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AUTOMORPHISM GROUPS OF CERTAIN DOMAINS
IN Cn WITH A SINGULAR BOUNDARY

KANG-TAE KIM

In this paper, we show how to use the so-called scaling technique
to prove the compactness of the automorphism groups of bounded
strictly convex circular domains in C" whose boundaries are not en-
tirely smooth, in case the singular locus of the boundary is globally
complicated but locally simple in some topological sense.

1. Introduction. We develop a certain scheme of computing the au-
tomorphism groups of the bounded circular convex domains in Cn

whose boundary is not entirely smooth. As an application, we com-
pute the automorphism group of the unit open ball with respect to
the minimal complex norm in C" introduced by K. T. Hahn and P.
Pflug [3], thus answering their question raised there. In this paper,
we restrict ourselves to the automorphism groups of Hahn-Pflug ex-
amples. However, we believe that all the ideas and complexity of our
technique are clearly shown in this somewhat special case.

Hahn and Pflug ([3]) showed that the complex norm N* in Cn

defined by

n

Σw2+
7 = 1

n

7=1

is the smallest complex norm in Cn, that extends the real Euclidean
norm in the following sense: For any complex norm N in Cn that
extends the real Euclidean norm and satisfies the inequality N(z) < \z\
for any zeCn, N*(z) < N(z) holds for all zeCn.

Denote by

B*n:={zeCn \ N*(z) < 1}

the unit open ball in Cn with respect to the norm N*. Let O(n,ΈL)
denote the set of all n x n real orthogonal matrices. Notice that the
boundary ΘB* is not entirely smooth. It was shown in [3] that this
domain is not homogeneous, but no explicit description beyond that
was known except when n = 2. Moreover, the method used in [3] to
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show that
Aut£2* = {eiθA\θ € R , A e 0(2 , R)}

is indeed very special to the case of n — 2. However, our method in
this paper applies in all dimensions. Consequently we are able to give
an explicit description of AutB* for any n>2.

We would like to point out that our method here is closely related
to the results of [1], [5] and [11]. Moreover, we express our special
thanks to A. Browder, K. T. Hahn, P. Pflug and J. Wermer for their
interest and helpful comments.

2. Compactness of certain automorphism groups. In this section, for
simplicity, we will work on compactness of Aut B$ in most of our
arguments with respect to the usual topology of uniform convergence
on compact subsets. Then, at the end of our arguments, one ought to
be able to observe that the same method will work for any n>2. Fur-
thermore, one can also observe that the technique we introduce here
can be applied to a broader class of domains than the one consisting
only of B; , n > 2.

PROPOSITION 1. Aut B$ is compact.

To prove the statement, we first observe the following facts on £*
for n > 2 (see [3], e.g.):

(2.1) B* is not biholomorphic to the open ball

{ ( z l 9 . . . 9 z n ) e C n \ \ z ι \ 2 + .. + \ z n \ 2 < l }

for n > 2.
(2.2) B* is convex.
(2.3) dB* is smooth (C°°) strongly pseudoconvex everywhere ex-

cept along

(2.4) dB* does not admit any non-trivial analytic subset.
Due to the theorem of B. Wong ([12]) and J.-P. Rosay ([13]), we

may deduce that there do not exist a point q e B* and a sequence
{f/} C Aut B* such that

Kmfj(q)edB*n\dQ.
J-+OO

Consequently, if we suppose that Aut B* is non-compact, then there
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exist a point po e B* and a sequence {gj} c Aut B* such that

(1) \imgj(po)edQ.
J^OO

Then from this we expect to derive a contradiction to prove Proposi-
tion 1.

Let us denote by
p:= lim gj(po)edQ.

J-+OO

Then the version of the scaling technique used in [5] applies as follows:

LEMMA 1. Assuming that (1) above holds, there exists a sequence
{Aj} c GL(fl, C) with Aj —• 0 as j: —• oo such that the sequence
Ajι(B* - p) of convex sets converges to a convex domain in Cn, say

B*, which is biholomorphic to B*, with respect to the local Hausdorff
set convergence.

