INDICES OF UNBOUNDED DERIVATIONS OF C^{*}-ALGEBRAS

Edward Kissin

Abstract

The paper studies some properties of J-symmetric representations of $*$-algebras on indefinite metric spaces. Making use of this, it defines the index $\operatorname{ind}(\delta, S)$ of a $*$-derivation δ of a C^{*}-algebra \mathscr{A} relative to a symmetric implementation S of δ. The index consists of six integers which characterize the J-symmetric representation π_{S} of the domain $D(\delta)$ of δ on the deficiency space $N(S)$ of the operator S. The paper proves the stability of the index under bounded perburbations of the derivation and that, under certain conditions on $\delta, \operatorname{ind}(\delta, S)$ has the same value for all maximal symmetric implementations S of δ. It applies the developed methods to the problem of the classification of symmetric operators with deficiency indices $(1,1)$.

1. Introduction and preliminaries. Let \mathscr{A} be a C^{*}-subalgebra of the algebra $B(H)$ of all bounded operators on a Hilbert space H. A closed $*$-derivation δ from \mathscr{A} into $B(H)$ is a linear mapping from a subalgebra $D(\delta)$ dense in \mathscr{A} into $B(H)$ such that
(i) $\delta(A B)=\delta(A) B+A \delta(B)$,
(ii) $A \in D(\delta)$ implies $A^{*} \in D(\delta)$ and $\delta\left(A^{*}\right)=\delta(A)^{*}$,
(iii) $A_{n} \in D(\delta), A_{n} \rightarrow A$ and $\delta\left(A_{n}\right) \rightarrow B$ implies $A \in D(\delta)$ and $\delta(A)=B$.
An operator S on H implements δ if $D(S)$ is dense in H and

$$
A D(S) \subseteq D(S) \quad \text { and }\left.\quad \delta(A)\right|_{D(S)}=\left.i[S, A]\right|_{D(S)}=\left.i(S A-A S)\right|_{D(S)}
$$

for all $A \in D(\delta)$. If T extends S and also implements δ, then T is called a δ-extension of S. If S is symmetric and it does not have symmetric δ-extensions, it is called a maximal symmetric implementation of δ.

The case when a symmetric operator S implements the zero derivation on \mathscr{A}, i.e., $\left.S A\right|_{D(S)}=\left.A S\right|_{D(S)}, A \in \mathscr{A}$, was extensively investigated (see, for example, [6], [21], [22]). Different sufficient conditions were obtained for S to have a selfadjoint extension T which commutes with \mathscr{A}.

The problem of δ-extension of a symmetric operator S which implements a derivation δ on \mathscr{A} has been addressed in a number of
papers (see, for example, [7], [9]). In [9] it was proved that any *-derivation δ from \mathscr{A} into $B(H)$ implemented by a symmetric operator has a maximal symmetric implementation S. The link between the deficiency indices $n_{+}(S)$ and $n_{-}(S)$ of S and finite-dimensional irreducible representations of \mathscr{A} was investigated. This led to introduction in [10] of the set $M(\delta, \mathscr{A})$ of all pairs $\left(n_{+}(S), n_{-}(S)\right)$ where S are maximal symmetric implementations of δ.
The investigation of symmetric implementations of derivations δ is deeply related to the investigation of J-symmetric representations of their domains $D(\delta)$ on indefinite metric spaces (see [8], [9], [10]). The nature of this relation can be easily seen from the following remarks.

If S is a symmetric operator and S^{*} is its adjoint, then

$$
D\left(S^{*}\right)=D(S)+N_{-}(S)+N_{+}(S),
$$

where $N_{d}(S)=\left\{x \in D\left(S^{*}\right): S^{*} x=i d x\right\}, d= \pm$, are deficiency spaces of S. The numbers $n_{ \pm}(S)=\operatorname{dim} N_{ \pm}(S)$ are called the deficiency indices of S. We define a scalar product on $D\left(S^{*}\right)$ by the formula:

$$
\{x, y\}=(x, y)+\left(S^{*} x, S^{*} y\right)
$$

Then $D\left(S^{*}\right)$ becomes a Hilbert space and

$$
D\left(S^{*}\right)=D(S) \oplus N_{-}(S) \oplus N_{+}(S)
$$

is the orthogonal sum of the subspaces $D(S), N_{-}(S)$ and $N_{+}(S)$ with respect to $\{$,$\} . Let N(S)=N_{-}(S) \oplus N_{+}(S)$ and let Q be the projection on $N(S)$ and Q_{+}be the projection on $N_{+}(S)$ in $D\left(S^{*}\right)$. Set $J=2 Q_{+}-Q$. Then J is an involution on $N(S)$ and $N(S)$ becomes an indefinite metric space $\Pi_{k}\left(k=\min \left(n_{+}(S), n_{-}(S)\right)\right.$ with the indefinite scalar product

$$
[x, y]^{S}=\{J x, y\}, \quad x, y \in N(S) .
$$

Now if S implements a $*$-derivation δ from \mathscr{A} into $B(H)$ it follows easily that $D(\delta)$ acts on $D\left(S^{*}\right)$ as an algebra of bounded operators. Since $D(S)$ is invariant for $D(\delta)$,

$$
\pi_{S}(A)=Q A Q, \quad A \in D(\delta)
$$

is a representation of $D(\delta)$ on $N(S)$. It was proved in [9] that π_{S} is a J-symmetric representation of $D(\delta)$ on $N(S)$ and that there is a one-to-one correspondence between symmetric δ-extensions of S and null subspaces in $N(S)$ invariant for π_{S}. If S is a maximal implementation of δ, then π_{S} does not have null invariant subspace in $N(S)$.

Because of the close relation between derivations of C^{*}-algebras implemented by symmetric operators and J-symmetric representations of *-algebras on indefinite metric spaces the study of such representations becomes very important. Section 2 is devoted to this study. For every J-symmetric representation π we introduce a sextuple $\operatorname{ind}(\pi)=\left(k_{+}, k_{-}, d_{+}(\pi), d_{-}(\pi), i_{+}(\pi), i_{-}(\pi)\right)$ which we call the index of π.

Powers [16] considered E_{0}-semigroups α_{t} of *-endomorphisms of $B(H)$ which have strongly continuous semigroups $U(t)$ of intertwining isometries ("spatial" semigroups). If d is the generator of $U(t)$, then $S=$ id is an unbounded maximal symmetric operator, i.e., $n_{-}(S)=0$, and it is a maximal symmetric implementation of the generator δ of α_{t}. Therefore, $N(S)=N_{+}(S)$ is a Hilbert space, π_{S} is a $*$-representation of $D(\delta)$ on $N(S)$ and $\left(0, n_{+}(S)\right) \in M(\delta, \mathscr{A})$ where \mathscr{A} is the closure of $D(\delta)$. Powers [16] defined the index of α_{t} as the maximal number of non-zero mutually orthogonal projections in the commutant of $\pi_{S}(D(\delta))$. The examples of CAR-flows [16] show that $n_{+}(S)=\infty$ for all of them and that the index has values $i=1,2, \ldots$. In [17] Powers and Robinson gave another definition of the index which is independent of the existence of intertwining semigroups of isometries. Arveson [2] and [3] used another approach to this index theory for E_{0}-semigroups based on the notion of continuous tensor product systems. He showed that for "spatial" semigroups the Powers-Robinson index can be associated with an integer $i=1,2, \ldots$.

Jorgensen and Price [8] studied the variety \mathscr{V} of all operators $V: H \mapsto N(S)$ such that $V A=\pi_{S}(A) V, A \in D(\delta)$, and showed that \mathscr{V} has a unique scalar form which turns \mathscr{V} into an indefinite metric space. They introduced the V-index as the Krein dimension of \mathscr{V}.

