EMBEDDING A 2-COMPLEX K IN \mathbb{R}^{4} WHEN $H^{2}(K)$ IS A CYCLIC GROUP

Marko Kranjc

Abstract

We prove that every finite 2-dimensional cell complex with cyclic second cohomology embeds in \mathbb{R}^{4} tamely.

1. Introduction. It has long been known that every compact PL (piecewise-linear) manifold embeds in euclidean space of double dimension. The analogous result, however, is not true for arbitrary simplicial complexes (see [2]). In [6] an obstruction to embedding n complexes in $\mathbb{R}^{2 n}$ was found. Since that obstruction is not homotopy invariant and is in general difficult to calculate, it is natural to ask if a certain class of n-complexes which can be easily described embeds in $\mathbb{R}^{2 n}$. It has been known that every n-complex with cyclic nth cohomology embeds in $\mathbb{R}^{2 n}$ if $n \neq 2$ (see [5]). If $n>2$ one can use the techniques of [7] to prove it. The same techniques are much harder to apply when $n=2$ and if they are successful they yield embeddings which are not smooth but only tame on each 2 -cell (recall that an embedding $D^{2} \rightarrow \mathbb{R}^{4}$ is tame if it can be extended to an embedding $D^{2} \times D^{2} \rightarrow \mathbb{R}^{4}$). At present the author does not even know whether every contractible 2 -complex embeds in \mathbb{R}^{4} piecewise smoothly.

In [4] it was shown that the case $n=2$ really is different from other dimensions (§3). Here we establish a result analogous to other dimensions.

Theorem. If K is a finite 2-complex such that $H^{2}(K)$ is cyclic then K can be embedded in \mathbb{R}^{4}.

Note. All homology and cohomology groups will be with integer coefficients; Z denotes the ring of integers.

The case $H^{2}(K)=0$ was proved in [4]. The general case can be reduced to the case when $H^{2}(K)$ is infinite cyclic. This case is basically in two steps. First it is proved for the case when $H_{2}(K)$ is generated by an embedded orientable surface. For arbitrary K with $H^{2}(K)=Z$ the situation is reduced to the previous case by constructing a tower
of maps and 2-complexes

$$
K_{r} \xrightarrow{p_{r}} K_{r-1} \xrightarrow{p_{r-1}} \cdots \xrightarrow{p_{1}} K_{1} \xrightarrow{p_{0}} K_{0}=K
$$

such that K_{j-1} can be embedded in \mathbb{R}^{4} if K_{j} can and such that K_{r} embeds in \mathbb{R}^{4}.

In what follows all embeddings of K in \mathbb{R}^{4} will be smooth in the interior of each cell except for a finite number of points in the interiors of 2-cells where they will still be tame. Thus if we construct such an embedding of a subdivided K it will still be tame on the original K. Therefore we can assume without loss of generality whenever it is convenient that K is either a simplicial complex or that all the attaching maps are homeomorphisms.
2. A special case. In what follows K will be a finite connected 2-complex.

Lemma 1. Suppose $H^{2}(K)=Z$ and suppose that $H_{2}(K)$ is generated by an embedded orientable surface $F \subset K$. Then K can be embedded in \mathbb{R}^{4}.

Proof. Let e_{0} be a 2-cell of F. Then the inclusion $\left(K-\operatorname{int}\left(e_{0}\right)\right.$, $\left.F-\operatorname{int}\left(e_{0}\right)\right) \subset(K, F)$ gives rise to the following commutative diagram

in which both rows are exact. Since $H^{2}(K) \rightarrow H^{2}(F)$ is an isomorphism the first homomorphism in the top row is trivial. The first vertical map is an isomorphism (by excision); therefore the first homomorphism in the bottom row is also trivial. This implies that $H^{2}\left(K-\operatorname{int}\left(e_{0}\right)\right)$ is 0 .

By attaching 2-cells to $K-\operatorname{int}\left(e_{0}\right)$ we can obtain an acyclic 2 complex L. Denote $L \cup e_{0}$ again by K. Clearly if this K can be embedded in \mathbb{R}^{4} so can the original 2-complex.

