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CROSSED PRODUCTS AND GENERALIZED INNER
ACTIONS OF HOPF ALGEBRAS

WILLIAM CHIN

This paper examines crossed products R*H where the Hopf alge-
bra H acts weakly on the algebra R and is twisted by a Hopf cocycle
/ . Invertible cocycles are discussed and a related sort of weak action
which we call "fully invertible" is introduced. This condition allows
us to undo the action of H in a useful way and allows reasonable
behavior of ideals in crossed products. Many crossed products of in-
terest are of this type, including crossed products of cocommutative
Hopf algebras with invertible cocycles, crossed products of irreducible
Hopf algebras, and all smash products with bijective antipode. We
construct the quotient ring Q of an //-prime ring and discuss ac-
tions which become inner when extended to Q. This is then applied
to describe prime ideals in crossed products over //-prime rings with
extended inner actions and it is shown that some of these crossed
products are semiprime.

Introduction. This paper involves crossed products R * H where
the Hopf algebra H acts on the algebra R and the image of H is
twisted by a Hopf cocycle t. The ideas here build on some of those
introduced in [BCM] and that paper serves as a foundation for what is
done here. Under some fairly general technical hypotheses we examine
the behavior of ideals and Martindale quotient rings in relation to the
weak action of H. Using the quotient ring and results from [Ch] and
[BCM] as main tools we focus on prime ideals in crossed products and
then show that certain crossed products with extended inner actions
are semiprime.

In the first section crossed products with invertible cocycles are dis-
cussed. We introduce a sort of weak action which we call "fully in-
vertible". This condition allows us to undo the action of H in useful
ways and allows for reasonable behavior of ideals in crossed products.
Many crossed products of interest are fully invertible, including all
crossed products with invertible cocycles and cocommutative Hopf al-
gebras H, and all smash products with bijective antipode. Starting
with Proposition 1.2, some basic facts concerning ideals in crossed
products with fully invertible actions are established.

We introduce //-prime and //-invariant ideals and prove Lemma
1.7, establishing a useful construction of //-invariant ideals when the
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cocycle is invertible. As an application we have Theorem 1.9 which
establishes a close link between //-primes and primes when H is finite
dimensional and irreducible as a coalgebra.

We apply this preliminary material in §2, moving next to the con-
struction of quotient rings of //-prime rings. The main result is The-
orem 2.3 which shows that crossed products with invertible cocycles
and fully invertible actions can be extended to quotient rings of //-
prime rings. Here we assume an invertible cocycle and fully invertible
action in order to construct and extend the action to the symmetric
quotient ring Q. This section ends with a brief discussion of {2-inner
actions, i.e., actions which are inner on Q.

In §3 we turn to the study of prime ideals in crossed products with
β-inner actions with //-prime coefficient rings. The section begins
with a sequence of results concerning prime ideals from [Ch] and ap-
propriate generalizations. The idea here is to lift to primes in Q * H
and then drop down to Cτ[H], a twisted product over the extended
center. Here we use the fact [BCM] that the action can be trivial-
ized in Q by altering the cocycle. As is the case for crossed products
of restricted enveloping algebras [Ch] we can get a description of the
primes having trivial intersection with the coefficient ring as the prime
spectrum of a finite dimensional twisted product (Corollary 3.5). In
fact we use this to show in Theorem 3.6 that this finite dimensional
algebra is (semi)prime if and only if R * H is. This is applied to ob-
tain the last result, Corollary 3.7, which states that /?*// is semiprime
provided R is //-prime, the action of H is Q-inner and H is finite
dimensional semisimple. It is not known whether the Q-inner hypoth-
esis is needed. It is also natural to ask if we can replace the //-prime
condition with "//-semiprime".

The reader is assumed to be familiar with the elementary theory
Hopf algebras and the sigma notation in [S2] and some of the basic
material from [BCM].

We gratefully acknowledge the suggestions of the referee which im-
proved this paper. We would also like to thank D. Fischman for
her comments. Finally, the author wishes to thank the University of
Washington for their hospitality where some of this work was carried
out.