In this paper we associate the index $\operatorname{ind}(\delta, S)$ with every symmetric implementation S of a derivation δ. In order to do this we consider the J-symmetric representation π_{S} of $D(\delta)$ and we define $\operatorname{ind}(\delta, S)=\operatorname{ind}\left(\pi_{S}\right)$. If $n_{-}(S)=0$, so that S is a maximal symmetric operator, then

$$
\operatorname{ind}(\delta, S)=\left(n_{+}(S), 0, n_{+}(S), 0, i_{+}\left(\pi_{S}\right), 0\right)
$$

where $i_{+}\left(\pi_{S}\right)$ is the Powers index and $d_{+}\left(\pi_{S}\right)=n_{+}(S)$. If

$$
\min \left(n_{+}(S), n_{-}(S)\right)<\infty
$$

and if π_{S} extends to a bounded representation of \mathscr{A} (for example,
if \mathscr{A} is commutative), we show that $d_{+}\left(\pi_{S}\right)=n_{+}(S)$ and $d_{-}\left(\pi_{S}\right)=$ $n_{-}(S)$.

Theorem 3.6 proves that $\operatorname{ind}(\delta, S)$ is stable under perturbations of δ of the form

$$
\sigma(A)=\delta(A)+i[B, A]
$$

where B is a bounded selfadjoint operator, i.e.,

$$
\operatorname{ind}(\delta, S)=\operatorname{ind}(\sigma, S+B)
$$

Every derivation implemented by a symmetric operator has an infinite number of maximal symmetric implementations. Therefore the question arises as to whether the index $\operatorname{ind}(\delta, S)$ may be the same for all such implementations. In [10] it was shown that if δ has a minimal symmetric implementation T (if \mathscr{A} contains the algebra of all compact operators, any closed derivation of \mathscr{A} has such an implementation [10]) and if $\min \left(n_{-}(T), n_{+}(T)\right)<\infty$, then all maximal implementations of δ have the same deficiency indices. In this paper we show that in this case $\operatorname{ind}(\delta, S)=\operatorname{ind}\left(\delta, S_{1}\right)$ for all maximal symmetric implementations S and S_{1} of δ.

Theorem 3.2 investigates the link between the deficiency indices of maximal symmetric implementations S of δ and dimensions of irreducible representations of \mathscr{A}. It improves the result of [9] and, in particular, it shows that if $1 \in \mathscr{A}$ and if $\max \left(n_{+}(S), n_{-}(S)\right)<\infty$, then there are disjoint sets of irreducible representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ and $\left\{\rho_{j}\right\}_{j=1}^{q}$ of \mathscr{A} such that

$$
n_{+}(S)=\sum_{i=1}^{p} \operatorname{dim} \pi_{i} \quad \text { and } \quad n_{-}(S)=\sum_{j=1}^{q} \operatorname{dim} \rho_{j}
$$

If $\max \left(n_{+}(S), n_{-}(S)\right)=\infty$ and $k=\min \left(n_{+}(S), n_{-}(S)\right)<\infty$ and if π_{S} extends to a bounded representation of $\mathscr{A}(1 \in \mathscr{A})$, then there are irreducible representations $\left\{\pi_{i}\right\}_{1}^{p}$ of \mathscr{A} such that $k=\sum_{i=1}^{p} \operatorname{dim} \pi_{i}$.

Every densely defined symmetric operator S has a *-algebra \mathscr{B}_{S} associated with it: $\mathscr{B}_{S}=\left\{A \in B(H): A\right.$ and A^{*} preserve $D(S)$ and $\left.(S A-A S)\right|_{D(S)}$ extends to a bounded operator $\}$. The closure \mathscr{A}_{S} of \mathscr{B}_{S} is the maximal C^{*}-subalgebra of $B(H)$ such that S generates a closed *-derivation δ_{S} of \mathscr{A}_{S} into $B(H)$ and that $D\left(\delta_{S}\right)=\mathscr{B}_{S}$. In Section 4 we make use of the results of Section 3 and associate a number $\beta(S)$ with every symmetric operator S such that $n_{+}(S)=n_{-}(S)=1$ and such that the representation π_{S} of the algebra \mathscr{B}_{S} on $N(S)$ does not have null invariant subspaces. We obtain that $0 \leq \beta(S)<1$ and that $\beta(S)=\beta(T)$ if S and T are isomorphic.

It is well-known (see, for example, [1]) that up to isomorphism there is only one symmetric operator with the deficiency indices $(1,0)$ and only one with the deficiency indices $(0,1)$. The variety of symmetric operators with the deficiency indices $(1,1)$ is much greater. All symmetric differential operators
$S_{a}=i \frac{d}{d x}, \quad D\left(S_{a}\right)=\left\{y(x): y\right.$ and y^{\prime} in $\left.L_{2}(0, a), y(0)=y(a)=0\right\}$, $0<a<\infty$, have $n_{+}\left(S_{a}\right)=n_{-}\left(S_{a}\right)=1$. Schmudgen [19] showed that S_{a} and S_{b} are not isomorphic if $a \neq b$.

Theorem 4.2 investigates the structure of the representations $\pi_{S_{a}}$ of the algebras $\mathscr{B}_{S_{a}}$ on $N\left(S_{a}\right)$ and shows that $\beta\left(S_{a}\right)=e^{-a}$. This provides us with another proof of Schmudgen's result and also shows that $\beta(S)$ takes all values in the interval $[0,1)$. The question arises as to whether $\beta(S)$ classifies up to isomorphism all the symmetric operators S such that $n_{+}(S)=n_{-}(S)=1$ and such that the representations π_{S} do not have null invariant subspaces.
2. J-symmetric representations of $*$-algebras. In this section we consider J-symmetric representations of $*$-algebras in indefinite metric spaces. For the benefit of the reader and for the sake of being reasonably self-contained, we call attention to the references [12, 15] and provide some amount of detail about indefinite metric spaces and J-symmetric representations.

Let J be an involution on a Hilbert space H, i.e., $J^{*}=J$ and $J^{2}=1$. With the indefinite scalar product

$$
[x, y]=(J x, y), \quad x, y \in H
$$

H becomes an indefinite metric space. A subspace L in H is called
(a) nonnegative if $[x, x] \geq 0$ for all $x \in L$,
(b) positive if $[x, x]>0$ for all $x \in L, x \neq 0$,
(c) uniformly positive if there exists $r>0$ such that $[x, x] \geq$ $r(x, x)$ for all $x \in L$,
(d) null if $[x, x]=0$ for all $x \in L$.

The concepts of nonpositive, negative, uniformly negative subspaces are introduced analogously.

Set $Q=(J+1) / 2$. Then $H=H_{+} \oplus H_{-}, Q$ is the projection onto $H_{+}, 1-Q$ is the projection onto H_{-}and $[x, x]=(x, x)$ if $x \in H_{+}$and $[x, x]=-(x, x)$ if $x \in H_{-}$. Therefore H_{+}is uniformly positive and H_{-}is uniformly negative. Let $k_{d}=\operatorname{dim} H_{d}$, $d= \pm$ and let $k=\min \left(k_{-}, k_{+}\right)$. Then H is called a Π_{k}-space.

Law of inertia [12]. If L is a maximal nonnegative (nonpositive) subspace of H, then

$$
\operatorname{dim} L=k_{+}\left(k_{-}\right)
$$

A representation π of a $*$-algebra \mathscr{A} into $B(H)$ is called J symmetric if for all $A \in \mathscr{A}$ and for all x, y in H

$$
\begin{equation*}
J \pi\left(A^{*}\right)=\pi(A)^{*} J, \quad \text { so that }[\pi(A) x, y]=\left[x, \pi\left(A^{*}\right) y\right] . \tag{1}
\end{equation*}
$$

If a subspace L of H is invariant for π, then by π_{L} we denote the restriction of π to L.
J-symmetric representations π and ρ of a $*$-algebra \mathscr{A} on H and K respectively are called J-equivalent if there is a bounded operator U from H onto K such that $U \pi=\rho U$ and such that

$$
[U x, U y]=[x, y] \text { for all } x, y \in H .
$$

For every subspace L in H the subspace

$$
L^{[\perp]}=\{y \in H:[x, y]=0 \text { for all } x \in L\}
$$

is called J-orthogonal complement of L.
It is well-known that there always exists the decomposition

$$
H=L \oplus L^{\perp}, \quad L^{\perp}=\{x \in H:(y, x)=0 \text { for all } y \in L\} .
$$

In an indefinite metric space the decomposition

$$
\begin{equation*}
H=L[+] L^{[\perp]} \tag{2}
\end{equation*}
$$

(the symbol $[+]$ means that the sum is direct and the summands are J-orthogonal) does not always exist.