Choose an embedding of $F \cup K^{(1)}$ in $\mathbb{R}^{3} \times 0 \subset \mathbb{R}^{4}$ which is smooth on F and on each edge of K. Identify $F \cup K^{(1)}$ with its image under this embedding. Then $F \cup K^{(1)} \subset \mathbb{R}^{3} \times 0$. Let $H \times 0$ be a regular neighborhood of $K^{(1)}$ in $\mathbb{R}^{3} \times 0 . H \times 0$ is a handlebody with spine $K^{(1)}$. There is a natural projection $p: \partial(H \times 0) \rightarrow K^{(1)}$ such that $H \times 0$ is the mapping cylinder of p. Thus every point in $H \times 0$ can
be thought of as a class $[x, t]$ where $x \in \partial H, t \in I \quad(=[0,1])$, and $[x, 1]=p(x)$. let $\hat{p}: H \rightarrow K^{(1)}$ be defined by $\hat{p}([x, t])=p(x)$.

Let U be a regular neighborhood of $K^{(1)}$ in $K . \partial U$ is a union of circles C_{0}, \ldots, C_{g} where C_{i} corresponds to the 2-cell e_{i} of K and where g is the genus of H (because L is acyclic). Suppose $\partial U \cap F=C_{0} \cup \cdots \cup C_{k}$. Orient F and assume that C_{0}, \ldots, C_{k} have the induced orientation. Also choose orientations for the curves $C_{k+1}, \ldots, C_{g} . U$ and H can be chosen in such a way that $(H \times 0) \cap$ $F=U \cap F$ and so that $U \cap F=\hat{p}^{-1}(p(\partial U \cap F))=\{[x, t] \in H \times 0 ;$ $x \in \partial U \cap F, t \in I\}$. Embed $C_{k+1} \cup \cdots \cup C_{g}$ smoothly in $H \times 1$ in such a way that $p \mid C_{j}: C_{j} \rightarrow K^{(1)}$ is the attaching map for e_{j}. Let $U_{j}=\left\{([x, t], 1-t) \in H \times[-1,1] \mid x \in C_{j}, t \in I\right\}$. U_{j} is an embedding of the collar of e_{j} into $H \times[0,1]$. $\left(\bigcup_{j=k+1}^{g} U_{j}\right) \cup(F \cap H \times 0)$ is an embedding of U into $H \times[-1,1]$ which we can assume to be piecewise smooth.

Since L is acyclic, C_{1}, \ldots, C_{g} form a basis for $H_{1}(\partial(H \times[-1,1]))$. Let T be a maximal tree of $K^{(1)}$ and let s_{1}, \ldots, s_{g} be the edges of $K^{(1)}-T$. If m_{i} is the midpoint of s_{i} let

$$
S_{i}=\left(\hat{p}^{-1}\left(m_{k}\right) \times\{-1,1\}\right) \cup p^{-1}\left(m_{i}\right) \times[-1,1] \subset \partial(H \times[-1,1])
$$

Then S_{i} is an embedded 2-sphere. Choose an orientation for S_{i}. For each $i=1, \ldots, g$ choose an oriented simple closed curve a_{i} in $\partial(H \times[-1,1])$ such that $a_{i} \cdot S_{j}=\delta_{i j}$. Then $\left\{a_{1}, \ldots, a_{g}\right\}$ is a basis for $H_{1}(\partial(H \times[-1,1]))$. Suppose $C_{i} \sim \sum p_{i j} a_{j}, i=1, \ldots, g$, in $\partial(H \times[-1,1])(\sim$ stands for homologous $)$. Then $\operatorname{det}\left(p_{i j}\right)= \pm 1$. Let Σ_{i}^{\prime} be a union of suitably oriented disjoint copies of spheres S_{1}, \ldots, S_{g} representing the class $\sum_{j=1}^{g} q_{i j}\left[S_{j}\right]$ in $H_{2}(\partial(H \times[-1,1]))$ where $\left(q_{i j}\right)=\left(p_{j i}\right)^{-1}$. Then

$$
C_{i} \cdot \Sigma_{j}^{\prime}=\sum_{k, l} p_{i k} q_{j l} a_{k} \cdot S_{l}=\sum_{k=1}^{g} p_{i k} q_{j k}=\delta_{i j}
$$

