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CHARACTER VALUE ESTIMATES
FOR GROUPS OF LIE TYPE

Davip GLUCK

Let G be a group of Lie type over the field of g elements. Let x
be a nonlinear irreducible character of G and x a noncentral element
of G. Examination of character tables suggests that |x(x)/x(1)|] <
C/q, where C is a universal constant independent of y, x, and
G . This order of magnitude is attained when, for example, y is the
doubly transitive permutation character of GL(#n, g) and x central-
izes a hyperplane of PG(n — 1, q); |x(x)/x(1)| then approaches
1/q as n — oo. In this paper, we establish a bound of the above
type when x is a semisimple element which has prime order modulo
Z(G) . However, we must exclude certain groups G in characteristic
2 and 3. The most serious exclusions are the groups of type C, in
characteristic 2. Our proof, which is summarized below, does not use
Deligne-Lusztig theory.

We first consider the case that x is contained in no proper parabolic
subgroup of G. By character orthogonality, |x(x)| < |Cg(x)|'/2.
Since Cg(x) is essentially a torus, the lower bounds for x(1) in [16]
yield the desired upper bound for |x(x)/x(1)|.

We may then assume that x is contained in a Levi complement
L; of a suitable standard maximal parabolic P;. We write xp =
X1+ X2 + x3 + Xa, where the irreducible constituents of y; are linear
characters of P;, the irreducible constituents of yx, are nonlinear
but have U; in their kernels, the irreducible constituents of x3 lie
over nonprincipal L';-invariant irreducible characters of U;, and the
irreducible constituents of x4 lie over irreducible characters of Uj
which are not L';-invariant.

We show that [x;(x)| is absolutely bounded by finding absolute up-
per bounds both for the multiplicities of the linear constituents of P,
and for the number of distinct linear constituents of yp . We essen-
tially get the best possible absolute upper bound for the multiplicities.
The theory developed in [13] and [17] is used to bound these multi-
plicities in terms of corresponding multiplicities in the Weyl group W
of G. We obtain only a crude absolute upper bound for the number
of distinct linear constituents of xp . Our bound involves the indices
of certain large reflection subgroups of W in their normalizers.

279



280 DAVID GLUCK

Since L; is a group of Lie type, an inductive hypothesis yields the
desired bound for |xa(x)/x2(1)].

To estimate 3, the results of [2] and Glauberman’s character cor-
respondence [15, 13.1] are used to show that if 6 is an irreducible
constituent of (x3)y , then U;/Ker6 is extraspecial. It is here that
we must exclude the groups in characteristic 2 and 3 mentioned above.
Standard Hall-Higman type results then yield that |x3(x)/x3(1)| <
l/q.

Finally, x4 is handled by restricting to L; and using an inductive
hypothesis.

While our result is obviously not the last word on the problem of
finding upper bounds for character values in groups of Lie type, we
hope the reader will agree that our method offers a conceptual and
effective approach to this problem.

I would like to thank P. Fong, P. Johnson, G. Seitz, and D. White
for helpful conversations and correspondence related to this paper.

1. Preliminaries. This section contains preliminaries to our estima-
tion of xi, x2, X3, and x4. Since we will apply an inductive hypoth-
esis to Levi complements of parabolic subgroups, we must work with
groups which are not necessarily quasisimple. Appropriate definitions
and inductive machinery are introduced in this section. We also de-
fine the excluded “special” groups. The reason for their exclusion will
not be apparent before §3. Finally, we estimate |x(x)/x(1)] when x
is contained in no proper parabolic of G.

We begin with some important conventions. All fields GF(q) con-
sidered in this paper will have at least 4 elements. All algebraic groups
G will be over the algebraic closure GF(p) of the prime field GF(p).
Algebraic groups and objects associated with them will be labeled with
bars. We will denote by o an endomorphism of G such that G, is
finite. Since ¢ > 4, we then have OF (G,) = ﬁ; . Following the usual
convention, a simple algebraic group is semisimple with a simple root
system and a possibly nontrivial center. A component of a finite group
is a subnormal quasisimple subgroup.

DEeFINITION 1.1. Let G be a finite group and p a fixed prime num=
ber. Let x be a p’-element of G. We say that x is admissible if x
has prime order in G/Z(G).

DEFINITION 1.2. Let G be a s_imple algebriic group over GF(pz_.
Let o be an endomorphism of G such that G, is finite. We call G
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and G, special (following [2]) if p = 2 and the root system of G is
B,, C,, F4y or Gy, orif p=3 and the root system of G is G;.

DEeFINITION 1.3. Let G be a finite group. We say G is admissible
if G=(y,G,), where G is a connected reductive algebraic group of
characteristic p whose commutator subgroup is a product of simply
connected and non-special simple components, and y is an admissible
element of G, .

REMARK. In the definition above, we don’t exclude the possibility
that y € 3:, . Thus G is either a central product of quasisimple groups
of Lie type, or an extension of such a group by a cyclic group. The
element y then induces inner times diagonal automorphisms of the
quasisimple factors of 5’6 . We note that an admissible group has a
split BN-pair obtained by intersecting the B and N subgroups of
G, with G. The parabolic subgroups of G are also obtained from
those of G, by intersection with G; see [3, p. 103].

DEeFINITION 1.4. Let G be a finite group. We say that G is simple
admissible if G is admissible and G’ is quasisimple.

DEFINITION 1.5. We say that (G, x) is an admissible pair if G is
an admissible group and x is an admissible element of G. If G is
also simple admissible, we say that (G, x) is a simple admissible pair.

LEMMA 1.6. Let G be an admissible group and let L be a Levi
complement of a parabolic subgroup of G. Let K be a product of
components of L. Let y be an admissible element of L such that
[v,K1# 1. Then (y, K) is an admissible group.

Proof. Let G and o be as in Definition 1.3. Then L = L, NG,
where L is a o-stable Levi complement in G. Also K = K, < G,
where K is a product of simple components of L. Let T be a o-
stable torus of L containing y. Then KT is a connected reductive
group with ((KT),)' = K. To complete the proof, it suffices to show
that the simple components of K are simply connected. To prove
this, we may assume that G is simple.

Let L; be a simple component of L. We may assume that L is
a standard Levi subgroup L;, where J is (by abuse) a subset of a
fundamental set IT for the root system G. Then L; corresponds to
a connected subset J; of J.

Since G is simply connected, its diagonal subgroup H is the direct
product of subgroups H, , for a € I1, each isomorphic to the multi-
plicative group of GF(p); see [7, pp. 197-198]. Let H,; be the direct
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product of the H, for o € J;. Then H, is the diagonal subgroup
of L;. Let M, be the simply connected covering group of L;. Let
6: M, — L, be the natural epimorphism, as in [7, p. 190]. Clearly
6 maps the diagonal subgroup of M, isomorphically onto H;. It
follows that Ker@ = 1 and so L; is simply connected.

LEMMA 1.7. Let (G, x) be a simple admissible pair with rank (G) >
1. Suppose x lies in a proper parabolic of G. Then for some standard
maximal parabolic P; of G, a G-conjugate of x lies in L; and
centralizes no component of Ly .

Proof. View G as a group with a split BN-pair. Up to conju-
gacy, x € Ly, the standard Levi complement of a standard maximal
parabolic of G.

Suppose that x centralizes every component of L;. Then x € H,
the diagonal subgroup of G, andso x € L, , where J' # J is another
maximal subset of the index set I of the fundamental roots. If also
[x,L'.] =1, then x centralizes the standard Borel subgroup of G
and its “opposite”, so [x, G] = 1, a contradiction. Hence x € L
and x doesn’t centralize every component of L .

Thus we may choose J so that x € L; and x doesn’t centralize
every component of L;. If x centralizes no component of L, then
we are done. Otherwise write J = J; U J,, where J; corresponds to
the union of the components of L; centralized by x and J, corre-
sponds to the union of the components of L; not centralized by x.
Write x = hx1x;, with he H, x; € L’Jl and x; € L’J2 . Then hx;
centralizes L', . Since h normalizes every root subgroup of L; , so

1
does x; = h~1(hx;). It follows that x, € H .

Thus x = kx,, with k € H and x, € L’Jz. Thus x € L, . If J,
is connected, we may choose a maximal and connected subset J; of
I with J, < J3. If J, is not connected, then J has 3 components,
the root system of G is D,, Eg, E7, or Eg, and one checks that it is
still possible to choose a maximal and connected subset J; of I with
Jr < J3.

Hence x € L, and since x doesn’t centralize L',2 < L s X
doesn’t centralize the unique component of L J, -

DerFINITION 1.8. Let (G, x) be a simple admissible pair. Let Lj;
be the standard Levi complement of a standard maximal parabolic of
G. Suppose x € L; and x centralizes no component of L;. Then
(G, x, Ly) is called an admissible triple.
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We now turn to the problem of estimating |x(x)/x(1)| when x lies
in no proper parabolic of G.

