- 1) ' JU

_ [\m+a+3 ( * Y+2 r

f d \m+2

dη) 2l

= K{a,m,θ)-K(a+l,m+l,θ).

This proves Lemma 3.2.

Proof of Theorem 2. Note that K(a,-l,θ) = ^ | s in a (0) and

K{-\ ,-l,θ) = ^/Jcos0. Lemma 3 and Theorem 1 of Kueh [5]

show that K(a , - 1 , 0 ) ( - ^ < α < 5 ) defines a bounded and invert-
ible transform on L2(0, oo). Thus Theorem 2 follows immediately
from Lemma 3.2 and Lemmas 1.1, 1.2, 1.3, 1.4. We see also that
the kernel K~ι{a, m, θ) of the inverse of the transform denned by
K(a, m, θ) satisfies, for the same condition as in Lemma 3.2,

(3.9) K~\a + 1, m + 1, 0) = (Id-(m + a + 7>)Aa+2)K-χ(a, m, 0)

and

By Theorems 1, 2, and (3.4), equation (0.8) holds.

Finally, we prove the following

T H E O R E M 3 . E q u a t i o n ( 0 . 7 ) holds for a > m - I, α > 0 , ra =
0 , 1 , 2 , . . . .
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We need the estimate

(3.10) Rι{u) = ~M\Q)u

in the proof of Theorem 3. Taking α = 1 in Proposition 1, we obtain

D . . f°° 1 -COSίM

R\{u) = J γτ dS{t).

Note that S{t) = N(t) - M{t). So

since
°° \ - cos tu j πJo

f'(ί) is an even function making M'{t) - M'(0) = O(t2) as / ->
0+ , and Af'(ί) - ^ l o g ί for large ί, by (2.6).

Proof of Theorem 3. By Theorem 2,

- J 4 Z = \ / - l i m / -^r^Kil, ϊ, tu)du.
t2 V π c/-oo y 0 w2 v J

Now estimate (3.10) makes the above integral converge in the ordinary
sense. Thus

In addition,

"U
 (

 dίu id

Jo \du
is bounded uniformly with respect to t in any compact set as U —> od
So, after applying fractional integral operator on both sides of (3.11),
we get for a > 0
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Now set

By using Lemma 2 of Kueh [5] and (3.6), we see that similarly for
α > 0

is bounded uniformly with respect to t in any compact set as U —• oo.
Hence, on integrating both sides of (3.13), we get

and, in view of (3.12),

(3.14) +

Thus, on differentiating both sides of (3.14), we get

2 ί°° », sd sinα(ί
π Jo

 κ ' du ua+ι

We now repeat the same argument as in Theorem 1 and get

ί~2 r°°

V π Jo ( α , m, tu)du
π Jo uc

with a> m— I, α > 0, m = 0 , l , 2 , . . . . Also by (0.2), the above
equation holds for a = m = 0.

This completes the proof of Theorem 3.

The author takes pleasure in thanking Professor P. X. Gallagher for
his suggestions and many helpful discussions on the subject.
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