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CHARACTER VALUE ESTIMATES
FOR GROUPS OF LIE TYPE

DAVID GLUCK

Let G be a group of Lie type over the field of q elements. Let χ
be a nonlinear irreducible character of G and x a noncentral element
of G. Examination of character tables suggests that \χ(x)/χ(l)\ <
C/q, where C is a universal constant independent of χ, x, and
G. This order of magnitude is attained when, for example, χ is the
doubly transitive permutation character of GL(n, q) and x central-
izes a hyperplane of PG(« - l,q); \χ(x)/χ(l)\ then approaches
\jq as n —• oo. In this paper, we establish a bound of the above
type when x is a semisimple element which has prime order modulo
Z(G). However, we must exclude certain groups G in characteristic
2 and 3. The most serious exclusions are the groups of type Cn in
characteristic 2. Our proof, which is summarized below, does not use
Deligne-Lusztig theory.

We first consider the case that x is contained in no proper parabolic
subgroup of G. By character orthogonality, \χ(x)\ < \CQ{X)\111 .
Since CQ{X) is essentially a torus, the lower bounds for /(I) in [16]
yield the desired upper bound for \χ(x)/χ(l)\.

We may then assume that x is contained in a Levi complement
Lj of a suitable standard maximal parabolic Pj. We write χPj =
X\ + X2 + X3 + XA , where the irreducible constituents of χ\ are linear
characters of Pj, the irreducible constituents of χι are nonlinear
but have Uj in their kernels, the irreducible constituents of χι lie
over nonprincipal Lj -invariant irreducible characters of Uj, and the
irreducible constituents of X4 lie over irreducible characters of Uj
which are not Lj -invariant.

We show that \χ\{x)\ is absolutely bounded by finding absolute up-
per bounds both for the multiplicities of the linear constituents of χPj

and for the number of distinct linear constituents of χPj. We essen-
tially get the best possible absolute upper bound for the multiplicities.
The theory developed in [13] and [17] is used to bound these multi-
plicities in terms of corresponding multiplicities in the Weyl group W
of G. We obtain only a crude absolute upper bound for the number
of distinct linear constituents of χPj. Our bound involves the indices
of certain large reflection subgroups of W in their normalizers.
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Since Lj is a group of Lie type, an inductive hypothesis yields the

desired bound for |/2(*)//2(l)l
To estimate χ?> , the results of [2] and Glauberman's character cor-

respondence [15, 13.1] are used to show that if θ is an irreducible
constituent of (χs)uj > then Uj/Kerθ is extraspecial. It is here that
we must exclude the groups in characteristic 2 and 3 mentioned above.
Standard Hall-Higman type results then yield that | /3(JC)//3(1) | <

Finally, χ4 is handled by restricting to Lj and using an inductive
hypothesis.

While our result is obviously not the last word on the problem of
finding upper bounds for character values in groups of Lie type, we
hope the reader will agree that our method offers a conceptual and
effective approach to this problem.

I would like to thank P. Fong, P. Johnson, G. Seitz, and D. White
for helpful conversations and correspondence related to this paper.

1. Preliminaries. This section contains preliminaries to our estima-
tion of χι, χ2, X3 9 and χ4. Since we will apply an inductive hypoth-
esis to Levi complements of parabolic subgroups, we must work with
groups which are not necessarily quasisimple. Appropriate definitions
and inductive machinery are introduced in this section. We also de-
fine the excluded "special" groups. The reason for their exclusion will
not be apparent before §3. Finally, we estimate \x(x)/x(l)\ when x
is contained in no proper parabolic of G.

We begin with some important conventions. All fields GF(q) con-
sidered in this paper will have at least 4 elements. All algebraic groups
G will be over the algebraic closure GF(p) of the prime field GF(p).
Algebraic groups and objects associated with them will be labeled with
bars. We will denote by σ an endomorphism of (J such that Tjσ is
finite. Since q > 4, we then have Op'(Gσ) = Gσ . Following the usual
convention, a simple algebraic group is semisimple with a simple root
system and a possibly nontrivial center. A component of a finite group
is a subnormal quasisimple subgroup.

DEFINITION 1.1. Let G be a finite group and p a fixed prime num-
ber. Let x be a p'-element of G. We say that x is admissible if x
has prime order in G/Z(G).

DEFINITION 1.2. Let G be a simple algebraic group over GF(p).
Let σ be an endomorphism of G such that Gσ is finite. We call G
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and Gσ special (following [2]) if p = 2 and the root system of G is
Bn, Cn, F4 or Gι, or if p = 3 and the root system of (J is Gι.

DEFINITION 1.3. Let G be a finite group. We say G is admissible
if G = (y, <jfσ), where G is a connected reductive algebraic group of
characteristic p whose commutator subgroup is a product of simply
connected and non-special simple components, and y is an admissible
element of Gσ.

REMARK. In the definition above, we don't exclude the possibility
that y G G*σ . Thus G is either a central product of quasisimple groups
of Lie type, or an extension of such a group by a cyclic group. The
element y then induces inner times diagonal automoφhisms of the
quasisimple factors of da. We note that an admissible group has a
split J9iV-pair obtained by intersecting the B and N subgroups of
Gσ with G. The parabolic subgroups of G are also obtained from
those of Gσ by intersection with G\ see [3, p. 103].

DEFINITION 1.4. Let G be a finite group. We say that G is simple
admissible if G is admissible and G1 is quasisimple.

DEFINITION 1.5. We say that (G, x) is an admissible pair if G is
an admissible group and x is an admissible element of G. If G is
also simple admissible, we say that (G9 x) is a simple admissible pair.

LEMMA 1.6. Let G be an admissible group and let L be a Levi
complement of a parabolic subgroup of G. Let K be a product of
components of L. Let y be an admissible element of L such that
[y, K] Φ 1. Then (y, K) is an admissible group.

Proof. Let G and a be as in Definition 1.3. Then L = Lσ Γ\G,
where L is a σ-stable Levi complement in G. Also K = Έσ < G,
where Έ is a product of simple components of L. Let T be a σ-
stable torus of L containing y. Then ΈΎ is a connected reductive
group with ({KΎ)σ)

f = K. To complete the proof, it suffices to show
that the simple components of ~K are simply connected. To prove
this, we may assume that G is simple.

Let T\ be a simple component of L. We may assume that L is
a standard Levi subgroup Tj, where / is (by abuse) a subset of a
fundamental set Π for the root system G. Then L\ corresponds to
a connected subset J\ of / .

Since d is simply connected, its diagonal subgroup H is the direct
product of subgroups Ήa,foτ a e Π, each isomoφhic to the multi-
plicative group of GF(p) see [7, pp. 197-198]. Let Έλ be the direct
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product of the Ήa for a e J\. Then Hi is the diagonal subgroup
of T\. Let Mi be the simply connected covering group of T\. Let
θ: ~M\ —• T\ be the natural epimorphism, as in [7, p. 190]. Clearly
θ maps the diagonal subgroup of ~M\ isomorphically onto H\. It
follows that Ker θ = 1 and so T\ is simply connected.

LEMMA 1.7. Let (G, x) be a simple admissible pair with rank (G) >
1. Suppose x lies in a proper parabolic of G. Then for some standard
maximal parabolic Pj of Gf a G-conjugate of x lies in Lj and
centralizes no component of Lj.

Proof. View G as a group with a split i?iV-pair. Up to conju-
gacy, x e Lj, the standard Levi complement of a standard maximal
parabolic of G.

Suppose that x centralizes every component of Lj. Then x e H,
the diagonal subgroup of G, and so x e Lj>, where / ' Φ J is another
maximal subset of the index set / of the fundamental roots. If also
[x, L!j,] = 1, then x centralizes the standard Borel subgroup of G
and its "opposite", so [x, G] = 1 ? a contradiction. Hence x e Lj>
and x doesn't centralize every component of Lj>.

Thus we may choose / so that x e Lj and x doesn't centralize
every component of Lj. If x centralizes no component of Lj, then
we are done. Otherwise write / = J\ U Jι, where J\ corresponds to
the union of the components of Lj centralized by x and Jι corre-
sponds to the union of the components of Lj not centralized by x.
Write x = hx\Xι, with h e H, x\ e L'j and xι e Lj . Then hx\
centralizes L'j . Since h normalizes every root subgroup of LJχ, so
does X\ = h~x(hx\). It follows that X\ e H.

Thus x = kx2, with A: € H and x2 € £ / τ l l u s x ^ LJ2- If 2̂
is connected, we may choose a maximal and connected subset / 3 of
/ with Jι< J?> If 2̂ is not connected, then / has 3 components,
the root system of G is Dn, E6, EΊ, or E%, and one checks that it is
still possible to choose a maximal and connected subset J3 of / with

Hence x e Lj3, and since x doesn't centralize L'j < L'j , x

doesn't centralize the unique component of Lj .

DEFINITION 1.8. Let (G,x) be a simple admissible pair. Let Lj
be the standard Levi complement of a standard maximal parabolic of
G. Suppose x e Lj and x centralizes no component of Lj. Then
(G, x, Lj) is called an admissible triple.
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We now turn to the problem of estimating \χ(x)/χ(l)\ when x lies
in no proper parabolic of G.

LEMMA 1.9. Let (G,x) be a simple admissible pair. Suppose x is
contained in no proper parabolic of G. Then CG'(x) is a maximal
torus of G1.

