A NOTE ON MEISTERS AND OLECH'S PROOF OF THE GLOBAL ASYMPTOTIC STABILITY JACOBIAN CONJECTURE

Arno van den Essen

Abstract

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1}-vector field with $f(0)=0$. For $p \in \mathbb{R}^{n}$ let $J f(p)$ denote its Jacobian matrix evaluated at p. Then it is a well-known result, due to Lyapunov, that the origin is a locally asymptotic rest point of the non-linear autonomous system of ordinary differential equations $\dot{x}=f(x)$ if the origin is a locally asymptotic rest point of the linearized system $\dot{y}=J f(0) y$ (or equivalently if all eigenvalues of the matrix $J f(0)$ have negative real parts).

In 1960 it was conjectured by Markus and Yamabe that the origin is a globally asymptotic rest point $\dot{x}=f(x)$ if for each $p \in \mathbb{R}^{n}$ the orgin is a locally asymptotic rest point of the linearized system $\dot{y}=J f(p) y$. Until now this conjecture is still open. However in 1988 Meisters and Olech proved this conjecture for two-dimensional polynomial vector fields $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The proof is an immediate consequence of earlier results of Olech, (1963) and the proposition below. The main result of this paper (Theorem 1) generalizes the proposition to polynomial maps $F: k^{n} \rightarrow k^{n}$ having the property that $\operatorname{det} J F(x) \neq 0$ for all $x \in k^{n}$ (k is a field of characteristic zero).

Proposition. If $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a polynomial map such that $\operatorname{det} J F(x) \neq 0$ for all $x \in \mathbb{R}^{2}$, then there exists a positive integer N such that the number of elements in each fiber $F^{-1}(x)\left(x \in \mathbb{R}^{2}\right)$ is bounded by N.

The proof of this proposition given by Meisters and Olech uses topological methods. In this note we generalize this result to polynomial maps $F: k^{n} \rightarrow k^{n}$ with the property that $\operatorname{det} J F(x) \neq 0$ for all $x \in k^{n}$ (k is a field of characteristic zero). Our proof is purely algebraic and uses some well-known techniques from the theory of \mathscr{D}-modules. For the reader's convenience we have included a section reviewing some results concerning \mathscr{D}-modules.

1. The Main Theorem. Throughout this paper we have the following notations: k is a field of characteristic zero and $F: k^{n} \rightarrow k^{n}$ is a polynomial map ($n \geq 1$) i.e. F is given by coordinate functions F_{i}
which are elements of the polynomial ring $k[X]:=k\left[X_{1}, \ldots, X_{n}\right]$. The determinant of the Jacobian matrix $J F:=\left(\partial F_{i} / \partial X_{j}\right)$ we denote by Δ. So $\Delta \in k[X]$. For $a \in k[X]$, $\operatorname{deg} a$ denotes the (total) degree of a. Finally $\operatorname{deg} F:=\max \operatorname{deg} F_{i}$. Now we can formulate the main result of this note:

Theorem 1. If $F: k^{n} \rightarrow k^{n}$ is a polynomial map with the property that $\operatorname{det} J F(x) \neq 0$ for all $x \in k^{n}$, then there exists a positive integer N such that for each $x \in k^{n}$ the number of elements in the fiber $F^{-1}(x)$ is bounded by N.

The proof of this theorem uses some well-known techniques from the theory of \mathscr{D}-modules (due to I. N. Bernstein, [1]). A review of some of the results concerning A_{n}-modules is given in $\S 2$.
1.1. The A_{n}-module structure on $k[X]\left[\Delta^{-1}\right]$. From now on $F=$ $\left(F_{1}, \ldots, F_{n}\right)$ is a polynomial map from k^{n} to k^{n} such that $\Delta(x) \neq$ 0 for all $x \in k^{n}$. In particular we have $\Delta \neq 0$ so the elements F_{1}, \ldots, F_{n} are algebraically independent over k by [6], satz 61. So $k[F]:=k\left[F_{1}, \ldots, F_{n}\right]$ is a subring of $k[X]$ isomorphic to $k[X]$. First we define derivations on the localization $k[X]\left[\Delta^{-1}\right]$, denoted by $\partial / \partial F_{i}$, which satisfy

$$
\begin{equation*}
\frac{\partial}{\partial F_{i}}\left(F_{j}\right)=\delta_{i j}, \quad \text { all } 1 \leq i, j \leq n . \tag{1.2}
\end{equation*}
$$