1. Invertible actions and crossed products. We begin by mentioning
some notation and some facts we shall need about the crossed product
construction [BCM].
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R shall denote an algebra over the field k and H a Hopf algebra
over k with structure maps μ, Δ, u, ε, S denoting the multipli-
cation, comultiplication, unit, counit, and antipode, respectively. S
shall denote the composition inverse of S (when it exists). We shall
use the following abbreviated form of Sweedier's notation for comul-
tiplication:

A crossed product R*H is an associative algebra with underlying k-
space R®k H and identity 1*1. We shall assume throughout that an
"action" ("weak" in the sense of [BCM]) of H on R yields a crossed
product R * H with implicit (left) action Φ e Hom^(/ί, Endi?) and
cocycle t e Homk(H®H, R). Let A, /, m e H and a, b e R. We
shall sometimes write Φh(a) = h.a for the action. A subset A c R
is said to be //-invariant or Φ-invariant if Φ/*(tf) E A for all a e A.
The multiplication in R * H is defined by

(a * h)φ * /) = Σa^ > b^h2 > h) *
It turns out [BCM, p. 691] that R* H is a crossed product with

identity 1 * 1 if and only if the map t is normal: t(h9 1) = ί ( l , A) =

β(A)l, satisfies the cocycle conditions:

, /2/W2) = Σ > ( Λ i , /i)ί(Λ2/2, "0

and satisfies the twisted module condition:

/i)(Λ2/2 a).

Invertibility. Let i? be any algebra. Consider the vector space
Homk(H, R). As usual we have the convolution multiplication / g =
Σf{h\)g(h2). As in [DT] there is also an anti-convolution product
f x g defined by

Both x and have the same identity ue. We say that feHomk(H,R)
is anti-ίnvertible if it has an inverse with respect to x .

It will be useful to notice the fact that / is anti-invertible if and
only if it is invertible in the convolution algebra Hom(Z), R) where
D is the "opposite coalgebra" of the underlying coalgebra of H (with
the order of the tensor factors in the comultiplication reversed). Also
it is evident that these products are identical if H is cocommutative.

We shall generally denote the convolution inverse of a map / by
f~ι and the anti-inverse of / by f~ (if they exist). In this
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paper "(anti)-invertibility" will always be used in this sense of
(anti-)convolution.

The following useful result is based on an argument of Sweedler
[SI]. It guarantees that our cocycles / are often invertible.

PROPOSITION 1.1. Let t eHomk(D, R) where D is a pointed coal-
gebra which is the sum of its irreducible components, and R is a k~
algebra. If t(x) is invertible as an element of R for each group-like
element x e D, then t is convolution invertible. In particular if H is
irreducible as a coalgebra then every cocycle t is invertible.

REMARK. Inner cocycles [BCM, Example 4.11], and the twistings
arising in the splitting theorems [BCM, DT] are both invertible.

Proof. Let G = G(D) denote the set of group-like elements of D
and let kG = DQ < D2 < Di < - be the coradical filtration of D so
that D = U Dn . Write H = ΣxeG Dx, the direct sum decomposition
of H into irreducible components. Note that Dn = ΣxeG ^nx

We define an inverse for t by induction on n : For λ e k, x e G
let t~ι(λx) = λt(x)~ι. Assume that t~ι has been defined on Z); for
all i < n. Let h e Dnx nkerε = D+x so that we have

Δ(Λ) = h®x + x®h + Y, for some Y eDn-\ ®Dn-\.

Let μ be the multiplication map of R and define

Γ\h) = [ε{h)\R - t(x)-ιt(h) - μ((Γι ® t)(Y))]t(x)-1.

Since Dnx = D+x + kx for all x and n, the map t~ι is now defined
on all of D.

We now verify that the convolution t~1 is the inverse of t:

μ(Γι ® t)(x ®h + h®x + Y)

μ{[e(h)\R - t(x)-ιt(h) - μ((Γι ® t)(Y))]t(x)'1 ® t(x)

+ t(x)-1 ® t(h)}

+ μ(Γι®t)(Y)

ε(h)lR-t(xΓιt(h)-μ((Γι®t)(Y))

Similarly t has a right inverse (necessarily equal to the left inverse).
Thus t is invertible.
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If H is irreducible then H ® H is irreducible with unique group
element 1 ® 1. The second statement now holds since ί ( l , 1) =
lR. D

DEFINITION. Recall that the action Φ e Hom(/f, Endi?) is de-
noted by Φ^r = h.r. We say that H has an anti-invertible action on
R if the left action Φ e Hom(H, Endi?) has an anti-inverse Ψ . In
other words for heH,

and

We further say that the action of H is yw//>> invertible if i/-invariant
ideals of i? are also invariant under (the image of) Ψ . We say
that Ψ anti-measures R if for α, Z? e i? and h e H, Ψh(ab) =

We do not know of any anti-invertible actions that are not fully
invertible.