LEmMA 1.9. Let (G, x) be a simple admissible pair. Suppose x is
contained in no proper parabolic of G. Then Cg(x) is a maximal
torus of G'.

Proof. By the Borel-Tits theorem [3, p. 103], Cg(x) contains no
unipotent elements. Let G and o be as in Definition 1.3. Since
Cg(x) admits o, it follows that Cg(x) contains no unipotent ele-
ments. By a theorem of Steinberg [8, 3.5.6], Cz(x) is connected, and

s0 is a (necessarily maximal) torus T of G. By [8, p. 88], 7NG isa
maximal torus of G , and so taking o-fixed points yields that Cg (x)
is a maximal torus of G'.

LEMMA 1.10. Let (G, x) be an admissible pair with G' = SL(2, q).
Let x € Irr(G) be nonlinear. Then |x(x)/x(1)| = |w(x1)/w(1)|, where
w is an irreducible character of SL(2, q) or GL(2,q) and x, is
a noncentral semisimple element of SL(2, q) (resp. GL(2, q)), and

w(1) = x(1).

Proof. Let G = (G', y), as in Definition 1.3. Suppose y induces
an inner automorphism of G’. Let g € G’ induce the same auto-
morphism of G’ as y. Let z = yg~! and let r be the prime order
of ymod Z(G). Then z" =y" (modG'), and so z" € G'O,(Z(G)).
Since z € Z(G), 2" € (('0,(Z(G)))NZ(G) £ Oy(Z(G)). Thus G
is a central product G'(z), where z is a p’-element. The conclusion
of the lemma follows with y € Irr(SL(2, q)).

Next suppose y induces an outer automorphism ao of G'. Then
g is odd. Since y has prime order mod Z(G) and the diagonal
automorphism group of G’ has order 2, we have o? = 1. Let H be
the semidirect product (a)G’' = (a)SL(2, ¢q). If we can find abelian p'-
groups Z, Z;, W,and W suchthat GxZ = H+W and GL(2, q)+*
Z, = H«W;, where * denotes a central product, then the conclusion
of the lemma follows with ¥ € Irr(GL(2, ¢q)).

To do this, let Z = (z) be a cyclic group of order |y|. Form the
central product GxZ , where z2 = y2 € Z(G). Then yz~! is an invo-
lution which induces a on G',and G*Z = ((yz )G+ Z=Hx*Z.
Next let t € GL(2, g) induce a on SL(2, g). Then ¢ is a semisim-
ple element. Let Z; = (z;) be a cyclic group of order |¢| and form
the central product GL(2, q) * Z;, where z? = > € Z(GL(2, q)).
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Then z;¢~! is an involution which induces a on SL(2, g), and so
GL(2, q) * Z; = ({21t ")SL(2, q)) * (Z(GL(2, q))Z;) = H + W} .

THEOREM 1.11. Let (G, x) be a simple admissible pair. Suppose
that x is contained in no proper parabolic of G. Let y € Irt(G) with

x(1)> 1. Then |x(x)/x(1)| < 6/q.

Proof. If G' =SL(2, q), then Lemma 1.10 implies that |x(x)/x(1)]
= |w(x1)/w(l)|, as in the conclusion of Lemma 1.10. Checking
character tables ([11], [18]) shows that the last ratio is at most
2/(q— 1) < 6/q. Hence we assume G’ # SL(2, q).

We claim that there exists a group H and an element 42 € H such
that H' =G, Cz(h) = Co(x), {Ix(x)/x(1)]: x € Irr(G) and x(1) >
1} =A{ly(m)/w(D)|: v € Irr(H) and y(1) > 1}, and |[H: G| < d,
where d is the order of the diagonal automorphism group of G'.

Write G = (v, G,), as in Definition 1.3. Clearly G, = G, so
G = (y)G'. To prove the claim we may assume that y ¢ G'.

Let Z = (z) be a cyclic group of order |y|. Let r be the prime
order of y mod Z(G). Form the central product G * Z, where z" =
y' € Z(G). Then |yz7!|=r and G*Z = ((yz~")G')« Z. Let
G* = (yz™1)G'. Write x = x;w where x; € G* and w € Z. Then
(G*) = G, Co(x) = Cg(x1), and {x(x)/x(1)|: x € Irr(G) and

(1) > 1} ={{(x1)/¢(1)]: Celrr(G*) and {(1) > 1}.

If yz~! induces an outer automorphism of G', then since yz~!
has prime order r, we have r|d. Hence our claim holds for H = G*,
h= X1 .

We therefore assume that yz~! induces an inner automorphism of
G'. If r divides |Z(G')| = d, the claim holds as above. Hence we as-
sume (r, |Z(G")|) = 1. For some element v in the coset yz~1G', G*
is a central product G'(v). We have v" € G'nZ(G) < Z(G).
Since r doesn’t divide |Z(G')|, we have |O,((v))| = r and G* =
G'(O((v))x 0, ((v))) = G'xO:({v)). Write x; = gu, with g € G’ and
u € O/((v). Then Cg(x1) = Cg(g) and {|{(x1)/{(1)]: { € Irr(G?)
and {(1) > 1} = {Jly(g)/w(1)|: v € Irr(G') and (1) > 1}. Hence
our claim holds with H = G', h = g. This proves the claim in all
cases.

To prove the theorem, it suffices to show that |y (k)/w(1)| < 6/q
for any nonlinear irreducible character ¥ of H. Using Lemma 1.9,
lw(h)]? < |Cr(h)| <|Cg(h)|d =|Cq(x)|d =|T|d, where T isa torus
of G'. By the order formula for tori (see [8, p. 98]), |T| < (¢ + 1),
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where [ is the rank of G, which is greater than the rank of G when
G is twisted. Since G' # SL(2,q), [ > 1.
We have d <[+ 1. By[16, p. 419], w(1) > (¢/ = 1)/2. Then

)l  2VI+ 1@+ 1)"? _32VT+1(g+ D2 32vT+1 <_
w(l) s gl -1 s 15(g2 = 1)I2 15(q - N2 =

for [ > 2 and g > 4. The second inequality uses (¢'—1)/(g2=1)!/2 >
(@'=1)/(¢g*)"? =1-q~! > 15/16. The third inequality holds because
VI+1/(qg —1)"/2 is decreasing in ¢ and / for /> 2 and g > 4.

2. Estimating y;. Let G be a simple admissible group and let P,
be a standard maximal parabolic of G. Let y € Irr(G) and let A be
a linear character of P;. In the first part of this section we establish
an absolute upper bound for the multiplicity (xp,, 4).

Our work will be based on the following “comparison theorem” of
McGovern [17]. By abuse, we will use the same symbol A to denote
the restriction of A to the diagonal subgroup of G. Since g > 4,
this diagonal subgroup covers P;/P; and L;/L’;. Let W(A) be the
stabilizer of A in W, the Weyl group of G. In [17], a certain set
D(A, J) of (W(A), Wy)-double coset representatives is defined. We
may assume that 1 € D(4, J).

THEOREM 2.1. Let G be a finite group with a split BN-pair of
charcteristic p. There is a one-to-one correspondence between the
constituents of Ag and the irreducible characters of W (). Suppose
x is the constituent of A§ corresponding to ¢ € Irr(W(A)). Let k

be an irreducible character of L; with inflation K to Py, satisfying
(x, k%) # 0. Then k is a constituent of (A”)Igj and R is a con-

stituent of (A”)Z’ for a unigue v € D(A, J). Both k and & corre-
spond to the same unique irreducible character w of WynNW(A'), and
(1, &) = (8, y" ).

Proof. This is [17, Theorem A] with some minor changes in word-
ing. In the statement of this theorem, A denotes an arbitrary linear
character of the diagonal subgroup of G. Note that 1 € W is “A-
special” ([17, p. 426]), so we may assume 1 € D(4, J).

We will apply Theorem 2.1 with k¥ = AL,, K = A. Then the
multiplicity we wish to bound, (x, %), equals (¢V, ")), where
y € Irr(W; N W(47)) corresponds to A4 and i . We w111 show that
v=1and y =1. Since W;NW(A) = W, by Lemma 2.2 below, we
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will need only to establish an absolute upper bound for (¢, lgfjw) as
¢ ranges over Irr( (1)) . But this reduces to bounding the multiplic-
ities in IWJ , which have been investigated in [9] and [1].

LeEMMA 2.2. With notation as above, we have W; < W(A) and
v=1.

Proof. Since N; < P; stabilizes A € Irr(Py), we have Wy < W(4).
Since k = ALJ is a constituent of lﬁ’ and k¥ = A is a constituent of
J

,1};’ , uniqueness in Theorem 2.1 implies that v = 1.

The next remark, which is copied from [17, p. 421], summarizes
some of the main results of [13]. Here ® is the root system of G,
with fundamental system II.