Proof. By the Borel-Tits theorem [3, p. 103], CG(x) contains no
unipotent elements. Let G and σ be as in Definition 1.3. Since
Cg(x) admits σ, it follows that CG(x) contains no unipotent ele-
ments. By a theorem of Steinberg [8, 3.5.6], CG(x) is connected, and

so is a (necessarily maximal) torus T of G. By [8, p. 88], TπGr is a
maximal torus of G1, and so taking σ-fixed points yields that CG> (x)
is a maximal torus of G1.

LEMMA 1.10. Let (G9 x) be an admissible pair with Gf = SL(2, q).
Let χ e lvr(G) be nonlinear. Then \χ(x)/χ(l)\ = \ψ(x\)/ψ(l)\, where
ψ is an irreducible character of SL(2, q) or GL(2, g) and X\ is
a noncentral semίsimple element of SL(2, g) (resp. GL(2, g)), and

Proof. Let G = ((?', y), as in Definition 1.3. Suppose y induces
an inner automorphism of G1. Let g e G1 induce the same auto-
morphism of G1 as y. Let z = yg~ι and let r be the prime order
of y mod Z(G). Then zr = yr (modG ;), and so zr e GΌp>(Z(G)).
Since z e Z(G), zr e (GΌp>(Z(G)))nZ{G) < Op>{Z{G)). Thus G
is a central product G'(z), where z is a p'-element. The conclusion
of the lemma follows with ψ e Irr(SL(2, q)).

Next suppose y induces an outer automorphism α of Gr. Then
q is odd. Since y has prime order mod Z{G) and the diagonal
automorphism group of Gf has order 2, we have a2 = 1. Let H be
the semidirect product (a)Gr = (α)SL(2, q). If we can find abelian p1-
groups Z , Zx, W, and Wx such that G*Z = H*W and GL(2, ̂ ) *
Zi = H*Wχ, where * denotes a central product, then the conclusion
of the lemma follows with ψ e Irr(GL(2, q)).

To do this, let Z = (z) be a cyclic group of order \y\. Form the
central product G * Z , where z2 = y2 e Z(G). Then yz" 1 is an invo-
lution which induces a on (?', and G*Z = ((J Z " 1 ) ^ ' ) *Z ^ H*Z .
Next let ί e GL(2, ήf) induce α on SL(2, q). Then t is a semisim-
ple element. Let Z\ = (z\) be a cyclic group of order |ί| and form
the central product GL(2, g)*Z\9 where z\ = ί2 G Z(GL(2, ̂ ) ) .
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Then z\Γ{ is an involution which induces a on SL(2, q), and so
GL(2, q) * Zx = ( (z 1 r 1 )SL(2 ? q)) * (Z(GL(2, q))Zx) = H*WX.

THEOREM 1.11. Let (G,x) be a simple admissible pair. Suppose
that x is contained in no proper parabolic of G. Let χ G Irr(G) with
χ{\)>\. Then \χ(x)/χ(l)\<6/q.

Proof. If Gf = SL(2, q), then Lemma 1.10 implies that |χ(
= \ψ(xx)/ψ(l)\, as in the conclusion of Lemma 1.10. Checking
character tables ([11], [18]) shows that the last ratio is at most
2/(q - 1) < 6/q . Hence we assume G φ SL(2, q).

We claim that there exists a group H and an element h e H such
that i/' = G', CG (h) = CG (x),{\x(x)/xM\ χeWG) and/(I) >
1} = { | ^ ( λ ) M l ) | : Ψ € Irr(J7) and y/(l) > 1}, and | # : G'\ < d,
where d is the order of the diagonal automorphism group of G.

Write G = (y,G'σ), as in Definition 1.3. Clearly G'σ = G, so
G = (y)G. To prove the claim we may assume that y $. G.

Let Z = (z) be a cyclic group of order \y\. Let r be the prime
order of y mod Z(G). Form the central product G * Z , where z r =
y r G Z(G). Then IJ Z " 1 ! = r and G * Z = ((yz" 1 )^) * Z . Let
G* = (j z - 1 ) ^ . Write x = xxw where x{ e G* and w e Z. Then
(G*/ = G', CG,{x) = CG (Xι)9 and {χ(x)/χ(l) | : χ e Irr(G) and
^ ( l ) > l } = {f(x 1)/C(l) | : feIrr(G*) and C(1)>1}.

If yz 2 induces an outer automorphism of G, then since yz !

has prime order r, we have r | J . Hence our claim holds for H = G*,
// = X i .

We therefore assume that yz~ι induces an inner automorphism of
G . If r divides |Z(G')| = d, the claim holds as above. Hence we as-
sume (r, |Z(G')|) = 1. For some element υ in the coset yz~ιG, G*
is a central product G{υ). We have ^ r e ( ? n Z ( G ) < Z(G ; ) .
Since r doesn't divide |Z(G') | , we have \Or((v))\ = r and G* =
G / (α«^))xO / ((^))) = G / x α ( ( ^ ) ) . W r i t e r = gw?with geG and
i/ G α ( ( v » . Then CG (Xι) = CG {g) and {|C(^i)/C(l)|: C e Irr(G*)
and C(l) > 1} = {\ψ(g)/ψ(l)\: Ψ G Irr(G') and ^(1) > 1}. Hence
our claim holds with H = G, h = g. This proves the claim in all
cases.

To prove the theorem, it suffices to show that \ψ(h)/ψ(l)\ < 6/q
for any nonlinear irreducible character ψ of H. Using Lemma 1.9,
\ψ(h)\2 < \CH(h)\ < \CG'(h)\d = \CG'(x)\d = \T\d, where T is a torus
o f G ' . B y t h e o r d e r f o r m u l a f o r t o r i ( see [8, p . 9 8 ] ) , | Γ | < (q + I ) 1 ,
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where / is the rank of G, which is greater than the rank of G when
G is twisted. Since O φ SL(2, q), / > 1.

We have d < 1 + 1. By [16, p. 419], ψ{\) > (qι - l)/2. Then

\ψ(h)\ 2y/Γ+l(q + I)1'2 32VT+l(q + \)ιl2

 = 32v^/TT < 6
<

15(q-l)ι/2~ q
for / > 2 and q > 4. The second inequality uses (qι-l)/(q2-l)1/2 >
(g z - l )/(g 2 ) / / 2 = 1 -<?"z > 15/16. The third inequality holds because
V7+ l/(# — I)'/ 2 is decreasing in q and / for / > 2 and # > 4.

2. Estimating / i . Let G be a simple admissible group and let Pj
be a standard maximal parabolic of G. Let ^ e Irr(G) and let λ be
a linear character of Pj . In the first part of this section we establish
an absolute upper bound for the multiplicity (χpy, λ).

Our work will be based on the following "comparison theorem" of
McGovern [17]. By abuse, we will use the same symbol λ to denote
the restriction of λ to the diagonal subgroup of G. Since q > 4,
this diagonal subgroup covers Pj/Pj and LJ/LJ . Let W(λ) be the
stabilizer of λ in W, the Weyl group of G. In [17], a certain set
D(λ9 J) of (W(λ)9 W/)-double coset representatives is defined. We
may assume that 1 e D(λ, J).

THEOREM 2.1. Let G be a finite group with a split BN-pair of
charcteristic p. There is a one-to-one correspondence between the
constituents of λ% and the irreducible characters of W{λ). Suppose
χ is the constituent of λ% corresponding to φ e lττ(W(λ)). Let K
be an irreducible character of Lj with inflation k to Pj, satisfying
(X, kG) Φ 0. Then K is a constituent of (λv)B

J and k is a con-
p

stituent of (λv)B

J for a unique v £ D(λ, J). Both K and k corre-
spond to the same unique irreducible character ψ of WjΠ W(λv), and

Proof. This is [17, Theorem A] with some minor changes in word-
ing. In the statement of this theorem, λ denotes an arbitrary linear
character of the diagonal subgroup of G. Note that 1 e W is " λ-
speciaΓ' ([17, p. 426]), so we may assume 1 e D(λ, J).

We will apply Theorem 2.1 with K = λ^, k = λ. Then the
multiplicity we wish to bound, (χ, λG), equals (φv, ψw^), where
ψ e lrr{Wj Π W{λv)) corresponds to λ and λLj. We will show that
v = 1 and ψ = 1. Since Wj Π W{λ) = Wj by Lemma 2.2 below, we
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will need only to establish an absolute upper bound for (φ, l^^) as
j

φ ranges over lrτ{W{λ)). But this reduces to bounding the multiplic-
ities in IK , which have been investigated in [9] and [1].

j

LEMMA 2.2. With notation as above, we have Wj < W(λ) and

Proof Since Nj < Pj stabilizes λ e Irr(Pj), we have Wj < W(λ).

Since K = λ^ is a constituent of λR

J and k = λ is a constituent of
p

λB

J, uniqueness in Theorem 2.1 implies that υ = 1.

The next remark, which is copied from [17, p. 421], summarizes
some of the main results of [13]. Here Φ is the root system of G,
with fundamental system Π.