PROPOSITION 1.2. Let R*H be a crossed product with anti-invertible
action Φ. Then the anti-inverse Ψ anti-measures R.

Proof. Let a, b eR and /* € H. Then

D

When this work was originally done, we assumed that H was co-
commutative and t invertible or that t was trivial and S bijective. As
the referee has pointed out, computations can be simplified and gener-
alized by using the following technical set-up: Let γ € Hom(H, R*H)
be defined by γ(h) = 1 *Λ. We shall use the recent result [BM, Propo-
sition 1.8] which says that γ is invertible if and only if t is invertible.

The next result gives conditions involving γ which guarantee that
the action is fully invertible. Here the action and its anti-inverse can
be nicely expressed in terms of γ.

LEMMA 1.3. Let R*H be a crossed product. Suppose that the map y
is both invertible and anti-invertible. Then the action is fully invertible,
with

(i) Φhr = Σv(hi)ry-ι(h2),
(ii) x¥hr = E7^(h2)ry(hl)Jorall heH and reR.
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Proof. The first equality is straightforward:

= Σ((hx.r) * l)y(A2)rHA3) = A r * 1 = ΦΛr.

Let 0(r) = Σγ~{h2)rγ(h\). The second equality will follow once
we show that θ(r)eR for all r e R. To this end let T = R*H and
p:T ->T®H denote the usual comodule structure map

Let /: T -+ T®H and j : H-+T&H be the algebra maps defined
by i(ά) = a ® 1 and j(A) = 1 * 1 (8) A. Now according to [DT,
Proposition 5], the convolution inverse j ~ ι and anti-inverse j A exist
and satisfy

/?oy^ = ( / o ^ ) x j Λ .

Using this expression we now verify that θ has image in the "co-
invariant" subalgebra of T (i.e., {a e T\p(a) = α ® 1}) which, by
[BCM, p. 701, Lemma 5.10] is precisely R * 1 = R.

For reR and heH,

is an algebra map)

= 0(r) ® 1.

We conclude that θ is a A:-linear endomorphism of R. Now one may
directly verify that Ψ^ = θ defines the required anti-inverse for Φ.

Finally if A is an //-invariant ideal of i ί , then surely Ψh(a) €

R n (A * H) = 4̂ for a e ^ , Thus the action is fully invertible, as
claimed. D

There are weak actions (yielding to crossed products) that are fully
invertible without γ being invertible. For instance let H have a
bijective antipode and suppose that R is an //-module and t is a
non-invertible cocycle resulting in a crossed product R * H. Setting



CROSSED PRODUCTS 247

Ψh(r) = S(h).r we see that the action is fully invertible. But since t
is not invertible, neither is γ [BM].

Generally, groups acting as automorphisms yield crossed products
with non-invertible cocycles. [HLS] initiates a study of these crossed
products when R is a Galois extension and G is the Galois group.

Using the lemma we show next that many actions are fully invert-
ible.

PROPOSITION 1.4. An action of H on R is fully invertible in the
following cases:

(i) H is cocommutative and t is invertible,
(ii) t is trivial and H has a bijective antipode, or

(in) H is irreducible (as a coalgebra).

Proof. If (i) holds then y is invertible by [BM], Proposition 1.8.
By cocommutivity y is obviously anti-invertible as well. Thus the
previous lemma yields the result.

If (ii) holds we can let γ~ι(h) = 1 * Sh and γ~(h) = 1 * Sh.
In case H is irreducible, then γ is invertible in Hom(H, R * H)
by Proposition 1.1. The opposite coalgebra D of H is clearly also
irreducible with unique group-like element 1//. Also γ(l) = 1 * 1,
which is obviously a unit in R * H. Therefore γ is invertible as
an element of Hom(Z>, R * H) by Proposition 1.1. Thus y is anti-
invertible in Hom(/7, R*H). D

We identify R with its image R * 1 in R * H. The next result
says that invariant ideals extend naturally. The result is essentially
contained in [CF] in the case where t is trivial and H has a bijective
antipode.

LEMMA 1.5. Let R * H be a crossed product and let A be an H-
invariant ideal of R.

(a) Then (R * H)A cA*H and hence A*H is an ideal of R*H.
(b) In addition if the action is fully invertible, then A*H = (1 *H)A.

Proof, (a) follows directly from the formula for crossed product
multiplication.

