
PACIFIC JOURNAL OF MATHEMATICS
Vol. 150, No. 2, 1991

EMBEDDING A 2-COMPLEX K IN R4

WHEN H2(K) IS A CYCLIC GROUP

MARKO KRANJC

We prove that every finite 2-dimensional cell complex with cyclic
second cohomology embeds in IR4 tamely.

1. Introduction. It has long been known that every compact PL
(piecewise-linear) manifold embeds in euclidean space of double di-
mension. The analogous result, however, is not true for arbitrary
simplicial complexes (see [2]). In [6] an obstruction to embedding n-
complexes in R2n was found. Since that obstruction is not homotopy
invariant and is in general difficult to calculate, it is natural to ask if a
certain class of /ί-complexes which can be easily described embeds in
R2n . It has been known that every ^-complex with cyclic nth coho-
mology embeds in R2n if n Φ 2 (see [5]). If n > 2 one can use the
techniques of [7] to prove it. The same techniques are much harder
to apply when n = 2 and if they are successful they yield embeddings
which are not smooth but only tame on each 2-cell (recall that an
embedding D2 —> R4 is tame if it can be extended to an embedding
D2 x D2 -> R 4 ) . At present the author does not even know whether
every contractible 2-complex embeds in R4 piecewise smoothly.

In [4] it was shown that the case n = 2 really is different from
other dimensions (§3). Here we establish a result analogous to other
dimensions.

THEOREM. If K is a finite 2-complex such that H2(K) is cyclic then
K can be embedded in R 4.

Note, All homology and cohomology groups will be with integer
coefficients; Z denotes the ring of integers.

The case H2(K) = 0 was proved in [4]. The general case can be re-
duced to the case when H2(K) is infinite cyclic. This case is basically
in two steps. First it is proved for the case when Hι{K) is generated
by an embedded orientable surface. For arbitrary K with H2{K) = Z
the situation is reduced to the previous case by constructing a tower
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of maps and 2-complexes

A r • A r _ i • • Λ i > A Q = A

such that Kj-\ can be embedded in R4 if Kj can and such that Kr

embeds in R 4 .
In what follows all embeddings of K in R4 will be smooth in the

interior of each cell except for a finite number of points in the interiors
of 2-cells where they will still be tame. Thus if we construct such an
embedding of a subdivided K it will still be tame on the original
K. Therefore we can assume without loss of generality whenever it
is convenient that K is either a simplicial complex or that all the
attaching maps are homeomorphisms.

2. A special case. In what follows K will be a finite connected
2-complex.

LEMMA 1. Suppose H2(K) = Z and suppose that H2(K) is gen-
erated by an embedded orientable surface F c K. Then K can be
embedded in R 4.

Proof. Let eo be a 2-cell of JF . Then the inclusion (K - i
F-int(eo)) c (K, F) gives rise to the following commutative diagram

H2(K,

1
H2(K -int(e0),

F)

F-int(e0))

1
— - H2(K - int(β0))

in which both rows are exact. Since H2(K) —• H2(F) is an iso-
morphism the first homomorphism in the top row is trivial. The
first vertical map is an isomorphism (by excision); therefore the first
homomorphism in the bottom row is also trivial. This implies that
H2(K - int(έ?0)) is 0.

By attaching 2-cells to K - int(e0) we can obtain an acyclic 2-
complex L. Denote Lueo again by K. Clearly if this K can be
embedded in R4 so can the original 2-complex.

Choose an embedding of F u K^ in R3 x 0 c R4 which is smooth
on F and on each edge of K. Identify FuK^ with its image under
this embedding. Then F u ^ 1 ' C R3 x 0. Let H x 0 be a regular
neighborhood of K^ in R3 x 0. H x 0 is a handlebody with spine
K^. There is a natural projection p: d(H x 0) —> K^ such that
H x 0 is the mapping cylinder of p. Thus every point in H x 0 can
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be thought of as a class [x, t] where x e dH, t el ( = [ 0 , 1 ] ) , and
[x, 1] = p(x). let p : H -> K^ be defined by p([x, ί]) = /?(x).