Therefore set $\partial / \partial F_{i}=\sum_{k} a_{i k}\left(\partial / \partial X_{k}\right)$, and we try to find elements $a_{i k} \in k[X]\left[\Delta^{-1}\right]$ such that (1.2) is satisfied. In matrix notation (1.2) is equivalent to

$$
\begin{equation*}
\left(a_{i k}\right)(J F)^{T}=I_{n} . \tag{1.3}
\end{equation*}
$$

Since $\operatorname{det}(J F)^{T}=\operatorname{det} J F=\Delta \neq 0$ we can solve the $a_{i k}$ uniquely in $k[X]\left[\Delta^{-1}\right]$. In fact by Cramer's rule we find
(1.4) $\Delta a_{i k} \in k[X] \quad$ and $\quad \operatorname{deg} \Delta a_{i k} \leq(n-1) \operatorname{deg} F, \quad$ all i, k.

Now we claim that the k-derivations $\partial / \partial F_{i}$ commute pairwise on $k[X]\left[\Delta^{-1}\right]$. Therefore let $\tau:=\left[\partial / \partial F_{i}, \partial / \partial F_{j}\right]$ be the commutator of $\partial / \partial F_{i}$ and $\partial / \partial F_{j}$. Then τ is a k-derivation on $k[X]\left[\Delta^{-1}\right]$ and it is zero on $k[F]$ (since $\tau\left(F_{p}\right)=0$ for all p). Consequently, the unique extension of τ to the completion $k[[F]]$ is also zero. However by the local inversion theorem ([7], §4, no. 5. Proposition 5) $k[[F]]=k[[X]]$ (for this last statement we assumed that $F(0)=0$, which is a harmless assumption since $\partial / \partial F_{i}=\partial / \partial\left(F_{i}+\lambda\right)$ for all $\left.\lambda \in k\right)$. So τ is
zero on $k[[X]]$ and hence on the subring $k[X]\left[\Delta^{-1}\right](\Delta(0) \neq 0$, so $\left.\Delta^{-1} \in k[[X]]\right)$, which proves the claim.

The results above enable us to endow $k[X]\left[\Delta^{-1}\right]$ with a left $A_{n}=$ $k\left[Y_{1}, \ldots, Y_{n}, \partial_{1}, \ldots, \partial_{n}\right]$-module structure, as follows: Define $Y_{i} \cdot g:=F_{i} g, \quad \partial_{i} \cdot g=\frac{\partial g}{\partial F_{i}} \quad$ for all $1 \leq i \leq n, \quad$ all $g \in k[X]\left[\Delta^{-1}\right]$. The left A_{n}-module associated to F in this way we denote by $M(F)$.

Lemma 1.5. $M(F)$ possesses an ($n, e(F)$)-filtration, where $e(F)=$ $2^{n}(2 n \operatorname{deg} F+1)^{n}$.

Proof. Put $d:=\operatorname{deg} F$. For each $v \in \mathbb{Z}, v \geq 0$ we define

$$
\Gamma_{v}:=\left\{q \Delta^{-2 v} \in k[X]\left[\Delta^{-1}\right] \mid \operatorname{deg} q \leq 2 v(2 n d+1)\right\} .
$$

By definition $\operatorname{dim}_{k} \Gamma_{v}$ is the dimension of the k-vector space of all polynomials in $k[X]$ of degree $\leq 2 v(2 n d+1)$, which implies

$$
\operatorname{dim}_{k} \Gamma_{v} \leq \frac{2^{n}(2 n d+1)^{n}}{n!} v^{n}+\mathcal{O}\left(v^{n-1}\right) .
$$