Now assume that the action is fully invertible. Let b e a and
compute:
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(For the second equality the cocycle term is absorbed since t is
normal.) Thus since A is Ψ-invariant, the reverse inclusion holds. D

H-prime ideals. In preparation for what follows we introduce //-
primes and show how they many arise.

DEFINITION. R is said to be an H-prime ring if the product of any
two nonzero //-invariant ideals is again nonzero, //-prime ideals are
//-invariant ideals with an //-prime factor ring.

The following simple and well-known example shows that //-prime
does not imply semiprime. Let R = k[t\tp = 0] where A: is a field of
characteristic p > 0. Let L = kx be the one-dimensional restricted
Lie algebra with xp = 0 and let x act as d/dt. Then, with H = u(L),
R is //-simple and hence //-prime, but R is not semiprime.

The following shows a way in which //-prime ideals arise naturally.

LEMMA 1.6. Let R * H be a crossed product and let P be a prime
ideal of R*H. Then PnR is an H-prime ideal of R.

Proof. Suppose that A\ and A2 are //-invariant ideals of R such
that A\A2cPnR. Then

(Aι * H)(A2 *H) = Aχ(R* H)A2(R * H) c AXA2(R * H) C P,

where the next to last inclusion holds by Lemma 1.5(a). Now since P

is prime, Aι? * H c P for some / thus (At * H) Π R = A\ c P ΓΊ R. D

Let R * H be a crossed product. Further let P be an ideal of R
and define

Note that (P : H) c P since 1 e H.

LEMMA 1.7. (A: H) is an H-invariant ideal of R if A is an ideal
of R and t is an invertible cocycle. In this case (A : H) is the largest
invariant ideal contained in A.

Proof. {A : H) is an ideal of R contained in A since H measures
R and H contains an identity. We need to show that {A : H) is closed
under the action of H. To do so we let h, I e H and a e (A : H).
Then

eR(H(A:H))RcA,
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using the twisted module condition for the first equality. Thus I -ae
(A : H) as required. D

REMARK. If R is an //-module (t not necessarily trivial) then the
twisted module condition becomes irrelevant in the lemma above. It
is then evident that the conclusions of the lemma hold.

Let H be a finite dimensional irreducible Hopf algebra acting on
R. (For example H = u(L)). Let m denote the length of the coradical
filtration

k = Ho < Hx < - < Hm = H

of H. (If H = u(L), this is the filtration by total degree; see [S2].)
Note that by Proposition 1.1, for any crossed product R * H the co-
cycle t is actually invertible, so the preceding lemma applies in this
situation. This fact is tacit in the following lemma and theorem.

LEMMA 1.8. Let H be a finite dimensional irreducible Hopf algebra
having coradical filtration of length m, and let R* H be a crossed
product Let N be an ideal of R. Then

(i) if N is nilpotent and R is H-prime, then (N : H) = 0 and
Nm+\ = 0 ;

(ii) if (N : H) = 0, then N is nilpotent.

Proof. Suppose (N : H) = 0. We show by induction on j that
Hj.Nn c N if n > j . If j = 0, Hj = k so the result is clear. Assume
j > 0 and note that

C (Ho - N)(Hj Nn~ι) + (Hj N)(H0 Nn~ι)

where the second inclusion holds because H measures R. The last
inclusion holds because HQ = k by induction. Let m be as above.
We have shown that Hm iVm+1 = H iVm+1 c iV; thus iVm+1 c
(N:H) = 0.

Next suppose N is a nilpotent ideal. Then, being //-prime, i?
certainly has no //-invariant nilpotent ideals, so (N : H) = 0. Finally,
be the result of first paragraph, we also have that N is nilpotent of
degree at most m + 1. D

//-Spec R denotes the set of //-prime ideals of R.
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THEOREM 1.9. Let H be a finite dimensional irreducible Hopf alge-
bra and let R* H be a crossed product. Let Q be an H-prime ideal
of R and let P be a prime ideal Then there exists a prime ideal
N = N(Q) which is maximal with respect to (N : H) = Q.

(i) N is nilpotent mod Q.
(ii) The maps defined by P —• (P : H) and Q —• N(Q) are inclu-

sion preserving inverses, defining a bijection from Spec(i?) to
H-Spεc(R).

Proof. We just let N(Q) be the sum of the nilpotent ideals contain-
ing Q. By the lemma, this is a sum of ideals of bounded nilpotency
index and thus is nilpotent. The maximality property is immediate
from part (ii) of the lemma.

