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A NOTE ON HOMOTOPY COMPLEX SURFACES
WITH NEGATIVE TANGENT BUNDLES

B. WONG

We propose some problems concerning a weak rigidity phenomenon
on compact complex manifolds with negative tangent bundles. Some
observations have been made in the two dimensional case as an easy
consequence of classification theory, and Yau9s theorem on the rigid-
ity of CP2. We point out that among the class of complex surfaces of
general type with c\ - Cι > 0 the cotangent dimension is a homotopy
invariant possibly except in the case of S2 x S2.

1. Results and problems. A compact complex manifold M with a
negative tangent bundle T{M) in the sense of Grauert if T{M) is
a strongly pseudoconvex manifold with the zero section as its only
exceptional variety. This is the same thing as to say its cotangent
bundle T*(M) is ample. If X is a compact Kahler manifold with
negative bisectional curvature, then T{X) is negative by the formula
of bicurvature [6]. This class of manifolds in general admit nontrivial
local moduli [13, 14] unlike those Kahler manifolds with Nakano-
negative curvatures which are locally rigid in the classical sense of
Kodaira-Spencer [4,10]. The aim of this paper is to propose a problem
on a weak rigidity phenomenon of complex structures on compact
complex manifolds with negative tangent bundles and to point out
some observations in the complex two dimensional case.

Problem. Let M be a compact Kahler manifold with negative bi-
sectional curvature. Does it admit another complex structure, with
the fixed topological (homotopic, or homeomorphic, or diffeomorphic)
type, in which there exists a Kahler metric with positive definite Ricci
tensor? A closely related problem is to ask whether the complex struc-
tures of negative tangent bundle and rational type are exclusive to each
other.

An analogous open problem in differential topology and algebraic
geometry is to ask whether general type and rational type complex
structures can coexist on a compact four dimensional manifold with a
fixed differentiate structure. In [1] R. Barlow proved that on a home-
omorphic CP2 with eight points blown up, there exist both rational
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type and general type complex structures. Barlow's surface cannot
carry a negative tangent bundle as a consequence of a simple compu-
tation of Chern numbers. On the other hand, a theorem of S. T. Yau
determined that the homotopy CP2 admits only the standard complex
structure [17]. Our problem is probably more natural from the angle of
a curvature formulation of Schwarz's lemma [18] than the one stated
above. We do not have any analytic or geometric technique to settle
down our major problem at this point. Nevertheless, there is some
hope that one can resolve the problem in the case of complex surfaces
through an analysis of cotangent sheaf. We make several observations
along this line based on a trick due to F. Bogomolov [3].

THEOREM 1. Let X be a compact complex two-fold with a negative
tangent bundle and M be a minimal compact complex two-fold which
is not diffeomorphic to the standard S2 x S2. Suppose X and M
satisfy one of the following conditions:

(a) X and M have finite fundamental groups and they are homo-
topic to each other.

(b) X and M are homeomorphic.
Then the cotangent dimension of M is equal to two.

The definition of cotangent dimension can be found in §2. It can
be proved that a complex surface of cotangent dimension two must
be of general type.

The following assertion follows from standard topological fact.

THEOREM 2. Let X be a compact complex two-fold with a negative
tangent bundle and M be a minimal non-spin compact complex two-
fold. Suppose they satisfy one of the following two conditions:

(a) X and M are homotopic and their fundamental groups are finite.
(b) X and M are homeomorphic.

Then the cotangent dimension of M is equal to two.

We recall here that a manifold has a spin structure iff its second
Steifel-Whitney class W2 = 0. To end our introduction, we would
like to mention some open problems which should be clarified on our
road.

Problem 1. Let X be a compact complex two-fold with negative tan-
gent bundle. Suppose M is a compact complex two-fold homotopic
(homeomorphic, diίfeomorphic) to X. Is T(M) negative?
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Problem 2. Does S2 x S2 admit a complex structure of general
type (or even a complex structure with negative tangent bundle) upon
the fixed underlying topological (diffeomorphic, homeomorphic, or
homotopic) type?

Problem 3. Let M be the compact four dimensional differentiable
manifold obtained by CP2 blowing up one or two points (i.e.,

or CP2#2CPz, where Cfy = CP2 with opposite orienta-
tion, " # " means connected sum). Does M admit a complex structure
of general type (or even a complex structure with negative tangent
bundle)?

Problem 4. Let X be a compact complex manifold covered by a
bounded domain in C 2 . Is the cotangent dimension of X equal to
two? Suppose M is a compact complex two-fold homotopic (or home-
omorphic, or diffeomorphic) to X is the cotangent dimension equal
to two?

Problem 5. Is the property that the cotangent dimension is equal
to two for complex surfaces a homotopic (homeomorphic, diffeomor-
phic) invariant?

Problem 6. Explore all our problems to higher dimensional situa-
tions.

