A NOTE ON MEISTERS AND OLECH'S PROOF OF THE GLOBAL ASYMPTOTIC STABILITY JACOBIAN CONJECTURE

Arno van den Essen

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 -vector field with f(0) = 0. For $p \in \mathbb{R}^n$ let Jf(p) denote its Jacobian matrix evaluated at p. Then it is a well-known result, due to Lyapunov, that the origin is a locally asymptotic rest point of the non-linear autonomous system of ordinary differential equations $\dot{x} = f(x)$ if the origin is a locally asymptotic rest point of the linearized system $\dot{y} = Jf(0)y$ (or equivalently if all eigenvalues of the matrix Jf(0) have negative real parts).

In 1960 it was conjectured by Markus and Yamabe that the origin is a globally asymptotic rest point $\dot{x} = f(x)$ if for each $p \in \mathbb{R}^n$ the orgin is a locally asymptotic rest point of the linearized system $\dot{y} = Jf(p)y$. Until now this conjecture is still open. However in 1988 Meisters and Olech proved this conjecture for two-dimensional polynomial vector fields $f: \mathbb{R}^2 \to \mathbb{R}^2$. The proof is an immediate consequence of earlier results of Olech, (1963) and the proposition below. The main result of this paper (Theorem 1) generalizes the proposition to polynomial maps $F: k^n \to k^n$ having the property that det $JF(x) \neq 0$ for all $x \in k^n$ (k is a field of characteristic zero).

PROPOSITION. If $F: \mathbb{R}^2 \to \mathbb{R}^2$ is a polynomial map such that det $JF(x) \neq 0$ for all $x \in \mathbb{R}^2$, then there exists a positive integer N such that the number of elements in each fiber $F^{-1}(x)$ $(x \in \mathbb{R}^2)$ is bounded by N.

The proof of this proposition given by Meisters and Olech uses topological methods. In this note we generalize this result to polynomial maps $F: k^n \to k^n$ with the property that det $JF(x) \neq 0$ for all $x \in k^n$ (k is a field of characteristic zero). Our proof is purely algebraic and uses some well-known techniques from the theory of \mathscr{D} -modules. For the reader's convenience we have included a section reviewing some results concerning \mathscr{D} -modules.

1. The Main Theorem. Throughout this paper we have the following notations: k is a field of characteristic zero and $F: k^n \to k^n$ is a polynomial map $(n \ge 1)$ i.e. F is given by coordinate functions F_i

which are elements of the polynomial ring $k[X] := k[X_1, ..., X_n]$. The determinant of the Jacobian matrix $JF := (\partial F_i / \partial X_j)$ we denote by Δ . So $\Delta \in k[X]$. For $a \in k[X]$, deg a denotes the (total) degree of a. Finally deg $F := \max \deg F_i$. Now we can formulate the main result of this note:

THEOREM 1. If $F: k^n \to k^n$ is a polynomial map with the property that det $JF(x) \neq 0$ for all $x \in k^n$, then there exists a positive integer N such that for each $x \in k^n$ the number of elements in the fiber $F^{-1}(x)$ is bounded by N.

The proof of this theorem uses some well-known techniques from the theory of \mathcal{D} -modules (due to I. N. Bernstein, [1]). A review of some of the results concerning A_n -modules is given in §2.

1.1. The A_n -module structure on $k[X][\Delta^{-1}]$. From now on $F = (F_1, \ldots, F_n)$ is a polynomial map from k^n to k^n such that $\Delta(x) \neq 0$ for all $x \in k^n$. In particular we have $\Delta \neq 0$ so the elements F_1, \ldots, F_n are algebraically independent over k by [6], satz 61. So $k[F] := k[F_1, \ldots, F_n]$ is a subring of k[X] isomorphic to k[X]. First we define derivations on the localization $k[X][\Delta^{-1}]$, denoted by $\partial/\partial F_i$, which satisfy

(1.2)
$$\frac{\partial}{\partial F_i}(F_j) = \delta_{ij}, \quad \text{all } 1 \le i, j \le n.$$

Therefore set $\partial/\partial F_i = \sum_k a_{ik}(\partial/\partial X_k)$, and we try to find elements $a_{ik} \in k[X][\Delta^{-1}]$ such that (1.2) is satisfied. In matrix notation (1.2) is equivalent to

$$(1.3) (a_{ik})(JF)^T = I_n.$$

Since $\det(JF)^T = \det JF = \Delta \neq 0$ we can solve the a_{ik} uniquely in $k[X][\Delta^{-1}]$. In fact by Cramer's rule we find

(1.4)
$$\Delta a_{ik} \in k[X]$$
 and $\deg \Delta a_{ik} \leq (n-1) \deg F$, all i, k .