Let U be a regular neighborhood of K^ in K. dU is a union
of circles Q , . . . , Cg where C, corresponds to the 2-cell e, of K
and where g is the genus of H (because L is acyclic). Suppose
dU ΠF = CoU U Q . Orient F and assume that C o , . . . , Ck

have the induced orientation. Also choose orientations for the curves
Cfc+i 9 ... , Cg. U and i/ can be chosen in such a way that (HxO)Π
F = UnF and so that UnF = p~ι(p(dUΠF)) = {[*, t] G # x 0;
x e d t / n i 7 , ί G /} . Embed Q + 1 U U Q smoothly in if x 1
in such a way that /?|C/ : Cj -> ^ ( 1 ) is the attaching map for ^ 7 .
Let ί/, = {([x,ί], l - ί ) 6 / ί x [ - l , 1]|JC G C, , ί G /} . ί/7 is an
embedding of the collar of βj into Hx[0, 1]. (Uf=^+i Uj)U(FnHxO)
is an embedding of U into // x [-1, 1] which we can assume to be
piecewise smooth.

Since L is acyclic, Q , . . . , Cg form a basis for H\(d(Hx[—l9 1])).
Let T be a maximal tree of Λ^1) and let 5i, . . . , sg be the edges of
χ(i) - T. If mi is the midpoint of Si let

Si = {p-\mk) x {-1, 1}) \Jp-\rm) x [-1, 1] c d(H x [-1, 1]).

Then Si is an embedded 2-sρhere. Choose an orientation for Si.
For each / = 1, . . . , g choose an oriented simple closed curve Λ, in
d(H x [-1, 1]) such that αz Sj = δij. Then {a\, ... , ag} is a basis
for Hι(d(H x [-1, 1])). Suppose C, - E P y f l ; , ι = 1, . . . , ί , in
9(7/ x [-1, 1]) (~ stands for homologous). Then det(py) = ± 1 .
Let Σ'j be a union of suitably oriented disjoint copies of spheres
S\9 . . . ,Sg representing the class Ej=i 0y[S/] in H2(d(Hx[-l, 1]))
where (ffy) = (Py/)"1

The intersection number Σ' F is zero (it is the intersection of closed
orientable surfaces in R4). Since ΣJ Π F = ΣJ n (Co U • U Ck), the
intersection number Σ (COU U Q ) in d(H x [-1, 1]) is also zero.
Since Σ . (CiU u Q ) = 0, for /> k, it follows that Σ;. C0 = 0,for
i > k. Therefore we can pipe together the intersections of Σ' with
Cjr, 7 = 0 , . . . , ^ , along CoU u Q to obtain for each / > k a
surface Σ'!cd(Hx[-l, 1]) such that Σ ' n F = 0 = Σ 'nC,r, iφj
and such that Σ^ n C, is a point. Since all the "pipes" lie either in
H x 1 or in a neighborhood of d// x 0 in d(H x [-1, 1]), one can
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choose half of a symplectic basis for each H\ (Σ'J), / > k, represented
by smooth simple closed curves in dH x (0, 1] U H x 1. Since M' =
R 3 x[0, oo)-int(//x[-l , 1]) is simply connected, we can cap off these
curves by regularly immersed discs in Mr. By performing surgeries
along these discs change each Σ'j, / > k, into a singular 2-sphere Σ, .
All the singularities lie in Mf. Furthermore, Σ / Π ( l / U F ) = Σ ) n Cz

is a point. Note also that Σz n Σj n int(// x [-1, 1]) = 0 , and that
Σ| Σ ; = 0, for / ̂  7 , i,j>k.

Cap off the curves Q + i , ... , Q by regularly immersed discs
D'k+χ, ... , D'g, respectively, lying in R3 x [1, oo). This extends the
embedding ofFuU to a regular immersion of K into R 4 . Since
D\ - Σj = δij for all /, j > k, we can use the spheres Σ ; to pipe
off the intersections between the discs Df

k+ι, . . . , D'g, in order to get
immersed discs Z)^+ 1, . . . , Dg, respectively, such that Z>/ Z); = 0,
for Ϊ φ j . Again Σz Dj = J/7, for i, j > k.

Let M be the union of M7 and a regular neighborhood of Σk+Ϊ u
" UΣ^ which misses i 7 . Since Σj - M' is a union of embedded
discs, for j = A: + 1, . . . , g, M is simply connected. The discs
jDfc+i, ..., Dg and the classes X; = [Σz] e Hi(M), i > k, satisfy
the conditions of Theorem 3.1 of [3]. Applying Theorem 1.1 of [3]
we get g - k tamely embedded discs B%+1, . . . , Bj in M such that
Bj ΠdM = Cj . This, in turn, defines an embedding of K in R4 .