The intersection number $\Sigma^{\prime} \cdot F$ is zero (it is the intersection of closed orientable surfaces in $\left.\mathbb{R}^{4}\right)$. Since $\Sigma_{i}^{\prime} \cap F=\Sigma_{i}^{\prime} \cap\left(C_{0} \cup \cdots \cup C_{k}\right)$, the intersection number $\Sigma_{j}^{\prime} \cdot\left(C_{0} \cup \cdots \cup C_{k}\right)$ in $\partial(H \times[-1,1])$ is also zero. Since $\Sigma_{i}^{\prime} \cdot\left(C_{1} \cup \cdots \cup C_{k}\right)=0$, for $i>k$, it follows that $\Sigma_{i}^{\prime} \cdot C_{0}=0$, for $i>k$. Therefore we can pipe together the intersections of Σ_{i}^{\prime} with $C_{j}, j=0, \ldots, g$, along $C_{0} \cup \cdots \cup C_{g}$ to obtain for each $i>k$ a surface $\Sigma_{i}^{\prime \prime} \subset \partial(H \times[-1,1])$ such that $\Sigma_{i}^{\prime \prime} \cap F=\varnothing=\Sigma_{i}^{\prime \prime} \cap C_{j}, i \neq j$, and such that $\Sigma_{i}^{\prime \prime} \cap C_{i}$ is a point. Since all the "pipes" lie either in $H \times 1$ or in a neighborhood of $\partial H \times 0$ in $\partial(H \times[-1,1])$, one can
choose half of a symplectic basis for each $H_{1}\left(\Sigma_{i}^{\prime \prime}\right), i>k$, represented by smooth simple closed curves in $\partial H \times(0,1] \cup H \times 1$. Since $M^{\prime}=$ $\mathbb{R}^{3} \times[0, \infty)-\operatorname{int}(H \times[-1,1])$ is simply connected, we can cap off these curves by regularly immersed discs in M^{\prime}. By performing surgeries along these discs change each $\Sigma_{i}^{\prime \prime}, i>k$, into a singular 2-sphere Σ_{i}. All the singularities lie in M^{\prime}. Furthermore, $\Sigma_{i} \cap(U \cup F)=\Sigma_{i}^{\prime} \cap C_{i}$ is a point. Note also that $\Sigma_{i} \cap \Sigma_{j} \cap \operatorname{int}(H \times[-1,1])=\varnothing$, and that $\Sigma_{i} \cdot \Sigma_{j}=0$, for $i \neq j, i, j>k$.

Cap off the curves C_{k+1}, \ldots, C_{g} by regularly immersed discs $D_{k+1}^{\prime}, \ldots, D_{g}^{\prime}$, respectively, lying in $\mathbb{R}^{3} \times[1, \infty)$. This extends the embedding of $F \cup U$ to a regular immersion of K into \mathbb{R}^{4}. Since $D_{i}^{\prime} \cdot \Sigma_{j}=\delta_{i j}$ for all $i, j>k$, we can use the spheres Σ_{j} to pipe off the intersections between the discs $D_{k+1}^{\prime}, \ldots, D_{g}^{\prime}$, in order to get immersed discs D_{k+1}, \ldots, D_{g}, respectively, such that $D_{i} \cdot D_{j}=0$, for $i \neq j$. Again $\Sigma_{i} \cdot D_{j}=\delta_{i j}$, for $i, j>k$.