The maps are easily seen to be inclusion preserving.
Being nilpotent (mod(,P : //)) by part (i) of the lemma, the prime

ideal P is the unique largest nilpotent ideal containing (P : H), so
p = N((P : H)). The following argument shows that (P : H) is
//-prime. Suppose we have //-invariant ideals A and B with AB c
(P : / / ) . Then of course AB c P, and thus (say) A c P. Hence
A = (A:H)c(P:H).

Let us observe that Q(N(Q) : H). We may assume that Q = 0 so R
is //-prime. Since N = N(Q) is nilpotent we obtain Q = 0 = (N : H)
from part (i) of the lemma.

To see that iV is a prime ideal, notice that N is maximal subject
to the condition (N : H) = 0. A standard sort of argument now
applies. D

2. Crossed products and quotient rings. Next we establish a basic
identity which shall be used to extend the action to the quotient ring.

LEMMA 2.1. Let R * H be a crossed product with an anti-invertible
action. Then for a, b eR and h eH,

Proof. This equation follows immediately using measuring and the
fact that Ψ is the anti-inverse of Φ. ά

LEMMA 2.2. Let H act fully invertίbly on R. Then right annihila-
tors in R of H-invariant ideals are H-invariant ideals of R. If the
cocycle t is invertible then the same is true of left annihilators.
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Proof, Let us show that right annihilators of //-invariant ideals are
//-invariant. Let A be an //-invariant (and hence Ψ-invariant) ideal
of R and let B denote its right annihilator on R. With a e A and
b e B, we use (i) in the lemma above:

a(h .b)=Σh2' K^Φ] e h (Ab) (A is Ψ-invariant)

Thus B is //-invariant.
Now if t~ι (and hence γ~ι) exists, let A be the left annihilator of

the //-invariant ideal B. We now observe that

(A a)b=Σy(hι)aγ-ι(h2)b c {R * H)a(R * H)B

c(R*H)aB(R*H) = {0}9

using Lemma 1.5. D

Let H act fully invertibly on R (with t invertible) and let R be
an //-prime ring. Let & = &H(R) denote the set of nonzero H-
invariant ideals of R. As right (and left) annihilators of elements
of & are again //-invariant (Lemma 2.2), these annihilators are all
zero. Also SF is easily seen to be closed under finite intersections
and products using Lemma 1.5. Hence we may form the left (and
symmetric) Martindale quotient rings.

We denote the left and symmetric quotient rings by Qι and Q,
respectively. We shall assume that the reader is familiar with the basic
properties of these quotient rings. A detailed account of quotient rings
of prime rings may be found in [P].

Crossed products over quotient rings.

THEOREM 2.3. Let R be H-prime. A fully invertible action of H
on R extends uniquely to an action of H on Qι. Consequently R*H
extends uniquely to a crossed product Qι * H {with the same cocycle
t). If in addition the cocycle t is invertible then the same conclusions
hold with Q in place of Qι.

REMARKS. These facts, except for uniqueness, are contained in [C]
in the case that the cocycle t is trivial and H has a bijective antipode.

Proof. To prove that H extends to Qι, given Ae^, h e H and
f:RA-+R, define H.F: RA -> R by

a(h /) = Σ h2 [O*V)/1 (writing / on the right).
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One needs to show that h f is actually a left /^-module homo-
morphism and that / —• h / induces a well-defined weak action of
H on Qι which extends the weak action of H on R. Most of the
details are left to the reader. As a sample computation, the following
argument shows that H measures Qι. Let fie/, h e H, and
g: RB -+ R. We check that the composition / g : BA —> i? satisfies
Λ (/<?) = Σ(Λi * f){h2 g). To do this let ba e BA and observe that

(Φ and Ψ are anti-inverses)
bh* {[Ψ/,3(Λ2 ((ΨAlΛ)/))]ί} (measuring)

Σ b[h2 - ((Ψha)f)]h3 ί (definition of h.g)

(λ! /))(Λ2 ^) (definition of h.f)

Now one may check that H measures Qι follows by passing to equiv-
alence classes in the quotient ring.

Let us construct the twisted smash product Qι #t H with the same
cocycle t. To show that this product is associative and hence a crossed
product, we shall embed it in an associative quotient ring of R * H.

