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EMBEDDING A 2-COMPLEX K IN r*
WHEN H*(K) IS A CYCLIC GROUP

MARkO KRANJIC

We prove that every finite 2-dimensional cell complex with cyclic
second cohomology embeds in R* tamely.

1. Introduction. It has long been known that every compact PL
(piecewise-linear) manifold embeds in euclidean space of double di-
mension. The analogous result, however, is not true for arbitrary
simplicial complexes (see [2]). In [6] an obstruction to embedding n-
complexes in R2” was found. Since that obstruction is not homotopy
invariant and is in general difficult to calculate, it is natural to ask if a
certain class of n-complexes which can be easily described embeds in
R2" . It has been known that every n-complex with cyclic nth coho-
mology embeds in R?" if n # 2 (see [5]). If n > 2 one can use the
techniques of [7] to prove it. The same techniques are much harder
to apply when n = 2 and if they are successful they yield embeddings
which are not smooth but only tame on each 2-cell (recall that an
embedding D? — R* is tame if it can be extended to an embedding
D? x D? — R*). At present the author does not even know whether
every contractible 2-complex embeds in R* piecewise smoothly.

In [4] it was shown that the case n = 2 really is different from
other dimensions (§3). Here we establish a result analogous to other
dimensions.

THEOREM. If K is a finite 2-complex such that H*(K) is cyclic then
K can be embedded in R*.

Note. All homology and cohomology groups will be with integer
coefficients; Z denotes the ring of integers.

The case H?(K) =0 was proved in [4]. The general case can be re-
duced to the case when H?(K) is infinite cyclic. This case is basically
in two steps. First it is proved for the case when H,(K) is generated
by an embedded orientable surface. For arbitrary K with H%(K) = Z
the situation is reduced to the previous case by constructing a tower
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of maps and 2-complexes

K oKy 2o B g B Ky =K
such that K;_; can be embedded in R* if K; can and such that K,
embeds in R*.

In what follows all embeddings of K in R* will be smooth in the
interior of each cell except for a finite number of points in the interiors
of 2-cells where they will still be tame. Thus if we construct such an
embedding of a subdivided K it will still be tame on the original
K . Therefore we can assume without loss of generality whenever it
is convenient that K is either a simplicial complex or that all the
attaching maps are homeomorphisms.

2. A special case. In what follows K will be a finite connected
2-complex.

LEMMA 1. Suppose H*(K) = Z and suppose that H,(K) is gen-
erated by an embedded orientable surface F c K. Then K can be
embedded in R*.

Proof. Let ey be a 2-cell of F. Then the inclusion (K — int(ep),
F—int(eg)) C (K, F) gives rise to the following commutative diagram

HYK, F) N HY(K) H*(F) 0

l | 1

H*(K —int(e,), F — int(e,)) H*(K —int(e))) —— 0

in which both rows are exact. Since H?(K) — H?(F) is an iso-
morphism the first homomorphism in the top row is trivial. The
first vertical map is an isomorphism (by excision); therefore the first
homomorphism in the bottom row is also trivial. This implies that
H?(K — int(ep)) is 0.

By attaching 2-cells to K — int(ey) we can obtain an acyclic 2-
complex L. Denote L U ey again by K. Clearly if this K can be
embedded in R* so can the original 2-complex.

Choose an embedding of FUK() in R3x 0 c R* which is smooth
on F and on each edge of K. Identify F UK() with its image under
this embedding. Then F UK() ¢ R3 x 0. Let H x 0 be a regular
neighborhood of K(!) in R3x 0. H x 0 is a handlebody with spine
KM . There is a natural projection p: 8(H x 0) — K such that
H x 0 is the mapping cylinder of p. Thus every point in H x 0 can
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be thought of as a class [x, t] where x€0H, tel (=][0, 1]), and
[x,11=p(x). let p: H— KU be defined by p([x, t]) = p(x).