REMARK 2.3. Let G be a group with a split BN-pair of character-
istic p. Let A be a linear character of the diagonal subgroup of G.
Define the A-parameters qa{λ) as in [13]. There is a prime power q
of p such that qa(λ) = qc^ for all roots a in the root system Φ
of W. In case G = G(q) is a finite group of Lie type, this prime
power may be taken as the characteristic power q of G. Howlett
and Kilmoyer proved that there is a semidirect product decomposi-
tion W(λ) = AC, where C is the reflection group with root system
Γ = {a € Φ: qa(λ) ψ 1} and fundamental system Σ < Φ + , and A
is an abelian /?'-group which normalizes C. Then a generic alge-
bra A(λ) was constructed, which is an associative β[ί]-algebra with
basis {Xw- w E W(λ)}, satisfying the following multiplication (for
aeA, beΣ, and we W{λ))\

sLww, " WyU) G 1 ,

tb(λ)Xww+(tb(λ)-\)Xw ifw(b)€Γ-,
XwXwb — Λ

where

DEFINITION. In the situation of Remark 2.3, let Wj(λ) = Wjj)
W{λ). Let Aj(λ) be the generic algebra associated with Wj(λ). (Note
that Wj{λ) is the stabilizer of λ in the Weyl group of Lj, so it has
an associated generic algebra as in Remark 2.3.)

LEMMA 2.4. Let G, Pj and λ be as in Lemma 2.2. Let qa(λ) be
as in Remark 2.3. Then qa(λ) = qa(l) for a e Φj.
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Proof. For any a e Φ, [13, 2.6(b)] says that ga(λ) + qa(λ)~ι =
[Σλw(hi(x))]2λw((ri)2), whenever w e W is chosen so that ^ G Π ,
By [13, p. 577], hi{x) and (rz )

2 , which are independent of λ, may
be chosen to lie in the diagonal subgroup of Op'(Li), where Lz is the
standard Levi complement of the standard minimal parabolic of G
corresponding to {aw} < Π.

Since a eΦj by hypothesis, we may take w e Wj, so that aw e
Π/ . Then Lz < Lj . Since 0?'(L, ) < ^'(/V) = i>j < KerΛ, we have
ίαW + ̂ W - ^ ί α α j + ̂ ί l ) - 1 . By [13, §4], for any α e Φ , &(*) =
gc

αW 5 where ca(λ) is a non-negative integer. Thus qa(λ) = qa(l).

REMARK 2.5. Let α e Φ and choose w e W so that aw eΠ. Let
5 be the fundamental reflection corresponding to aw . Then qa (1) =
ind s — \B: BnBs\, the usual index parameter defined in [10, p. 610].
See [13, p. 552]. If a e Φ / , then qa(λ) is the same, whether computed
in G or Lj.

LEMMA 2.6. Lέtf G, Pj, and λ be as in Lemma 2.2. Write Wj{λ) =
AJCJ, as in Remark 2.3. Then Cj = Wj = fF/(λ) 0m/ ̂ / = 1. The
generic algebra Aj{λ) can be identified with the generic algebra of the
Coxeter system (Wj, Uj) over ~Q[i\.

Proof. By [17, Theorem 1.5], the reflection factor Cj of Wj(λ)
equals Wj Π C, where C is the reflection factor of W(λ). Since the
root system of C contains Φj by Lemma 2.4, we have Wj < C,
proving the first assertion. The second assertion is clear from the
definitions of the respective generic algebras in Remark 2.3 and [10,
p. 637], and the fact that ca(λ) = ca(l) for aeΦj by Lemma 2.4.

PROPOSITION 2.7. Let G, Pj, and λ be as in Lemma 2.2. Let
ψ G lΐΐ(Wj) correspond to K = λ^ in Theorem 2.1. Then ψ = \ψ

Proof. By [17, p. 431], the bijection between the irreducible charac-
ters of the Hecke algebra ^[Lj,Bj,λ) and those of Q[Wj] is ob-
tained via [17, Theorem 2.1]. An irreducible character of one of these
algebras corresponds to an irreducible character of the other when
both are (extended) specializations of the same irreducible character
of Aj(λ).

Following [10, p. 637], we define a Q[ί]-algebra homomorphism

IND: Aj{λ) -+ Q[t] by INDX, = Λ w = ta(λ), where at is a
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fundamental root in Π/ and Si is the corresponding fundamental
reflection. Clearly IND specializes to the principal character of char-
acter of Q[Wj] under the specialization t -+ 1. To compute the spe-
cialization of IND to βf(Lj, Bj, λ), we must check that the special-
ization t -> q sends the generator Xs, of Aj(λ) to the element βs =
(ind si)eλ(si)eχ, where st e Wj is a fundamental reflection, (SJ) e
Nj Π L'j maps onto Sf, and eλ is the primitive central idempotent
of <2[2?/] corresponding to λ. By Theorem 2.17 and p. 567 of [13],
XSi is sent to γS[ e J^(Lj, Bj, λ), where y5| = λ((si))qΓι

l/2qSi(λ)ι/2βsl

by [13, Eq. 2.19]. Also qs. = qdι(\) and qSι(λ) = #α.(λ) by the defini-
tions in [13]. By Lemma 2.14 and the fact that (si) £ L'j, we have
γSi = βy . (Note that the definition of βw in [13, Def. 2.2] is incorrect.
The given formula for βw must be multiplied by ind w, since other-
wise [13, Theorem 2.4] would be incorrect and equation 2.19 would
be inconsistent with Theorem 2.17.)

Let ind: &(Lj, Bj, λ) -> Q be the specialization of IND under
t -+ q. Then ind(βy) is the specialization of t°a^ under t -> q.
Hence ind(#y) = &.(A) = (fa.(l) = inds/, as in Remark 2.5. On the
other hand, λ(βSι) = (ind Si)λ(eχ)λ((si))λ(eχ) = inds/. Since the βs

generate β?(Lj, Bj, λ) as a β-algebra, ind equals the restriction of
λ to ^Γ(L/, Bj, A), so A^ corresponds to the principal character of
Wj, as desired.

COROLLARY 2.8. Let G, Pj, and λ be as in Lemma 2.2. Let
M(λ) = max{(AG, χ)\ χ e Irr(G)}. Lei m(W, J) = max{(l^ , 0):

0 E lvτ(W)}, where W is the Weyl group of G. Then M(λ) <
m(W9J).

Proof Choose χ e Iτv(G) so that (λG, χ) = M(λ). Let φ e

lrt(W(λ)) correspond to χ in Theorem 2.1. By Theorem 2.1 and

Proposition 2.7, 1 ^ ^ = M(λ)φ + α, where a is a sum of other ir-

reducible characters of W(λ). Thus some irreducible constituent of
1 ̂  has multiplicity at least M(λ), as desired.

It now suffices to show that there is an absolute upper bound for
m(W, J) as W ranges over all irreducible Weyl groups and Wj
ranges over all maximal parabolic subgroups of W. For W of type
An, Bn, or Cn, m(W9J) = l for all / by [9, p. 90]. For the excep-
tional Weyl groups, Alvis' tables [1] yield m(W9 J) < 13 for all W
and / , with 13 occurring for W(E%).
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It remains to determine m(W, J) for W of type Dn . By [9, p. 90],
m(W(D5), /) > 1 for at least one / .

PROPOSITION 2.9. m{W(Dn), /) < 2 for all n and J.

Proof. Let W = W{Dn). Let 7 = FF(5n). Then W <Y <
SnEn , where £„ is the symmetric group of degree n, and 2sn is an
elementary abelian group of order 2n on which Sn acts by permuting
coordinates. Write elements of En as row vectors with entries in
GF(2). For 1 < i < n - 1, let wt = (/, i+1) e Sn. Let tϋπ =
wn-ι[00- Oil] and let yw = [00•••01]. Let y,- = Wi for 1 < / <
n - 1. Then {wi, . . . , wn} and {yi, . . . , yn} are standard sets of
fundamental reflections for W and Y, respectively.

Let / = {1,...,*}-{./}. If 7 < π - 2 , then |y 7 : »>| = 2,
^ 7 / = 7 , and y> n M̂  = Wj. By Mackey's theorem, (1^ ) ^ =

^w By [9, p. 90], ly is a sum φ\ -\ \-φk of distinct irreducible

characters of Y. If 1 < / < r < k, then (φi)w a n d {Φr)w have
a common irreducible constituent if and only if φi = μφr, where
μ is the nonprincipal linear character of Y/W. Since each (φi)w is
either irreducible or is the sum of two distinct Γ-conjugate irreducible
characters, it follows that all multiplicities in 1 ̂  are at most 2.

If j = n - 1, then Yj ΠJV is the non-maximal standard parabolic
subgroup of W corresponding to {1, . . . , /ι — 2} and YjW = Y.
The argument in the preceding paragraph shows that the multiplicities
in lψnw are at most 2. Since Yj nW < WJy it follows that the

multiplicities in 1 ̂  are at most 2.

If 7 = n, then WP/ = Y/. Since 1 \ is multiplicity-free, so is
\W _ \W

We summarize our work on multiplicities in the following theorem.

THEOREM 2.10. Let G be a simple admissible group. Let Pj be
a maximal parabolic subgroup of G. Let χ e Irr(G) and let λ be a
linear character of Pj. Then (χPj, λ) < 13.

Proof. This follows from Theorem 2.1, Proposition 2.7, Corollary
2.8, Proposition 2.9, and the remarks preceding Proposition 2.9.

Let G, / , and Pj be as in Lemma 2.2. Having bounded the mul-
tiplicities of the linear constituents of χp , we must now bound the
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number of distinct linear constituents of χPj. Linear characters of
Pj are cuspidal characters of the diagonal subgroup of G. Hence if
λ and μ are two linear constituents of χp, Harish-Chandra's theo-
rem [10, 70.15(A)] implies that λ and μ, viewed as characters of the
diagonal group of G, are conjugate under W. Thus we must bound
the number n(λ) of linear characters of Pj which are ^-conjugate
to a fixed linear character λ of Pj.