So it suffices to prove that $\left\{\Gamma_{n}\right\}$ is a filtration on $M(F)$. We first show that $\partial_{i} \Gamma_{v} \subset \Gamma_{v+1}$ (the inclusion $x_{i} \Gamma_{v} \subset \Gamma_{v+1}$ is proved in a similar way). So let $g=q \Delta^{-2 v} \in \Gamma_{v}$. Then

$$
\partial_{i} g=\frac{\partial q}{\partial F_{i}} \Delta^{-2 v}+q(-2 v) \Delta^{-2 v-1} \frac{\partial \Delta}{\partial F_{i}} .
$$

By (1.4) we know

$$
\begin{gathered}
\frac{\partial}{\partial F_{i}}=\frac{1}{\Delta} \sum_{k} \Delta a_{i k} \frac{\partial}{\partial X_{k}} \quad \text { and } \\
\Delta a_{i k} \in k[X] \quad \text { with } \operatorname{deg} \Delta a_{i k} \leq(n-1) d .
\end{gathered}
$$

So

$$
\partial_{i} g=\left(\Delta \sum_{k} \Delta a_{i k} \frac{\partial q}{\partial X_{k}}+(-2 v) q \sum_{k} \Delta a_{i k} \frac{\partial \Delta}{\partial X_{k}}\right) \Delta^{-2(v+1)} .
$$

Using $\operatorname{deg} \Delta \leq n d$ and $\operatorname{deg} \Delta a_{i k} \leq(n-1) d$ we conclude that $\partial_{i} g \in$ Γ_{v+1}. Finally we show that $\bigcup \Gamma_{v}=M(F)$. So let $q \Delta^{-r} \in k[X]\left[\Delta^{-1}\right]$ with $\operatorname{deg} q=s$ and $r \geq 0$. Let $v \geq \max (r, s)$. Then

$$
\begin{gathered}
q \Delta^{-r}=q\left(\Delta^{2 v-r}\right) \Delta^{-2 v} \quad \text { and } \\
\operatorname{deg} q \Delta^{2 v-r} \leq s+(2 v-r) n d \leq s+2 v n d \leq 2 v(2 n d+1)
\end{gathered}
$$

since $v \geq s$. So $q \Delta^{-r} \in \Gamma_{v}$, which completes the proof.

Proof of Theorem 1. (i) Let $x \in k^{n}$. Then the number of elements in the fiber $F^{-1}(x)$ is equal to the number of zeros of the ideal $\left(F_{1}-\right.$ $x_{1}, \ldots, F_{n}-x_{n}$). Therefore we consider the polynomial map $F-x$ and form its left A_{n}-module $M(x):=M(F-x)$. (Observe that $\operatorname{det} J(F-x)=\operatorname{det} J F=\Delta$ has no zeros in k^{n}.) By Lemma 1.5 $M(x)$ possesses an $(n, e(x))$-filtration, where

$$
e(x)=2^{n}(2 n \operatorname{deg}(F-x)+1)^{n}=2^{n}(2 n \operatorname{deg} F+1)^{n} .
$$

So by Corollary $2.4 M(x) / \sum_{i}\left(F_{i}-x_{i}\right) M(x)$ is a finite dimensional k-vector space with dimension bounded by $N_{0}:=2^{n}(2 n \operatorname{deg} F+1)^{n}$, which is independent of x ! So

$$
\operatorname{dim}_{k} k[X]\left[\Delta^{-1}\right] / \sum_{i}\left(F_{i}-x_{i}\right) k[X]\left[\Delta^{-1}\right] \leq N_{0} \quad \text { for all } x \in k^{n}
$$