Now we claim that the k-derivations $\partial/\partial F_i$ commute pairwise on $k[X][\Delta^{-1}]$. Therefore let $\tau := [\partial/\partial F_i, \partial/\partial F_j]$ be the commutator of $\partial/\partial F_i$ and $\partial/\partial F_j$. Then τ is a k-derivation on $k[X][\Delta^{-1}]$ and it is zero on k[F] (since $\tau(F_p) = 0$ for all p). Consequently, the unique extension of τ to the completion k[[F]] is also zero. However by the local inversion theorem ([7], §4, no. 5. Proposition 5) k[[F]] = k[[X]] (for this last statement we assumed that F(0) = 0, which is a harmless assumption since $\partial/\partial F_i = \partial/\partial (F_i + \lambda)$ for all $\lambda \in k$). So τ is

zero on k[[X]] and hence on the subring $k[X][\Delta^{-1}]$ ($\Delta(0) \neq 0$, so $\Delta^{-1} \in k[[X]]$), which proves the claim.

The results above enable us to endow $k[X][\Delta^{-1}]$ with a left $A_n = k[Y_1, \ldots, Y_n, \partial_1, \ldots, \partial_n]$ -module structure, as follows: Define

$$Y_i \cdot g := F_i g$$
, $\partial_i \cdot g = \frac{\partial g}{\partial F_i}$ for all $1 \le i \le n$, all $g \in k[X][\Delta^{-1}]$.

The left A_n -module associated to F in this way we denote by M(F).

LEMMA 1.5. M(F) possesses an (n, e(F))-filtration, where $e(F) = 2^n (2n \deg F + 1)^n$.

Proof. Put $d := \deg F$. For each $v \in \mathbb{Z}$, $v \ge 0$ we define

$$\Gamma_v := \{ q \Delta^{-2v} \in k[X][\Delta^{-1}] | \deg q \le 2v(2nd+1) \}.$$

By definition $\dim_k \Gamma_v$ is the dimension of the k-vector space of all polynomials in k[X] of degree $\leq 2v(2nd + 1)$, which implies

$$\dim_k \Gamma_v \leq \frac{2^n (2nd+1)^n}{n!} v^n + \mathscr{O}(v^{n-1}).$$

So it suffices to prove that $\{\Gamma_n\}$ is a filtration on M(F). We first show that $\partial_i \Gamma_v \subset \Gamma_{v+1}$ (the inclusion $x_i \Gamma_v \subset \Gamma_{v+1}$ is proved in a similar way). So let $g = q \Delta^{-2v} \in \Gamma_v$. Then

$$\partial_i g = \frac{\partial q}{\partial F_i} \Delta^{-2v} + q(-2v) \Delta^{-2v-1} \frac{\partial \Delta}{\partial F_i}.$$

By (1.4) we know

$$\frac{\partial}{\partial F_i} = \frac{1}{\Delta} \sum_k \Delta a_{ik} \frac{\partial}{\partial X_k} \quad \text{and}$$
$$\Delta a_{ik} \in k[X] \quad \text{with } \deg \Delta a_{ik} \le (n-1)d$$

So

$$\partial_i g = \left(\Delta \sum_k \Delta a_{ik} \frac{\partial q}{\partial X_k} + (-2v)q \sum_k \Delta a_{ik} \frac{\partial \Delta}{\partial X_k} \right) \Delta^{-2(v+1)}.$$

Using deg $\Delta \leq nd$ and deg $\Delta a_{ik} \leq (n-1)d$ we conclude that $\partial_i g \in \Gamma_{v+1}$. Finally we show that $\bigcup \Gamma_v = M(F)$. So let $q\Delta^{-r} \in k[X][\Delta^{-1}]$ with deg q = s and $r \geq 0$. Let $v \geq \max(r, s)$. Then

$$q\Delta^{-r} = q(\Delta^{2v-r})\Delta^{-2v} \quad \text{and}$$

$$\deg q\Delta^{2v-r} \le s + (2v-r)nd \le s + 2vnd \le 2v(2nd+1)$$

since $v \ge s$. So $q\Delta^{-r} \in \Gamma_v$, which completes the proof.