Let M be the union of M^{\prime} and a regular neighborhood of $\Sigma_{k+1} \cup$ $\cdots \cup \Sigma_{g}$ which misses F. Since $\Sigma_{j}-M^{\prime}$ is a union of embedded discs, for $j=k+1, \ldots, g, M$ is simply connected. The discs D_{k+1}, \ldots, D_{g} and the classes $x_{i}=\left[\Sigma_{i}\right] \in H_{2}(M), i>k$, satisfy the conditions of Theorem 3.1 of [3]. Applying Theorem 1.1 of [3] we get $g-k$ tamely embedded discs $B_{k+1}^{2}, \ldots, B_{g}^{2}$ in M such that $B_{j}^{2} \cap \partial M=C_{j}$. This, in turn, defines an embedding of K in \mathbb{R}^{4}.
3. The case $H^{2}(K)=Z$. Let B be a ball of radius r and let $F: B \times I \rightarrow B$ have the following properties: $F_{0}=\mathrm{id}, F_{t} \mid \partial B=\mathrm{id}$, for $t \in[0,1]$, and F_{t} is a homeomorphism of B for $t \in[0,1)$. Then the homotopy $H: B \times B^{k} \times I \rightarrow B \times B^{k}$ given by

$$
H((x, y), t)=(F(x,(1-|y|) t), y)
$$

is the identity on $\partial\left(B \times B^{k}\right)$. Furthermore, H_{t} is one-to-one on $B \times B^{k}-B \times 0$, for all $t \in I$, and $H_{t} \mid B \times 0=F_{t} \times 0$.

Lemma 2. Let K be a finite 2-dimensional cell complex, such that all the 2-cells are attached via homeomorphisms. Let g be an embedding of K into \mathbb{R}^{4}. Then there exists a homotopy with compact support $H: \mathbb{R}^{4} \times I \rightarrow \mathbb{R}^{4}$, such that $H_{0}=\mathrm{id}$, and such that H_{t} is homeomorphism for $t \in[0,1)$, which does one of the following three types of deformations:
(i) for an edge s of K, H_{1} maps $g(s)$ to a point and is 1-1 elsewhere;
(ii) for a 2-cell e with boundary a union of two edges s_{1}, s_{2} having pairs of common endpoints, H is a deformation retraction of $g(e)$ onto $g\left(s_{1}\right)$, which is fuxed on $g\left(s_{1}\right)$.
(iii) for two 2-cells e_{1}, e_{2} with $e_{1} \cap e_{2}$ being an arc A, H_{1} maps $g\left(e_{1}\right)$ homeomorphically onto $g\left(e_{2}\right)$, and is 1-1 on $g(K)-g\left(e_{1} \cup e_{2}\right)$. Furthermore, H is fixed on $g\left(e_{2}\right)$.

If K_{1} is the 2-complex obtained from K by the identifications defined by H_{1} then $H_{1} g: K \rightarrow \mathbb{R}^{4}$ factors through K_{1}. The factoring map $K_{1} \rightarrow \mathbb{R}^{4}$ is an embedding.

Proof. Define a homotopy $F: 2 B^{k} \times I \rightarrow 2 B^{k}$ as follows:
For type (i) let $k=1$, and let

$$
F(x, t)= \begin{cases}(1-t) x & \text { for }|x| \leq 1 \\ (1+t) x-2 t x /|x| & \text { for } 1 \leq|x| \leq 2\end{cases}
$$

F squeezes $[-1,1]$ to 0 and linearly stretches the rest of $[-2,2]$.
For type (ii) let $k=2$, and let

$$
\begin{aligned}
& F((x, y), t) \\
& \quad= \begin{cases}(x, y(1-t)) & \text { for }|x| \leq 1,0 \leq y \leq A(x) \\
(x,(1 /(A(x)-B(x)))((A(x)(1-t)-B(x)) y+t A(x) B(x))) \\
& \text { for }|x| \leq 1, A(x) \leq y \leq B(x) \\
(x, y) & \text { elsewhere },\end{cases}
\end{aligned}
$$

where $A(x)=\sqrt{1-x^{2}}, B(x)=\sqrt{4-x^{2}} . F$ shrinks $D^{2} \cap \mathbb{R}_{+}^{2}$ to $[-1,1] \times 0$.