REMARK 2.3. Let G be a group with a split BN-pair of character-
istic p. Let A be a linear character of the diagonal subgroup of G.
Define the A-parameters g,(A) as in [13]. There is a prime power ¢
of p such that g,(4) = ¢%® for all roots a in the root system ®
of W. In case G = G(q) is a finite group of Lie type, this prime
power may be taken as the characteristic power ¢ of G. Howlett
and Kilmoyer proved that there is a semidirect product decomposi-
tion W(A) = AC, where C is the reflection group with root system
I'={a € ®: g,(A) # 1} and fundamental system X < ®*, and 4
is an abelian p’-group which normalizes C. Then a generic alge-
bra A(A) was constructed, which is an associative Q[¢]-algebra with
basis {Xy:w € W(A)}, satisfying the following multiplication (for
acA,beX,and we W(i)):

XoXw = Xauw, XyXq = Xya,
XuXu, = { O
ty () Xww, + (8(4) — DXy if w(b) €T,
_ { Xuw if wi(b) €T+,
P (W X + () - DXw ifwl(B) €T,
where 1,(A) = t%4) ,

DEFINITION. In the situation of Remark 2.3, let W;(1) = W; N
W(A). Let A;(A) be the generic algebra associated with W;(4). (Note
that W;(A) is the stabilizer of A in the Weyl group of L;, so it has
an associated generic algebra as in Remark 2.3.)

LEMMA 2.4. Let G, P; and A be as in Lemma 2.2. Let q,(1) be
as in Remark 2.3. Then q,(A) = q,(1) for ac ®;.
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Proof. For any a € ®, [13, 2.6(b)] says that g,(A) + g,(A)~! =
[ A% (hi(x))]2A% ((r;)?), whenever w € W is chosen so that a* € II.
By [13, p. 577], h;j(x) and (r;)?, which are independent of A, may
be chosen to lie in the diagonal subgroup of OP'(L,-) , where L; is the
standard Levi complement of the standard minimal parabolic of G
corresponding to {a¥} <II.

Since a € ®; by hypothesis, we may take w € Wy, so that a¥ €
IT;. Then L; < L;. Since OF (L;) < OF (P;) = Py < KerA, we have
qa(A)+q4(A) ™1 = qa(1)+q4(1)~"'. By [13, §4], forany a € @, g,(4) =
q%% | where c,(4) is a non-negative integer. Thus g,(4) = ¢a(1).

REMARK 2.5. Let a € ® and choose w € W so that a¥ € II. Let
s be the fundamental reflection corresponding to a. Then g,(1) =
ind s = |B: BN B*|, the usual index parameter defined in [10, p. 610].
See [13, p. 552]. If a € ®,, then g,(4) is the same, whether computed
in Gor Lj.

LEMMA 2.6. Let G, Py, and A be asin Lemma 2.2. Write Wy(4) =
AyCy, as in Remark 2.3. Then C; = W; = W;(A) and Ay =1. The
generic algebra Aj(A) can be identified with the generic algebra of the
Coxeter system (Wy,I1;) over Q[t].

Proof. By [17, Theorem 1.5], the reflection factor C; of W;(4)
equals W; N C, where C is the reflection factor of W (4). Since the
root system of C contains ®; by Lemma 2.4, we have W; < C,
proving the first assertion. The second assertion is clear from the
definitions of the respective generic algebras in Remark 2.3 and [10,
p. 637], and the fact that c,(4) = ¢,(1) for a € ®; by Lemma 2.4.

ProposiTION 2.7. Let G, Py, and A be as in Lemma 2.2. Let
y € Irr(Wy) correspond to k = Ay, in Theorem 2.1. Then y = ly .

Proof. By [17, p. 431], the bijection between the irreducible charac-
ters of the Hecke algebra #(L;, By, A) and those of Q[W;] is ob-
tained via [17, Theorem 2.1]. An irreducible character of one of these
algebras corresponds to an irreducible character of the other when
both are (extended) specializations of the same irreducible character
of A;5(4).

Following [10, p. 637], we define a Q[t]-algebra homomorphism
IND: 4;(2) — Q[t] by INDX, = ¥ = 1,(1), where a; is a
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fundamental root in Il; and s; is the corresponding fundamental
reflection. Clearly IND specializes to the principal character of char-
acter of Q[W;] under the specialization ¢ — 1. To compute the spe-
cialization of IND to #(L;, By, A), we must check that the special-
ization ¢ — g sends the generator X; of A4;(4) to the element B; =
(ind s;)e;(s;)e;, where s; € W is a fundamental reflection, (s;) €
N; N L, maps onto s;, and e; is the primitive central idempotent
of Q[B;] corresponding to A. By Theorem 2.17 and p. 567 of [13],
X, is sent to 5 € Z(Ly, By, A), where ys = A((5:))q _1/2q ()28
by [13, Eq. 2.19]. Also gs, = 4a (1) and gy (i) = qq (A) "by the defini-
tions in [13]. By Lemma 2.14 and the fact that (s,) € Ly, we have
Vs = ﬂsi . (Note that the definition of B, in[13, Def. 2.2] is incorrect.
The given formula for f,, must be multiplied by ind w , since other-
wise [13, Theorem 2.4] would be incorrect and equation 2.19 would
be inconsistent with Theorem 2.17.)

Let ind: #(Ly, By, A) — Q be the specialization of IND under
t — q. Then ind(f;) is the specialization of ) under ¢ — q.
Hence ind(Bs) = ¢a(4) = ¢4 (1) = inds;, as in Remark 2.5. On the
other hand, A(ﬂs) = (ind s,)l(e,l)}»((s,)))»(e,l) ind s;. Since the S
generate #(L;, By, A) as a Q-algebra, ind equals the restriction of
Ato #(Ly, By, A),so Ay, corresponds to the principal character of
W, as desired.

COROLLARY 2.8. Let G, Py, and A be as in Lemma 2.2. Let
M) = max{(A%, x): x € Irr(G)}. Let m(W ,J) = max{(lWJ, #):
¢ € Irt(W)}, where W is the Weyl group of G. Then M(A) <
m(W,J).

Proof. Choose y € Irr(G) so that (A%, y) = M(4). Let ¢ €
Irr(W(A)) correspond to x in Theorem 2.1. By Theorem 2.1 and
Proposition 2.7, 1’,5(” = M(A)¢ + o, where a is a sum of other ir-
reducible characters of W(4). Thus some irreducible constituent of
1{,’?] has multiplicity at least M(A), as desired.

It now suffices to show that there is an absolute upper bound for
m(W,J) as W ranges over all irreducible Weyl groups and W;
ranges over all maximal parabolic subgroups of W . For W of type
Ap, By,or C,, m(W,J)=1 forall J by][9, p. 90]. For the excep-
tional Weyl groups, Alvis’ tables [1] yield m(W, J) < 13 for all W
and J, with 13 occurring for W (Eg).
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It remains to determine m(W, J) for W of type D, . By [9, p. 90],
m(W(Ds), J) > 1 for at least one J .

ProrosITION 2.9. m(W(D,), J) <2 forall n and J.

Proof. Let W = W(D,). Let Y = W(B,). Then W < Y <
SypE,, where S, is the symmetric group of degree n, and E, is an
elementary abelian group of order 2" on which S, acts by permuting
coordinates. Write elements of E, as row vectors with entries in
GF(2). For 1 <i<n-1,let w;=(G,i+1)eS,. Let w, =
wy,—1[00---011] and let y, =[00---01]. Let y; = w; for 1 < i <

n—1. Then {w;,...,w,} and {y;,..., y,} are standard sets of
fundamental reflections for W and Y, respectively.
Let J ={1,...,n}={j}. If j <n-2,then |Y;: W;| =2,

WY; =Y,and Y;NW = W;. By Mackey’s theorem, (1§J)W =
1’"’?] . By [9, p. 90], 1}’% is a sum ¢ + -+ ¢ of distinct irreducible
characters of Y. If 1 <i <r < k, then (¢;)w and (¢,)w have
a common irreducible constituent if and only if ¢; = u¢,, where
u is the nonprincipal linear character of Y/W . Since each (¢;)w is
either irreducible or is the sum of two distinct Y-conjugate irreducible
characters, it follows that all multiplicities in 1 are at most 2.

If j=n—-1,then Y;NW is the non-max1mal standard parabolic
subgroup of W corresponding to {1,...,n—2} and Y; W =Y.
The argument in the preceding paragraph shows that the multiplicities
in l,’fj ~w are at most 2. Since Y; N W < Wy, it follows that the
multiplicities in 1%} are at most 2.

= n, then W; = Y;. Since 1¥J is multiplicity-free, so is
W _ W
1Y, 1W

We summarize our work on multiplicities in the following theorem.

THEOREM 2.10. Let G be a simple admissible group. Let P; be
a maximal parabolic subgroup of G. Let x € Irr(G) and let A be a
linear character of P;. Then (xp,, A) < 13.

Proof. This follows from Theorem 2.1, Proposition 2.7, Corollary
2.8, Proposition 2.9, and the remarks preceding Proposition 2.9.