Let U be a regular neighborhood of K() in K. AU is a union
of circles Cy, ..., Cg where C; corresponds to the 2-cell ¢; of K
and where g is the genus of H (because L is acyclic). Suppose
OUNF = CyuU---UC,. Orient F and assume that Cp, ..., C;
have the induced orientation. Also choose orientations for the curves
Ck+15 ..., Cg. U and H can be chosen in such a way that (H x0)N
F=UNF andsothat UNF =p~'(p(OUNF)) ={[x,t]€ HxO0;
x€dUNF, tel}. Embed Cr y U---UC, smoothly in H x 1
in such a way that p|C; : C; — K(I) is the attaching map for e;.
Let Uj = {([x,t],1-¢t) e Hx[-1,1}lx e Cj, teI}. Uj is an
embedding of the collar of e; into Hx[0, 1]. ( }§=k+l Uj)U(FNH x0)
is an embedding of U into H x [-1, 1] which we can assume to be
piecewise smooth.

Since L is acyclic, Cy, ..., Cg form a basis for H;(0(Hx[-1, 1])).
Let T be a maximal tree of K() and let sy, ..., sg be the edges of
KU — T If m; is the midpoint of s; let

Si= (67" (mp) x {1, 1) up~'(m;) x [-1, 1] C 8(H x [-1, 1]).

Then §; is an embedded 2-sphere. Choose an orientation for ;.

Foreach i =1, ..., g choose an oriented simple closed curve ag; in
O0(H x[-1, 1]) such that a;-S; =9;;. Then {a;, ..., ag} is a basis
for H;(0(H x [-1, 1])). Suppose C; ~ > pjja;, i=1,...,¢,in

O(H x [-1,1]) (~ stands for homologous). Then det(p;;) = 1.
Let X; be a union of suitably oriented disjoint copies of spheres
S1, ..., Sg representing the class Ej?’:l q;;[S;] in Hh(8(Hx[-1, 1]))
where (g;;) = (p;;)~!. Then

g
Ci-Zi =) pudjax-Si=Y Pudjx =0
k,l k=1

The intersection number X' F is zero (it is the intersection of closed
orientable surfaces in R*). Since T NF =X, N(CoU---UCy), the
intersection number X';-(CoU---UCy) in 9(H x[-1, 1]) is also zero.
Since X-(C1U---UCy) =0, for i > k, it follows that Z-Cp =0, for
i > k. Therefore we can pipe together the intersections of X; with
Ci, j=0,...,g,aong CoU---UCyg to obtain for each i > k a
surface X7 C 0(H x[-1, 1]) suchthat Z'NF =3 =Z/NCj, i #J,
and such that £/ N C; is a point. Since all the “pipes” lie either in
H x 1 or in a neighborhood of 6H x 0 in 9(H x [-1, 1]), one can
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choose half of a symplectic basis for each H,(XZ}), i > k, represented
by smooth simple closed curves in 0 H x (0, 1JUH x 1. Since M' =
R3x[0, oco)—int(H x[—1, 1]) is simply connected, we can cap off these
curves by regularly immersed discs in M'. By performing surgeries
along these discs change each X, i > k, into a singular 2-sphere X;.
All the singularities lie in M'. Furthermore, Z,N(UU F) =N C;
is a point. Note also that ;N X; Nint(H x [-1, 1]) = &, and that
Z,‘-Zj=0,f01' 1#7J, l,]>k

Cap off the curves Ci,y,..., C; by regularly immersed discs
Dj,ys ..., Dy, respectively, lying in R3 x [1, c0). This extends the
embedding of F U U to a regular immersion of K into R*. Since
D;-X; = 6;; forall i,j > k, we can use the spheres X; to pipe
off the intersections between the discs Dj_,, ..., Dy, in order to get
immersed discs Dy, ..., Dg, respectively, such that D;-D; = 0,
for i# j. Again X;-D; =d;;,for i, j > k.

Let M be the union of M’ and a regular neighborhood of X, ; U
.-+ UZXZ, which misses F. Since X; — M’ is a union of embedded
discs, for j = k+1,...,g, M is simply connected. The discs
Dyy1,...,Dg and the classes x; = [X;] € Ho(M), i > k, satisfy
the conditions of Theorem 3.1 of [3]. Applying Theorem 1.1 of [3]
we get g — k tamely embedded discs B,% NTEEE Bg, in M such that

BJZ NOM = C;. This, in turn, defines an embedding of K in R*.

3. The case H3(K) = Z. Let B be a ball of radius r and let
F: B x I — B have the following properties: Fy = id, F;|0B = id,
for t € [0, 1], and F; is a homeomorphism of B for ¢t € [0, 1).
Then the homotopy H : B x B x I — B x B¥ given by

H((x,y),t)=(F(x, (1-yD1), )

is the identity on 9(B x BX). Furthermore, H, is one-to-one on
Bx B -Bx0,forall tel,and H|Bx0=F, x0.