For type (iii) let $k=3$ and define F as follows:
Let $\delta:[0,2 \pi] \times I \rightarrow[0,2 \pi]$ be the homotopy

$$
\delta(\alpha, t)= \begin{cases}(1-t) \alpha & \text { for } 0 \leq \alpha \leq \pi / 2 \\ (1+t / 3) \alpha-2 \pi t / 3 & \text { for } \alpha \geq \pi / 2\end{cases}
$$

δ shrinks $[0, \pi / 2]$ to 0 and stretches $[\pi / 2,2 \pi]$ over $[0,2 \pi]$. A point in \mathbb{R}^{3} can be represented as a pair of a real and a complex number. Let

$$
\begin{aligned}
& F((x, r \cdot \exp (i \alpha)), t) \\
& \quad= \begin{cases}(x, r \cdot \exp (i \delta(\alpha, t))) & \text { for } \rho \leq 1 \\
(x, r \cdot \exp (i[(2-\rho) \delta(\alpha, t)+(\rho-1) \alpha])) & \text { for } \rho \in[1,2]\end{cases}
\end{aligned}
$$

where $\rho=\sqrt{x^{2}+r^{2}}$.
In each case $F_{t} \mid \partial\left(2 B^{k}\right)$ is identity for all $t \in I$.

For type (i) $g(s)$ has a regular neighborhood N homeomorphic to $[-2,2] \times B^{3}$. Let $\varphi:[-2,2] \times B^{3} \rightarrow N$ be a homeomorphism such that $\varphi([-1,1] \times 0)=g(s)$.

For type (ii) $g(e)$ has a regular neighborhood N homeomorphic to $2 D^{2} \times B^{2}$. Let $\varphi: 2 D^{2} \times B^{2} \rightarrow N$ be a homeomorphism such that $\varphi\left(\left(D^{2} \cap \mathbb{R}_{+}^{2}\right) \times 0\right)=g(e)$, and such that $\varphi([-1,1] \times 0)=g\left(s_{1}\right)$.

For type (iii), since $D=g\left(e_{1} \cup e_{2}\right)$ is a tame disc such that its interior doesn't intersect $g(K)-D$, there exists a homeomorphism φ from $2 B^{3} \times[-1,1]$ onto a regular neighborhood N of D, satisfying the following two properties: $\varphi\left(B^{3} \times 0\right) \cap(g(K)-D)=\varnothing$, and φ maps $\left\{(x, y, z, 0) \in B^{3} \times 0 \mid y \geq 0, z \geq 0, y z=0\right\}$ onto D so that $g(A)=\varphi\left(\left\{(x, 0,0,0) \in B^{3} \times 0\right\}\right)$.

Given φ and F for each type we define the desired homotopy H by

$$
H(x, t)= \begin{cases}x & \text { for } x \in N, \\ \varphi(F(u,(1-|v| t), v) & \text { for }(u, v) \in 2 B^{k} \times B^{4-k}, \\ & x=\varphi(u, v) .\end{cases}
$$

Suppose $f: F \rightarrow K$ represents a generator of $H_{2}(K)$. We can assume (by subdividing F and K appropriately) that f is simplicial and non-degenerate on each simplex (compare with [1], p. 11). We dealt with the case when f is an embedding in Lemma 1. Assume now that the singular set S of f (S is the closure of the set $\{x \in$ $F \mid f^{-1}(f(x))$ contains more than one point $\}$) is non-empty. We will successively replace K by "nicer" complexes and finally reduce the problem of embeddability of K in \mathbb{R}^{4} to the situation of Lemma 1.

Case 1. S is 0 -dimensional.
If $\Sigma=f(S)=\left\{y_{1}, \ldots, y_{r}\right\}$ then $F_{0}=f(F)$ is obtained from F by identifying the points of each set $f^{-1}\left(y_{j}\right), j=1, \ldots, t$. Suppose $f^{-1}\left(y_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. Construct F_{1} from F by identifying the points of each set $f^{-1}\left(y_{1}\right)-\left\{v_{1}\right\}, f^{-1}\left(y_{2}\right), \ldots, f^{-1}\left(y_{r}\right)$. Note that F_{1} is not a surface. Clearly there exists a map f_{1} making the following diagram commutative:

where $p_{1}: F_{1} \rightarrow F_{0}$ denotes the natural projection. The singular set S_{1} of f_{1} is equal to $S-\left\{v_{1}\right\}$.