Let G, x, and P; be as in Lemma 2.2. Having bounded the mﬁf.-;
tiplicities of the linear constituents of Xp,, We must now bound the



290 DAVID GLUCK

number of distinct linear constituents of yp . Linear characters of
P; are cuspidal characters of the diagonal subgroup of G. Hence if
A and u are two linear constituents of xp, , Harish-Chandra’s theo-
rem [10, 70.15(A)] implies that A and u, viewed as characters of the
diagonal group of G, are conjugate under W . Thus we must bound
the number n(4) of linear characters of P; which are W-conjugate
to a fixed linear character A of P;.

Let Py = P;NG'. Then P, is a maximal parabolic of G'. Let
H denote the diagonal subgroup of G'. Let A’ be the restriction
of A to Py. We may also view A’ as a linear character of H. The
semidirect product decomposition in Remark 2.3 applies to both W (1)
and W(4). Write W(4) = A(A)C(4) and W(X') = A(A)C(A'). Let
C (A) be the group generated by all reflections in W (4), sothat C(4) <
C(A) < W(A). Define C(¥') similarly.

We will use the fact, proved below, that Py has a cyclic commutator
factor group to reduce the problem of bounding n(1) to known results
on the indices of reflection subgroups of W in their normalizers.

LEmMMA 2.11. Let Py and H be as above. Then Py/PFy is cyclic.

Proof. Since [H, X] = X for every root subgroup X of G,
it follows that P} = OP(P,) and Py = P}H. Hence Py/P} =
H/(HNFy).

First suppose G’ is untwisted. Then, since G’ is simply connected
by hypothesis, H is the direct product of groups H, , each isomorphic
to the multiplicative group of GF(g). See [7, p. 197-8]. Moreover,
the H, correspond to the fundamental roots « € I1. By [7, p. 92],
H, < (X4, X_o). Hence [],.; H, < O (P,) = P}. Thus H/(H N P})
is cyclic.

Next suppose G’ is a twisted group over GF(q). Write ¢’ = Gy,
where G is a simply connected algebraic group over GF(p), and ¢ =
qt, where ¢ is the gth power Frobenius endomorphism of G, and
7 is a nontrivial graph automorphism. Let Py = P,, where P is a
standard o-stable parabolic of G. Since G is a simply connected
Chevalley group over GF(p), its diagonal subgroup H is a direct
product of subgroups H,, where o ranges over a fundamental set of
roots for G and each H, is isomorphic to the multiplicative group of
GF(p). As in the preceding paragraph, we may write H = H; x H;,
where H, <P and H, is the direct product of the H, as o ranges
over a single t-orbit of fundamental roots of G. Then H = H, =
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(H))s x (Ha)s and (Hj)y < HN (P'); = HN P,. Hence it suffices to
show that (H,), is cyclic. Let n: H; — (GF(p))* be the projection
onto one fixed direct factor of H;. Since 7 cyclically permutes the
direct factors of H; and o = qt, it follows that the restriction of =«
to (H,)s is injective, and so (H;)s is cyclic.

LEMMA 2.12. Let n(A) and A' be as in the remarks preceding Lem-
ma 2.11. Then n(4) < |Nw (Ker A W(A).

Proof. Let w € W . Suppose that A¥, considered as a linear char-
acter of the diagonal subgroup of G, is the restriction of a linear
character of P;. Then (A')¥ is the restriction to H of a linear char-
acter of Py, and so H N Py < Ker((4)?), and also HN Py < Ker/'.
Since H/(HNP}) is cyclic, and since Ker A’ and Ker(4)¥ = (Ker A')*
have the same index in H, we have Ker A’ = (Ker 4')*. Hence w
normalizes Ker A'. The desired inequality follows.

LEMMA 2.13. Ny (Ker ') < Ny (C(2)).

Proof. Since HN Py < Ker X' and H/H N P} is cyclic, H/Ker '
has an abelian automorphism group. Hence (Ny (Ker 1)) < W(A').
Clearly W (1) < Ny (Ker A'). Thus W (2') is normal in Ny (Ker 1').
Then Ny (Ker ') permutes the reflections in W(1)' and so normal-
izes C(1).

LemMA 2.14. C(A) =CA).

Proof. By Remark 2.3, C(A) is the reflection group with root system
I'={a € ®: q,(A) # 1}, and C(A') is the reflection group with root
system " = {a € ®: g,(1’) # 1}. By the proof of Lemma 2.4, g,(4) is
determined by the value of 4 on elements of H. Hence g,(4) = g,(4’)
forall ae ®. Thus I'=I" and C(4) = C(A).

LEMMA 2.15. n(A) < |Nw (C()): CAN||CA): C(A)].

Proof. By Lemmas 2.12 and 2.1\3, n(d) < INW(@()J)): W(A)|.
Hence n(i) < |Nw(C(A)): C(A)||C(A): C(A)|. Now Lemma 2.14
yields the desired result.

LEMMA 2.16. Let W; be a maximal parabolic subgroup of an irre-
ducible Weyl group W . Let W, be a reflection subgroup of W which
contains Wy. Then |Nw(Wy): Wi| < 72.
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Proof. We follow Carter [6]. Let ®; = {a € ®: w, € W;}. Then
®, is a root system with Weyl group W;. Note that ®; < ®;. Let
V1 be the vector space spanned by ®,. The roots in & orthogonal to
®, form a subsystem &, with Weyl group W, . Clearly W, has order
1 or 2 in our situation. By [6, Proposition 28], Ny (W)/(W1 x W3) is
isomorphic to a group of symmetries of A;, the Dynkin diagram of
D, .

If Wi, > W;, then ®; is obtained by deleting a node from the
extended Dynkin diagram of @, or is the dual of the diagram obtained
by deleting a node from the extended Dynkin diagram of the root
system dual to ®. See [6, p. 8]. An easy case-by-case check shows
that the largest value of |Aut(A;)||W,| is 72, which occurs when the
middle node is deleted from the extended Dynkin diagram of Dg.

THEOREM 2.17. n(4) < 576.

Proof. By Lemma 2.16, |Ny (C(A)): C(A')] < 72. Since C(4') nor-
malizes C(4') and C (A)/C(4') is an elementary abelian 2-group, the
proof of Lemma 2.16 yields |C(): C(¥)| < 8. Lemma 2.15 then
gives the desired conclusion.

3. Estimating x3. Let (G, x, L;) be an admissible triple (see
Def. 1.8) with rank (G) > 2. Let 6 € Irr(U;) be invariant under
L', . Let x €Irr(Py) lie over 6. (In the situation of the introduction
to this paper, x plays the role of an irreducible constituent of yx3.)
In this section, we establish the bound |y(x)/x(1)| < 1/q.

Relying heavily on results from [2], we show that [U}, U;] < Ker 0,
that U;/Ker 0 is extraspecial, and that x preserves a GF(g)-bilinear
symplectic form on U; /U’ . We then restrict to (x)U; and use stan-
dard Hall-Higman type results to obtain the desired bound.

For an admissible triple (G, x, Ly), let H denote the diagonal
subgroup of G. Let G' = G, where G is a simple algebraic group.
Here o = g1, where g is the gth power map on GF(p) extended to
a Frobenius morphism of G and 7 is a possibly trivial graph auto-
morphism of G. _

Let P=P;NG, L=L;NG ,and H=HNG . Let Ly=L' =L,
and let Hy = HN Lo = HnN L. This notation differs from that of §2.

Let X be the root system of G, and let I be a fundamental system
for . Choose K < II, abusing notation, so that P = (Pg),, where
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Pg is the standard parabolic of G corresponding to K. Thus K’ =
IT — K will consist of a single t-orbit of fundamental roots. The
unipotent radical Uy of Py is the product of the root groups U
for pe Xt — 3.

We differ slightly from [2], where instead of P, the authors work
with the “opposite” parabolic generated by Lx and the negative root
groups in X — Zg. By [2, p. 561], passing from Pg and (Pg)s to
their opposites merely replaces the modules Ws defined below by their
duals, which is harmless for our purposes. We also remark that the
results of [2] apply to all parabolic subgroups, not just the maximal
parabolics considered here.

For f € Xt — Zg, write B = fBx + Bx', where P is a linear
combination of fundamental roots in K, and similarly for B . Write
By =dioy +---+dja;+- -, where «; ranges over K'. Following [2,
p. 3], define the shape of S to be Sy and the level of f to be the
sum of the d; above.

Let U(i) = [1Ug, the product over all B € ¥ — Zx with level
(B) >i. Let U(i) = U(i)g. Then U(i) is the product of the corre-
sponding root groups of G' = G,. By [2, Lemma 4 and Lemma 6],
U(1) > U(2) > --- is the descending central series of U; = (Ug), .

Let M(i) = U(i)/U(i+1). By[2, Lemma 5], M (i) is L-isomorphic
to (U(I)/U(i+1))s. By [2, Theorem 2a and Theorem 3], M (i) has
a direct decomposition as a product of P-chief factors Ws, which we
will describe below. Each Wjs is an irreducible GF(g¢)[L]-module,
where ¢ is the number of shapes in the 7-orbit of the shape S.