Theorem 2.1 ([12]). Let J be an involution on H. Then $H=$ $H_{+} \oplus H_{-}$where $Q=(J+1) / 2$ is the projection onto H_{+}. Let $k_{d}=$ $\operatorname{dim} H_{d}, d= \pm$.
(i) Let L be a nonnegative (nonpositive) subspace of H. The decomposition (2) holds if and only if L is uniformly positive (negative).
(ii) If L is an indefinite subspace, then (2) holds if and only if L decomposes into a direct sum of two uniformly definite subspaces.
(iii) (Iohvidov and Ginzburg, see [12], page 118). Let $k_{+}=\infty$. Then all the positive subspaces of H are uniformly positive if and only if $k_{-}<\infty$.

For Π_{k}-spaces $(k<\infty)$ Shulman [20] obtained the following strong result.

THEOREM 2.2. If π is a J-symmetric representation of a C^{*}-algebra \mathscr{A} on a Π_{k}-space $H(k<\infty)$, then there are maximal negative and maximal positive subspaces N and P respectively such that $H=$ $N[+] P$ and such that N and P are invariant for π. The representation π is similar to a $*$-representation of \mathscr{A}.

Let π be a J-symmetric representation of a $*$-algebra \mathscr{A} on H, let P be a positive invariant subspace of H and let N be a negative invariant subspace of H. Define scalar products on P and N by the formulas:

$$
\langle x, y\rangle_{P}=[x, y], \quad x, y \in P, \quad \text { and }\langle x, y\rangle_{N}=-[x, y], \quad x, y \in N
$$

Then P and N become pre-Hilbert spaces. Set $\rho=\pi_{P}$. Since

$$
\langle\rho(A) x, y\rangle_{P}=[\pi(A) x, y]=\left[x, \pi\left(A^{*}\right) y\right]=\left\langle x, \rho\left(A^{*}\right) y\right\rangle_{P}
$$

ρ is a $*$-representation of \mathscr{A} on P. Similarly, π_{N} is a *-representation of \mathscr{A} on N.

If P and N are uniformly positive and uniformly negative, then they are Hilbert spaces and there are positive r and q such that

$$
\begin{array}{ll}
r\|x\|^{2} \leq\|x\|_{P}^{2} \leq\|x\|^{2}, & x \in P, \text { where }\|x\|_{P}^{2}=\langle x, x\rangle_{P} \tag{3}\\
q\|x\|^{2} \leq\|x\|_{N}^{2} \leq\|x\|^{2}, & x \in N, \text { where }\|x\|_{N}^{2}=\langle x, x\rangle_{N}
\end{array}
$$

We have that

$$
\begin{aligned}
\|\rho(A)\|_{P}^{2} & =\sup \left(\langle\rho(A) x, \rho(A) x\rangle_{P} /\langle x, x\rangle_{P}\right) \\
& =\sup \left((J \pi(A) x, \pi(A) x) /\langle x, x\rangle_{P}\right) \\
& \leq \sup \left(\|\pi(A) x\|^{2} / r\|x\|^{2}\right) \\
& =\|\pi(A)\|^{2} / r .
\end{aligned}
$$

Theorem 2.3. Let L and M be uniformly positive (negative) subspaces of H invariant for π.
(i) If $M \cap L^{[\perp]}=\{0\}$, then there is an invariant subspace K in L such that the representations π_{M} and π_{K} are equivalent, i.e., there is an isometry U from M onto K with respect to the norms $\left\|\|_{M}\right.$ and $\left\|\|_{K}\right.$ such that $U \pi_{M}(A)=\pi_{K}(A) U$ for all $A \in \mathscr{A}$. If, in addition, $L \cap M^{[\perp]}=\{0\}$, then the representations π_{M} and π_{L} are equivalent.
(ii) If L and M are maximal uniformly positive (negative) invariant subspaces, then the representations π_{M} and π_{K} are equivalent.

Proof. Let L and M be uniformly positive. Then, by (3), for x in L and y in M,

$$
\begin{equation*}
|[x, y]|=|(J x, y)| \leq\|x\|\|y\| \leq\|x\|_{L}\|y\|_{M} /\left(r_{L} r_{M}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

Since $M \cap L^{[\perp]}=\{0\}$, for every $y \neq 0$ in M there is x in L such that $[x, y] \neq 0$. Therefore y generates a non-zero bounded functional $f_{y}(x)=[x, y]$ on L. Since L is a Hilbert space, there exists a linear operator S from M into L such that $\operatorname{Ker} S=\{0\}$ and such that for all x in L and y in M,

$$
[x, y]=\langle x, S y\rangle_{L} .
$$

Let K be the closure of the linear manifold $\{S y: y \in M\}$. Then

$$
\begin{aligned}
\left\langle x, \pi_{L}(A) S y\right\rangle_{L} & =\left\langle\pi_{L}\left(A^{*}\right) x, S y\right\rangle_{L}=\left[\pi_{L}\left(A^{*}\right) x, y\right] \\
& =\left[\pi\left(A^{*}\right) x, y\right]=[x, \pi(A) y]=\left[x, \pi_{M}(A) y\right] \\
& =\left\langle x, S \pi_{M}(A) y\right\rangle_{L},
\end{aligned}
$$

so that $\left.\pi_{L}(A) S\right|_{M}=\left.S \pi_{M}(A)\right|_{M}$ for all A in \mathscr{A}. Therefore K is invariant for π and $\left.\pi_{K} S\right|_{M}=\left.S \pi_{M}\right|_{M}$.

Let now y_{n} converge to 0 in M with respect to $\left\|\|_{M}\right.$ and let $S y_{n}$ converge to x in L with respect to $\left\|\|_{L}\right.$. Then, by (4),

$$
\left|\left\langle x, S y_{n}\right\rangle_{L}\right|=\left|\left[x, y_{n}\right]\right| \leq\|x\|_{L}\left\|y_{n}\right\|_{M} /\left(r_{L} r_{M}\right)^{1 / 2}
$$

so that $\left\langle x, S y_{n}\right\rangle_{L}$ converge to 0 . Therefore $\langle x, x\rangle_{L}=0$, so that $x=0$. Thus S is a closed operator. Since it is defined on the whole space M, it is bounded. From this and from Gelfand's and Naimark's theorem $[\mathbf{1 3}, \S 21]$ it follows that there is an isometry U from M onto K such that $\pi_{K} U=U \pi_{M}$.

Let, in addition, $L \cap M^{[\perp]}=\{0\}$. Then, for every $x \neq 0$ in L, there is y in M such that $[x, y] \neq 0$. Therefore $\operatorname{Im} S$ is dense in L, so that $K=L$. Part (i) is proved.

Let L be maximal uniformly positive. By Theorem 2.1(i), $H=$ $L[+] L^{[\perp]}$. If $R=M \cap L^{[\perp]} \neq\{0\}$, then R is a uniformly positive invariant subspace in $L^{[\perp]}$. Therefore L is not maximal. This contradiction shows that $M \cap L^{[\perp]}=\{0\}$. If M is also maximal uniformly positive, then, similarly, $L \cap M^{[\perp]}=\{0\}$. Therefore part (ii) follows from part (i).