Attach the endpoints of an arc A to F_{1} to w_{1} and w_{2}, where $w_{i}=$ $f_{1}\left(v_{i}\right)$. The resulting space \widehat{F}_{1} is homotopy equivalent to F_{0}. For example, the map $\hat{p}_{1}: \widehat{F}_{1} \rightarrow F_{0}$ defined to be p_{1} on F_{1} and sending A to y_{1} is a homotopy equivalence. It is easy to find a homotopy inverse $q: F_{0} \rightarrow \widehat{F}_{1}$. Suppose $\alpha: I \rightarrow A$ is a parametrization of A such that $\alpha(0)=w_{1}$. If σ is a simplex of dimension greater than zero in F_{1}, with vertex w_{1}, then σ is a cone over a simplex τ. Define

$$
q(x)= \begin{cases}x & \text { for } x \notin p_{1}\left(\mathbf{s t}\left(w_{1}\right)\right) \\ {[u, 2 t-1]} & \text { for }[u, t] \in \sigma=C(\tau), x=p_{1}([u, t]) \\ & t \in[1 / 2,1] \\ \alpha(1-2 t) & \text { for } t \in[0,1 / 2]\end{cases}
$$

Here $\operatorname{st}\left(w_{1}\right)$ denotes the star of w_{1}, and $C(\tau)$ is the cone over τ with the vertex w_{1} corresponding to the value $t=0$.

Clearly q is $1-1$ on each 1 -simplex of F_{0}. If $L=\overline{K-F}_{0}$ then K is obtained from F_{0} by attaching L along a graph G in $F_{0}^{(1)}$. If σ is a cell attached to G via an attaching map ψ then attach σ to \widehat{F}_{1} via $q \psi$. This gives us a new complex K_{1} homotopy equivalent to K by an obvious extension $q_{1}: K_{1} \rightarrow K$ of \hat{p}_{1}. By subdividing $\operatorname{st}\left(y_{1}\right)$ we can always assume that K_{1} is again a simplicial complex with A one of its 1 -simplices. $H_{2}\left(K_{1}\right)$ is generated by the mapping $f_{1}: F \rightarrow K_{1}$ which has one less point in its singular set than f. Using Lemma 2 successively (one deformation of type (i) along A followed by a sequence of deformations of type (ii)) we see that if K_{1} can be embedded in \mathbb{R}^{4} then so can K.

Repeating the same construction we get the following commutative diagram

where the maps in the bottom row are homotopy equivalences, $H_{2}\left(K_{i}\right)$ is generated by $f_{i}: F \rightarrow F_{i} \subset K_{i}, i=0, \ldots, j$, and f_{j} is an
embedding. Furthermore, if K_{i} can be embedded in \mathbb{R}^{4} so can K_{i-1}, $i=1, \ldots, j$. Also K_{j} embeds in \mathbb{R}^{4} by Lemma 1. This proves

Proposition 1. Suppose K is a finite simplicial complex. Suppose that $H^{2}(K)=Z$ and that $H_{2}(K)$ is represented by a non-degenerate simplicial map $f: F \rightarrow K$ of an orientable surface F into K. If the singular set of f is 0 -dimensional then K can be embedded in \mathbb{R}^{4}.

Case 2. S is 1 -dimensional.
Then $\Sigma=f(S)$ is also at most 1-dimensional. F_{0} is obtained from F by identifying the points of each $f^{-1}(y), y \in \Sigma^{(0)}$, and by identifying the components of each $f^{-1}(\sigma)$ (by simplicial isomorphisms) where σ runs over the interiors of the edges of Σ. Let $f^{-1}\left(\sigma_{0}\right)$ be a union of open edges s_{1}, \ldots, s_{r}, for some open edge $\sigma_{0} \in \Sigma$. Construct F_{1} from F by identifying the points of each set $f^{-1}(y)$, $y \in \Sigma^{(0)}$, and by identifying the components of $s_{2} \cup \cdots \cup s_{r}$ and of the sets $f^{-1}(\sigma)$ where σ runs over open 1 -simplices of $\Sigma-\sigma_{0}$ (again via simplicial isomorphisms). As in Case 1 there exists a map f_{1} making the diagram

commute where $p_{1}: F_{1} \rightarrow F_{0}$ is the natural projection. The singular set S_{1} of f_{1} has one less edge than $S: S_{1}=S-s_{1}$.