2. Background materials and related results. Let V be a compact
complex manifold and D be a divisor, the Z)-dimension according to
Iitaka [11] is the number

oo if N(D,V) = φ9

where N{D, V) = {m > 0 |dim c //°(K, mD) > 1} and ΦmD is the
canonical meromorphic mapping defined by a basis {Φo, Φ i , ... ,
Φn} of H°(V,mD), namely

ΦmD : V - CPn

z-+(Φ0(z):Φι(z):...:Φn(z))

(in homogeneous coordinates).
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The canonical dimension (or Kodaira dimension) K(V) of V is
defined to be K(D, V) when D is chosen as the canonical divisor Kv

of V. This is an invariant intrinsically attached to F . A compact
complex manifold V is of general type iff K(V) = dim c V. Another
equivalent characterization is that

>o,

where m = dim c V, Pk(V) = dim cH°(V,
Let £ be a holomoφhic vector bundle of rank r over a compact

complex manifold X, d i m c X = ra. We denote by S 7 1 ^) the «th
symmetric power of £ . Let P(E) be the projective bundle of the
hyperplane through the origin in the fibers of E. We denote by
π: P(E) -> JΓ the natural projection and OP(<E)(l) the tautological
line bundle on P(E). There are canonical isomorphisms

π.:OP{E)(n)-+Sn(E)

and
H°(P(E), OP{E){n)) = #°(X, SnE), forn > 0.

JE" is ample iff #/>(£)( 1) is an ample line bundle over P(J?) in the
usual sense of algebraic geometry. From the viewpoint of pseudo-
convexity in several complex variables, it is equivalent to E* being
(Grauert) negative (i.e., E* is a strongly pseudoconvex manifold with
the zero section as its only exceptional variety). If E is ample over
X, then a standard argument in algebraic geometry and several com-
plex variables implies that H°(X, SnE) has enough sections to yield
an embedding of X into a Grassmannian, for sufficiently large n.

Let us now assume E is a rank two negative holomoφhic vector
bundle over a complex surface V. Following from a result of Kleiman
[7], the Chern numbers satisfy Cf{E) > 0, C2(E) > 0 and Cf(E) -
Cι{E) > 0, where C\(E) and Cι{E) are the first and second Chern
classes of E. In particular, if the tangent bundle of V is negative, the
Chern numbers of V will satisfy C\ > 0, C2 > 0, and C\ - C2 > 0
here Q and C2 are the Chern classes of V. The following lemma,
due to Bogomolov [3], will play an important role in our discussions^
For the convenience of the readers and for the completion of this
paper, we include the proof here.

LEMMA 2.1 ([3]). Let E be an r-dimensional holomorphic vector
bundle over a compact complex two-fold V s.t. Cf(E) - Cι{E) > 0.
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Then either d i m c # ° ( K , SnE) or d i m c # ° ( F , SnE*) grows faster
than cnr+x, for some constant c> 0.

In particular, if E is the tangent bundle T(V), then either
dimcH°{V,SnT) or dimcH°(V, SnT*) grows faster than en3.

Proof. By the Hirzebruch-Riemann-Roch theorem and a computa-
tion due to Bogomolov [3], one has the following identity:

χ(V, SnE) = dimcH°(V, SnE) - dimcH
ι(V, SnE)

+ dimcH
2(V,SnE)

+ pr-ι(n + l ) ^ y ^ - \pr{

where Pnx{^i) = ^2(^2 + 1) * * (#2 + n\ - l)/^i !, K = canonical class
of V, χ = Euler class of V, Q = first Chern class of £ , and C2 =
second Chern class of E.

We observe that as n tends to infinity, the terms pr+\{n) and
ri?rXl)Pr{n) will dominate. Both of these two terms are polynomi-
als in n with degree r + 1. As n grows to infinity, we can write

dimc#°(r , SnE) -dim c H ι (V 9 SnE) + dimcH
2(V, SnE)

2n + r — 1 , \^y / N^r

= ""27ΓΓΪΓ * - Λ + i ( Λ ) c 2

+ {terms of polynomials in ft of degree < r + 1}.

We further observe that

l im

With all the above information we can write

where \imr->00(o{nr+ι)lnr+x) = 0. Thus we have the inequality

, SnE) + dimcH
2(V, 5 W £) > α n r + l + o(n r + l )

where α = (C2 - C2)(l - β)/(r + I) ! , C\ - C2 > 0, 0 < ε < I . By
Serre duality H2(V, S«£) = H°(V,K® SnE), we have

5 W £) + d i m c # ° ( F , K®SnE*) > a n r + l + o ( n r + l ) .
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We observe that the minimal model V of V must also satisfy the
inequality C\ - C2 > 0. By [2, Table 10, pp. 188], we see that V has
to be algebraic. Hence V is also algebraic. We can therefore choose a
divisor D on V so that both D and D — K are effective. This gives
an exact sequence which arises from the restriction of SnE* ® K to
D,

0 -+ SnE* ®K® (-/)) -> £*£* ® ̂  -> S"*£* ® AΊχ> — 0.