Now we apply this scaling technique on B$. We will first try to
scale Bl at p = (1, /, 0) e dQ. The notation B* -p stands for the
Euclidean parallel translation of B* by -p in Cn . Hence it can be
represented by the inequality

\zx + 1|2 + \z2 + i\2 + \z3\
2 + | ( Z l + I) 2 + (z2 + i) 2 + z\\ < 2

i.e.,

(2) 0 > 2 Re(z 1 -/z 2 ) + | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 2 + z 2 + z 3

2 + 2 ( z 1 + /z2)|.

We perform a C-linear change of coordinates by

Ci = zi - iz2, C2 = ̂ i + ^ 2 , C3 = ^3.

Then the domain B\-p is still convex and bounded and is represented
by the inequality

(3) 0 > 2 Re Ci + ̂ (ICil2 + IC2I2) + ICsl2 + IC1C2 + C3

2 + Ui\

with p = (0, 0, 0) the reference point for scaling. Now the domain

is represented by

(4) 0 > 2 Re (aljlz{ + a)2z2 + aι/z3)

+ \{\{a)xzx + a)2z2 + aι/z3\
2 + \afzx + a22z2 + α 2 3 z 3 ) | 2 )

+ \afzx + afz2 + a]3z3\
2

+ \{aγzx+a}2z2 + aγz3)^a2ιzλ+a22z2 + afz3)

+ {afzx + afz2 + afz3)
2 + 2(a2ιz{ + afz2 + a23z3)|

where Aj = (aljk).
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Without loss of generality, we may assume

(5a) a)lla)x->au as -• oc

and

21 iΛk κ -2/ OC(5b) af/af -> ά2ί as j

for some k fixed, and for any / = 1, 2, 3.
Comparing (5a) and (5b) above, we may assume further that

f/all-+a21
oo(5c) af/aljl-+a21 as j

holds together with (5a). Moreover, replacing Aj by (a)1 /\aγ\)Aj
and choosing a subsequence if necessary, we may assume that αj* > 0
for any y.

Now consider the speed of convergence (or, divergence) of each
coefficient. Then Lemma 1 above forces us to conclude that B^ is
defined by the inequality

0 > 2 Re (Z! + anζ2 + α 1 3 £ 3 ) + | α 3 1 ί i + a32ζ2 + α 3 3 £ 3 | 2

+ | ( α 3 1 d + α 3 2 ζ 2 + α 3 3 ζ 3 ) 2 + 2(α21Ci + ^ 2 2

where
α3 /

α 3 / = i i m ^ ^ for/= 1,2, 3.

This follows because it is the only possibility that the local Hausdorff
set limit of the sequence of the convex domains Ajι(B$ - p) rep-
resented by (4) can be a domain in C 3 which could be hyperbolic
in the sense of Kobayashi ([6]). Again, since B$ is biholomorphic
to a bounded domain, it cannot contain a complex line. Hence in
particular

/ 1 a12 al3\
det α 2 1 α 2 2 a23 φ 0.

\ α 3 1 α 3 2 α 3 3 J

Hence, by an obvious change of coordinates, we have a new defining
inequality for B^:

(6a) 0 > 2 Re zx + | z 3 | 2 + \z\ + z 2 | .

Now we apply the biholomorphic mapping φ: B$ —• C 3 defined by

+ 2zi 4z2 2z3, z 2 , z 3 ) =
' ( l - 2 z θ
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to deduce that B% is biholomorphic to the domain, which we again

call B$ , defined by

(6b) {(*!, z 2 , z3) I \zx|
2 + | z 3 | 2 + \z\ + z2\ < 1}

which is again biholomorphic to the domain defined by

(6c) | z 1 | 2

 + | z 2 | 2 + | z 3 | < l .

For an arbitrary n > 3, one obtains that B* is biholomorphic to the
domain defined by

(6c) \zx\
2 + '" + \zn.x\

2 + \zn\ < 1

by an identical argument. According to Lemma 1, this domain has
to be biholomorphic to B*, since we assumed that B* admits a non-
compact automorphism group. We will try to derive a contradiction
from this to complete the proof of Proposition 1. First, we have

LEMMA 2. The set

(7) dQ:={zeCn\\zι\
2 + \z3\

2 + + \zn_ι\
2=landzn = O}

is homeomorphic to the real In - 3-dimensional sphere for any n>3.