Let PQ = Pj ί)Gf. Then PQ is a maximal parabolic of G1. Let
H denote the diagonal subgroup of Gf. Let λ1 be the restriction
of λ to PQ . We may also view λ' as a linear character of H. The
semidirect product decomposition in Remark 2.3 applies to both W{λ)
and W(λf). Write W(λ) = A(λ)C{λ) and W(λ') = A(λ')C(λ'). Let
C(λ) be the group generated by all reflections in W{λ), so that C(λ) <
C(λ) < W{λ). Define C{λ') similarly.

We will use the fact, proved below, that PQ has a cyclic commutator
factor group to reduce the problem of bounding n{λ) to known results
on the indices of reflection subgroups of W in their normalizers.

LEMMA 2.11. Let Po and H be as above. Then PQ/PQ is cyclic.

Proof. Since [H, X] = X for every root subgroup X of Gf,
it follows that P^ = Op\P0) and Po = FQH. Hence Po/P^ £

First suppose Gr is untwisted. Then, since G1 is simply connected
by hypothesis, H is the direct product of groups Ha, each isomorphic
to the multiplicative group of GF(#). See [7, p. 197-8]. Moreover,
the Ha correspond to the fundamental roots a e Π. By [7, p. 92],
Ha < (Xa, *-α>. Hence Π α 6 / Ha < O* (Po) = /^. Thus ///(/ί n Fo)
is cyclic.

Next suppose Gf is a twisted group over GF(q). Write G' = Gσ ,
where G is a simply connected algebraic group over GF(p), and σ =
qτ, where # is the #th power Frobenius endomoφhism of G, and
τ is a nontrivial graph automorphism. Let PQ = 7σ, where P is a
standard σ-stable parabolic of G. Since G is a simply connected
Chevalley group over GF(p), its diagonal subgroup F is a direct
product of subgroups // α , where a ranges over a fundamental set of
roots for G and each Ha is isomorphic to the multiplicative group of
GF(p). As in the preceding paragraph, we may write Ή = H\ x Ή2,
where I/2 ^ ^ ' a n d ^ 1 is the direct product of the Ήa as a ranges
over a single τ-orbit of fundamental roots of G. Then H = Ήσ =
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(Ήι)σ x (H2)σ and (H2)σ <Hn (P')σ = HC\P'O. Hence it suffices to
show that (H\)σ is cyclic. Let π: Ή\ —• (GF(p))* be the projection
onto one fixed direct factor of Ή\. Since τ cyclically permutes the
direct factors of Ή\ and σ = qτ, it follows that the restriction of π
to (H\)σ is injective, and so (H\)σ is cyclic.

LEMMA 2.12. Let n(λ) and λ' be as in the remarks preceding Lem-
ma 2.11. Then n(λ) < \Nw(Kετ λ'): W{λ)\.

Proof. Let w e W. Suppose that λw , considered as a linear char-
acter of the diagonal subgroup of G, is the restriction of a linear
character of Pj. Then (λ')w is the restriction to H of a linear char-
acter of Po, and so HΓ\P'0< YLzr{(λ')w), and also HnP{>< Kerλ'.
Since H/(HnPψ is cyclic, and since Ker λ' and K e r ^ T = (Ker λ')w

have the same index in H, we have Ker λ1 = (Ker λ')w. Hence w
normalizes Ker λf. The desired inequality follows.

LEMMA 2.13. Nw(Keτ λ') < Nw(C(λ')).

Proof. Since i / n P ^ < Ker λ1 and H/H n P^ is cyclic, H/ Ker A;

has an abelian automorphism group. Hence (7V^(Ker λ1))1 < W(λf).
Clearly W(λ') < Nw{Ker λ'). Thus W(λ') is normal in Nw(Ker λ').
Then Nw(Ker λf) permutes the reflections in W(λ)f and so normal-
izes C(Λ').

LEMMA 2.14. C(λ) = C(λ ;).

Proof. By Remark 2.3, C(λ) is the reflection group with root system
Γ = {a e Φ: #fl(λ) ^ 1}, and C(λ') is the reflection group with root
system V = {a e Φ : efl(A;) ^ 1 } . By the proof of Lemma 2.4, qa(λ) is
determined by the value of λ on elements of H. Hence qa(λ) =
for all a e Φ. Thus Γ = Γ and C(vl) =

LEMMA 2.15. n(λ) < \Nw(C{λ')): C(λ')\\C(λ'): C(λ')\.

Proof. By Lemmas 2.12 and 2.13, n(λ) < \Nw(C(λf)): W{λ)\.
Hence n(λ) < \Nw(C(λ')): C(λ')\\C(λ'): C(λ)\. Now Lemma 2.14
yields the desired result.

LEMMA 2.16. Let Wj be a maximal parabolic subgroup of an irre^
ducible Weyl group W. Let Wx be a reflection subgroup of W whicfi
contains Wj. Then \Nw{Wχ): Wx\ < 72.
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Proof. We follow Carter [6]. Let Φi = {a e Φ: wa e Wx}. Then
Φi is a root system with Weyl group W\. Note that Φj < Φ\. Let
V\ be the vector space spanned by Φ i . The roots in Φ orthogonal to
Φi form a subsystem Φ2 with Weyl group W2. Clearly W2 has order
1 or 2 in our situation. By [6, Proposition 28], Nw(Wx)l(Wχ x W2) is
isomorphic to a group of symmetries of Δi, the Dynkin diagram of

Φi.
If W\ > Wj, then Φi is obtained by deleting a node from the

extended Dynkin diagram of Φ, or is the dual of the diagram obtained
by deleting a node from the extended Dynkin diagram of the root
system dual to Φ. See [6, p. 8]. An easy case-by-case check shows
that the largest value of |Aut(Δi)| \W2\ is 72, which occurs when the
middle node is deleted from the extended Dynkin diagram of Dg

THEOREM 2.17. n(λ)<576.

Proof. By Lemma^.16, \Nw(C(λ')): C{λ')\ < 72. Since C(λ') nor-
malizes C(λ') and C(λ')/C(λ') is an elementary abelian 2-group, the
proof of Lemma 2.16 yields \C(λ'): C(λ')\ < 8. Lemma 2.15 then
gives the desired conclusion.

3. Estimating 73. Let (G,x,Lj) be an admissible triple (see
Def. 1.8) with rank (G) > 2. Let θ e Iττ(Uj) be invariant under
L'j . Let χ e Iττ(Pj) lie over θ. (In the situation of the introduction
to this paper, / plays the role of an irreducible constituent of χ$.)
In this section, we establish the bound \χ(x)/χ(l)\ < l/<? -

Relying heavily on results from [2], we show that [Uj, Uj]< Ker θ,
that C///Ker θ is extraspecial, and that x preserves a GF(#)-bilinear
symplectic form on Uj/Uj. We then restrict to (x)Uj and use stan-
dard Hall-Higman type results to obtain the desired bound.

For an admissible triple (G, x, Lj), let H denote the diagonal
subgroup of G. Let Gf = Gσ where G is a simple algebraic group.
Here σ = qτ, where q is the #th power map on GF(p) extended to
a Frobenius morphism of G and τ is a possibly trivial graph auto-
morphism of G.

Let P = PjΠG', L = L,nG ; ,and H = HnG'. Let Lo = V = L'/
and let HQ = HnL0 = HnL0. This notation differs from that of §2.

Let Σ be the root system of G, and let Π be a fundamental system
for Σ. Choose K < Π, abusing notation, so that P = (Pκ)σ, where
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TK is the standard parabolic of G corresponding to K. Thus Kf =
Π - K will consist of a single τ-orbit of fundamental roots. The
unipotent radical VK of Tκ is the product of the root groups Uβ

for β G Σ+ - Σ* .
We differ slightly from [2], where instead of PK , the authors work

with the "opposite" parabolic generated by Tκ and the negative root
groups in Σ - Σ ^ By [2, p. 561], passing from Ύκ and (Pκ)σ to
their opposites merely replaces the modules Ws defined below by their
duals, which is harmless for our purposes. We also remark that the
results of [2] apply to all parabolic subgroups, not just the maximal
parabolics considered here.

For β e Σ+ - Σκ, write β = βκ + βκ>, where βκ is a linear
combination of fundamental roots in K, and similarly for βκ>. Write
βκ, = d\ot\ Λ h dial H — , where α, ranges over K1. Following [2,
p. 3], define the shape of β to be βκ> and the level of β to be the
sum of the d\ above.

Let V(i) = ]\Uβ > the product over all β eΣ+ -Σκ with level
(β) > i. Let U(i) = V{i)σ. Then £/(/) is the product of the corre-
sponding root groups of G1 = Gσ. By [2, Lemma 4 and Lemma 6],
17(1) > 17(2) > is the descending central series of Uj = (Uχ)σ

Let M(i) = U(i)/U(i+l). By [2, Lemma 5], M(i) is L-isomorphic
to (Z7(/)/£/(/ + \))σ . By [2, Theorem 2a and Theorem 3], M(i) has
a direct decomposition as a product of P-chief factors Ws, which we
will describe below. Each Ws is an irreducible GF(<7c)[L]-module,
where c is the number of shapes in the τ-orbit of the shape S.

The results above need not hold without our assumption that G is
not "special".