Attach a 2-cell D to $z_{1} \cup z_{2} \subset F_{1}$ via a homeomorphism where $z_{j}=f_{1}\left(s_{j}\right)$. The resulting space \widehat{F}_{1} is homotopy equivalent to F_{0}. The extension $\hat{p}_{1}: \widehat{F}_{1} \rightarrow F_{0}$ of $p_{1}: F_{1} \rightarrow F_{0}$ which squeezes D to z_{1} is a homotopy equivalence. Suppose, as before, that $L={\bar{K}-F_{0}}$ is attached to F_{0} along a graph G. Then $\widehat{G}=p^{-1}(G)-z_{1}$ is homeomorphic to G and L can be attached to \widehat{F}_{1} along \widehat{G} in the obvious way to construct a 2 -complex K_{1} which is homotopy equivalent to K. Let $q_{1}: K_{1} \rightarrow K$ be the obvious extension of $\hat{p}_{1}: \widehat{F}_{1} \rightarrow F_{0} . H_{2}\left(K_{1}\right)$ is generated by $f_{1}: F \rightarrow K_{1}$ which has one less edge in its singular set than f. Also, by using one deformation of type (ii) from Lemma 2 we see that if K_{1} embeds in \mathbb{R}^{4} then so does K. As in Case 1 we
repeat the above procedure to get a commutative diagram

where the bottom maps are homotopy equivalences, the singular set of f_{1} is 0 -dimensional, and K_{i-1} embeds in \mathbb{R}^{4} if K_{i} does, for $i=1, \ldots, l$. Combining this with Proposition 1 we get

Proposition 2. Suppose $H^{2}(K)=Z$, and suppose that a generator of $H_{2}(K)$ is represented by a non-degenerate simplicial map $f: F \rightarrow$ K where F is an orientable surface. If the singular set of f is 1 dimensional then K embeds in \mathbb{R}^{4}.

Case 3. S is 2-dimensional.

Choose a point b_{σ} in the interior of each 2-cell σ of F. Let S_{k} be the collection of all open 2-cells σ such that $f^{-1}\left(f\left(b_{\sigma}\right)\right)$ contains k points. Denote by Z_{k} the union of 2-cells σ such that $\operatorname{int}(\sigma) \in S_{k}$. Represent the homology class of $f: F \rightarrow K$ by a linear combination $\sum x_{e} e$ where e runs over the 2 -cells of K. By choosing appropriate orientations for the 2-cells of $f(F)$ we can assume that all the coefficients x_{e} are non-negative. Furthermore, F can be chosen so that $S_{k}=\left\{f^{-1}(\operatorname{int}(e)) \mid x_{e}=k\right\}$, for all k (see [2], p. 11). Let $M=\max \left\{k \mid S_{k} \neq \varnothing\right\}$. Since S is 2-dimensional, M is greater than 1. S_{M} does not contain all the open 2-cells of F because the coefficients x_{e} have no common factor. Therefore there exists a 2 -cell σ_{1} such that $\operatorname{int}\left(\sigma_{1}\right) \in S_{M}$ and such that the intersection of σ_{1} with $\overline{F-Z_{M}}$ contains an open edge s_{1}. Let $\Sigma=f(S)$. Construct F_{1} from F
(1) by identifying the points of each $f^{-1}(y), y \in \Sigma^{(0)}$,
(2) by identifying the components of $f^{-1}(\tau)$ where τ runs over the open edges of $\Sigma-f\left(s_{1}\right)$,
(3) by identifying the components of $f^{-1}(e)$ where e runs over all closed 2-cells of $\Sigma-f\left(\sigma_{1}\right)$,
(4) by gluing together s_{2}, \ldots, s_{m} where s_{1}, \ldots, s_{m} are the components of $f^{-1}\left(f\left(s_{1}\right)\right)$, and
(5) by gluing together $\sigma_{2}, \ldots, \sigma_{m}$, where $\sigma_{1}, \ldots, \sigma_{m}$ are closed 2-cells whose union is $f^{-1}\left(f\left(\sigma_{1}\right)\right)$.
As before, let all the identifications be via simplicial isomorphisms. f can again be factored as $p_{1} f_{1}$ where $p_{1}: F_{1} \rightarrow F_{0}$ is the natural projection. p_{1} is a homotopy equivalence. If, as before, K is obtained from F_{0} by attaching $L\left(=\bar{K}-F_{0}\right)$ along a graph $G \subset F_{0}$, construct K_{1} by attaching L to F_{1} along $p_{1}^{-1}(G)-f_{1}\left(s_{1}\right) \approx G$ in the obvious way. K_{1} is homotopy equivalent to K. Let $q_{1}: K_{1} \rightarrow K$ be the natural extension of $p_{1} . H_{2}(K)$ is generated by $f_{1}: F \rightarrow K_{1}$. The singular set of f_{1} has one less 2 -simplex than S. Also, by Lemma 2 (using type (iii) deformation) K embeds in \mathbb{R}^{4} if K_{1} does.
As in the previous two cases we can repeat the above procedure to get a commutative diagram