The results above need not hold without our assumption that G is
not “special”.

To describe W, we need more notation. For G untwisted and S
a shape on level i, define Vg to be the image in M (i) of the product
of all root subgroups Ug, for B of shape S. Define Vs similarly
for G.

If G is untwisted put Wy = Vg. If G is twisted and S* =S, put
Ws=TVs),. If G is twisted and S # S let Ws equal (Vs@Vg), =
(Vs®Vg)s when |7 = 2, or the obvious analog when |z| = 3. By [2,
Theorem 2b and Lemma 7], Wy is an irreducible GF(g¢)[L]-module.
There is one module Wg for each 7-orbit of shapes in X+ — X .

By [2, Theorem 2d and Lemma 7], Ws remains irreducible as a
GF(g°)[Lo]-module. Finally, the Wy are also P;-chief factors, since
P; = PH and the Ws are invariant under diagonal automorphisms;
see [2, p. 552].
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In Lemma 3.1 below, we give a criterion for Ws to be centralized
by Lg. In Lemmas 3.2 and 3.3, we locate the trivial Ly-composition
factors in Uy .

LEMMA 3.1. Lg centralizes Wy iff there is only one root in X+ —Xg
of shape S'.

Proof. First suppose 7 = 1. Then, since W5 = Vs is an irreducible
GF(g)[Lo]-module, L, centralizes Vs iff Vs has GF(g)-dimension
1, iff there is only one root in S'.

Next suppose |7| = 2. Then 7 induces a linear transformation on
M(i) =U(i)/U(i + 1) which permutes the images of the root groups
in G on level i. Suppose first that (V5)? = V5. Then S = S7, the
roots of shape S comprise a union of t-orbits, and (Vs), = Wy is
the direct sum of the o-fixed point spaces for each of these t-orbits.
For each such t-orbit, the o-fixed point space is the image in M (i) of
a root group of the twisted group G, = G'. This image has cardinality
g if the t-orbit consists of one root, and cardinality g? if the t-orbit
consists of two roots. If Ly centralizes (Vs), = Wy, then (Vy),
has dimension 1 over GF(g). Hence S consists of only one 7-orbit,
which in turn consists of only one root. Conversely, if S consists of
only one root, then (V) has cardinality ¢, and so is centralized by
L.

Next suppose || =2 and (Vs)? # V. Again Ws = (Vs @ Vg)o
is the direct sum of the o-fixed point spaces for the 7-orbits of roots
in SUST. Since S and S are disjoint, each such 7-orbit consists of
two roots, and so its g-fixed point space in M (i) has cardinality g2,
as above. If L acts trivially on Wy, then GF(g?)[Lo]-irreduciblity
forces Wg to have dimension 1 over GF(g?). Hence SUS? contains
only one 7-orbit of roots, and so S contains only one root. The
converse is clear.

Finally, the case |t| = 3 is entirely similar to |7| = 2.

LEMMA 3.2. Let S be a shape in X+ —Zg with level (S) = 1. Then
S contains more than one root.

Proof. First suppose G is untwisted. Let K’ = {a}. All roots on
level 1 have the same shape. To show that this shape contains a root
distinct from o, we need only show that for some fundamental root
B # a, that a+kf is a root for some positive integer k. Root chain
considerations [7, p. 37] show that this is the case whenever f is not
orthogonal to «.
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Now suppose G is twisted. If |K'| = 1, then the unique shape
on level 1 contains more than one root, as above. We then assume
|K'| > 1. The shape S consists of all roots of the form a+,.x cic;,
where o is a fixed fundamental root in K’. An easy case-by-case
check shows that there is always a fundamental root «; € K which is
not orthogonal to a. (Recall that G has rank at least 2 as a twisted
group.) Hence we get two roots of shape S as above.

LEMMA 3.3. Let S be a shape in Tt — Xg which contains only one
root. Then level (S) =2 and Ly centralizes M(2). The commutator
form from M(1) x M(1) to M(2) is nondegenerate, GF(q)-bilinear,
and Ly-invariant.

Proof. First we claim that level (S) = 2. Suppose G is untwisted. If
G is a classical group, there are at most two levels of roots in £t —Xg,
and so our claim follows from Lemma 3.2. For the exceptional groups,
we merely check the lists of positive roots in [4] or [19]. We find that
for F4, E¢, E7, and Eg, there is exactly one maximal subset K of
IT for which X+ — Xk has a shape (i.e. level) consisting of just one
root, and this always occurs on level 2. For such K, there are only
two levels of roots in Xt —Zg . For type G,, both possibilities for K
have a unique root (only) on level 2, and there are two or three levels
of roots in X+ — Xk .

Next suppose G is twisted. If |K’| = 1, then a shape in Xt — g
is the same thing as a level, and the claim follows as in the preceding
paragraph. Hence we assume |K’| > 1. For types 24, and 2D, the
highest level in ¥t — Zg is 2. For type 3D4, with K = {a3}, the
fundamental root fixed by 7, there are three levels. Level 2 consists
of single t-orbit of shapes, each containing only one root. Level 3
consists of one 7-invariant shape, which contains two roots. For type
2E¢, there are only two levels when K’ = {ay, ag}, the outer pair
of nodes exchanged by 7. When K’ = {a3, as}, the inner pair of
nodes exchanged by 7, there are four levels. The shapes of level at
least 2 for these sets K’ are a; + ag, a3 + as, 2a3 + a5, a3 + 2as,
and 2a3 + 2as5. All of these shapes contain at least two roots. This
proves our first claim.

We next claim that L centralizes M(2). By Lemma 3.1, it suffices
to show that there is only one 7-orbit of shapes on level 2, since M (2)
would then be a trivial GF(g¢)[Ly]-module of the form W. If G is
untwisted, or if G is twisted with |K'| = 1, this is clear since shape
and level are then the same thing. If G is twisted with |K'| > 1,
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then our assumption that £+ — X has a shape containing only one
root implies that G is not of type 2Es. If G is of type 3D,, then
there is only one 7-orbit of shapes on level 2 as mentioned above. If
G is of type 2D, , then |K'| > 1 implies that K’ = {ay_;, an}, the
pair of fundamental roots exchanged by 7. The only shape on level
2 is then a,_; + a,, which contains at least two roots. Our claim is
therefore vacuously satisfied for type 2D, . Note, by the way, that the
description of the positive roots of D, on [4, p. 256] is incorrect. If G
is of type 24, , then we get a one-root shape only when K’ = {a;, a,},
the outermost pair of nodes exchanged by 7. Here there is only one
shape on level 2, namely a; + a,. This proves our second claim.

We now claim that there is only one t-orbit of shapes on level 1.
As in the preceding paragraph, this is clear when G is untwisted or
when |K'| = 1. The only other cases we have to consider are 3D,
with K = {a;} and 24, with K’ = {a;, a,}. In both cases we see
that there is a unique 7-orbit of shapes on level 1. This proves our
claim. It follows that AM(1) is a single P-chief factor.

Since U(l) = U(2) and [U(1), U(2)] = U(3), there is a well-
defined commutator form from M(1) x M(1) to M(2). Since Ly
centralizes M (2), this form is Ly-invariant. Since M (1) isa P-chief
factor, Z(U(1)/U(3)) = U(2)/U(3) = M(2). Hence the commutator
form is nondegenerate.

It remains to show that the commutator form is GF(g)-bilinear. If
G is untwisted, the GF(g)-structure on each M (i) is determined by
sxp(t) = xg(st), where s and ¢ are scalars in GF(q) and xp(f) is
a root element for f € T+ — X ; see [2, p. 554]. For G twisted, we
have s(xp()xg:(27)) = xp(st)xg:(st?) when |t| = 2 and s € GF(qg),
t € GF(q?), etc. The Chevalley commutator formula now implies that
the commutator form is GF(q)-bilinear. This completes the proof of
Lemma 3.3.

The key to our next result is the Glauberman character correspon-
dence [15, 13.1], which says that when a solvable group S acts co-
primely on a group G, there is a one-to-one correspondence between
the set of S-invariant irreducible characters of G and the irreducible
characters of Cg(S).

PrOPOSITION 3.4. Let 1 # 0 € Irr(U;y) be Ly-invariant. Then
U(3) < Ker 0 and Uj;/Ker 0 is extraspecial. Also Lo centralizes
M(2).
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Proof. Since H, fixes 6, [15, 13.24] implies that H; fixes a non-
identity conjugacy class of U;. By [15, 13.10], Hj fixes a nonidentity
element ¥ € U;. Writing u as a unique product of elements from
root groups, we see that Hy centralizes a nonidentity element v of
some root group in Uy .

We claim that Cy (Hp) is a root group of order g3 when G is of
type 3Dy, and is a root group of order ¢ in all other cases, and also
Cy,(Ho) = Cy,(Lo) .

First suppose G is untwisted. Then v = x,(#), for some y €
X+ — Xk and t € GF(q)*. For g € Il; and s € GF(q)*, there is
an element hg(s) € Hy which conjugates v into xy(sAﬂrt); see [7,
p. 194]. Here Ag, is the Cartan integer associated with 8 and y ([7,
p. 38)).