To describe Ws, we need more notation. For G untwisted and S
a shape on level /, define Vs to be the image in M(i) of the product
of all root subgroups Uβ, for β of shape S. Define Vs similarly
for G.

If G is untwisted put Ws = Vs. If G is twisted and ^ τ = 5 , put
Ws = (Ϋs)σ If G is twisted and Sτ φ S let Ws equal (Vs@Vσ

s)σ =
(Vs®'Vsτ)σ when |τ| = 2, or the obvious analog when |τ| = 3. By [2,
Theorem 2b and Lemma 7], Ws is an irreducible GF(#c)[L]-module.
There is one module Ws for each τ-orbit of shapes in Σ+ -Σκ.

By [2, Theorem 2d and Lemma 7], Ws remains irreducible as a
GF(gc)[Lo]-module. Finally, the Ws are also Pj-chief factors, since
Pj = PH and the Ws are invariant under diagonal automorphisms^
see [2, p. 552].
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In Lemma 3.1 below, we give a criterion for W$ to be centralized
by LQ . In Lemmas 3.2 and 3.3, we locate the trivial Lo-composition
factors in Uj.

LEMMA 3.1. LQ centralizes W$ iff there is only one root in Σ+ - Σ #
of shape S.

Proof. First suppose τ = 1. Then, since W$ = V$ is an irreducible
GF(#)[Lo]-module, LQ centralizes Vs iff V$ has GF(#)-dimension
1, iff there is only one root in S.

Next suppose |τ| = 2. Then τ induces a linear transformation on
M(i) = V(i)/V(i + 1) which permutes the images of the root groups
in G on level i. Suppose first that (Vs)

σ = Vs. The£ S = Sτ, the
roots of shape S comprise a union of τ-orbits, and (Vs)σ = ws is
the direct sum of the σ-fixed point spaces for each of these τ-orbits.
For each such τ-orbit, the σ-fixed point space is the image in M{i) of
a root group of the twisted group Gσ = O. This image has cardinality
q if the τ-orbit consists of one root, and cardinality q2 if the τ-orbit
consists of two roots. If LQ centralizes {Vs)σ = ^ , then (Vs)σ

has dimension 1 over GF(q). Hence S consists of only one τ-orbit,
which in turn consists of only one root. Conversely, if S consists of
only one root, then (Vs)σ has cardinality q, and so is centralized by

Next suppose |τ| = 2 and (Vs)
σ φ Vs. Again Ws = (Vs Θ Vσ

s)σ

is the direct sum of the σ-fixed point spaces for the τ-orbits of roots
in SuSτ. Since S and S τ are disjoint, each such τ-orbit consists of
two roots, and so its σ-fixed point space in M(ι) has cardinality q2,
as above. If LQ acts trivially on Ws, then GF(#2)[Lo]-irreduciblity
forces Ws to have dimension 1 over GF(<?2). Hence S\jSτ contains
only one τ-orbit of roots, and so S contains only one root. The
converse is clear.

Finally, the case |τ| = 3 is entirely similar to |τ| = 2.

LEMMA 3.2. Let S be a shape in Σ+ -Σκ with level (S) = 1. Then
S contains more than one root.

Proof. First suppose G is untwisted. Let K1 = {a}. All roots on
level 1 have the same shape. To show that this shape contains a root
distinct from a, we need only show that for some fundamental root
β Φ a, that a + kβ is a root for some positive integer k. Root chain
considerations [7, p. 37] show that this is the case whenever β is not
orthogonal to a.
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Now suppose G is twisted. If \K'\ = 1, then the unique shape
on level 1 contains more than one root, as above. We then assume
\K'\ > 1. The shape S consists of all roots of the form a + ΣieK c/αz,
where a is a fixed fundamental root in K1. An easy case-by-case
check shows that there is always a fundamental root α, € K which is
not orthogonal to α. (Recall that G has rank at least 2 as a twisted
group.) Hence we get two roots of shape S as above.

LEMMA 3.3. Let S be a shape in Σ+ - Σκ which contains only one
root. Then level (S) = 2 and LQ centralizes M(2). The commutator
form from Af(l)xAf(l) to M(2) is nondegenerate, GF(q)-bilinear,
and Lo-invariant.

Proof. First we claim that level (S) = 2. Suppose G is untwisted. If
G is a classical group, there are at most two levels of roots in Σ + -ΣK,
and so our claim follows from Lemma 3.2. For the exceptional groups,
we merely check the lists of positive roots in [4] or [19]. We find that
for F4, Eβ, Eη, and E%, there is exactly one maximal subset K of
Π for which Σ + - ΣK has a shape (i.e. level) consisting of just one
root, and this always occurs on level 2. For such K, there are only
two levels of roots in Σ + - ΣK . For type G2, both possibilities for K
have a unique root (only) on level 2, and there are two or three levels
of roots in Σ + - ΣK .

Next suppose G is twisted. If \K'\ = 1, then a shape in Σ + - Σκ

is the same thing as a level, and the claim follows as in the preceding
paragraph. Hence we assume \K'\ > 1. For types 2An and 2Dn , the
highest level in Σ + - Σ# is 2. For type 3Z>4, with K = {a2}, the
fundamental root fixed by τ , there are three levels. Level 2 consists
of single τ-orbit of shapes, each containing only one root. Level 3
consists of one τ-invariant shape, which contains two roots. For type
2E6, there are only two levels when K1 = {a\, a6}, the outer pair
of nodes exchanged by τ . When K1 = {#3, as}, the inner pair of
nodes exchanged by τ , there are four levels. The shapes of level at
least 2 for these sets Kf are OL\ + a6, α 3 + a5, 2α3 + α 5 , α 3 + 2α 5 ,
and 2α3 + 2α 5 . All of these shapes contain at least two roots. This
proves our first claim.

We next claim that L o centralizes Af (2). By Lemma 3.1, it suffices
to show that there is only one τ-orbit of shapes on level 2, since M(2)
would then be a trivial GF(#c)[L0]-module of the form Ws. If G is_
untwisted, or if G is twisted with \K'\ = 1, this is clear since shape
and level are then the same thing. If G is twisted with \K'\ > 1,
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then our assumption that Σ + - Σ# has a shape containing only one
root implies that G is not of type 2E6. If G is of type 3D4, then
there is only one τ-orbit of shapes on level 2 as mentioned above. If
G is of type 2Dn, then \K'\ > 1 implies that Kf = {αM_i, an}, the
pair of fundamental roots exchanged by τ . The only shape on level
2 is then αn_i + an , which contains at least two roots. Our claim is
therefore vacuously satisfied for type 2Dn . Note, by the way, that the
description of the positive roots of Dn on [4, p. 256] is incorrect. If G
is of type 2An , then we get a one-root shape only when Kf = {a\, an} ,
the outermost pair of nodes exchanged by τ . Here there is only one
shape on level 2, namely a\ + an . This proves our second claim.

We now claim that there is only one τ-orbit of shapes on level 1.
As in the preceding paragraph, this is clear when G is untwisted or
when \K'\ = 1. The only other cases we have to consider are 3Z>4
with K = {a2} and 2An with K1 = {a\, an}. In both cases we see
that there is a unique τ-orbit of shapes on level 1. This proves our
claim. It follows that M{\) is a single P-chief factor.

Since (7(1)' = *7(2) and [t/(l), (7(2)] = C/(3), there is a well-
defined commutator form from M(\) x M{\) to M[2). Since LQ
centralizes M(2), this form is Lo-invariant. Since M{\) is a P-chief
factor, Z(£/(l)/£/(3)) = C/(2)/t/(3) = Λ/(2). Hence the commutator
form is nondegenerate.

It remains to show that the commutator form is GF(#)-bilinear. If
G is untwisted, the GF(#)-structure on each M(ι) is determined by
sxβ(t) = xp(st), where s and t are scalars in G¥{q) and Xβ{t) is
a root element for β e Σ+ - ΣK see [2, p. 554]. For G twisted, we
have s{xβ{t)xβτ(tq)) = Xβ(st)xβr(stq) when |τ| = 2 and s € GF(q)9

t e GF(q2), etc. The Chevalley commutator formula now implies that
the commutator form is GF(#)-bilinear. This completes the proof of
Lemma 3.3.

The key to our next result is the Glauberman character correspon-
dence [15, 13.1], which says that when a solvable group S acts co-
primely on a group G, there is a one-to-one correspondence between
the set of 5-invariant irreducible characters of G and the irreducible
characters of CG(S) .

PROPOSITION 3.4. Let 1 Φ θ e lττ(Uj) be Lo-invariant Then
17(3) < Ker θ and Uj/Kerθ is extraspecial Also L o centralizes
M(2).
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Proof. Since HQ fixes θ, [15, 13.24] implies that HQ fixes a non-
identity conjugacy class of £//. By [15, 13.10], HQ fixes a nonidentity
element u e Uj. Writing w as a unique product of elements from
root groups, we see that HQ centralizes a nonidentity element v of
some root group in Uj .

We claim that Q/ (//o) is a root group of order q3 when G is of
type 3Z>4, and is a root group of order q in all other cases, and also
CVJ(HQ) = CVj(L0).

First suppose G is untwisted. Then v = jcy(ί), for some γ e
Σ+ - Σ* and t e GF(q)*. For β e Uj and s e GF(q)*, there is
an element hβ(s) e Ho which conjugates v into xγ(sA^t); see [7,
p. 194]. Here Aβγ is the Cartan integer associated with β and γ ([7,
P. 38]).