LEMMA 2. Let K be a finite 2-dimensional cell complex, such that
all the 2-cells are attached via homeomorphisms. Let g be an em-
bedding of K into R*. Then there exists a homotopy with compact
support H: R* x I — R*, such that Hy = id, and such that H, is
homeomorphism for t € [0, 1), which does one of the following three
types of deformations:

(i) for an edge s of K, Hy maps g(s) to a point and is 1-1 else-
where;
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(ii) for a 2-cell e with boundary a union of two edges s,, s, having
pairs of common endpoints, H is a deformation retraction of g(e)
onto g(sy), which is fixed on g(s).

(iii) for two 2-cells ey, e, with e, Ne, being an arc A, H; maps
g(ey) homeomorphically onto g(e;), andis 1-1 on g(K)—g(e;Uey).
Furthermore, H is fixed on g(e;).

If K, is the 2-complex obtained from K by the identifications de-
fined by H; then H,g: K — R* factors through K,. The factoring
map K; — R* is an embedding.

Proof. Define a homotopy F: 2B* x I — 2B* as follows:
For type (i) let £ =1, and let
1-t¢ fi <1,
P = {1707 or x| <
(1+t)x —2tx/|x| forl<|x|<2.

F squeezes [—1, 1] to 0 and linearly stretches the rest of [-2, 2].
For type (ii) let kK =2, and let

F((x,»),1
(x,y(1=1) for|x|<1, 0<y<A(x),
(x, (1/(4(x) = B(x)))((A(x)(1 = 1) = B(x))y + tA(x)B(x)))
for x| <1, A(x) <y < B(x),
(x,¥) elsewhere,
where A(x) = V1-x2, B(x) = V4—x2. F shrinks D>NR2 to
[-1,1]x0.
For type (iii) let kK = 3 and define F as follows:
Let 6 :[0, 2n] x I — [0, 2] be the homotopy
(1-1t)a for0<a<m/2,
e, 0= {
(1+t/3)a—2nt/3 fora>n/2.
0 shrinks [0, n/2] to O and stretches [n/2, 2n] over [0, 27]. A

point in R3 can be represented as a pair of a real and a complex
number. Let

F((x, r-exp(ia)), t)
_ { (x, r-exp(id(a, t))) forp<1,
— L (x, rexp(il(2 - p)é(a, 1) + (p — 1)a])) for pell, 2],
where p = Vx2 +1r2.

In each case F;|0(2B) is identity for all te 1.
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For type (i) g(s) has a regular neighborhood N homeomorphic to
[-2,2] x B3. Let ¢ :[-2, 2] x B3 — N be a homeomorphism such
that ¢([-1, 11 x0) = g(s).

For type (ii) g(e) has a regular neighborhood N homeomorphic
to 2D* x B2. Let ¢ : 2D? x B> — N be a homeomorphism such that
9((D>*NR2) x 0) = g(e), and such that ¢([-1, 1]x0) = g(sy).

For type (iii), since D = g(e; U e;) is a tame disc such that its
interior doesn’t intersect g(K)— D, there exists a homeomorphism ¢
from 2B3 x[-1, 1] onto a regular neighborhood N of D, satisfying
the following two properties: ¢(B3 x 0)N (g(K) — D) = &, and ¢
maps {(x,y,z,0)€B3x0|y>0,z>0,yz=0} onto D so that
g(4)=9({(x,0,0,0) € B? x 0}).

Given ¢ and F for each type we define the desired homotopy H
by

X forxe N,
H(x,t)={ o(F(u, (1-|v|t),v) for (u,v)e 2Bk x B**,
x=¢(u,v).

Suppose f: F — K represents a generator of H,(K). We can
assume (by subdividing F and K appropriately) that f is simplicial
and non-degenerate on each simplex (compare with [1], p. 11). We
dealt with the case when f is an embedding in Lemma 1. Assume
now that the singular set S of f (S is the closure of the set {x €
F|f~1(f(x)) contains more than one point}) is non-empty. We will
successively replace K by “nicer” complexes and finally reduce the
problem of embeddability of K in R* to the situation of Lemma 1.