Let ^ ~ denote the set {A * H\A e ^}, which consists of nonzero
ideals of R * H by Lemma 1.5. Because A has zero right annihilator
in R and R*H is a free left i?-module, it follows immediately that A
has zero right annihilator in R*H. Hence A * H also has zero right
annihilator. Further, since ZF~ is closed under finite intersections
and products (by Lemma 1.5) we may form the left quotient ring
with respect to &", which we denote by Q~. Next we show that
Qι embeds in Q~ by extending f:RA-+R to f~\ A*H -* R as
follows. Let (1 * h){a * 1) e A * H = (1 * H)(A * 1) and define

This is an additive map and obviously extends / . To see that /~
is a left R * //-module homomorphism, observe that /, h e H and
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reR,

((r * /)(1 * h){a * l))/~ = Σ{{rt{hx, h) * l2h2)(a *

Thus /~ represents an element of β~ . It follows that the map / -*
/~ induces an embedding of Qι into Q~ . For instance to see that
this embedding is one-one, suppose that (A * H)f~ = 0. This then
yields 0 = (R * #),4/~ = (i? * H)Af and therefore Λ/ = 0. It is left
to the reader to check further that the subalgebra of β~ generated
by (the images of) Qj and R * H is isomorphic to β ' and i? * # is
isomorphic to Qι#tH. Since <2~ is an associative ring, so too is the
product Qι#tH. Thus Qι #t H = Qι * H is a crossed product.

Now assume that t is invertible. Let q e Q and h e H. It is
readily checked that the action of H on Qι defined above is given by
(A q) = Σy(h\)qγι(fi2), using Lemma 1.3.

We show next that the action on Qι restricts to an action on Q.
It suffices to show that (h q)A e R, for some A e^ (here we view
Q as a subring of the left quotient ring of R). Note that with q eQ,
we have the inclusion qA c i?, for some ^ G F . NOW for all a E A,

(h-q)a=Σγ(hι)qγι(h2)a

e(R* H)qA(R * H) (A is an invariant ideal)

C(R*H).

Thus (A <?)v4 c (JR * H) n Q = i?, as desired.
Finally we come to the uniqueness claims. Let q e Q be represented

by the map /:RA-+R and let ae A. By Lemma 2.1(ii),

Since this holds for all a e A, and the right-hand side depends
only on the values of / on A and the action on R, it follows from
standard quotient ring properties that any extension to an action of H
on Q (and Qι) is uniquely determined by the fully invertible action
on R. Q
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Inner actions. Let Q be any algebra containing R. A weak action
of H on R is said to be inner on Q or Q-inner if there exists an
invertible ueHom^H, Q) with

h ' r = Σ u~l(h\)ru(h2), for all r e i?, h e H.

In this paper we shall assume that u(ί) = 1. This is done without
loss because any inner action can be implemented by such a map u
[BCM, Lemma 1.13].

Examples of results described by the term "Noether-Skolem", where
actions are forced to be inner, are contained in [OQ, BM, SI].

The following lemma is proved when t is trivial in [C], and extends
[Ch, Proposition 8]. The proof is essentially the same.

LEMMA 2.4. Let R*H be a crossed product with invertible cocycle
and fully invertible action. Suppose R is an H-prime ring and let Q
be its symmetric quotient ring. If H is Q-inner, then Q is a centrally
closed prime ring. In particular the center of Q is afield.

Proof. Let M be the left quotient ring of the prime ring Q. We
adopt the notation in the definition of inner action above. Notice that
the natural extension to an action on M given by

h - s = ^ 2 u " ι { h ι ) s u ( h 2 ) , s e M

extends the weak action of H on R. This action is obviously M-
inner; thus H acts trivially on the extended center D of Q.

Let z eD. Then for some nonzero ideal / c Q, Iz c Q and thus
for some q e 0 , we have 0 Φ qz e Q. Thus we see that there is an
//-invariant ideal A c R with Aqz c R and Aq is nonzero. Since
H is trivial on D and D is central, we can set

B = {reR\rzeR},

and it follows that B is a nonzero //-invariant ideal of R with Bz c
R. Let c be the element of the center C of Q represented by the
R-R bimodule map B —> R defined to be multiplication by z. Fi-
nally, as c and z both centralize Q, we obtain BQ(c - z) = 0,
whence c = z eC. D

3. Minimal primes and semiprime crossed products. In this section
we develop prime ideal correspondences extending results in [C]. The
ideal maps are then applied to obtain conditions for crossed products
to be semiprime and prime.
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For any crossed product R * 77, let

Speco(7? * 77) = {P G Spec(7? * 77) |P n 5 = 0}.