Proof of Theorem 1. (i) Let $x \in k^n$. Then the number of elements in the fiber $F^{-1}(x)$ is equal to the number of zeros of the ideal $(F_1 - x_1, \ldots, F_n - x_n)$. Therefore we consider the polynomial map F - xand form its left A_n -module M(x) := M(F - x). (Observe that det $J(F - x) = \det JF = \Delta$ has no zeros in k^n .) By Lemma 1.5 M(x) possesses an (n, e(x))-filtration, where

$$e(x) = 2^n (2n \deg(F - x) + 1)^n = 2^n (2n \deg F + 1)^n.$$

So by Corollary 2.4 $M(x) / \sum_i (F_i - x_i) M(x)$ is a finite dimensional k-vector space with dimension bounded by $N_0 := 2^n (2n \deg F + 1)^n$, which is independent of x! So

$$\dim_k k[X][\Delta^{-1}] \Big/ \sum_i (F_i - x_i) k[X][\Delta^{-1}] \le N_0 \quad \text{for all } x \in k^n.$$

Consequently the residue classes of 1, X_1 , X_1^2 , ..., $X_1^{N_0}$ must be linearly dependent over k. So there exists a non-zero polynomial $g(X_1) \in k[X_1]$ of degree $\leq N_0$ and a positive integer ρ such that $\Delta^{\rho} g(X_1) \in \sum k[X](F_i - x_i)$.

(ii) Now let $p = (p_1, ..., p_n) \in k^n$ such that F(p) = x; i.e. $F_i(p) = x_i$ for all *i*. Then $\Delta(p)^{\rho}g(p_1) = 0$. Since Δ has no zeros on k^n it follows that $g(p_1) = 0$. So there are at most N_0 possibilities for the first coordinate of p (since deg $g \leq N_0$). Arguing in a similar way for the other coordinates of p we conclude that the number of $p \in k^n$ with F(p) = x is bounded by $N := N_0^n$.

Comment. It was kindly pointed out to me by Professor J. Bochnak that for some special fields k such as \mathbb{R} , \mathbb{C} , real closed or algebraically closed fields, Theorem 1 is a consequence of the following result.

THEOREM 1.6. Let $F : \mathbb{R}^n \to \mathbb{R}^p$ be a polynomial map of degree d such that $F^{-1}(x)$ is finite for each $x \in \mathbb{R}^p$. Then the number of elements in each fiber $F^{-1}(x)$ is bounded by $d(2d-1)^{n-1}$.

This theorem is a very special case of Theorem 11.5.2 (p. 243) of [8]. To see that Theorem 1.6 implies Theorem 1 one only needs to observe that the condition det $JF(x) \neq 0$ for all $x \in \mathbb{R}^n$ implies that each fiber $F^{-1}(x)$ is discrete (by the implicit function theorem) and that obviously $F^{-1}(x)$ is an algebraic subset of \mathbb{R}^n and hence has a finite number of connected components. So $F^{-1}(x)$ is finite.

2. A review of some results concerning A_n -modules. All results of this section come from I. N. Bernstein's work in [1] and can also be found in Chapter I of [2].

Let $A_n := k[Y_1, \ldots, Y_n, \partial_1, \ldots, \partial_n]$ be the *n*th Weyl-algebra, i.e. the k-algebra with relations $[Y_i, Y_j] = [\partial_i, \partial_j] = 0$ and $[\partial_i, Y_j] = \delta_{ij}$ for all $1 \le i, j \le n$. It is a filtered ring with filtration $\{T_v\}_{v=0}^{\infty}$ where T_v is the k-vector space generated by the monomials $Y^{\alpha}\partial^{\beta}$ with $|\alpha| + |\beta| \le v$ (with the usual multi-index notation). Let M be a left A_n -module. A filtration Γ on M is an increasing sequence $\Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \cdots$ of finite dimensional k-subspaces of M such that $\bigcup T_v = M$ and $T_k \Gamma_v \subset \Gamma_{v+k}$ for all $k, v \ge 0$. Such a filtration is called good if there exist $m_1, \ldots, m_s \in M$ and $n_1, \ldots, n_s \in \mathbb{Z}$ such that $\Gamma_v = \sum T_{v-n_i} m_i$ for all $v \ge 0$ (by definition $T_{-v} = 0$ for all $v \ge 1$). One readily verifies that an A_n -module possesses a good filtration if and only if it is finitely generated. Furthermore we have