where $f_{i}: F \rightarrow K_{i}$ represents a generator of $H_{2}\left(K_{i}\right), i=0, \ldots, d$, where the singular set of f_{d} is 1-dimensional, and where K_{i-1} embeds in \mathbb{R}^{4} if K_{i} does, for $i=1, \ldots, d$. Since, by Proposition $2, K_{d}$ embeds in \mathbb{R}^{4} this proves the following result.

Lemma 3. If K is a finite 2-complex such that $H^{2}(K)$ is infinite cyclic then K embeds in \mathbb{R}^{4}.
4. Proof of the theorem. Suppose $H^{2}(K)=Z / m Z$. Then $H_{1}(K)$ is isomorphic to the direct sum of $Z / m Z$ and a free abelian group F. Let $x \in H_{1}(K)$ correspond to a generator of $Z / m Z$. Since the second cohomology does not change if 1 -cells are attached to K, we can assume that $K^{(1)}$ is connected. Therefore x can be represented by a closed curve $C: S^{1} \rightarrow K^{(1)}$. Denote by L the 2 -complex obtained from K by attaching an additional 2-cell e using C as the attaching map. Let p be a point of $\operatorname{int}(e)$ and let y be a generator of $H_{1}(\operatorname{int}(e)-p)$. Since $H_{2}(K)=0$ the Meyer-Vietoris sequence of
the pair $\{L-p, \operatorname{int}(e)\}$ gives rise to the following exact sequence:

$$
0 \rightarrow H_{2}(L) \rightarrow H_{1}(\operatorname{int}(e)-p) \rightarrow H_{1}(K) \rightarrow H_{1}(L) \rightarrow 0 .
$$

Because y gets mapped to $x, H_{1}(L)$ is free and $H_{2}(L)$ is isomorphic to Z. Therefore $H^{2}(L)=Z$. By Lemma $3 L$ embeds in \mathbb{R}^{4}. Since $K \subset L$ we also get an embedding of K into \mathbb{R}^{4}. This finishes the proof of the theorem.

References

[1] R. Fenn, Techniques of Geometric Topology, Cambridge University Press, 1983.
[2] A. Flores, Über die Existenz n-dimensionaler Komplexe, die nicht in den $R_{2 n}$ topologish einbettbar sind, Erbeg. Math Kolloq., 5 (1932/33), 17-24.
[3] M. Freedman, The topology of 4-manifolds, J. Differential Geom., 17 (1982), 357-453.
[4] M. Kranjc, Embedding 2-complexes in \mathbb{R}^{4}, Pacific J. Math., 133 (1988), 301313.
[5] E. Rees, Embedding odd torsion manifolds, Bull. London Math. Soc., 3 (1971), 356-362.
[6] A. Shapiro, Obstructions to the imbedding of a complex in a Euclidean space, I. The first obstruction, Ann. of Math., 66, No. 2 (1957), 256-269.
[7] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math., 45 (1944), 220-246.

Received January 26, 1990 and in revised form July 15, 1990.
Western Illinois University
Macomb, IL 61455