Since H, centralizes v, it follows that s%» = 1 for all s € GF(q*).
Since |4g,| < 3, with equality only when X is G, this implies that
Ap, = 0 when g > 5. The same is true when g = 4, since we are
excluding the “special” group G,(4).

Hence y is orthogonal to X;. It follows that [Ug, U,] =1 for all
B €Z;,andso Ly centralizes U,. The maximality of J implies that
y must be the unique positive root orthogonal to X; . It follows that
Cy,(Ho) = Cu,(Lo) = U, , which has order ¢.

Now suppose that G is twisted. Viewing G' as a subgroup of an
untwisted Chevalley group G over GF(g!®!), write v as a product of
root elements of G as in [7, 13.6.3]. (Since we are only interested in
computing Cy, (Hp), it doesn’t matter that G' is simply connected,
while adjoint groups are considered in [7].) Then v = x,(¢)y, where
y € X —Zk, t #0, and y is a product of elements in other root
subgroups of G which belong to the t-equivalence class of y. Since
H, norngizes each root subgroup of G, we see that H, centralizes
Xx,(¢) in G. By [7, p. 239-41], the generators of H, have the form
hg(s) (s € GF(q)*), or hg(s)hg(s?) (s € GF(¢g?)*), or the analog for
s € GF(g3)*, where in all cases f € Ilg . It follows that, respectively,
s =1 for all s € GF(q)*, s%*% =1 for all s € GF(g?)*, or
the analogous equation holds for all s € GF(g3)*. This implies that
y is orthogonal to Ilgx, and hence to Xx when g > 4.

It follows as above that every root subgroup Uy of G, for B €k,

centralizes U, and the root groups of G in the t-equivalence class of
U, . Hence L, centralizes the root subgroup of G which corresponds
to the t-equivalence class of y. The preceding argument shows that
any root group in U; centralized by H, is also centralized by L.
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We claim that, as in the untwisted case, there is only one root group
in Uy centralized by Hy. When |K'| = 1, this is clear because y, in
the preceding paragraph, must be the unique positive root orthogonal
to the maximal parabolic subsystem X . Since y is then t-invariant,
|Cu,(Ho)| = g when |K'|=1.

Now suppose |K’| > 1. Since Lj centralizes a root group in Uy, Ly
centralizes the image in some M (i) of this root group. This root group
image is then invariant under L = LoH . Hence Lj centralizes some
P-chief factor in Uy, so Ly centralizes Wy for some shape S. By
Lemma 3.1, there is only one root in X+ — Xx of shape S. Thus
S satisfies the hypotheses of Lemma 3.3. The proof of Lemma 3.3
shows that, since |K’| > 1, G must be of type 24, or 3D, with
K' ={a;, ay} or {a;, a3, as} respectively. In both cases, L acts
trivially on M(2), which is isomorphic to a root subgroup of G,
namely U, 4..4a OF (U ta,+0,Ua +a,40,Ua,+a,+a,)o - Moreover, Lo
has no other trivial composition factors in U;. Since any root sub-
group centralized by Hj is also centralized by L, as remarked above,
it follows that Cy (Hp) is a single root subgroup of G . This root sub-
group has order ¢ when G is of type 24, and order g3 when G is
of type 3D,.

Thus we have proved the claim in the second paragraph of this
proof.

Having just observed that Cy (Hp) maps isomorphically onto M (2)
when G is twisted and |K'| > 1, we claim the same is true when G is
untwisted or when |K’'| = 1. Under these hypotheses, shape and level
are the same thing, and each shape is t-invariant. It follows that each
M(i) is an irreducible GF(q)[Lo]-module. If L, centralizes a vector
in M(i), then Ly centralizes M (i) and, by Lemmas 3.1 and 3.3, we
have i = 2 and the unique shape on level 2 contains only one root.
Hence if L, centralizes a root subgroup (U,), in Uy, then y is the
unique root in Xt — Zx on level 2. Hence Cu,(Ho) = (U,)s maps
isomorphically onto M (2).

Thus in all cases Cy (Hp) = Cy,(Lo) maps isomorphically onto
M (2). In particular, Ly centralizes M(2).

Let 1 # A be a linear character of M(2). View A as an irreducible
character of U(2).

Suppose first that G is not of type 3D,. Then the nondegeneracy
and the GF(g)-bilinearity of the commutator form from M (1)x M (1)
to M(2) and the fact that |M(2)| = g implies that [v, M(1)] = M(2)
for any nonzero vector v € M(1). It follows that Z(U;/Ker 1) =
U(2)/KerA. Hence U;/Ker A is extraspecial. There is a unique
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character 6, € Irr(U;/ Ker A) which lies over 4. Since L, centralizes
M(2), 6, is an Ly-invariant character of U;. Together with the prin-
cipal character of Uj, this yields |M(2)| = g distinct Ly-invariant
irreducible characters of U;. Since |M(2)| = |Cy, (Ho)| and since
Cu,(Ho) is abelian, Glauberman’s correspondence [15, 13.1] implies
that there are no other Hy-invariant irreducible characters of U;, and
therefore no other Ly-invariant irreducible characters of U;. Since
Ker 6, = Ker 4, U,/ Ker 6§, is extraspecial, as desired.

Next suppose G has type 3D4. Let Z = Z(U;/Ker A). Since
Ly fixes A, Z and Z = Z/(U(2)/Ker A) are Ly-invariant. If 7 €
Z < M(1), and ¢ € GF(q)*, then [cZ, M(1)] = [Z,cM(1)] =
[Z, M(1)] < Ker 4, and so ¢z € Z. It follows that Z is a proper
GF(q)[Lo]-submodule of M(1).

Since Cy,(Ho) < U(2), Hp has no fixed points on M(1). Hence
Cz(Hy)=U(2)/KerA,andso Z =[Hy, Z] x (U(2)/Ker 4).

Let 0 € Irr(Us|A) be Hp-invariant. View 6 as a character in
Irr(Uy/Ker A). Let A x u € Irr(Z) = Irr((U(2)/ Ker A) x [Hy, Z])
be the unique and linear irreducible consituent of 6z . Since A x u is
Hy-invariant and Hj has no fixed points on [Hy, Z], we have u = 1.

Let £ = (Uy/Ker A)/[Hy, Z]. We claim that E is extraspecial.
Let W = Z/[Hy, Z] = U(2)/Ker A. Since E/W is elementary
abelian and |W| = p it suffices to show that Z(E) = W. Let
y € Uy/Ker A and suppose that y[Hy, Z] belongs to Z(E). Then
v, Us/Ker 4] < [Hp, Z]. Since (U;/Ker 1) = U(2)/Ker 4, this
implies that y € Z, and so y[Hy, Z] € W, as desired. Thus E is
extraspecial.

Let 6; be the unique character in Irr(E|A). Since [Hp, Z] <
Ker 6, we have § = 6, . In other words, 6, is the unique Hj-invariant
character in Irr(U;|A). For each linear character 4 of M(2), there
is exactly one Hy-invariant character in Irr(U;|A). As above,
the Glauberman correspondence shows that there are no other Hp-
invariant irreducible characters of U;. For 4 # 1, U;/Ker 0, is
extraspecial, as desired.

THEOREM 3.5. Let (G, x, Ly) be an admissible triple with rank
(G) > 2. Let 1 # 6 € Irr(Uy) be Ly-invariant. Let y € Irr(Py|0).
Then |x(x)/x(1)| < 1/q.

Proof. Let I be the inertia group of 6 in P;. Since P; = LoU; <
I, I isnormal in P;. Hence if x ¢ I, then x(x) = 0. Therefore
we assume that x € 1.
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Let x = wP with y € Irr(Z|0). Since x(x) = Y w(x?), where
t ranges over a transversal to / in Pj, it suffices to show that
lw(x!)/w(1)] < 1/q for each t. Fix ¢ and set y = x'. Note that
vel.

By Proposition 3.4, 6|y () has a unique and linear irreducible con-
stituent A. Since y € I, y fixes 4. The proof of Proposition 3.4
shows that AM(2), which has order g or ¢3, is a single P-chief fac-
tor Ws. Hence M(2) is an irreducible GF(g)[L,]-module. Since L
centralizes M(2) and Lj/Lg is abelian, Cys2)(y) is a GF(g)[L,]-
submodule of M (2). Since y fixes a linear character of M(2), y
fixes a nonzero vector in M (2). Irreduciblity then forces Cys(2)(¥) =
M(2).

Let E = U;/Ker 6. By Proposition 3.4 and its proof, E is ex-
traspecial and

E/Z(E) = (Uy/Ker 6)/(U(2) Ker 6/ Ker 6)
> U;/U(2)Ker 6.