Consequently the residue classes of $1, X_{1}, X_{1}^{2}, \ldots, X_{1}^{N_{0}}$ must be linearly dependent over k. So there exists a non-zero polynomial $g\left(X_{1}\right)$ $\in k\left[X_{1}\right]$ of degree $\leq N_{0}$ and a positive integer ρ such that $\Delta^{\rho} g\left(X_{1}\right)$ $\in \sum k[X]\left(F_{i}-x_{i}\right)$.
(ii) Now let $p=\left(p_{1}, \ldots, p_{n}\right) \in k^{n}$ such that $F(p)=x$; i.e. $F_{i}(p)=x_{i}$ for all i. Then $\Delta(p)^{\rho} g\left(p_{1}\right)=0$. Since Δ has no zeros on k^{n} it follows that $g\left(p_{1}\right)=0$. So there are at most N_{0} possibilities for the first coordinate of p (since deg $g \leq N_{0}$). Arguing in a similar way for the other coordinates of p we conclude that the number of $p \in k^{n}$ with $F(p)=x$ is bounded by $N:=N_{0}^{n}$.

Comment. It was kindly pointed out to me by Professor J. Bochnak that for some special fields k such as \mathbb{R}, \mathbb{C}, real closed or algebraically closed fields, Theorem 1 is a consequence of the following result.

Theorem 1.6. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a polynomial map of degree d such that $F^{-1}(x)$ is finite for each $x \in \mathbb{R}^{p}$. Then the number of elements in each fiber $F^{-1}(x)$ is bounded by $d(2 d-1)^{n-1}$.

This theorem is a very special case of Theorem 11.5 .2 (p. 243) of [8]. To see that Theorem 1.6 implies Theorem 1 one only needs to observe that the condition det $J F(x) \neq 0$ for all $x \in \mathbb{R}^{n}$ implies that each fiber $F^{-1}(x)$ is discrete (by the implicit function theorem) and that obviously $F^{-1}(x)$ is an algebraic subset of \mathbb{R}^{n} and hence has a finite number of connected components. So $F^{-1}(x)$ is finite.
2. A review of some results concerning A_{n}-modules. All results of this section come from I. N. Bernstein's work in [1] and can also be found in Chapter I of [2].

Let $A_{n}:=k\left[Y_{1}, \ldots, Y_{n}, \partial_{1}, \ldots, \partial_{n}\right]$ be the nth Weyl-algebra, i.e. the k-algebra with relations $\left[Y_{i}, Y_{j}\right]=\left[\partial_{i}, \partial_{j}\right]=0$ and $\left[\partial_{i}, Y_{j}\right]=\delta_{i j}$ for all $1 \leq i, j \leq n$. It is a filtered ring with filtration $\left\{T_{v}\right\}_{v=0}^{\infty}$ where T_{v} is the k-vector space generated by the monomials $Y^{\alpha} \partial^{\beta}$ with $|\alpha|+|\beta| \leq v$ (with the usual multi-index notation). Let M be a left A_{n}-module. A filtration Γ on M is an increasing sequence $\Gamma_{0} \subset \Gamma_{1} \subset \Gamma_{2} \subset \cdots$ of finite dimensional k-subspaces of M such that $\cup T_{v}=M$ and $T_{k} \Gamma_{v} \subset \Gamma_{v+k}$ for all $k, v \geq 0$. Such a filtration is called good if there exist $m_{1}, \ldots, m_{s} \in M$ and $n_{1}, \ldots, n_{s} \in \mathbb{Z}$ such that $\Gamma_{v}=\sum T_{v-n} m_{i}$ for all $v \geq 0$ (by definition $T_{-v}=0$ for all $v \geq 1$). One readily verifies that an A_{n}-module possesses a good filtration if and only if it is finitely generated. Furthermore we have

Proposition 2.1 ([2], Corollary 3.3, Chapter I). If Γ is a good filtration on a finitely generated left A_{n}-module M, then there exist an integer $d \geq 0$ and rational numbers a_{0}, \ldots, a_{d} such that

$$
\operatorname{dim}_{k} \Gamma_{v}=a_{d} v^{d}+a_{d-1} v^{d-1}+\cdots+a_{0}, \quad \text { for all large } v .
$$