This associates to an exact sequence of cohomologies,

0-+H°(V9 SnE* ®K® (-/))) -+H°(V, SnE* ® K)

-+ {D,SnE*®K\D) -+ H\V,SnE*®K® (-D)) -^ .

This implies that

dim c i/°(K, SnE* ® Jf) - dim c ί/°(K, 5 W £* Θi^Θ (-D))

< dim c #°0E>, 5WE* ® K\D).

By the Riemann-Roch theorem over curves, one obtains

d i m e H°(D, SnE* ® 7 ^ ) <anr + β ,

where α and β are positive constants. Nevertheless, if D — K is
effective, one has the inequality

We observe that

dimcH°(V,SnE*®K) - dimcH°(V, S n E * ) <anr + β .

Combining the arguments above for sufficiently large n and for c =
Cl-Cι{\ —β)/(r+1)!, one finally concludes with the following desired
inequality

dim cH°(V, SnE) + dim cH°(V, S"£*) > c n r + 1 .

DEFINITION. Let E be a rank r holomorphic vector bundle over
a compact complex manifold X. The ^-dimension of E over X is
the number

fd-r+l ifdφ-oo,

\ —r if d = -oo,

where d = the D-dimension of 0p(£)(l) over P(E).
DEFINITION. The cotangent dimension of X, namely Cod(X), is

the number e(E, X) when E is the cotangent bundle of X.
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We state some remarks concerning cotangent dimension and refer
to [9] for their proofs.

REMARK 2.1. It is immediate from the definition that Cod(X) takes
one of the numbers from {- dimc X, ... ,0, ... , dimc X).

REMARK 2.2 [9]. The cotangent dimension is a bimeromorphic in-
variant.

REMARK 2.3 [9]. It follows basically from the classification of com-
plex surfaces that for an algebraic surface X, the inequality Cod(X) <
K(X) holds if K(X) > 0. In particular, for a compact complex two-
fold M, if Cod(M) = 2, then it is of general type. Here we should
notice that for any compact complex two-fold M, if Cod(M) = 2,
then it admits two independent meromorphic functions. Hence M
must be algebraic by an old theorem of Chow and Kodaira [5].

REMARK 2.4 [9]. Let M\ and M2 be two compact complex mani-
folds such that M\ is an unramified holomorphic cover of M2. Then

The following observation is an easy consequence of the classifica-
tion theory of complex surfaces.

THEOREM 2.2. Let M be a compact complex two-fold with C\ -
Cι > 0. Then M is either of general type with cotangent dimension
two or of rational type.

For the proof we observe that one can read from [3, Table 10, pp.
188] that a minimal compact complex two-fold with C\ - C2 > 0 can
only be rational or of general type. On the other hand if M satisfies
C\ - Cι > 0, its minimal model must also satisfy the same inequality.
The cotangent dimension is equal to two is a consequence of Lemma
2.1.

3. Proofs of Theorems 1 and 2.

(A) Proof of Theorem 1. Case (a). Let M and X be the universal
coverings of M and X respectively. Since π\{M) and τt\{X) are
finite, M and ^_are compact complex manifolds. It follows from
assumption that M and X must be homotopic to each other. It is a
consequence of a theorem in [15], [8], [16] that the Hirzebruch index
of M and X must be equal. The index of a compact complex two-
fold is equal to j(Cf - ICi). Moreover, it is elementary to prove
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that the Euler number for an oriented simply connected four-fold is a
homotopy invariant. We have therefore proved that C\ and C2 for
M and X are identical. The tangent bundle T(X) is negative because
X is assumed to be so. By a theorem of Kleiman [7], C2(X) > 0 and
C2(X) - C 2 W > 0. It follows that Ci(AΓ) > 0, C2(M) > 0, and
Cf(M) - C2(M) > 0. Moreover, one has immediately Cf(M) > 0,
C2(M) > 0 and Cf(M)-C2(M) > 0 because M is a finite unramified
cover of M. From Lemma 2.1, Remark 2.3, and Theorem 2.2, Λf
is either of general type with cotangent dimension two or of rational
type. (This also follows from the classification theory of complex
surfaces, namely [2, Table 10, p. 188]. This is a fact that a minimal
compact complex two-fold with C\ > 0 and C2 > 0 must be of
general type or of rational type. But it should be noticed the "minimal
assumption" has been used here if you apply this alternate argument.)
Finally, a minimal rational two-fold is either diffeomorphic to CP2 or
to S2 x S2. However, by Yau's theorem [17] X cannot be homotopic
to CP2 because X has a negative tangent bundle. The possibility for
being S 2 x S2 is also dropped by the assumption in Theorem 1.

Case (b). It is a known fact that the Chern numbers for compact
complex two-folds are homeomorphic invariants (for a proof, we refer
to [2, Theorem 2.6, p. 116]). The other part of the proof is then a line
to line copy of part (a).

(B) Proof of Theorem 2. The proof is parallel to (A). The only new
ingredient is the fact that S2 x S2 is a spin manifold.
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