3. The case // 2 (i0 = Z . Let 5 be a ball of radius r and let
F: B x / —• B have the following properties: Fo = id, F;|<9i? = id,
for /G [0,1], and Ft is a homeomorphism of B for ί G [0,1),
Then the homotopy H : B x Bk x I -^ B x Bk given by

H{{x,y),t) = (F(x,(l-\y\)t),y)

is the identity on d(B x Bk). Furthermore, Ht is one-to-one on
BxBk - 5 x 0 , for all / £ / , and Ht\B x 0 = Ft x 0.

LEMMA 2. L ^ Â  &£ a finite 2-dimensional cell complex, such that
all the 2-cells are attached via homeomorphisms. Let g be an em-
bedding of K into R 4. Then there exists a homotopy with compact
support H: R4 x / —• R4, such that Ho = id, and such that Ht ύ
homeomorphism for t e [0, 1), which does one of the following three
types of deformations:

(i) for an edge s of K, Hi maps g(s) to a point and is 1-1 else-
where;
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(ιϊ) for a 2-cell e with boundary a union of two edges s\, si having
pairs of common endpoints, H is a deformation retraction of g(e)
onto g(s\), which is fixed on g(s\).

(iii) for two 2-cells e\, eι with e\ Π eι being an arc A, Hi maps
g(β\) homeomorphicallyonto g(e2),andis 1-1 on g{K)-g{e\\Jei).
Furthermore, H is fixed on g(eι)

If K\ is the 2-complex obtained from K by the identifications de-
fined by Hi then Hxg\ K -+ R4 factors through K{. The factoring
map Kι -> R4 is an embedding.

Proof. Define a homotopy F: 2Bk x / —• 2Bk as follows:
For type (i) let k = 1, and let

for |x| < 1 ,
Fix t) = ί

1 ' J \{l + t)x-2tx/\x\ f o r l < | j c | < 2 .

F squeezes [-1, 1] to 0 and linearly stretches the rest of [-2, 2].
For type (ii) let k = 2, and let

(x9y(l-t)) f o r | x | < l , 0 < > ; < ^ ( x ) ?

(x, (l/(A(x) - B(x)))((A(x)(l - ί) - B(x))y + tA{x)B{x)))

for |* | < l,A(x) <y <B(x),

k (x,y) elsewhere,

where A(x) = y/l -x2,B{x) = y/4 - x2. F shrinks ΰ 2 n l 2

+ to
[-1, l ] x θ .

For type (iii) let k = 3 and define F as follows:
Let δ : [0, 2π] x / -> [0, 2π] be the homotopy

f o r O < α < π / 2 ?

( α ? j I ( l + ί / 3 ) α - 2 π ί / 3 f o r α > π / 2 .

(5 shrinks [0, π/2] to 0 and stretches [π/2, 2π] over [0, 2π]. A
point in R3 can be represented as a pair of a real and a complex
number. Let

F((x, r exp(/α)), ί)

_ f (A: , r exp( W(α, ί))) for p < 1 ?

" I (x, r exp(/[(2 - ^ ( α , ί) + (p - l)α])) for /> e [1, 2],

where /? = \/x2 4- r2.
In each case Ft\d(2Bk) is identity for all t € / .
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For type (i) g(s) has a regular neighborhood N homeomorphic to
[-2, 2] x 5 3 . Let φ : [-2, 2] x B3 —• TV be a homeomorphism such
that p ( [ - l , l ] x θ ) = ί ( ί ) .

For type (ii) g (e) has a regular neighborhood TV homeomorphic
to ID1 x 2?2. Let φ : 2D2 x B2 -> N be a homeomorphism such that
φ((D2 nRl) x 0) = g(e), and such that φ([-l, 1] x 0) = g(s\).

For type (iii), since D = g{e\ U ei) is a tame disc such that its
interior doesn't intersect g(K) - D, there exists a homeomorphism φ
from 2J53 x [-1, 1] onto a regular neighborhood N of D, satisfying
the following two properties: φ(B3 x 0) n (g(K) - D) = 0 , and ^
maps {(x? y, z, 0) € 5 3 x 0|y > 0, z > 0,yz = 0} onto D so that

Given φ and i 7 for each type we define the desired homotopy H

by

( x for x e N,

φ(F(u, (1 - \v\ή , v) for («, v) e 2Bk x 5 4 ^ ,

x = φ ( u , υ ) .
Suppose f:F—>K represents a generator of Hι{K). We can

assume (by subdividing F and K appropriately) that / is simplicial
and non-degenerate on each simplex (compare with [1], p. 11). We
dealt with the case when / is an embedding in Lemma 1. Assume
now that the singular set S of / (S is the closure of the set {x e
F\f~ι(f(x)) contains more than one point}) is non-empty. We will
successively replace K by "nicer" complexes and finally reduce the
problem of embeddability of K in R4 to the situation of Lemma 1.