Since Ho centralizes v , it follows that sΛfy = 1 for all s e GF(q*).
Since \Aβγ\ < 3, with equality only when Σ is GΊ , this implies that
Aβγ = 0 when q > 5. The same is true when q = 4, since we are
excluding the "special" group G2(4).

Hence γ is orthogonal to Σj. It follows that [Uβ, Uγ] = 1 for all
β eΣj, and so LQ centralizes ί/y. The maximality of / implies that
γ must be the unique positive root orthogonal to Σj . It follows that
CUJ(HQ) = CUJ(LQ) = Uy, which has order q.

Now suppose that G is twisted. Viewing G' as a subgroup of an
untwisted Chevalley group G over GF(#lτl), write v as a product of
root elements of G as in [7, 13.6.3]. (Since we are only interested in
computing Cu (Ho) 9 it doesn't matter that Gf is simply connected,
while adjoint groups are considered in [7].) Then υ = xy(t)y, where
γ e Σ + - Σ # , t Φ 0, and y is a product of elements in other root
subgroups of G which belong to the τ-equivalence class of γ. Since
Ho normalizes each root subgroup of G, we see that Ho centralizes
xγ(t) in G. By [7, p. 239-41], the generators of HQ have the form
hβ(s) (s e GF(tf)*), or hβ(s)hβτ(s*) (s e GF(q2)*), or the analog for
s e GF(q3)*, where in all cases β e Πκ. It follows that, respectively,
sAβy = 1 for all s e GF(q)*, sAβy+qAβτr = 1 for all s e GF(q2)*, or

the analogous equation holds for all s e GF(q3)*. This implies that
γ is orthogonal to TIχ, and hence to Σ# when q > 4.

It follows as above that every root subgroup Uβ of G, for β e Σ # ,
centralizes Uγ and the root groups of G in the τ-equivalence class of
Uγ. Hence LQ centralizes the root subgroup of G which corresponds
to the τ-equivalence class of γ. The preceding argument shows that
any root group in Uj centralized by HQ is also centralized by LQ .
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We claim that, as in the untwisted case, there is only one root group
in Uj centralized by HQ . When \K'\ = 1, this is clear because γ, in
the preceding paragraph, must be the unique positive root orthogonal
to the maximal parabolic subsystem Σ # . Since γ is then τ-invariant,
\Cϋj{H0)\ = q when \K'\ = 1.

Now suppose \K'\ > 1. Since LQ centralizes a root group in Uj, LQ
centralizes the image in some M(ϊ) of this root group. This root group
image is then invariant under L = LQH . Hence LQ centralizes some
P-chief factor in Uj, so LQ centralizes W$ for some shape S. By
Lemma 3.1, there is only one root in Σ + - Σ# of shape S. Thus
S satisfies the hypotheses of Lemma 3.3. The proof of Lemma 3.3
shows that, since \K'\ > 1, G must be of type 2An or 3Z>4 with
K' = {a\, an} or {a\, #3, #4} respectively. In both cases, LQ acts
trivially on Af (2), which is isomorphic to a root subgroup of G,
namely C/α1+...+O|l or {UaΛθίiΛ.aVaι+a^aVa^a^a)σ. Moreover, Lo

has no other trivial composition factors in Uj. Since any root sub-
group centralized by #0 is also centralized by LQ , as remarked above,
it follows that Cy (Ho) is a single root subgroup of G. This root sub-
group has order q when G is of type 2An and order q3 when G is
of type 3 D 4 .

Thus we have proved the claim in the second paragraph of this
proof.

Having just observed that Cy (HQ) maps isomorphically onto M(2)
when G is twisted and \K'\ > 1, we claim the same is true when G is
untwisted or when \Kf\ = 1. Under these hypotheses, shape and level
are the same thing, and each shape is τ-invariant. It follows that each
M(i) is an irreducible GF(^)[Lo]-module. If LQ centralizes a vector
in M(i), then LQ centralizes M(i) and, by Lemmas 3.1 and 3.3, we
have i = 2 and the unique shape on level 2 contains only one root.
Hence if LQ centralizes a root subgroup (Uγ)σ in Uj, then γ is the
unique root in Σ+ - Σκ on level 2. Hence CUJ(HQ) = (Uγ)σ maps
isomorphically onto M(2).

Thus in all cases CU^HQ) = CU^LQ) maps isomorphically onto
M(2). In particular, LQ centralizes M(2).

Let 1 Φ λ be a linear character of Af (2). View λ as an irreducible
character of 17(2).

Suppose first that G is not of type 3Z>4. Then the nondegeneracy
and the GF(#)-bilinearity of the commutator form from Af (1) x Af (1)
to M(2) and the fact that \M(2)\ = q implies that [v9λf(l)] = M(2)
for any nonzero vector v G Af(l). It follows that Z(t7//Ker λ) =
U(2)/Kerλ. Hence Uj/Kevλ is extraspecial. There is a unique
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character θλ e Irr(Uj/Kcr λ) which lies over λ. Since Lo centralizes
M(2), Qχ is an Lo-invariant character of Uj. Together with the prin-
cipal character of Uj 9 this yields |Af(2)| = q distinct Lo-invariant
irreducible characters of Uj. Since |Af(2)| = \CUJ(HQ)\

 a n d since
Cuj(Ho) is abelian, Glauberman's correspondence [15, 13.1] implies
that there are no other Ho-invaήant irreducible characters of Uj, and
therefore no other L0-invariant irreducible characters of Uj. Since
Ker θχ = Ker λ, Uj/ Ker θχ is extraspecial, as desired.

Next suppose G has type 3D4. Let Z = Z(Uj / Ker λ). Since
LQ fixes A, Z and Z = Z/(ί/(2)/Ker A) are Lo-invariant. If z e
Z < Af(l), and c e GF(tf)*, then [cz,M(l)] = [z,cM(l)] =
[z, Af(l)] < Ker A, and so c z e Z . It follows that Z is a proper
GF(tf)[L0]-submodule o fM(l ) .

Since CU^HQ) < 17(2), //o has no fixed points on Af(l). Hence
Cz(//0) = C/(2)/Ker A, and so Z = [ # 0 , Z] x (C/(2)/Ker A).

Let θ G Irr(C//|A) be Ho-iavaήant. View θ as a character in
Irr(ϋ>/KerA). Let A x // G Irr(Z) = Irr((C/(2)/KerA) x [flb, Z])
be the unique and linear irreducible consituent of θz . Since λ x // is
ί/o-in v a ri a n t a n d ί̂ o has no fixed points on [HQ , Z] , we have // = 1.

Let £ = (Uj/Ker λ)/[Ho, Z ] . We claim that £ is extraspecial.
Let W = Z/[H0,Z] = 1/(2)/Ker A. Since £ / ^ is elementary
abelian and |PΓ| = ^ it suffices to show that Z(E) = W. Let
y G Uj/ Ker λ and suppose that y[i/o> Z] belongs to Z(E). Then
[y, ί7j/KerA] < [flb,Z]. Since (ϋ>/KerA); = C/(2)/KerA, this
implies that y e Z , and so y[i/o, Z] e W, as desired. Thus E is
extraspecial.

Let θλ be the unique character in \rr(E\λ). Since [Ho, Z] <
Ker θ, we have 0 = θ^. In other words, θχ is the unique //o-invariant
character in Irr(Uj\λ). For each linear character λ of Af(2), there
is exactly one //o-inyariant character in Irτ(C//|A). As above,
the Glauberman correspondence shows that there are no other HQ-
invariant irreducible characters of Uj. For λ φ 1, Uj/KtrQχ is
extraspecial, as desired.

THEOREM 3.5. Let (G9 x9 Lj) be an admissible triple with rank
(G)>2. Let 1 φ θ e lrr(Uj) be L0'invariant. Let χ e lrr(Pj\θ).
Then \χ(x)lχ(\)\<\/q.

Proof. Let / be the inertia group of θ in Pj. Since P'j =
/, / is normal in Pj. Hence if x φ /, then χ(x) = 0. Therefore
we assume that x e I.
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Let χ = ψpj with ψ e Irr(/|0). Since χ{x) = ]Γ ψ{xι), where
t ranges over a transversal to / in Pj, it suffices to show that
\ψ{xι)lψ{\)\ < 1/tf for each t. Fix t and set y = xx. Note that
y e / .

By Proposition 3.4, Q\jj{i) has a unique and linear irreducible con-
stituent λ. Since y G /, y fixes A. The proof of Proposition 3.4
shows that Af (2), which has order # or # 3 , is a single P-chief fac-
tor Ws. Hence Af(2) is an irreducible GF(^)[L/]-module. Since L o

centralizes A/(2) and LJ/LQ is abelian, Q/(2)(y) is a GF(^)[L/]-
submodule of Af (2). Since y fixes a linear character of Af (2), y
fixes a nonzero vector in Af(2). Irreduciblity then forces CM(i)iy) =
Af(2).

Let E = C///Ker 0. By Proposition 3.4 and its proof, E is ex-
traspecial and

E/Z(E) = (UJ/KGΓ θ)/(U(2)Ksr 0/Ker 0)

By the proof of Proposition 3.4, (7(2) Ker θ = 17(2) when G is not
of type 3£>4. Whether G has type 3D4 or not, £7(2)/Ker Θ/U(2)
is the image in M{\) of Z(Uj/Kcr A), and is a proper (possibly
zero) GF(#)[{Lo, y)]-submodule of M ( l ) . Hence E/Z(E) can be
identified with a GΈ(q)[{L0, y)]-complement M to (7(2) Ker 0/(7(2)
in M{\).