Furthermore $d!a_{d}$ is an integer ≥ 1.
The crucial point is that the integers d and $d!a_{d}$ are independent of the choice of the good filtration; they form two important invariants of the A_{n}-module M, called the dimension and the multiplicity of M, denoted $d(M)$, resp. $e(M)$. The fundamental Bernstein inequality asserts that $d(M) \geq n$ for every non-zero A_{n}-module M of finite type! The non-zero A_{n}-modules of finite type having the minimal dimension n are called holonomic A_{n}-modules. They play a very important role in the theory of \mathscr{D}-modules. A useful fact is that a holonomic A_{n}-module with multiplicity $e(M)$ has a finite length, bounded by $e(M)$.

To decide if a given A_{n}-module is holonomic, there exists a very powerful criterion. Before we describe it we introduce some terminology. Let M be a left A_{n}-module, not necessary of finite type. A filtration Γ on M is called a ($d, e)$-filtration if $\operatorname{dim}_{k} \Gamma_{n} \leq \frac{e}{d!} v^{d}+\mathcal{O}\left(v^{d-1}\right)$ where $d \geq 0$ and $e \geq 1$ are integers. Observe that if M is holonomic it possesses an (n, e)-filtration (namely take any good filtration on M and apply Proposition 2.1). However the converse also holds i.e.

Theorem 2.2 ([2], Theorem 5.4, Chapter I). Let M be an arbitrary A_{n}-module (so we don't assume M to be of finite type). If M possesses
an (n, e)-filtration for some integer $e \geq 1$, then M is holonomic (and hence of finite type). Furthermore $e(M) \leq e$.

Now consider the multiplication $Y_{n}: M \rightarrow M$. Then

$$
\text { coker } Y_{n}:=M / Y_{n} M
$$

can be given the structure of a left $A_{n-1}=k\left[Y_{1}, \ldots, Y_{n-1} \partial_{1}, \ldots, \partial_{n-1}\right]-$ module by putting $\partial_{i}\left(m+Y_{n} M\right):=\partial_{i} m+Y_{n} M$. If $n=1$ we put $A_{0}:=k$.

Theorem 2.3 ([2], Theorem 6.2, Chapter I). Let M be an A_{n} module with an (n, e)-filtration. Then $M / Y_{n} M$ is an A_{n-1}-module with an ($n-1, e$)-filtration. If $n=1$ it means that $M / Y_{n} M$ is a k-vector space of dimension $\leq e$.

By applying this result n-times we arrive at
Corollary 2.4. Let M be an A_{n}-module with an (n, e)-filtration. Then $M / \sum_{i} Y_{i} M$ is a finite dimensional k-vector space with dimension bounded by e.

References

[1] I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funktsional. Anal. i Prilozhen., 6 (1972), 26-40. English transl. in Functional Anal. Appl., 6 (1972), 273-285.
[2] J.-E. Björk, Rings of Differential Operators, Vol. 21, North-Holland Mathematical Library (1979).
[3] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., 12 (2) (1960), 305-317.
[4] G. Meisters and C. Olech, Solution of the Global Asymptotic Stability Jacobian Conjecture for the Polynomial Case, Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988), 373-381.
[5] C. Olech, On the global stability of an autonomous system on the plane, Contributions to Differential Equations, 1 (1963), 389-400.
[6] O. Perron, Algebra I, Die Grundlagen, Walter de Gruyter \& Co., Berlin 1951.
[7] N. Bourbaki, Algèbre Commutative, Chapter 3, Hermann Paris.
[8] J. Bochnak, M. Coste and M. -F. Roy, Géometrie algébrique réelle, Ergebnisse der Math. u.i. Grenzgebieten, Springer-Verlag, Berlin-Heidelberg-New York, 1987.

Received April 16, 1990 and in revised form September 21, 1990.

[^0]
[^0]: Katholieke Universiteit
 Toernooiveld
 Nijmegen 6525 ED, The Netherlands