Case 1. S is 0-dimensional.
If Σ = f(S) = {y{, . . . , yr) then Fo = f(F) is obtained from F

by identifying the points of each set f~ι (yj), j = 1, ... , t. Suppose
f~ι(y\) = {v\, V2, . . . , vι). Construct JFΊ from F by identifying
the points of each set f~ι(y\) - {vι}, f~ι(y2), ? f~

ι{yr). Note
that F\ is not a surface. Clearly there exists a map f\ making the
following diagram commutative:
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where p\: F\ -> FQ denotes the natural projection. The singular set
S\ of f\ is equal to S - {v\}.

Attach the endpoints of an arc A to F\ to W\ and wi, where w\ =
f\{Vi). The resulting space F\ is homotopy equivalent to FQ. For
example, the map p\ : F\ -> Fo defined to be p\ on F\ and sending
A to yi is a homotopy equivalence. It is easy to find a homotopy
inverse q: FQ -* F\. Suppose a: / —> A is a parametrization of A
such that α(0) = W\. If σ is a simplex of dimension greater than zero
in F\, with vertex u?i, then σ is a cone over a simplex τ. Define

x for*gpi(st(wi)),

[M, 2ί - 1] for [M, ί] G σ = C(τ), x =Pi([«, ί]),
q(x) =

{ α ( l - 2 ί ) for ί€[0 , 1/2].

Here st(w\) denotes the star of w\, and C(τ) is the cone over τ
with the vertex w\ corresponding to the value t = 0.

Clearly # is 1-1 on each 1-simplex of F o . If L = K - FQ then
i£ is obtained from FQ by attaching L along a graph (? in F$ . If
σ is a cell attached to (? via an attaching map ψ then attach a to
Fi via ^ ^ . This gives us a new complex K\ homotopy equivalent
to K by an obvious extension qx: K\ -* K of p\. By subdividing
st(yi) we can always assume that K\ is again a simplicial complex
with A one of its 1-simplices. #2(^1) is generated by the mapping
f\\F-*K\ which has one less point in its singular set than / . Using
Lemma 2 successively (one deformation of type (i) along A followed
by a sequence of deformations of type (ii)) we see that if K\ can be
embedded in R4 then so can K.

Repeating the same construction we get the following commutative
diagram

-f

where the maps in the bottom row are homotopy equivalences, Hι(Ki)
is generated by fxί: F -> F; c Kt 9 i = 0,. . . , j , and /} is an
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embedding. Furthermore, if JRΓ/ can be embedded in R4 so can K^γ,
/ = 1, . . . , j . Also Kj embeds in R4 by Lemma 1. This proves

PROPOSITION 1. Suppose K is a finite simplicial complex. Suppose
that H2{K) = Z and that Hι{K) is represented by a non-degenerate
simplicial map f:F-+K of an orientable surface F into K. If the
singular set of f is ^-dimensional then K can be embedded in R 4.

Case 2. S is 1-dimensional.
Then Σ = f(S) is also at most 1-dimensional. FQ is obtained from

F by identifying the points of each f~~ι(y)9 y G Σ(°), and by iden-
tifying the components of each f~ι(σ) (by simplicial isomorphisms)
where σ runs over the interiors of the edges of Σ. Let f~ι(σo)
be a union of open edges s\, ... ,sr, for some open edge σ0 € Σ.
Construct F\ from F by identifying the points of each set f~~ι(y),
y e Σ(°), and by identifying the components of s2 U Usr and of the
sets f~ι(σ) where σ runs over open 1-simplices of Σ-σo (again via
simplicial isomorphisms). As in Case 1 there exists a map f\ making
the diagram

commute where p\: F\ —• FQ is the natural projection. The singular
set S\ of f\ has one less edge than S \S\ = S - s\.