By the proof of Proposition 3.4, U(2)Ker 8§ = U(2) when G is not
of type 3D,. Whether G has type 3D, or not, U(2)/Ker 6/U(2)
is the image in M(1) of Z(U;/Ker A), and is a proper (possibly
zero) GF(q)[(Lo, y)]-submodule of M(1). Hence E/Z(E) can be
identified with a GF(q)[(L¢, y)]-complement M to U(2)Ker 8/U(2)
in M(1).

By Lemmas 3.1 and 3.3, Ly centralizes no P-chief factor W <
M(1). Since Wjs is an irreducible GF(g)[L]-module, Clifford’s The-
orem implies that no GF(q)[Ly]-submodule of W is centralized by
Ly. Hence M(1) contains no trivial GF(q)[Lg]-submodule. In par-
ticular, Ly does not centralize M . Since y centralizes no component
of Ly, it follows that y doesn’t centralize M .

Since y centralizes M(2), y preserves the commutator form from
M(1) x M(1) to M(2), and so y preserves the restriction of this
form to M x M. Since E is extraspecial, this restricted form is
nondegenerate.

Now M is the orthogonal direct sum of [AM, y] and Cy(y). Since
M is nondegenerate, so is [M, y]. Hence [M, y] admits a nonde-
generate GF(g)-bilinear alternating form. Thus |[M, y]| > ¢? and so
E/Z(E), y] 2 4.

To show that |y (y)/w(1)| < 1/q, it suffices to show that |v(y)/v(1)|
< 1/q, where v is an arbitrary irreducible constituent of |y, .
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Since Yu, is a multiple of 6, we may view v as a character in
Irr((y)E|6) .

Let Z(E) < DL E,with D/Z(E)=[E/Z(E), y]. Then D is ex-
traspecial, since £/Z(E) is the orthogonal direct sum of [E/Z(FE), y]
and Cgzg)(y).

Let w be an arbitrary irreducible constituent of v|yyp. After
multiplying @ by a linear character of (y)D/D, we may assume
that Cy,)(D) < Ker w. Then [14, V, 17.13] yields that w(1) =
[E/Z(E), y]|'/? and |w(y)| = 1. Applying this to each irreducible
constituent of v|,p, we obtain |v(y)/v(1)| < |[E/Z(E), y]|"/2. As
shown above, the last quantity is at most 1/g. This completes the
proof.

4. Main theorem. Let G be a simple admissible group, P; a stan-
dard maximal parabolic of G, and x € Irr(G). There exists an abso-
lute constant N such that xp has at most N —1 linear constituents,
counting multiplicities. By Theorems 2.10 and 2.17, we may take
N =1+13-576. We now state our main theorem, which will be
proved at the end of this section.

MaAIN THEOREM. Let (G, x) be a simple admissible pair, with q >
3N, for N as above. Let x be a nonlinear irreducible character of G .
Then |x(x)| < (3N/q)x(1) = N.

LemMA 4.1. Let (G, x) be a simple admissible pair with rank (G) =
1. Then |x(x)/x(1)| £2/(q — 1), for any nonlinear x € Irr(G).

Proof. We have G' = SL(2, q) or SU(3, q). By Lemma 1.10,
or an entirely similar argument when G’ = SU(3, g), we see that it
suffices to establish the inequality in the statement of this lemma for
all noncentral semisimple elements of SL(2, q), GL(2, ¢g), SU(3, q),
and U(3, q).

For SL(2, q), GL(2, gq), and U(3, g), we can do this by checking
character tables ([11], [18], [12]). It remains to consider SU(3, q),
whose character table seems not to be available in the literature.

Ifx € G = SU(3, gq) is contained in no proper parabolic of G,
then Cg(x) is a torus of G, so |x(x)| < |Cg(x)|}/?2 < g+ 1. By [16,
p. 419], x(1) > g% —q. It follows that |x(x)/x(1)| < 2/(g-1).

We may then assume that x € B = HU, the standard Borel sub-
group. Furthermore, we may assume x € H. Let A be a linear
constituent of yp. Since G is doubly transitive on the cosets of B,
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(A%, 2%) < (1§, 1) = 2, and so (xp,4) = 1. By Harish-Chandra’s
theorem [10, 70.15(A)], all the linear constituents of yp are conjugate
under the Weyl group of G, which has order 2. Hence xp has at most
two linear constituents, counting multiplicities.

Let 6 be a nonlinear constituent of yz and let w be an irreducible
constituent of 6y . If U' = Z(U) < Ker w, then, since H/Z(G) is
fixed point free on U/U’, we have x ¢ Ig(w)<B,andso O(x)=0.

If Z(U) £ Ker w, then Ker w < Z(U) and U/Ker w is extraspe-
cial. Since Ig(w)<B, we may assume that x € Iz(w), since otherwise
6(x) = 0. Then 6|y x) isa sum of extensions of w. Let { be one
such extension. After multiplying { by a linear character, we may
assume that C,,(U) < Ker {. Now (U, x)/Ker { satisfies the hy-
potheses of [14, V, 17.13]. We conclude that {(1) =¢ and |{(x)]=1.
It follows that |0(x)/8(1)| < 1/q.

Hence |x(x)| <2+ (x(1) - 2)/q, assuming that x lies in a proper
parabolic of G. Since x(1) > g2 — ¢, we have |x(x)| < 2x(1)/q,
which completes the proof.

LemMmA 4.2. Let (G, x, Ly) be an admissible triple with rank (G) >
2 and q >3N. Let x be a nonlinear irreducible character of (x, L';)
and assume that the Main Theorem holds for groups of smaller rank
than G. Then |x(x)| < (3N/q)x(1) - N.

Proof. Let K be a component of L;. Lemma 1.6 implies that
(x, K) is a simple admissible group. In particular, if L; has only
one component, then ({x, L)), x) is a simple admissible pair, and
the inductive hypothesis yields the desired bound for |x(x)|.

We now assume that L, = K K;, the case of three components
being entirely similar.

If x € L', write X = x;x;, with x; € K; and x; € K;. By
the definition of admissible triple, x; ¢ Z(K;) for i =1, 2, and so
each x; has prime order modulo Z(K;). Then (X;, x;) is a simple
admissible pair for i = 1,2. We may write x(x) = x1(x1)x2(x2)
with y; € Irr(K;), for i = 1,2. We assume both y; and yx, are
nonlinear, the other case being easier. The inductive hypothesis yields
|xi(x:)] < (3N/q)xi(1)N for i=1, 2. Hence

X (xX)] < (BN/a)x1(1) = N)((3N/q)x2(1) — N).
If a and b are real numbers, both greater than N, one checks that
(a— N)(b—N)<ab- N. Hence |x(x)| < (3N/q)*x(1) — N. Since
g > 3N, the desired bound follows.
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We now assume that x ¢ L',. Let y be the automorphism of
K K, induced by x and let y; be the restriction of y to Aut(K;)
for i =1, 2. Since x centralizes no component of L;, the orders of
¥,y and y, are the same prime number r. We form the semidirect
products L = (»)K1K;, Ly = (y1)K;, and L; = (y2)K;.

Our inductive hypothesis implies that |a(x)| < (3N/g)a(1l)— N for
any nonlinear irreducible character a of (K;, x), since ((K;, x), x)
is a simple admissible pair. Let W; = (w;) be a cyclic group of
order |x| and form the central product (K;, x) * W, where w] =
x" € Z({(K;, x)). Then xwi‘1 has order r and (K;,x) * W; =
(Kiv xw YW, If a € Irr((K;, x)), then a(x) = o*(xw; HA(w;),
where o* € Irr((K;, xw; 1Y) has the same degree as o and 4 is
a linear character of W. Similarly if g € Irr((K;, xw;!)), then
B(xw:h) = p*(x)u(w;'), where B* € Irr((K;, x)) has the same de-
gree as S and u is a linear character of W;. There is an obvious
isomorphism from L; to (xw;!, K;) which takes y; to xw;'. It
follows that |y(y;)| < (3N/q)y(1) — N for every nonlinear irreducible
character y of L;.

Let Z = (z) be a cyclic group of order |x|. Form the central
product ((x)KK3,) * Z, where z" = x". Then ((x)K|Kj)*Z =
((xz~ K 1K,)* Z = L+ Z . The argument of the preceding paragraph
shows that if |{(y)| < (3N/q){(1)— N for every nonlinear irreducible
character { of L, then the conclusion of the lemma holds.

We are therefore reduced to working with the split extensions L, L,
and L,.

Let n: K; x K — KK, be the natural map. Then y acts on
K| x K, , stabilizing (in fact centralizing) Ker . Let

n: (W)(Ky x Ky) — Ly x L

be the map sending y*(x;, x3) to (V¥x1, ykx,), for k€ Z, x; € K;,
i =1,2. Then 7 is an injective homomorphism. Since Z(K;) <
Z(K;) for an appropriate semisimple algebraic group K; (see [8,
3.6.8]), it follows that x, which belongs to a reductive overgroup
of K;, centralizes Z(K;). This implies that #(Ker z) is normal
(in fact central) in L; x L,, and so n induces an embedding of
L= (y)(K; xK;)/Ker m into (L; x Ly)/n(Ker x).