Definition. Let π be a J-symmetric representation of a $*$-algebra \mathscr{A} on a Π_{k}-space H, where $k=\min \left(k_{-}, k_{+}\right)$. If P is a uniformly positive subspace in H invariant for π, then we define $i_{+}(P)$ as the maximal number of non-zero mutually orthogonal projections in the commutant of $\pi_{P}(\mathscr{A})$ in P and we set $d_{+}(P)=\operatorname{dim} P$. Set

$$
d_{+}(\pi)=\sup _{P \in \mathscr{P}} d_{+}(P) \quad \text { and } \quad i_{+}(\pi)=\sup _{P \in \mathscr{P}} i_{+}(P)
$$

where \mathscr{P} is the set of all uniformly positive invariant subspaces in H. Similarly, we define numbers $d_{-}(\pi)$ and $i_{-}(\pi)$ by considering the set \mathscr{N} of all uniformly negative invariant subspaces in H. We shall call the sextuple

$$
\operatorname{ind}(\pi)=\left(k_{+}, k_{-}, d_{+}(\pi), d_{-}(\pi), i_{+}(\pi), i_{-}(\pi)\right)
$$

the index of π.
By law of inertia, $d_{+}(\pi) \leq k_{+}$and $d_{-}(\pi) \leq k_{-}$. It is clear that if representations π and ρ on spaces H and K respectively are J equivalent, i.e., there exists a bounded operator T from H onto K such that $[T x, T y]=[x, y], x, y \in H$, and such that $\rho T=T \pi$, then $\operatorname{ind}(\pi)=\operatorname{ind}(\rho)$.

Theorem 2.4. (i) Let H be a separable Π_{k}-space and let L be a uniformly positive invariant subspace. Then there exist uniformly positive invariant subspaces $\left\{L_{j}\right\}$ such that $L \subseteq L_{j}$, that $L_{j} \subseteq L_{j+1}$ and such that $d_{+}(\pi)=\lim _{j \rightarrow \infty} d_{+}\left(L_{j}\right)$ and $i_{+}(\pi)=\lim _{j \rightarrow \infty} i_{+}\left(L_{j}\right)$. The same holds if L is a uniformly negative invariant subspace.
(ii) If there is a uniformly positive invariant subspace M such that $d_{+}(M)=d_{+}(\pi)$ and that $i_{+}(M)=i_{+}(\pi)$, then any uniformly positive invariant subspace L is contained in a uniformly positive invariant subspace P such that $d_{+}(P)=d_{+}(\pi)$ and that $i_{+}(P)=i_{+}(\pi)$. The same holds if M is uniformly negative.
(iii) Let H be a Π_{k}-space such that $k<\infty$ and let π not have null invariant subspaces. Then there exist maximal uniformly positive and maximal uniformly negative invariant subspaces P and N in H such that $d_{-}(\pi)=d_{-}(N), i_{-}(\pi)=i_{-}(N), d_{+}(\pi)=d_{+}(P)$ and $i_{+}(\pi)=i_{+}(P)$.

Proof. Let L be uniformly positive. If $i_{+}(L)<i_{+}(\pi)$, then there exists a uniformly positive invariant subspace M in H such that $i_{+}(L)<i_{+}(M)$. Set $R=M \cap L^{[\perp]}$. If $R=\{0\}$, then it follows from Theorem 2.3(i) that π_{M} is equivalent to a subrepresentation of π_{L}. Therefore $i_{+}(M) \leq i_{+}(L)$. This contradiction shows that $R \neq\{0\}$. Set $K=L[+] R$. Then K is a uniformly positive invariant subspace, $L \subset K$ and $M \cap K^{[\perp]}=\{0\}$. By Theorem 2.3(i), $d_{+}(M) \leq d_{+}(K)$ and $i_{+}(M) \leq i_{+}(K)$.

If $i_{+}(\pi)=\infty$, then $d_{+}(\pi)=\infty$. Since H is separable, there are uniformly positive invariant subspaces $\left\{M_{j}\right\}$ such that

$$
i_{+}(\pi)=\lim _{j \rightarrow \infty} i_{+}\left(M_{j}\right)
$$

Using the construction above, we obtain uniformly positive invariant subspaces $\left\{L_{j}\right\}$ such that $L_{j} \subseteq L_{j+1}$ and that $i_{+}\left(M_{j}\right) \leq i_{+}\left(L_{j}\right)$. Therefore

$$
i_{+}(\pi)=\lim _{j \rightarrow \infty} i_{+}\left(L_{j}\right)=\infty .
$$

Then obviously

$$
\lim _{j \rightarrow \infty} d_{+}\left(L_{j}\right)=d_{+}(\pi)=\infty .
$$

If $i_{+}(\pi)<\infty$, then, making use of the construction at the beginning of the theorem, we obtain a uniformly positive invariant subspace P such that $L \subset P$ and that $i_{+}(P)=i_{+}(\pi)$. If $d_{+}(P)<d_{+}(\pi)$, then there is a uniformly positive invariant subspace M such that $d_{+}(P)<$ $d_{+}(M)$. Using the construction at the beginning of the theorem, we obtain a uniformly positive invariant subspace K such that $P \subset K$ and that $d_{+}(M) \leq d_{+}(K)$. Repeating this process, if necessary, we conclude the proof of part (i).

Part (ii) follows easily from the construction at the beginning of the theorem.

Assume that $k=k_{-}$. Let $\left\{L_{j}\right\}$ be the uniformly positive invariant subspaces as in part (i). Let P be the closure of $\bigcup_{j} L_{j}$. Then P is a nonnegative invariant subspace. Since π does not have null invariant subspaces, it follows from Lemma 2.3(iii) [11] that P is positive. By Theorem 2.1(iii), P is uniformly positive. Therefore

$$
d_{+}(P)=d_{+}(\pi) \quad \text { and } \quad i_{+}(P)=i_{+}(\pi) .
$$

The theorem is proved.
Remark 2.5. Even if $0<k=\min \left(k_{-}, k_{+}\right)<\infty$, one may find that either one or both of the numbers $d_{-}(\pi)$ and $d_{+}(\pi)$ equals 0 . If, however, \mathscr{A} is a C^{*}-algebra, then, by Theorem 2.2, $H=N[+] P$ where N and P are respectively maximal uniformly negative and maximal uniformly positive invariant subspaces. Then, by Theorem 2.4(iii) and by Law of inertia, $d_{-}(\pi)=\operatorname{dim} N=k_{-}$and $d_{+}(\pi)=$ $\operatorname{dim} P=k_{+}$. If $H=N_{1}[+] P_{1}$ is another decomposition of H, then, by Theorem 2.3, the representations π_{N} and $\pi_{N_{1}}$ are equivalent and the representations π_{P} and $\pi_{P_{1}}$ are equivalent.

Let π be a J-symmetric representation of a $*$-algebra \mathscr{A} on H and assume that $H=N[+] P$ where N and P are respectively uniformly negative and uniformly positive invariant subspaces of H. Let L be a maximal null invariant subspace in H. Then

$$
L=\left\{x+T x: x \in L_{-}\right\}
$$

where L_{-}is a closed subspace of N invariant for π, T is an isometry from L_{-}into $P\left(\langle T x, T y\rangle_{P}=\langle x, y\rangle_{N}\right)$ and

$$
\begin{equation*}
\left.\pi(A) T\right|_{L_{-}}=\left.T \pi(A)\right|_{L_{-}} \quad \text { for all } A \text { in } \mathscr{A} . \tag{5}
\end{equation*}
$$

Set

$$
L_{+}=\left\{T x: x \in L_{-}\right\}, \quad N_{L}=N \cap L^{[\perp]} \quad \text { and } \quad P_{L}=P \cap L^{[\perp]} .
$$

From (5) it follows that the representations $\pi_{L_{-}}$and $\pi_{L_{+}}$are equivalent. We also have that

$$
N=N_{L}[+] L_{-}, \quad P=P_{L}[+] L_{+} \quad \text { and } \quad L^{[\perp]}=N_{L}[+] L[+] P_{L}
$$

The subspaces N_{L} and P_{L} are invariant for π.
THEOREM 2.6. Let π be a J-symmetric representation of a *-algebra \mathscr{A} on H and let $H=N[+] P$ where N and P are respectively uniformly negative and positive invariant subspaces. Let L and K be maximal null invariant subspaces, so that $L=\left\{x+T x: x \in L_{-}\right\}$and $K=\left\{x+R x: x \in K_{-}\right\}$. Then
(i) The representations $\pi_{L_{-}}, \pi_{K_{-}}, \pi_{L_{+}}$and $\pi_{K_{+}}$are equivalent.
(ii) If $\pi_{L_{-}}$is a finite orthogonal direct sum of irreducible representations of \mathscr{A}, then the representations $\pi_{N_{L}}$ and $\pi_{N_{K}}$ are equivalent and the representations $\pi_{P_{L}}$ and $\pi_{P_{K}}$ are equivalent.