Case 1. S 1s 0-dimensional.

If = f(S)={y1,...,yr} then Fy = f(F) is obtained from F
by identifying the points of each set f~!(y;), j=1,...,t. Suppose
1) = {v1, v, ..., v;}. Construct F; from F by identifying

the points of each set f~!(y;) — {vi}, f~1(2), ..., f~' (). Note
that F; is not a surface. Clearly there exists a map f; making the
following diagram commutative:

F -1 F

N

Fy
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where p;: F; — Fp denotes the natural projection. The singular set
Sy of f; isequalto S —{v;}.

Attach the endpoints of an arc 4 to F; to w; and w,, where w; =
fi(v;). The resulting space F| is homotopy equivalent to Fy. For
example, the map p, :FI — F,y defined to be p; on F; and sending
A to y; is a homotopy equivalence. It is easy to find a homotopy
inverse ¢q: Fy — Fy. Suppose a: I — A is a parametrization of A4
such that «(0) = w; . If o is a simplex of dimension greater than zero
in Fy, with vertex w;, then o is a cone over a simplex 7. Define

x for x ¢ pi(st(w1)),
(x) = [u,2t-1] for[u,tleo=C(1), x =pi([u,1]),
Al te[1/2, 1],

a(l-21) fortelo, 1/2].

Here st(w;) denotes the star of w;, and C(t) is the cone over 7
with the vertex w; corresponding to the value ¢t =0.

Clearly g is 1-1 on each 1-simplex of Fy. If L = K — Fy then
K is obtained from F, by attaching L along a graph G in FO(I). If
o is a cell attached to G via an attaching map y then attach g to
F, via qy . This gives us a new complex K; homotopy equivalent
to K by an obvious extension ¢;: K; — K of p;. By subdividing
st(y1) we can always assume that K; is again a simplicial complex
with 4 one of its 1-simplices. H,(K) is generated by the mapping
fi: F — K; which has one less point in its singular set than f. Using
Lemma 2 successively (one deformation of type (i) along A4 followed
by a sequence of deformations of type (ii)) we see that if K; can be
embedded in R* then so can K.

Repeating the same construction we get the following commutative
diagram

g, 91 4,

Kj —— K-y =5 ——= K —— K=K

where the maps in the bottom row are homotopy equivalences, H>(K;)
is generated by fi: F — F;, Cc K;, i = 0,...,j, and f; is an
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embedding. Furthermore, if K; can be embedded in R* so can K;_;,
i=1,...,j.Also K; embeds in R* by Lemma 1. This proves

ProprosITION 1. Suppose K is a finite simplicial complex. Suppose
that H*(K) = Z and that Hy(K) is represented by a non-degenerate
simplicial map f: F — K of an orientable surface F into K. If the
singular set of f is O-dimensional then K can be embedded in R*.

Case 2. S is 1-dimensional.

Then X = f(S) is also at most 1-dimensional. F; is obtained from
F by identifying the points of each f~1(y), y € £, and by iden-
tifying the components of each f~!(¢) (by simplicial isomorphisms)
where o runs over the interiors of the edges of . Let f~!(ay)
be a union of open edges s;,..., s, for some open edge gy € X.
Construct F; from F by identifying the points of each set f~1(y),
y € 20 | and by identifying the components of s, U---Us, and of the
sets f~!(o) where o runs over open 1-simplices of £—ay (again via
simplicial isomorphisms). As in Case 1 there exists a map f; making
the diagram

F -1, F

N

Fy

commute where p;: F; — Fj is the natural projection. The singular
set S; of f; has one less edge than S:S5; =8 —ys;.

Attach a 2-cell D to z; Uz, C F; via a homeomorphism where
z; = fi(sj). The resulting space F, is homotopy equivalent to Fp.
The extension p;: F; — Fy of p,: F; — F, which squeezes D to z;
is a homotopy equivalence. Suppose, as before, that L = K — F is
attached to F, along a graph G. Then G = p~!(G) — z; is homeo-
morphic to G and L can be attached to fl along G in the obvious
way to construct a 2-complex K; which is homotopy equivalent to K .
Let q,: K; — K be the obvious extension of pi: F] — Fy. Hy(Ky)
is generated by f;: F — K; which has one less edge in its singular set
than f. Also, by using one deformation of type (ii) from Lemma 2
we see that if K; embeds in R* then so does K. As in Case 1 we
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repeat the above procedure to get a commutative diagram

D D,

F -2 R, N

N n N n

9y ) 9,

K~ K » K; —— Ko=K

where the bottom maps are homotopy equivalences, the singular set
of f; is O-dimensional, and K;_; embeds in R* if K; does, for
i=1,...,[. Combining this with Proposition 1 we get

PROPOSITION 2. Suppose H?(K) = Z , and suppose that a generator
of Hy(K) is represented by a non-degenerate simplicial map f: F —
K where F is an orientable surface. If the singular set of f is 1-
dimensional then K embeds in R*.