PROPOSITION 2.1 ([2], Corollary 3.3, Chapter I). If Γ is a good filtration on a finitely generated left A_n -module M, then there exist an integer $d \ge 0$ and rational numbers a_0, \ldots, a_d such that

 $\dim_k \Gamma_v = a_d v^d + a_{d-1} v^{d-1} + \dots + a_0, \quad \text{for all large } v.$

Furthermore $d!a_d$ is an integer ≥ 1 .

The crucial point is that the integers d and $d!a_d$ are independent of the choice of the good filtration; they form two important invariants of the A_n -module M, called the *dimension* and the *multiplicity* of M, denoted d(M), resp. e(M). The fundamental Bernstein inequality asserts that $d(M) \ge n$ for every non-zero A_n -module M of finite type! The non-zero A_n -modules of finite type having the minimal dimension n are called *holonomic* A_n -modules. They play a very important role in the theory of \mathcal{D} -modules. A useful fact is that a holonomic A_n -module with multiplicity e(M) has a finite length, bounded by e(M).

To decide if a given A_n -module is holonomic, there exists a very powerful criterion. Before we describe it we introduce some terminology. Let M be a left A_n -module, not necessary of finite type. A filtration Γ on M is called a (d, e)-filtration if $\dim_k \Gamma_n \leq \frac{e}{d!}v^d + \mathcal{O}(v^{d-1})$ where $d \geq 0$ and $e \geq 1$ are integers. Observe that if M is holonomic it possesses an (n, e)-filtration (namely take any good filtration on Mand apply Proposition 2.1). However the converse also holds i.e.

THEOREM 2.2 ([2], Theorem 5.4, Chapter I). Let M be an arbitrary A_n -module (so we don't assume M to be of finite type). If M possesses

an (n, e)-filtration for some integer $e \ge 1$, then M is holonomic (and hence of finite type). Furthermore $e(M) \le e$.

Now consider the multiplication $Y_n: M \to M$. Then

coker $Y_n := M/Y_n M$

can be given the structure of a left $A_{n-1} = k[Y_1, \ldots, Y_{n-1}\partial_1, \ldots, \partial_{n-1}]$ module by putting $\partial_i(m + Y_nM) := \partial_i m + Y_nM$. If n = 1 we put $A_0 := k$.

THEOREM 2.3 ([2], Theorem 6.2, Chapter I). Let M be an A_n -module with an (n, e)-filtration. Then M/Y_nM is an A_{n-1} -module with an (n - 1, e)-filtration. If n = 1 it means that M/Y_nM is a k-vector space of dimension $\leq e$.

By applying this result *n*-times we arrive at

COROLLARY 2.4. Let M be an A_n -module with an (n, e)-filtration. Then $M / \sum_i Y_i M$ is a finite dimensional k-vector space with dimension bounded by e.

References

- I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funktsional. Anal. i Prilozhen., 6 (1972), 26-40. English transl. in Functional Anal. Appl., 6 (1972), 273-285.
- [2] J.-E. Björk, *Rings of Differential Operators*, Vol. 21, North-Holland Mathematical Library (1979).
- [3] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., 12 (2) (1960), 305-317.
- [4] G. Meisters and C. Olech, Solution of the Global Asymptotic Stability Jacobian Conjecture for the Polynomial Case, Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988), 373-381.
- [5] C. Olech, On the global stability of an autonomous system on the plane, Contributions to Differential Equations, 1 (1963), 389-400.
- [6] O. Perron, Algebra I, Die Grundlagen, Walter de Gruyter & Co., Berlin 1951.
- [7] N. Bourbaki, Algèbre Commutative, Chapter 3, Hermann Paris.
- [8] J. Bochnak, M. Coste and M. -F. Roy, Géometrie algébrique réelle, Ergebnisse der Math. u.i. Grenzgebieten, Springer-Verlag, Berlin-Heidelberg-New York, 1987.

Received April 16, 1990 and in revised form September 21, 1990.

Katholieke Universiteit Toernooiveld Nijmegen 6525 ED, The Netherlands