Attach a 2-cell D to z\ U zι c F\ via a homeomorphism where
Zj = f\(Sj). The resulting space F\ is homotopy equivalent to FQ.
The extension p\: F\ -+ FQ of p\: F\ —• FQ which squeezes D Xo z\
is a homotopy equivalence. Suppose, as before, that L = K - FQ is
attached to FQ along a graph G. Then G = p~ι(G) — z\ is homeo-
morphic to G and L can be attached to F\ along G in the obvious
way to construct a 2-complex AΓi which is homotopy equivalent to K.
Let q\: Kγ —• ΛΓ be the obvious extension of p i : F\ -^ FQ. HI^KI)

is generated by f\: i 7 —• K\ which has one less edge in its singular set
than / . Also, by using one deformation of type (ii) from Lemma 2
we see that if K\ embeds in R4 then so does K. As in Case 1 we
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repeat the above procedure to get a commutative diagram

F

where the bottom maps are homotopy equivalences, the singular set
of /i is O-dimensional, and K^\ embeds in R4 if Kt does, for
/ = 1 , . . . , / . Combining this with Proposition 1 we get

PROPOSITION 2. Suppose H2(K) = Z, and suppose that a generator
of H2(K) is represented by a non-degenerate simplίcial map f\F -+
K where F is an orientable surface. If the singular set of f is 1-
dimensional then K embeds in R4.

Case 3. S is 2-dimensionaL
Choose a point bσ in the interior of each 2-cell σ of F. Let S^ be

the collection of all open 2-cells σ such that f~ι(f(bσ)) contains k
points. Denote by Z^ the union of 2-cells σ such that int(σ) £ S^ .
Represent the homology class of / : F -» K by a linear combina-
tion Σ xee where e runs over the 2-cells of K. By choosing ap-
propriate orientations for the 2-cells of f(F) we can assume that all
the coefficients xe are non-negative. Furthermore, F can be chosen
so that Sk = {f-λ{ir\X{e))\xe = k}, for all k (see [2], p. 11). Let
M = max{A:|^ φ 0 } . Since S is 2-dimensional, M is greater than
1. SM does not contain all the open 2-cells of F because the coef-
ficients xe have no common factor. Therefore there exists a 2-cell
o\ such that int(σi) e SM and such that the intersection of σ\ with
F -ZM contains an open edge S\. Let Σ = f(S). Construct F{

from F
(1) by identifying the points of each f~ι(y), y £ Σ(°),
(2) by identifying the components of f~x{x) where τ runs over the

open edges of Σ - f(s\),
(3) by identifying the components of f~x{e) where e runs over all

closed 2-cells of Σ - f(σ\),
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(4) by gluing together s2 > > $m where S\, . . . , sm are the com-
ponents of f~ι(f(s\)), and

(5) by gluing together σ2, ... , σ m , where <7i, . . . , σm are closed
2-cells whose union is f~l{f{o\)).
As before, let all the identifications be via simplicial isomorphisms.
/ can again be factored as p\f\ where P\: F\ -> Fo is the natural
projection. p\ is a homotopy equivalence. If, as before, K is ob-
tained from Fo by attaching L (= K - Fo) along a graph G c Fo,
construct A4 by attaching L to Fi along p^l(G) — fi(s\) « Cr in the
obvious way. Â i is homotopy equivalent to K. Let q\\ K\ -+ K bs
the natural extension of p\. Hι{K) is generated by / 1 : i 7 -> K\. The
singular set of f\ has one less 2-simplex than S. Also, by Lemma 2
(using type (iii) deformation) K embeds in R4 if K\ does.

As in the previous two cases we can repeat the above procedure to
get a commutative diagram

_ r

where fa F -* Ki represents a generator of Hi{Ki), / = 0, . . . , d,
where the singular set of ^ is 1-dimensional, and where AΓz_i embeds
in E 4 if Kj does, for / = 1, . . . , d. Since, by Proposition 2, Λ^
embeds in R4 this proves the following result.

LEMMA 3. If K is a finite 2-complex such that H2(K) is infinite
cyclic then K embeds in R 4.

4. Proof of the theorem. Suppose H2(K) = Z/mZ. Then H\(K)
is isomorphic to the direct sum of Z/mZ and a free abelian group
F. Let x e H\{K) correspond to a generator of Z/mZ . Since the
second cohomology does not change if 1-cells are attached to K, we
can assume that K^ is connected. Therefore x can be represented
by a closed curve C: Sι —• K^. Denote by L the 2-comρlex ob-
tained from K by attaching an additional 2-cell e using C as the
attaching map. Let p be a point of int(e) and let y be a generator
of H\(vat{e) —p). Since HiiK) = 0 the Meyer-Vietoris sequence of
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the pair {L-p, int(e)} gives rise to the following exact sequence:

0 - H2(L) -> ^(intfe) -p) - i ^ t f ) - #!(L) - 0.

Because y gets mapped to x , i/i(L) is free and //2CΣO is isomor-
phic to Z . Therefore H2(L) = Z . By Lemma 3 L embeds in R 4 .
Since K c L we also get an embedding of K into R 4 . This finishes
the proof of the theorem.
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