Case 3. S is 2-dimensional.

Choose a point b, in the interior of each 2-cell ¢ of F. Let S; be
the collection of all open 2-cells ¢ such that f~!(f(b,)) contains k
points. Denote by Z; the union of 2-cells ¢ such that int(g) € Sk .
Represent the homology class of f: F — K by a linear combina-
tion ) x.e where e runs over the 2-cells of K. By choosing ap-
propriate orientations for the 2-cells of f(F) we can assume that all
the coefficients x, are non-negative. Furthermore, F can be chosen
so that Sy = {f~!(int(e))|x. = k}, for all k (see [2], p. 11). Let
M = max{k|S; # &}. Since S is 2-dimensional, M is greater than
1. S)r does not contain all the open 2-cells of F because the coef-
ficients x, have no common factor. Therefore there exists a 2-cell
o, such that int(o;) € S)s and such that the intersection of g; with
F — Z),; contains an open edge s;. Let £ = f(S). Construct F
from F

(1) by identifying the points of each f~1(y), y € O,

(2) by identifying the components of f~1(7) where t runs over the
open edges of X — f(sy),

(3) by identifying the components of f~!(e) where e runs over all
closed 2-cells of X — f(0y),
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(4) by gluing together s, ..., s, where sy, ..., S, are the com-
ponents of f~!(f(s1)), and
(5) by gluing together o, ..., g, , where gy, ..., g, are closed

2-cells whose union is f~1(f(a})).
As before, let all the identifications be via simplicial isomorphisms.
f can again be factored as p;f; where p,: F; — F; is the natural
projection. p; is a homotopy equivalence. If, as before, K is ob-
tained from F, by attaching L (= K — F) along a graph G C Fp,
construct K; by attaching L to F; along p;'(G) - fi(51) ~ G in the
obvious way. K; is homotopy equivalent to K. Let ¢;: K; — K be
the natural extension of p;. H,(K) is generated by f;: F — K;. The
singular set of f; has one less 2-simplex than S. Also, by Lemma 2
(using type (iii) deformation) K embeds in R* if K; does.

As in the previous two cases we can repeat the above procedure to
get a commutative diagram

Ja Jaz
F 2 Ry 22
N N N n
Ky 2o Ky, =5 Bk A K=K
where f;: F — K; represents a generator of Hy(K;), i=0,...,d,
where the singular set of f; is 1-dimensional, and where K;_; embeds
in R* if K; does, for i = 1,...,d. Since, by Proposition 2, K,

embeds in R* this proves the following result.

LEMMA 3. If K is a finite 2-complex such that H*(K) is infinite
cyclic then K embeds in R*.

4. Proof of the theorem. Suppose H2(K) = Z/mZ . Then H;(K)
is isomorphic to the direct sum of Z/mZ and a free abelian group
F . Let x € H|(K) correspond to a generator of Z/mZ . Since the
second cohomology does not change if 1-cells are attached to K, we
can assume that K(I) is connected. Therefore x can be represented
by a closed curve C: S! — K(), Denote by L the 2-complex ob-
tained from K by attaching an additional 2-cell e using C as the
attaching map. Let p be a point of int(e) and let y be a generator
of Hj(int(e) — p). Since H,(K) = 0 the Meyer-Vietoris sequence of
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the pair {L — p, int(e)} gives rise to the following exact sequence:

0 — Hy(L) — H,(int(e) — p) — H\(K) — H{(L) —= 0.

Because y gets mapped to x, H (L) is free and H,(L) is isomor-

phic to Z . Therefore H%(L) = Z. By Lemma 3 L embeds in R*.
Since K ¢ L we also get an embedding of K into R*. This finishes
the proof of the theorem.
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