By Lemmas 3.1 and 3.3, LQ centralizes no P-chief factor Ws <
M ( l ) . Since Ws is an irreducible GF(^)[L]-module, Clifford's The-
orem implies that no GF(#)[Lo]-submodule of Ws is centralized by
LQ. Hence M{\) contains no trivial GF(^)[Lo]-submodule. In par-
ticular, JLQ does not centralize M. Since y centralizes no component
of LQ 9 it follows that y doesn't centralize M.

Since y centralizes Af (2), y preserves the commutator form from
Af(l) x Af(l) to Af(2), and so y preserves the restriction of this
form to M x M. Since E is extraspecial, this restricted form is
nondegenerate.

Now Af is the orthogonal direct sum of [Af, y] and Cj^iy) Since_
Af is nondegenerate, so is [Af, y] . Hence [Af, y] admits a nonde-
generate GF(#)-bilinear alternating form. Thus |[Af, y]\ > q2 and so
\[E/Z(E),y]\>q2.

Toshowthat \ψ(y)/ψ(l)\ < l/q, it suffices to show that \v{y)jv(\)\
< l/q, where v is an arbitrary irreducible constituent of ψ\{y)u .
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Since ψu is a multiple of 0, we may view v as a character in

Let Z{E)<D<E, with Z)/Z(£) = [E/Z(E), y]. Then 2) is ex-
traspecial, since E/Z(E) is the orthogonal direct sum of [E/Z(E), y]
and CE/Z(E)(y)

Let ω be an arbitrary irreducible constituent of v\<y)D After
multiplying ω by a linear character of (y)D/D, we may assume
that C(3,)(Z)) < Kerω. Then [14, V, 17.13] yields that ω(l) =
\[E/Z(E), y]\1/2 and \ω(y)\ = 1. Applying this to each irreducible
constituent of v\{y)D, we obtain |i/(y)/i/(l)| < \[E/Z(E), y]\~ι/2. As
shown above, the last quantity is at most l/q. This completes the
proof.

4. Main theorem. Let G be a simple admissible group, Pj a stan-
dard maximal parabolic of <?, and χ e Irr(G). There exists an abso-
lute constant N such that χp has at most iV - 1 linear constituents,
counting multiplicities. By Theorems 2.10 and 2.17, we may take
N = 1 + 13 576. We now state our main theorem, which will be
proved at the end of this section.

MAIN THEOREM. Let {G,x) be a simple admissible pair, with q>
3N ,for N as above. Let χ be a nonlinear irreducible character of G.
Then \χ(x)\<(3N/q)χ(l)-N.

LEMMA 4.1. Let (<?, x) be a simple admissible pair with rank (G) =
1. Then \χ{x)lχ{\)\ < 2/(q - 1), for any nonlinear χ e Irr(G).

Proof We have G = SL(2, q) or SU(3, q). By Lemma 1.10,
or an entirely similar argument when G1 = SU(3, q), we see that it
suffices to establish the inequality in the statement of this lemma for
all noncentral semisimple elements of SL(2, q), GL(2, q), SU(3, q),
and U(3, q).

For SL(2, q), GL(2, q), and U(3, q), we can do this by checking
character tables ([11], [18], [12]). It remains to consider SU(3, q)9

whose character table seems not to be available in the literature.
If x G G = SU(3, q) is contained in no proper parabolic of G,

then CG(x) is a torus of (?, so \χ(x)\ < | C G ( * ) | 1 / 2 < q + 1. By [16,
p. 419], /(I) > q2 - q. It follows that \χ(x)/χ(l)\ < 2/(q - 1).

We may then assume that x e B = HU, the standard Borel sub-
group. Furthermore, we may assume x e H. Let λ be a linear
constituent of XB . Since G is doubly transitive on the cosets of B,
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(λG, λG) < ( lg, lg) = 2, and so (**, A) = 1. By Harish-Chandra's
theorem [10, 70.15(A)], all the linear constituents of χB are conjugate
under the Weyl group of G, which has order 2. Hence XB has at most
two linear constituents, counting multiplicities.

Let θ be a nonlinear constituent of χB and let ω be an irreducible
constituent of θv. If U' = Z(U) < Ker ω , then, since H/Z(G) is
fixed point free on [//£/', we have x $ IB(ω)<B, and so 0(x) = 0.

If Z(U) £ Ker ω , then Ker ω <Z(U) and C//Ker ω is extraspe-
cial. Since IB(ω)<B, we may assume that x e IB(ω), since otherwise
θ(χ) = 0. Then 0|(tf>JC) is a sum of extensions of ω. Let £ be one
such extension. After multiplying ζ by a linear character, we may
assume that C^(U) < Ker ζ. Now (U, x)/Ker £ satisfies the hy-
potheses of [14, V, 17.13]. We conclude that C(l) = Q and |C(JC)| = 1.
It follows that |0(JC)/0(1) | < l/q.

Hence |/(JC)| < 2 + (χ(ί) - 2)/q, assuming that x lies in a proper
parabolic of G. Since χ( l) > q2 - ^ , we have |/(x) | < 2χ(l)/q,
which completes the proof.

LEMMA 4.2. Lei (G9x9 Lj) be an admissible triple with rank (G) >
2 and q > 3N. Let χ be a nonlinear irreducible character of (x, L'j)
and assume that the Main Theorem holds for groups of smaller rank
than G. Then \χ(x)\ <{3N/q)χ{l) - N.

Proof. Let ί b e a component of Lj. Lemma 1.6 implies that
(x, K) is a simple admissible group. In particular, if Lj has only
one component, then ((JC, Lj), x) is a simple admissible pair, and
the inductive hypothesis yields the desired bound for \χ(x)\.

We now assume that L'j = K\K2, the case of three components
being entirely similar.

If x e L'j, write x = X\X2, with X\ e K\ and Xι e Kι% By
the definition of admissible triple, JC/ $ Z{K{) for / = 1, 2, and so
each Xj has prime order modulo Z{Kϊ). Then (Kf, xfi is a simple
admissible pair for / = 1, 2. We may write χ{x) = X\{x\)Xi{x2)
with Xi € Irr(ϋΓ/), for / = 1, 2. We assume both χx and χ2 are
nonlinear, the other case being easier. The inductive hypothesis yields
\Xi{Xi)\ < (3N/q)Xi(l)N for i = 1, 2. Hence

|*(*)l < ((3N/q)χι(l) - N){(3N/q)χ2(l) - ΛO

If α and 6 are real numbers, both greater than N, one checks that
(a - N)(b -N)<ab-N. Hence \χ{x)\ < (3N/q)2χ(l) -N. Since
q > 3N, the desired bound follows.
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We now assume that x φ L'j. Let y be the automorphism of
K\K2 induced by x and let y\ be the restriction of y to Aut(Λ^ )
for / = 1, 2. Since x centralizes no component of Lj, the orders of
y, y\ and y2 are the same prime number r. We form the semidirect
products L = (y)K{K2, Lx = (y\)Kx, and L2 = (y2)K2 .

Our inductive hypothesis implies that \a(x)\ < (3N/g)a(l) - N for
any nonlinear irreducible character a of (ϋf/, x), since {{Kf, x), x)
is a simple admissible pair. Let Wι = (Wi) be a cyclic group of
order \x\ and form the central product (AT/, x) * Wι\, where w[ =
xr G Z((Ki,x)). Then .xw"1 has order r and (Ki,x) * P^ =
(ϋΓ/, JCII Γ 1 ) ^ . If α G I r r ^ , * ) ) , then α( c) = ^ ( J C ^ Γ 1 ) ^ / ) ,

where α* G Irr((^z ? X ^ " 1 ) ) has the same degree as a and λ is
a linear character of W\. Similarly if β G Irr((^ z ? xtt;"1)) ? then
β(xw^1) = β*(x)μ(w~x), where )9* G IΓΓ((AΓ/, JC)) has the same de-
gree as jδ and μ is a linear character of Wt. There is an obvious
isomorphism from L/ to (xw" 1 , ϋΓ/) which takes y\ to xtt Γ 1. It
follows that \y{yι)\ < (3N/q)γ(l) - N for every nonlinear irreducible
character γ of L/.

Let Z = (z) be a cyclic group of order \x\. Form the central
product {{x)K\Kι) * Z , where zr = xr. Then {{x)K\K2) * Z =
{{xz~ι)K\K2) * Z = L * Z . The argument of the preceding paragraph
shows that if \ζ(y)\ < (3N/g)ζ(l) - N for every nonlinear irreducible
character ζ of L, then the conclusion of the lemma holds.

We are therefore reduced to working with the split extensions L, L\
and L2.

Let π: K\ x K2 —• Λ ^ 2 be the natural map. Then y acts on
Kι x K2, stabilizing (in fact centralizing) Ker π. Let

be the map sending yk(x\, x2) to (yfXi, y2x2), for /: G Z, X/ G ϋΓ/,
/ = 1,2. Then /̂ is an injective homomorphism. Since Z(Ki) <
Z(Ki) for an appropriate semisimple algebraic group ~K\ (see [8,
3.6.8]), it follows that x, which belongs to a reductive overgroup
of Έι, centralizes Z{K{). This implies that ^(Ker π) is normal
(in fact central) in L\ x L2, and so /̂ induces an embedding of
L £ (yXAΊ x ^2)/Ker π into {Lx x L2)/^/(Ker π ) .