Proof. Set $M=L \cap K$. Then $M=\left\{x+T x: x \in M_{-}\right\}$where $M_{-}=\left\{x \in L_{-} \cap K_{-}: T x=R x\right\}$. Set

$$
X=L_{-}\langle-\rangle M_{-} \quad \text { and } \quad Y=K_{-}\langle-\rangle M_{-}
$$

Then X and Y are closed subspaces in N. Since L and K are invariant for π, M is invariant for π, so that M_{-}is invariant for π. Since L_{-}and K_{-}are invariant for π, X and Y are invariant for π.

The subspace $K \cap L^{[\perp]}$ is a null invariant subspace and $M \subseteq$ $K \cap L^{[\perp]}$. If $K \cap L^{[\perp]} \neq M$, then $L[+]\left(K \cap L^{[\perp]}\right)$ is a null invariant subspace larger than L. Since L is a maximal null invariant subspace, $K \cap L^{[\perp]}=M$. Similarly, $L \cap K^{[\perp]}=M$.

Define a form $Q(x, y)$ on $X \times Y$ by the formula:

$$
Q(x, y)=[x+T x, y+R y]
$$

If for some x in $X, Q(x, y)=0$ for all y in Y, then $x+T x \in M$, so that $x \in M_{-}$. This contradiction shows that $Q(x, y)$ is nondegenerate. Since T and R are isometries, we have that

$$
\begin{aligned}
|Q(x, y)| & \leq|[x, y]|+|[T x, R y]| \\
& \leq\|x\|_{N}\|y\|_{N}+\|T x\|_{P}\|R y\|_{P}=2\|x\|_{N}\|y\|_{N} .
\end{aligned}
$$

Therefore for every y in $Y, f(x)=Q(x, y)$ is a bounded functional on X. Hence there exists a bounded operator S from Y into X such that

$$
Q(x, y)=\langle x, S y\rangle_{N}, \quad x \in X, y \in Y
$$

Since $Q(x, y)$ is nondegenerate, $\operatorname{Ker}(S)=\{0\}$ and $\operatorname{Im}(S)$ is dense in X. Since T and R commute with π,

$$
\begin{aligned}
\langle x, S \pi(A) y\rangle_{N} & =Q(x, \pi(A) y)=[x+T x, \pi(A) y+R \pi(A) y] \\
& =[x+T x, \pi(A)(y+R y)] \\
& =\left[\pi\left(A^{*}\right)(x+T x), y+R y\right] \\
& =\left[\pi\left(A^{*}\right) x+T \pi\left(A^{*}\right) x, y+R y\right] \\
& =Q\left(\pi\left(A^{*}\right) x, y\right)=\left\langle\pi\left(A^{*}\right) x, S y\right\rangle_{N} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\langle\pi\left(A^{*}\right) x, S y\right\rangle_{N} & =-\left[\pi\left(A^{*}\right) x, S y\right] \\
& =-[x, \pi(A) S y]=\langle x, \pi(A) S y\rangle_{N}
\end{aligned}
$$

Therefore $\left.S \pi(A)\right|_{Y}=\left.\pi(A) S\right|_{Y}$. From this and from Gelfand's and Naimark's theorem [13, §21] it follows that there is an isometry U from Y onto X such that $\left.U \pi(A)\right|_{Y}=\left.\pi(A) U\right|_{Y}$. Therefore the representations $\pi_{L_{-}}$and $\pi_{K_{-}}$are equivalent. Similarly, the representations $\pi_{L_{+}}$and $\pi_{K_{+}}$are also equivalent. Since the representations $\pi_{L_{-}}$ and $\pi_{L_{+}}$are equivalent, part (i) is proved.

In order to prove part (ii) we shall prove the following lemma.
Lemma 2.7. Let π and ρ be equivalent *-representations of a *-algebra \mathscr{A} on Hilbert spaces H and K respectively. Let H_{1} be an invariant subspace of H such that the representation $\pi_{1}=\pi_{H_{1}}$ is irreducible and let K_{1} be an invariant subspace of K such that the representation $\rho_{1}=\rho_{K_{1}}$ is irreducible. If π_{1} and ρ_{1} are equivalent, then the representations $\pi_{H \ominus H_{1}}$ and $\rho_{K \ominus K_{1}}$ are equivalent.

Proof. Let U be an isometry from H onto K such that $U \pi(A)=$ $\rho(A) U$ for all A in \mathscr{A}. If $U H_{1}=K_{1}$, the proof is obvious. Let $U H_{1} \neq K_{1}$, let H_{2} be the closed span of $H_{1}+U^{-1} K_{1}$ and let K_{2} be the closed span of $K_{1}+U H_{1}$. Then H_{2} is invariant for π, K_{2} is invariant for $\rho, U H_{2}=K_{2}$ and $\left.U \pi\right|_{H_{2}}=\left.\rho U\right|_{H_{2}}$. Therefore $\pi_{H \ominus H_{2}}$ is equivalent to $\rho_{K \ominus K_{2}}$. In order to prove the lemma it is sufficient to show that the representations $\pi_{H_{2} \ominus H_{1}}$ and $\rho_{K_{2} \ominus K_{1}}$ are equivalent.

Since H_{1} and H_{2} are invariant for $\pi, H_{2} \ominus H_{1}$ is invariant for π. Let L and M be subspaces invariant for π. Set $\widetilde{L}=$
$(L \vee M) \ominus M$ and $\widetilde{M}=L \ominus(L \cap M)$. It follows from Proposition 2.1.5 [18] that the representations $\pi_{\widetilde{L}}$ and $\pi_{\tilde{M}}$ are equivalent. Substituting $U^{-1} K_{1}$ for L and H_{1} for M we obtain that $\widetilde{L}=H_{2} \ominus H_{1}$ and that $\widetilde{M}=U^{-1} K_{1} \ominus\left(U^{-1} K_{1} \cap H_{1}\right)$. Since π_{1} and ρ_{1} are irreducible and since $U H_{1} \neq K_{1}, U^{-1} K_{1} \cap H_{1}=\{0\}$. Thus $M=U^{-1} K_{1}$ and the representations $\pi_{H_{2} \ominus H_{1}}$ and $\pi_{U^{-1} K_{1}}$ are equivalent. Similarly, we obtain that the representations $\pi_{K_{2} \ominus K_{1}}$ and $\pi_{U H_{1}}$ are equivalent. Since π_{1} and ρ_{1} are equivalent, the representations $\pi_{U H_{1}}$ and $\pi_{U^{-1} K_{1}}$ are equivalent. Therefore $\pi_{H_{2} \ominus H_{1}}$ is equivalent to $\pi_{K_{2} \ominus K_{1}}$. The lemma is proved.

We shall now continue the proof of Theorem 2.6. From Lemma 2.7 it follows that if π_{1} and ρ_{1} are finite orthogonal direct sums of irreducible representations, then the representations $\pi_{H \ominus H_{1}}$ and $\rho_{K \ominus K_{1}}$ are equivalent.