The proof of this is trivial. Now we look at the points where dB*
is not smooth. They form a set

dQ = {z e cn I z\ + + z 2 = 0} n OB;

which turns out to be topologically different from the sphere as follows:

LEMMA 3. dQ, for any dimension n > 3, is dijfeomorphic to the
Stίefel manifold O(n)/O(n - 2).

Proof. It follows directly from the fact that dQ is in fact homeo-
morphic to the unit tangent bundle of the In - 1 dimensional sphere.

Now, notice that both B* and B* are completely circular. Hence,
they are linearly equivalent ([5]). However, two lemmas above then
yield a contradiction. Consequently, we obtain

T H E O R E M 1. A u t B* is compact for any n>2.

One may also notice that the argument we used above to show the
compactness of Aut B*, n > 3, could lead us to obtain the com-
pactness of the automorphism group of any strictly convex bounded
circular domain in Cn with a singular boundary in case its singular
locus of the boundary possesses a topology globally complicated but
locally simple.
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3. An explicit description of Aut B*. Now we focus more into
Aut B*, n > 3. We begin with the following statement:

PROPOSITION 2. Let Ω be a convex bounded domain ofholomorphy
in Cn that is circular, meaning that Ω is invariant under the circular
action

(zi, ... , zn) ^ {eiθzx, ... , eiezn), V ^ R .

Assume further that Aut Ω w compact. Then every automorphism of
Ω is complex linear.

To deduce this, we start with the following result due to L. Lempert

([10]).

THEOREM A. For any convex bounded domain in Cn, every Koba-
yashi metric ball is convex.

Then following the proof of Cartan's fixed point theorem (e.g., see
[7], p. I l l ) , we get

THEOREM B. Every compact biholomorphic group action on a con-
vex, bounded and complete hyperbolic domain in Cn has a common
fixed point.

Therefore, all the automorphisms of Ω have a common fixed point.
On the other hand, note that the circular action is a part of Aut Ω.
It has one and only one common fixed point that is the origin. Conse-
quently, every automorphism of Ω fixes the origin (0, . . . , 0). Then
Proposition 2 directly follows from the following classical theorem by
H. Cartan (e.g., see [8]):

THEOREM C. Let Ω be a circular domain in Cn containing the
origin. Then every f e Aut Ω with /(0) = 0 is complex linear.

Therefore, we have

COROLLARY. Aut B*, for any n>2, consists of linear maps only.

In fact, one can say more than Corollary above. Since all the au-
tomorphisms of B* are complex linear, they extend smoothly across
the boundary of B*, which is singular. Hence the singular locus dQ
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of dB* must be preserved by all the linear automorphisms. On the
other hand, the singular locus dQ is precisely the set

{zeCn\ \zλ\
2 + - . + \zn\

2 = 2}n{zeCn | z\ + •• + z2

n = 0} .

Then we have the following lemma:

LEMMA 4. Any n x n unitary matrix of complex numbers which

preserves the quadric

{zeCn \z2

{+... + z2

n = 0}

is in fact λ A1 for some A1 e O(n, R) and some λeC with \λ\ = 1.

Proof. Let Bτ denote the transpose of B for any m x n matrix
B of complex numbers. Then the fact that A preserving the quadric
given above is nothing but

zτAτAz = 0, for any column vector z = (z\ , ... , zn)
τ

with zτz = 0.

Now let U = ATA. Then it is a symmetric matrix satisfying the
relation above. Applying the values of z such as

( 0 , . . . , l , . . . , ± / , . . . , 0 )

to the relation, one easily gets the conclusion that U = λ l . Thus the
lemma follows.

Therefore, we can deduce the following

THEOREM 2. Aut 5* = {eiθ A \ θ e R, A e O(n, R)}, for any

n>2.

We would like to express special thanks to B. Cole for suggesting
such a short proof of Lemma 4 above to us.
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