Let ζGlrr(L) be nonlinear. Let χγχ2 be an irreducible constituent
of ζ\κ{κ2 with Xi e lτr(Ki), i = 1, 2. If / i / 2 is not (y)-invariant,
then C = {χ\χ2)

L and C(y) = 0. We may therefore assume that χ\χ2

is (y)-invariant. It follows that ζ\κ K = X\XI and χ\ is (y/)-invariant
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for i = 1,2. Since L//Λ7 is cyclic, // extends to & e Irr(L/)
for / = 1,2, and so X\ x χ2 € Iπ"(AΓi x ^2) extends to Ci x C2 £
Irr(Li x L 2). Hence *i*2 e \rr{KλK2) = IΓΓ((A:I X K2)/η(Kετπ))
extends to Ci C2 £ I r r((^i χ L2)/η(Ker π)).

Viewing L as a subgroup of (Li xL2)/η(Ker π), we see that χ\χ2e
lrτ(KιK2) is extendible to (CIC2)L e Irr(L). Hence ζ = λ{ζxζ2)L

where Λ, is a linear character of L/KχK2. Hence \ζ(y)\ = \ζ\ζ2(η(y))\
= |CiO>i)l IC2(3̂ 2)I As proved above, our inductive hypothesis implies
that |C/0>i)l < (3N/q)&(l)-N if C/ is nonlinear. The desired bound
for I COO I now follows as in the third paragraph of this proof. As
remarked above, this completes the proof.

LEMMA 4.3. Let (G, x) be an admissible pair. Suppose x central-
izes no component of G. Let θ e Irr(G) with 1 + θ a (not neces-
sarily faithful) doubly transitive permutation character of G. Assume
q>\\. Then \θ{x)\ < (3N/q)θ(l)-2N.

Proof By [5, p. 8], S < G/Ker θ < Aut(S) for a simple group S.
Either S has Lie rank 1 or S is some PSL(n, q). Since x centralizes
no component of G, x £ Ker θ. Set G = Gj Ker θ.

In the rank 1 case, since q > 11, θ is the Steinberg character of
G. Hence |0(*)| < θ(l)/q < (3N/q)θ(l) - 27V, since_0(1) > q.

We now assume S = PSL(n, q) with n > 3. Then G is PSL(«, q)
or ( j )PSL(ft, q), where y is a //-element of prime order. Since y
induces an inner times diagonal automorphism of PSL(«, q), G is
isomorphic to a subgroup of PGL(n, q). By [5, p. 8] G has two
doubly transitive permutation representations, which are conjugate
under the inverse transpose automorphism of PGL(AZ , q). Hence we
may assume that 1 + θ is the permutation character for the action of
G on the points of PG(« - 1, q). Let d\, ... , dr be the dimensions
of the eigenspaces, if any, of a preimage of 3c in GL(n, #). Then
1 + θ(x) = 0 or 1 + 0(jt) = ((qd* - 1) + + ( ^ - \))/{q - 1) <
((^-1 - l) + fa - i))/(0 - 1). If 0(χ) ^ - 1 , then 0 < θ(x)/θ(l) <
(1 + 0(JC))/(1 + 0(1)) < (qn~ι +q- 2)/(qn - 1) < 2/q. In all cases
\θ(x)\<2θ(l)/q<(3N/q)θ(l)-2N.

3

LEMMA 4.4. Le^ (G, x, Lj) be an admissible triple with rank (G) > _
2. L^ / G Irr(/V) and suppose that the irreducible constituents of
Xuj are not Lj-invariant. Assume that q > 3N and that the Main
Theorem holds for groups of smaller rank than G. Then \χ{x)\ <
(3N/q)χ(l)-2N+l.
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Proof. By Clifford's Theorem, χ is induced from an inertia group
MUj, where M < Lj. By hypothesis, L'j ^ M. Mackey's Theorem
yields χ^ = pJ , for some character p of M. If x is not conjugate in
Lj to an element of M, then χ(x) = 0. Hence we may assume x e
M. Let Go = L'jM. Then χ(χ) = χLj{x) = (/>Go)M*) = £ ^ o ( χ * ) ,
where A ranges over a transversal to GQ in L/ .

It suffices to show that \pG°(xh)\ < (3N/q)pG<*(l) - 2N + 1 for

each /z. A computation using the formula for induced characters

shows that \pGo(xh)/pGo(l)\ < l g ( x " ) / l g ( l ) . Thus if lg(x A ) <

2?(l) - 2ΛΓ + 1, then

and so |PGO(Λ:Λ)| < (3N/q)pGo(l) - 2N + 1, the desired inequality.

Hence we need only show that lfy(xh) < (3N/q)l^(l) - 2N + 1.

Since Lj^M, we have M <GQ.

Clearly 1^ has multiplicity 1 in 1^ . If λ is a linear constituent

of 1 § , then λM = 1M A lso L'j = G'o < Ker λ. Hence ML'j = G0<

Ker λ, and so λ = 1^ . Thus 1^ - l^o has no linear constituents.

Let G\ = (xh, Ly). Then (Gi, xh) is an admissible pair by Lemma
1.6, and xh centralizes no component of G\. We have G\ < Go and
MG\ = Go. If ex Φ \G0 is an irreducible constituent of 1^ , then a is
nonlinear by the preceding paragraph. Then L'j ^ Ker a, and so no
irreducible constituent of ag has L'j in its kernel. Since G[ = L'j,
all irreducible constituents of aGχ are nonlinear. By Mackey's the-

o r e m > iJnG, = ( 1 5)^ 1

 H e n c e ϊSnG, " ^, = ( l 2 ~ l(?0)^ i s a

sum of nonlinear irreducible constituents. Lemma 4.2 implies that

\β{xh)\ < (3N/q)β(l) - N for every nonprincipal irreducible con-

stituent β of l^nσ If i J n G , - 1 ^ is not irreducible, then lJCx'1) =

, Snσ. S , as
desired.

Thus we may assume that G\ is doubly transitive on the cosets of

MΓ\Gχ. Let lMnG = 1 + θ, with θ e Iτr(Gi). Then Lemma 4.3,

applied to the admissible pair (G\ ,xh), yields l§(x A ) = 5 A

§(H-|0(JC*) | < l + (3Λr/ήf)β(l)-2ΛΓ<(3ΛΓ/ήf)l§(l)-2ΛΓ+l, as desired.
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Proof of Main Theorem. We proceed by induction on the rank of
G. If G has rank 1, then Lemma 4.1 yields \χ(x)\ < 2χ{\)/{q - 1).
Hence \χ{x)\ < 3χ{\)lq. Thus it suffices to show that 3χ{\)/q <
{3N/q)χ{\) - N. This is equivalent to χ{\) > qN/(3N - 3), which
holds since χ(l) >{q- l)/2 and q > 3N > 15.

Hence we assume that rank ((?) > 1. If x lies in no proper
parabolic of G, then Theorem 1.11 says that \χ{x)\ < 6χ(l)/q9 so
we need to show that 6χ{l)/q < (3N/q)χ(l) - N. This simplifies
to χ{\) > qN/(3N - 6), which holds since χ(l) > (q2 - l)/2 by
[16, p. 419]. We therefore assume that x lies in a proper parabolic
of G. Let (G, x, Lj) be an admissible triple, where x may be re-
placed by a G-conjugate. Write χp = χ\ + χ2 + Xι + X4, as in the
introduction to this paper. By Theorems 2.10 and 2.17, Lemma 4.2,
Theorem 3.5, Lemma 4.4 and our inductive hypothesis, |/I(Λ:) | <
N-U \X2(x)\<QN/Q)X2(l)-N, IZ3WI<Λ(l)/ί,and \χ4(x)\ <
(3N/q)χ4(l)-2N+l.

Let θ be an irreducible constituent of (χ$)Uj Then UJ/KQT θ is
extraspecial by Proposition 3.4 and its commutator factor group has
order at least q2 by the proof of Theorem 3.5. Hence θ(l)>q9 and
so χ 3 ( l ) > q. It follows that χι(\)lq < (3N/q)χ3(l) - N, and so
\X3(x)\<(3N/q)X3{l)-N.

If χ4 φ 0, the triangle inequality shows that |/(Λ:)| < {3N/q)χ(l)-
N. We may therefore assume χ4 = 0. Then χ^ Φ 0, since otherwise
Uj < Ker x, which is impossible. If both χ2 and χι are nonzero,
the triangle inequality and the conclusion of the preceding paragraph
yield the desired bound for \χ{x)\, so we assume that χ2 = χ4 = 0.

Then \χ{x)\ < N - 1 + Qi3(l)/#). It suffices to show that N -
1 + (*3(l)/«) < (3N/q)χ3(l) - N. This is equivalent to
((2N - 1)/{3N - \))q, which holds because χ3(l) > q .

COROLLARY 4.5. Let G be a connected reductive algebraic group
over GΈ{p) whose commutator subgroup is simple, simply connected,
and not special. Let q and N be as in the Main Theorem. Let x be an
admissible element of Gσ. Let G be a group satisfying {G*σ, x) < G <
Gσ . Let χe Irr(G) be nonlinear. Then \χ(x)\ < (3N/q)χ{\) - N.

Proof. Apply the Main Theorem to the constituents of the restriction
of x to (Gf

σ, x).
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