THEOREM 3.1. Suppose that R*H is a crossed product with invertible
cocycle and fully invertible action. Let R be an H-prime ring with
symmetric quotient ring Q. Define the maps

P-^PU = {aeQ*H\AaB cP, someA,Be^},

P e Speco(7? * 77),

7 -^ 7D = 7 n (7? * 77), Ie Speco(β*77).

Then PUD = P and Pu e Speco(Q*77) thus Speco(7?*77) embeds
in Sρeco(<2 * H) via the inclusion-preserving map u .

Proof. Let P be as in the statement. We proceed in a series of
steps.

Pu is an ideal of Q*H: it is clear that it is an additive subgroup.
Let aePu and β eQ*H. By the definition of u , there are ideals
A, B e ^ with AaB c P. And by basic quotient ring properties,
there exists A' G & with both A1 β and βA' contained in R * H.
Now

Aaβ{A'B) C ̂ α(i? * # ) £ C AaB{R * //) C P.

Thus αj? E P 1 7 since ^ '5 G ^ . Thus Pu is a right ideal. A parallel
argument works on the left.

PUD = P: Let a e P. Then since RaR c P , w e have a e Pu

and obviously a e R* H. Thus a e PUD. For the other inclusion,
let δ e PUD and let A,B e^ with ^55 c P . Observe that

(A * H)δ(B *H) = (R* H)AδB(R *//)cP,

by Lemma 1.5. Since P is prime and the ideals (A * H) and (2? * H)
both have nonzero intersection with R, we conclude that δ eP.

JP^7 G Speco(ζ? * 77): Suppose that I\ and 72 are ideals of Q * 77
with IχI2cPu. Then

= (71n(7?*77))(72n(7?*77))

Since P is prime we have (say) ID = If* c P. Let α G 7 = 7i.
Note that since a has coefficients in Q, 4̂α c 7 n (7? * H) for some
^ G ̂ . Thus a e ID C P and by the definition of u, we obtain
aePu . Hence I c Pu . We have shown that P^7 is prime.
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To finish the proof of the theorem, observe that

(Pu n Q) n R c Pu n (R * //) n Q

cPUDΠRcPΓ\R = O.

Since every nonzero ideal of Q * H meets R nontrivially, it follows
immediately that Pu n Q = 0. D

THEOREM 3.2 [Ch, Theorem 17]. Let Q be a centrally closed prime
ring with center C. Let E be a C-algebra. Then Speco(<2 ®c E) is
in bisection with SpecJS1 via the inclusion-preserving maps

P -+P®E, Pe Speco(Q®£),

L->Q®E, LeSpec(E). π

COROLLARY 3.3. Let R* H be a crossed product over the H-prime
ring R, with invertible cocycle and fully invertible Q-inner action. Then
Speco(i?*//) embeds in Spec(Cτ[//]) via an inclusion-preserving map,
where Cτ[H] is a crossed product with trivial action ("twisted product")
and C is a field.

Proof. By [BCM, Theorem 5.3(5)] we have β*// = Qτ[H] for some
cocycle τ . Since u(\) = 1 (where u implements the inner action),
the isomorphism (q * h —> ΣQu{h\) * hi) restrict to the identity map
on Q. Further, [BCM, Example 4.10] yields τ{H ® H) c C, where
C = Z(Q) is a field by Lemma 2.4. Thus Qτ[H] = Q ®c Cτ[H].
The result now follows by composing the maps in the previous two
theorems. •

Next we sharpen Theorem 3.1 when H is finite dimensional and
the action is inner.

COROLLARY 3.4. Suppose that R* H is a crossed product with in-
vertible cocycle and that H has a fully invertible Q-inner action on
the H-prime ring R. If H is finite dimensional the maps defined in
Theorem 3.1 satisfy PUD = P and IDU = / .

Moreover these maps give an inclusion-preserving bisection between
Speco(β * H) and Speco(i? * H).

Proof. This proof is essentially the same as [Ch, Theorem 20]. We
need to show that / = IDU and that ID e Speco(i? * H).

By Zorn's Lemma there exists an ideal / of R*H maximal subject
to the condition ID c J and J Π R = 0. Using the fact that R is
//-prime, it follows easily that / is a prime ideal.
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We claim that Ju = I. Let a e / , and let A e & be such that
Aa c R* H. Then Aa c / Π (R * # ) and therefore α € / ^ .
Thus / c IUD C Ju. By Theorem 3.1, I c Ju is an inclusion in
Speco(β * H). Furthermore the previous corollary says that the chain
corresponds to a chain of primes of Cτ[H], an artinian algebra; hence
the inclusion cannot be proper. Thus the claim follows.