Let { € Irr(L) be nonlinear. Let x;x, be an irreducible constituent
of {|kk, with y; € Irr(K;), i =1,2. If x1x2 is not (y)-invariant,
then ¢ = (x1x2)F and ¢(y) = 0. We may therefore assume that x>
is (y)-invariant. It follows that {|x x, = x1x2 and x; is (y;)-invariant
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for i = 1,2. Since L;/K; is cyclic, y; extends to {; € Irr(L;)
for i = 1,2, and so x; X x € Irr(K; x K;) extends to {; x {; €
Irr(Ly x Lp). Hence yxix» € Irr(K 1 K>,) = Irr((K; x K3)/n(Ker n))
extends to {;{; € Irr((L; x Ly)/n(Ker n)).

Viewing L as a subgroup of (L;xL;)/n(Ker m), we see that x;x; €
Irr(KK3) is extendible to ({;{>);, € Irr(L). Hence { = A({18o)L
where A is a linear character of L/K;K,. Hence ()| = |{i{(n(»))|
= |{1(»1)]1¢2(v2)|. As proved above, our inductive hypothesis implies
that |{;(y;)| £ BN/q){i(1)— N if {; is nonlinear. The desired bound
for |{(y)| now follows as in the third paragraph of this proof. As
remarked above, this completes the proof.

LemMA 4.3. Let (G, x) be an admissible pair. Suppose x central-
izes no component of G. Let 6 € Irr(G) with 1+ 6 a (not neces-
sarily faithful) doubly transitive permutation character of G. Assume
g > 11. Then |0(x)| < (3N/q)6(1) — 2N.

Proof. By [5, p. 8], S < G/Ker 6 < Aut(S) for a simple group S.
Either S has Lierank 1 or S is some PSL(n, g). Since x centralizes
no component of G, x ¢ Ker 6. Set G= G/Ker 6.

In the rank 1 case, since ¢ > 11, 6 is the Steinberg character of
G . Hence |6(x)| < 6(1)/q < (3N/q)0(1) — 2N, since 6(1) > gq.

We now assume S = PSL(n, g) with n > 3. Then G is PSL(n, q)
or (y)PSL(n, q), where y is a p’-element of prime order. Since y
induces an inner times diagonal automorphism of PSL(n, q), G is
isomorphic to a subgroup of PGL(%, q). By [5, p. 8] G has two
doubly transitive permutation representations, which are conjugate
under the inverse transpose automorphism of PGL(#n, g). Hence we
may assume that 1+ 6 is the permutation character for the action of
G on the points of PG(n—1, q). Let d, ..., d, be the dimensions
of the eigenspaces, if any, of a preimage of X in GL(n, q). Then
1+6(x)=0o0r 1+6(x)=((g% -1+ -+ (@4 -1)/(g-1) <
(@ '=-1)+(g-1))/(g-1). If 8(x)# —1, then 0 < 6(x)/6(1) <
(1+0(x))/(1+6(1)) <(g" ' +qg-2)/(¢" —1) <2/q. In all cases
16(x)| <26(1)/q < (3N/q)6(1) — 2N .

LemMA 4.4. Let (G, x, Ly) be an admissible triple with rank (G) >
2. Let y € Irr(Py) and suppose that the irreducible constituents of
Xu, are not L'y-invariant. Assume that q > 3N and that the Main
Theorem holds for groups of smaller rank than G. Then |x(x)| <
(3N/q)x(1)—2N + 1.
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Proof. By Clifford’s Theorem, x is induced from an inertia group
MU, , where M < L;. By hypothesis, L, £ M. Mackey’s Theorem
yields XL, = p” , for some character p of M . If x is not conjugate in
Lj; to an element of M, then x(x) = 0. Hence we may assume x €
M. Let Go=L)M. Then x(x) = xr,(x) = (p%)Ls(x) = 3 p%(xh),
where h ranges over a transversal to Gy in L;.

It suffices to show that |p%(x")| < (3N/q)p%(1) — 2N + 1 for
each 2. A computation using the formula for induced characters

shows that [p%(xh)/pG(1)| < 159(x")/1%(1). Thus if 159(x*) <
(3N/g)15(1) = 2N + 1, then

1p%(x")/p%(1)] < (3N/q) + (1 — 2N)/152(1)
< (3N/g) + (1= 2N)/p%(1),

and so |p%(x")| < (3N/q)p%(1) — 2N + 1, the desired inequality.
Hence we need only show that lf}(xh) < (3N/q)lf4°(l) — 2N +1.
Since L, £ M, we have M < Gy.

Clearly 1 has multiplicity 1 in lf}. If A is a linear constituent
of lf}, then Ay = 1pr. Also L', = G < Ker A. Hence ML, = Gy <
Ker 4, and so 4 =1¢,. Thus lf; — 1g, has no linear constituents.

Let G, = (x", L’). Then (G, x") is an admissible pair by Lemma
1.6, and x” centralizes no component of G,. We have G; < Gy and
MG, = Go. If a # 1¢, is an irreducible constituent of lf; , then a is
nonlinear by the preceding paragraph. Then L’ £ Ker «, and so no
irreducible constituent of ag has L' in its kernel. Since G} = L},
all irreducible constituents of ag, are nonlinear. By Mackey’s the-
orem, 11(1;/1'06, = (lf;)gl. Hence 11?41061 -1 = (lf,}’ - 1g,)g, 1s a
sum of nonlinear irreducible constituents. Lemma 4.2 implies that
|B(x")| < (3N/q)B(1) = N for every nonprincipal irreducible con-

stituent 8 of lfl‘nG If l]?llnG —1g, is not irreducible, then lf}(xh) =
Lying, (") < 1+ (3N/@) 150 (1) = 2N = (3N/q)132(1) = 2N + 1, as
desired.

Thus we may assume that G is doubly transitive on the cosets of

MNGy. Let 1jj,; = 1+6, with 6 € Irr(Gy) . Then Lemma 4.3,
applied to the admissible pair (G, , x"), yields 15¢(x") = 1,?;06' (xh) <
1+|0(x")| < 1+(3N/q)6(1)~2N < (3N/q)153(1)~2N+1, as desired.
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Proof of Main Theorem. We proceed by induction on the rank of
G. If G has rank 1, then Lemma 4.1 yields |x(x)| < 2x(1)/(g - 1).
Hence |x(x)| < 3x(1)/q. Thus it suffices to show that 3x(1)/q <
(3N/q)x(1) — N. This is equivalent to x(1) > gN/(3N — 3), which
holds since x(1) >(¢—1)/2 and g > 3N > 15.

Hence we assume that rank (G) > 1. If x lies in no proper
parabolic of G, then Theorem 1.11 says that |x(x)| < 6x(1)/q, so
we need to show that 6x(1)/g < (3N/q)x(1) — N. This simplifies
to x(1) > gN/(3N — 6), which holds since x(1) > (¢> —1)/2 by
[16, p. 419]. We therefore assume that x lies in a proper parabolic
of G. Let (G, x, L;) be an admissible triple, where x may be re-
placed by a G-conjugate. Write xp = X1 + X2 + X3 + X4, as in the
introduction to this paper. By Theorems 2.10 and 2.17, Lemma 4.2,
Theorem 3.5, Lemma 4.4 and our inductive hypothesis, |x(x)| <
N—1, [x2(x) < BN/q)x2(1) = N, |x3(x)| < x3(1)/¢, and |xa(x)| <
(3N/q)xa(1) =2N + 1.

Let 6 be an irreducible constituent of (x3)y, . Then U;/Ker 6 is
extraspecial by Proposition 3.4 and its commutator factor group has
order at least g2 by the proof of Theorem 3.5. Hence 6(1) > ¢, and
so x3(1) > ¢g. It follows that x3(1)/q < (3N/g)x3(1) — N, and so
[x3(x)| < BN/q)x3(1) — N.

If x4 # 0, the triangle inequality shows that |x(x)| < (3N/g)x(1)—
N . We may therefore assume y4 = 0. Then x3 # 0, since otherwise
U; < Ker x, which is impossible. If both y, and y3; are nonzero,
the triangle inequality and the conclusion of the preceding paragraph
yield the desired bound for |yx(x)|, so we assume that y, = 4 =0.

Then |x(x)] < N —1+ (x3(1)/q). It suffices to show that N —
1+ (x3(1)/q) < (3N/q)x3(1) — N. This is equivalent to x3(1) >
((2N -1)/(3N - 1))g, which holds because x3(1)>gq.

COROLLARY 4.5. Let G be a connected reductive algebraic group
over GF(p) whose commutator subgroup is simple, simply connected,
and not special. Let q and N be as in the Main Theorem. Let x be an
admissible element of G, . Let G be a group satisfying (G, , x) < G <

Gy . Let y € Irr(G) be nonlinear. Then |x(x)| < (3N/q)x(1) = N.

Proof. Apply the Main Theorem to the constituents of the restriction
of y to (G,, x).
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