Since $N=N_{L}[+] L_{-}=N_{K}[+] K_{-}$, it follows from (i) that the representations $\pi_{N_{L}}$ and $\pi_{N_{K}}$ are equivalent. Similarly, the representations $\pi_{P_{L}}$ and $\pi_{P_{K}}$ are equivalent. The theorem is proved.
3. Indices of derivations of C^{*}-algebras. In this section we apply the results of Section 2 to bounded and unbounded $*$-derivations of C^{*}-algebras implemented by symmetric operators.

Let H be a Hilbert space, let δ be a closed $*$-derivation of a C^{*} subalgebra \mathscr{A} of $B(H)$ into $B(H)$ and let a symmetric operator S implement δ, i.e.,

$$
A D(S) \subseteq D(S) \quad \text { and }\left.\quad \delta(A)\right|_{D(S)}=\left.i[S, A]\right|_{D(S)} \quad \text { for all } A \in D(\delta)
$$

Recall that $D\left(S^{*}\right)$ becomes a Hilbert space with respect to the scalar product

$$
\{x, y\}=(x, y)+\left(S^{*} x, S^{*} y\right), \quad x, y \in D\left(S^{*}\right)
$$

and that

$$
D\left(S^{*}\right)=D(S) \oplus N_{+}(S) \oplus N_{-}(S)
$$

is the direct orthogonal sum of the subspaces $D(S), N_{+}(S)$ and $N_{-}(S)$ with respect to this scalar product. The subspace $N(S)=$ $N_{-}(S) \oplus N_{+}(S)$ becomes an indefinite metric space with the indefinite scalar product

$$
[x, y]^{S}=\{J x, y\}, \quad x, y \in N(S)
$$

where J is the involution on $N(S)$ defined in $\S 1$. Then $\operatorname{dim} N_{d}(S)=$ $n_{d}(S), d= \pm$, are the deficiency indices of S, and we have that
$[x, x]^{S}=2(x, x)>0$ if $x \in N_{+}(S)$, and $[x, x]^{S}=-2(x, x)<0$ if $x \in N_{-}(S)$. Thus $N(S)$ decomposes into a simultaneously orthogonal and J-orthogonal sum $N(S)=N_{+}(S)+N_{-}(S)$, where $N_{+}(S)$ and $N_{-}(S)$ are respectively uniformly positive and negative subspaces in $N(S)$.

It follows easily that for every A in $D(\delta)$

$$
A D\left(S^{*}\right) \subseteq D\left(S^{*}\right) \quad \text { and }\left.\quad \delta(A)\right|_{D\left(S^{*}\right)}=\left.i\left[S^{*}, A\right]\right|_{D\left(S^{*}\right)} .
$$

Set $\|x \mid\|^{2}=\{x, x\}$ for $x \in D\left(S^{*}\right)$. Then

$$
\begin{align*}
\|A x\|^{2}= & (A x, A x)+\left(S^{*} A x, S^{*} A x\right) \tag{6}\\
= & \|A x\|^{2}+\left(A S^{*} x, A S^{*} x\right) \\
& +(\delta(A) x, \delta(A) x) \leq\|A\|^{2}\|x\|^{2}+\|\delta(A)\|^{2}\|x\|^{2} \\
\leq & \left(\|A\|^{2}+\|\delta(A)\|^{2}\right)\|x \mid\|^{2} .
\end{align*}
$$

Therefore $D(\delta)$ acts as an algebra of bounded operators on $D\left(S^{*}\right)$. Let Q be the projection onto $N(S)$ in $D\left(S^{*}\right)$. Since $D(S)$ is invariant for $D(\delta)$, we have that

$$
\pi_{S}(A)=Q A Q, \quad A \in D(\delta)
$$

is a representation of $D(\delta)$ on $N(S)$.
Theorem 3.1 ([9]). (i) (cf. [8]) π_{S} is a J-symmetric representation of $D(\delta)$ onto $N(S)$.
(ii) There is a one-to-one correspondence between closed symmetric δ-extensions of S and closed null subspaces in $N(S)$ invariant for π_{S}.
(iii) There is a maximal symmetric implementation T of δ which δ-extends S. The representation π_{T} does not have null invariant subspaces in $N(T)$.
(iv) Let S be a maximal symmetric implementation of δ. If

$$
\max \left(n_{-}(S), n_{+}(S)\right)<\infty
$$

or if \mathscr{A} is commutative and $\min \left(n_{-}(S), n_{+}(S)\right)<\infty$ then π_{S} extends to a bounded representation of \mathscr{A} onto $N(S)$.

Let P and N be respectively uniformly positive and uniformly negative subspaces in $N(S)$ invariant for π_{S}. Then they become Hilbert spaces with respect to the scalar products $\langle x, y\rangle_{P}=[x, y]^{S}$, $x, y \in P$, and $\langle x, y\rangle_{N}=-[x, y]^{S}, x, y \in N$. Let π_{P} and π_{N} be the restrictions of the representation π_{S} to P and N respectively. Then π_{P} and π_{N} are *-representations of $D(\delta)$.

From Theorems 2.2 and 3.1 we obtain the following theorem.

Theorem 3.2. Let S be a maximal symmetric implementation of δ and let $n=\min \left(n_{-}(S), n_{+}(S)\right)<\infty$.
(i) Let $D(\delta)=\mathscr{A}$ (δ is a bounded derivation) or let π_{S} extend to a bounded J-symmetric representation of \mathscr{A}. Then
(1) $N(S)=N[+] P$ where N and P are respectively uniformly negative and uniformly positive subspaces invariant for π_{S}.
(2) Let Z be the maximal subspace in $N(S)$ such that $\pi_{S} \mid z=0$ (if, for example, $1 \in \mathscr{A}$, then $Z=\{0\}$.) Then either $Z \subseteq P$ or $Z \subseteq N$.
(3) Assume that $n=n_{-}(S)$. Then there are finite-dimensional irreducible representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ of \mathscr{A} such that

$$
\left.\pi_{S}\right|_{N}= \begin{cases}\sum_{i=1}^{p} \oplus \pi_{i}, & \text { if } Z \subseteq P, \\ \left.\left(\sum_{i=1}^{p} \oplus \pi_{i}\right) \oplus \pi_{S}\right|_{Z}, & \text { if } Z \subseteq N .\end{cases}
$$

If also $n_{+}(S)<\infty$, then there are finite-dimensional irreducible representations $\left\{\rho_{j}\right\}_{j=1}^{m}$ of \mathscr{A} such that

$$
\left.\pi_{S}\right|_{P}= \begin{cases}\left(\sum_{j=1}^{m} \oplus \rho_{j}\right) \oplus \pi_{S} \mid Z, & \text { if } Z \subseteq P, \\ \sum_{j=1}^{m} \oplus \rho_{j}, & \text { if } Z \subseteq N\end{cases}
$$

The sets $\left\{\pi_{i}\right\}$ and $\left\{\rho_{j}\right\}$ are disjoint.
(ii) Let $D(\delta) \neq \mathscr{A}$ and let π_{S} be nondegenerate. If $N(S)$ is the closure of $N[+] P$ where N and P are respectively negative and positive closed subspaces invariant for π_{S}, then π_{S} extends to a bounded representation of \mathscr{A} and $N(S)=N[+] P$.