Finally by Theorem 3.1 we have / = JUD = ID, so ID n R = 0
and /^ is prime. Thus /^ e Speco(i? * H) and I = Ju = IDU. π

Assembling some of the foregoing information we have

COROLLARY 3.5. Let R*H be given with a fully invertible Q-inner
action and invertible cocycle, where R is an H-prime ring and H
is finite dimensional Then Speco(i? * H) is an inclusion-preserving
bijection with Spec£\ where E = Cτ[H] is a twisted product where
H acts trivially, and C, the center of Q, is a field. Explicitly, the
bijection is given by the maps:

P->PUΓ)E, Pe Speco(Q® E),

L-+(Q®L)n(R*H), Le Spec(E).

Proof. This follows by composing of the bijections given in Theorem
3.2 and Corollary 3.4. D

We conclude with some applications of the correspondences above.
Parts (iii) and (iv) in the next result generalize [M, Theorem 7.1] when
H is finite dimensional.

THEOREM 3.6. Let R*H be a crossed product with a fully invertible
action and invertible cocycle, where R is H-prime, H is Q-inner and
H is finite dimensional Then R*H has only finitely many minimal
primes P\, . . . , Pn, which satisfy

(i) { P 1 ? . . . , P w } = Spec0(i?*//).
(ii) f| Pi is the unique largest nilpotent ideal of R* H.

Furthermore:

(iii) Let E be as in the previous corollary. R* H is semiprime iff
Q*H is semiprime iff E is semiprime.

(iv) H is prime iff Q*H is prime iff E is prime.

Proof. As £ is a finite dimensional algebra over C, it has finitely
many (minimal) primes, say L\, . . . , Ln . It is elementary that f] L(
is a nilpotent ideal. By the previous corollary, R*H has finitely many
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minimal primes P\, . . . , Pn e Speco(i? * H) where JP/ = (Q ® L, ) n
(R*H)9 and P, π i? = 0 for all /. Note that by the correspondence
between Spec£ and Speco(i?*//), each P/ is a minimal prime. Now
we check that

for some H . Thus if P is a minimal prime of i?*//, P = Pi for some
/. This shows that the P/ are precisely the minimal primes of R * H,
proving (i). Finally, being an intersection of primes, f]Pι contains
every nilpotent ideal, proving (ii).

Now we prove (iii). With notation as above, we have by elementary
linear algebra that f](Q ® L/) = (Q ® f) A) Also by Theorem 3.2,
together with (i) applied to the crossed product Q * H, we find that
Speco(Q * //) = {Q ® £/} is the set of minimal primes of Q * H.
Therefore E is semiprime iff Q * H is.

By (i), Sρeco(i? * H) = {(Q ® L/) ΓΊ (i? * 7ϊ)} is the set of minimal
primes of R * //. Therefore i? * 7/ is semiprime if β * // is. Con-
versely, using the fact that nonzero ideals of Q * i/ meet i? * if non-
trivially, we deduce that R*H semiprime implies Q*H semiprime.

One uses the prime correspondences similarly to obtain (iv). This
completes the proof of the Theorem. D

Our last result adds to known criteria for smash products to be
semiprime (see [BCM, §6]). The proof relies on a recent result
of Blattner and Montgomery which states that a crossed product
R * H is semiprime provided R is semiprime, H is finite dimen-
sional semisimple, the cocycle is invertible and the action is i?-inner.

COROLLARY 3.7. Let R * H be a crossed product with invertible
cocycle and fully invertible action, where R is H-prime and H is Q-
inner. Assume that H is finite dimensional and semisimple. Then
R* H is semiprime.

Proof. Let u e Hom(H, R) implement the inner action of H on
Q. As in [BCM, p. 698], a cocycle τ is defined by

τ(A, /) = Σu-\h)u-χ{hx)t(h2, I2)u(h3h),

and there it is shown that Q * H = Qτ[H]. Further, as in the proof
of Corollary 3.3, we obtain Q * H = Q ® c Cτ[H]. Since u and t are
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both invertible, we see that τ " 1 exists with

τ-ι(h9l) = Σu-χ{hxh)r\h2, h)u{h)u{h).

Thus, since τ is invertible, Cτ[H] is semiprime by [BM, Theorem
2.7]. Now the theorem applies to finish the proof. D
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