Proof. It follows from (6) that $\|A A\|^{2} \leq\|A\|^{2}+\|\delta(A)\|^{2}$, where $\||A|\|$ is the norm of an operator A in $D\left(S^{*}\right)$ with respect to the scalar product $\{$,$\} . If D(\delta)=\mathscr{A}$, then, since δ is closed, δ is bounded. Therefore

$$
\|\mid\| A\left\|\left\|^{2} \leq\right\| A\right\|^{2}\left(1+\|\delta\|^{2}\right) .
$$

Since $\left\|\pi_{S}(A)\right\| \leq\left\|\left|Q Q\left\|^{2}| | A\left|\left\|\left|=\|A \mid\|, \pi_{S}\right.\right.\right.\right.\right.\right.$ is a bounded representation of \mathscr{A}. Since $\min \left(n_{-}(S), n_{+}(S)\right)<\infty$, it follows from Theorems 2.1 and 2.2 that $N(S)=N[+] P$, where N and P are respectively uniformly negative and uniformly positive invariant subspaces. Part (i)(1) is proved.

If $x+y \in Z, x \in N, y \in P$, then $\pi_{S}(A) x=0$ and $\pi_{S}(A) y=0$. Since Z is maximal, x and y belong to Z. Therefore $Z=Z_{N}[+] Z_{P}$ where $Z_{N}=Z \cap N$ and $Z_{P}=Z \cap P$. Since S is a maximal symmetric implementation of δ, by Theorem 3.1 (iii), π_{S} does not have null invariant subspaces. Therefore either $Z \subseteq N$ or $Z \subseteq P$. Part (i)(2) is proved.

Let $n=n_{-}(S)$ and let $Z \subseteq N$. Then the representation π_{S} is nondegenerate on $N \ominus Z$ and $*$-symmetric with respect to the definite scalar product $\langle x, y\rangle_{N}=-[x, y]^{S}$. Since $N \ominus Z$ is finitedimensional, there are finite-dimensional representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ of \mathscr{A} such that $\left.\pi_{S}\right|_{N \ominus Z}=\sum_{i=1}^{p} \oplus \pi_{i}$. If $n_{+}(S)<\infty$, then similarly there are finite-dimensional representations $\left\{\rho_{j}\right\}_{j=1}^{m}$ of \mathscr{A} such that $\left.\pi_{S}\right|_{P}=\sum_{j=1}^{m} \oplus \rho_{j}$.
Let $\pi_{i}=\left.\pi_{S}\right|_{L_{i}}$ be equivalent to $\rho_{j}=\left.\pi_{S}\right|_{K}$, where $L_{i} \subseteq N$ and $K_{j} \subseteq P$. Let U be the isometry from L_{i} onto K_{j} such that $U \pi_{i}=$ $\rho_{j} U$. Then the subspace $M=\left\{x+U x: x \in L_{i}\right\}$ is a null subspace in $N(S)$ invariant for π_{S}, since

$$
\begin{aligned}
{[x+U x, x+U x]^{S} } & =[x, x]^{S}+[U x, U x]^{S} \\
& =-\langle x, x\rangle_{N}+\langle U x, U x\rangle_{P}=0
\end{aligned}
$$

and since

$$
\begin{aligned}
\pi_{S}(A)(x+U x) & =\pi_{i}(A) x+\rho_{j}(A) U x \\
& =\pi_{i}(A) x+U \pi_{i}(A) x \in M
\end{aligned}
$$

for all $x \in L_{i}$ and all $A \in D(\delta)$. Since S is a maximal symmetric implementation of δ, by Theorem 3.1(iii), π_{S} does not have null invariant subspaces. Therefore the sets $\left\{\pi_{i}\right\}$ and $\left\{\rho_{i}\right\}$ are disjoint. Part (i) is proved.
Let now $D(\delta) \neq \mathscr{A}$. Since P is positive, by Theorem 2.1, P is uniformly positive and $N(S)=P[+] P^{[\perp]}$. By Law of inertia, $\operatorname{dim}(N) \leq$ $n_{-}(S)<\infty$. Therefore, since $N \subseteq P^{[\perp]}$, either $N=P^{[\perp]}$ or there is x in $P^{[\perp]}$ which is J-orthogonal to N. If such an x exists, it is J-orthogonal to $N[+] P$ and therefore it is J-orthogonal to H. This contradiction shows that $N=P^{[\perp]}$, so that $H=N[+] P$.

From Lemma 4 [20] it follows that π_{S} is similar to a $*$-representation of $D(\delta)$. Therefore π_{S} extends to a bounded representation of \mathscr{A} which completes the proof of the theorem.

If $N(S)=N[+] P$, then, by Law of inertia, $\operatorname{dim} N=n_{-}(S)$ and $\operatorname{dim} P=n_{+}(S)$. From this and from Theorem 3.2 we obtain the following corollary.

Corollary 3.3. Let the conditions of Theorem 3.2(i) hold and let $q=\operatorname{dim} Z$. Then

$$
n_{-}(S)= \begin{cases}\sum_{i=1}^{p} \operatorname{dim} \pi_{i}, & \text { if } Z \subseteq P, \\ \sum_{i=1}^{p} \operatorname{dim} \pi_{i}+q, & \text { if } Z \subseteq N .\end{cases}
$$

If, in addition, $n_{+}(S)<\infty$, then

$$
n_{+}(S)= \begin{cases}\sum_{j=1}^{m} \operatorname{dim} \rho_{j}+q, & \text { if } Z \subseteq P \\ \sum_{j=1}^{m} \operatorname{dim} \rho_{j}, & \text { if } Z \subseteq N\end{cases}
$$

Definition. Let now S be a symmetric implementation of a *-derivation δ of a C^{*}-algebra \mathscr{A} into $B(H)$. Then π_{S} is a J-symmetric representation of $D(\delta)$ on $N(S)$. We shall call the sextuple

$$
\begin{aligned}
\operatorname{ind}(\delta, S) & =\operatorname{ind}\left(\pi_{S}\right) \\
& =\left(n_{+}(S), n_{-}(S), d_{+}\left(\pi_{S}\right), d_{-}\left(\pi_{S}\right), i_{+}\left(\pi_{S}\right), i_{-}\left(\pi_{S}\right)\right)
\end{aligned}
$$

the index of δ relative to S.
From Remark 2.5 and from Theorem 3.2(i) we obtain the following lemma.

Lemma 3.4. (i) If $\max \left(n_{+}(S), n_{-}(S)\right)<\infty$, then $d_{+}\left(\pi_{S}\right)=n_{+}(S)$ and $d_{-}\left(\pi_{S}\right)=n_{-}(S)$.
(ii) If $\min \left(n_{+}(S), n_{-}(S)\right)<\infty$ and if either $D(\delta)=\mathscr{A}$ or the representation π_{S} extends to a bounded representation of \mathscr{A}, then $d_{+}\left(\pi_{S}\right)=n_{+}(S)$ and $d_{-}\left(\pi_{S}\right)=n_{-}(S)$.

Remark 3.5. If $n_{-}(S)=0$, so that S is a maximal symmetric operator, then $i_{+}\left(\pi_{S}\right)$ is the index introduced by Powers [16].

Let S be a symmetric implementation of a derivation δ of a C^{*}-subalgebra \mathscr{A} of $B(H)$ into $B(H)$ and let B be a selfadjoint bounded operator. Then the operator $T=S+B$ is a symmetric implementation of the $*$-derivation $\sigma(A)=\delta(A)+i[B, A]$ of \mathscr{A} into $B(H)$. Then $D(\sigma)=D(\delta)$.

Theorem 3.6. (i) The representations π_{S} and π_{T} of $D(\delta)$ are J-equivalent, i.e., there exists a bounded operator U from $N(S)$ onto $N(T)$ such that $\pi_{T} U=U \pi_{S}$ and such that $[U x, U y]^{T}=[x, y]^{S}$ for all $x, y \in N(S)$.
(ii) $\operatorname{ind}(\delta, S)=\operatorname{ind}(\sigma, T)$.

Proof. It is well-known (see [1, §100]) that $n_{+}(S)=n_{+}(T)$ and that $n_{-}(S)=n_{-}(T)$. We shall consider a quadratic form $\langle\langle,\rangle\rangle^{S}$ on $D\left(S^{*}\right)$, given by

$$
\langle\langle x, y\rangle\rangle^{S}=i\left(\left(x, S^{*} y\right)-\left(S^{*} x, y\right)\right), \quad x, y \in D\left(S^{*}\right)
$$

(see [4], [8]). Given any x and y in $D\left(S^{*}\right)$ and decomposing them

$$
x=x_{0}+x_{+}+x_{-} \quad \text { and } \quad y=y_{0}+y_{+}+y_{-},
$$

where $x_{0}, y_{0} \in D(S), x_{+}, y_{+} \in N_{+}(S)$ and $x_{-}, y_{-} \in N_{-}(S)$, we obtain that

$$
\begin{equation*}
\langle\langle x, y\rangle\rangle^{S}=2\left(x_{+}, y_{+}\right)-2\left(x_{-}, y_{-}\right)=\left[x_{+}+x_{-}, y_{+}+y_{-}\right]^{S} . \tag{7}
\end{equation*}
$$

We have that $D\left(S^{*}\right)=D\left(T^{*}\right)$ and that $T^{*}=S^{*}+B$. It is clear that

$$
\langle\langle x, y\rangle\rangle^{S}=\langle\langle x, y\rangle\rangle^{T}, \quad \text { if } x, y \in D\left(S^{*}\right)
$$

and that

$$
\langle\langle x, y\rangle\rangle^{S}=0 \quad \text { if } x, y \in D(S) .
$$

Therefore the forms $\langle\langle,\rangle\rangle^{S}$ and $\langle\langle,\rangle\rangle^{T}$ generate the same indefinite scalar product on the quotient space $D\left(S^{*}\right) / D(S)=D\left(T^{*}\right) / D(T)$.

Let Q_{S} and Q_{T} be the projections onto $N(S)$ and onto $N(T)$ respectively in $D\left(S^{*}\right)$. Then it follows from (7) that for all $x, y \in$ $D\left(S^{*}\right)$,

$$
\begin{equation*}
\left[Q_{S} x, Q_{S} y\right]^{S}=\langle\langle x, y\rangle\rangle^{S}=\langle\langle x, y\rangle\rangle^{T}=\left[Q_{T} x, Q_{T} y\right]^{T} . \tag{8}
\end{equation*}
$$

For $x \in N(S)$, set $U x=Q_{T} x$. Since $Q_{T} D\left(S^{*}\right)=N(T)$ and since $Q_{T} D(S)=\{0\}, U$ is a bounded operator which maps $N(S)$ onto $N(T)$. By (8),

$$
[x, y]^{S}=[U x, U y]^{T} .
$$

Decomposing any x in $D\left(S^{*}\right), x=y+z$, where $y \in D(S)$ and $z \in N(S)$, we obtain that

$$
Q_{T} Q_{S} x=Q_{T} Q_{S}(y+z)=Q_{T} z=Q_{T}(y+z)=Q_{T} x .
$$

Therefore, for any x in $N(S)$ and for any A in $D(\delta)$,

$$
U \pi_{S}(A) x=Q_{T} Q_{S} A Q_{S} x=Q_{T} Q_{S} A x=Q_{T} A x .
$$

Since $D(S)$ is invariant for $A, Q_{T} A=Q_{T} A Q_{T}$. Hence

$$
U \pi_{S}(A) x=Q_{T} A x=Q_{T} A Q_{T} x=\pi_{T}(A) U x .
$$

Thus part (i) is proved. Part (ii) follows from (i).
Theorem 3.7. Let S and T be maximal symmetric implementations of δ and let $D=D(S) \cap D(T)$ be dense in H. Set $R=\left.S\right|_{D}$. Then R is a symmetric implementation of δ. Let
(1) $\min \left(n_{+}(R), n_{-}(R)\right)<\infty$,
(2) $\left.(T-S)\right|_{D}$ extends to a bounded operator B,
(3) either $D(\delta)=\mathscr{A}$ or π_{R} extends to a bounded representation of \mathscr{A}.
Then the representations π_{S} and π_{T} are J-equivalent, so that $\operatorname{ind}(\delta, S)=\operatorname{ind}(\delta, T)$.

Proof. We have that $A D \subseteq D$ for all $A \in D(\delta)$. Therefore R is a symmetric implementation of δ and

$$
\left.\delta(A)\right|_{D}=\left.i[S, A]\right|_{D}=\left.i[T, A]\right|_{D}
$$

Hence B belongs to the commutant \mathscr{A}^{\prime} of \mathscr{A} and

$$
R \subseteq S \quad \text { and } \quad R \subseteq T-B
$$

Set $F=T-B$. Then F is a maximal symmetric implementation of $\delta, D(T)=D(F)$ and $R=\left.F\right|_{D}$. If $D(\delta)=\mathscr{A}$ or if π_{R} extends to a bounded representation of \mathscr{A}, then, by Theorem 2.2, N(R)=P[+]N where P and N are respectively uniformly positive and uniformly negative subspaces invariant for π_{R}. By Theorem 3.1(ii), there is a maximal null invariant subspace L in $N(R)$ which corresponds to S. Then $L=\left\{x+U x: x \in L_{-}\right\}$where L_{-}is a subspace in N invariant for π_{R} and U is an isometry from L_{-}into P, i.e., $\langle U x, U x\rangle_{P}=\langle x, x\rangle_{N}$. Since $\min \left(n_{+}(R), n_{-}(R)\right)<\infty, L$ is finitedimensional.

In the same way as in Theorem 2.6 set

$$
N_{L}=N \cap L^{[\perp]} \text { and } P_{L}=P \cap L^{[\perp]} .
$$

Then

$$
N=N_{L}[+] L_{-}, \quad P=P_{L}[+] L_{+} \quad \text { and } \quad L^{[\perp]}=N_{L}[+] L[+] P_{L}
$$

where $L_{+}=\left\{U x: x \in L_{-}\right\}$. It is easy to see that

$$
N(S)=N_{L}[+] P_{L} \quad \text { and that } \quad \pi_{S}=\left.\pi_{R}\right|_{N(S)}
$$

where N_{L} and P_{L} are respectively uniformly negative and positive subspaces invariant for π_{S}.

Similarly, there is a maximal null invariant subspace $K=\{x+$ $\left.V x: x \in K_{-}\right\}$in $N(R)$ which corresponds to F, where K_{-}is a finite-dimensional subspace in N invariant for π_{R} and where V is isometry from K_{-}into P. Then, as above, $N(F)=N_{K}[+] P_{K}$, where $N_{K}=N \cap K^{[\perp]}$ and $P_{K}=P \cap K^{[\perp]}$ are respectively uniformly negative and uniformly positive subspaces invariant for π_{F}.

It follows from Theorem 2.6 that the representations $\left(\pi_{S}\right)_{N_{L}}=$ $\left(\pi_{R}\right)_{N_{L}}$ and $\left(\pi_{F}\right)_{N_{K}}=\left(\pi_{R}\right)_{N_{K}}$ are equivalent and that the representations $\left(\pi_{S}\right)_{P_{L}}=\left(\pi_{R}\right)_{P_{L}}$ and $\left(\pi_{F}\right)_{P_{K}}=\left(\pi_{R}\right)_{P_{K}}$ are equivalent. Therefore the representations π_{S} and π_{F} are J-equivalent, i.e., there exists a bounded operator U from $N(S)$ onto $N(F)$ such that $U \pi_{S}=\pi_{F} U$ and $[U x, U y]^{F}=[x, y]^{S}$ for all $x, y \in N(S)$. By Theorem 3.6, the representations π_{T} and π_{F} are J-equivalent, so that π_{S} and π_{T} are J-equivalent. The theorem is proved.

Definition. We say that a symmetric implementation T of a *-derivation δ from a C^{*}-subalgebra \mathscr{A} of $B(H)$ into $B(H)$ is minimal if for every symmetric implementation S of δ there is a bounded selfadjoint operator B in the commutant of \mathscr{A} such that $T+B \subseteq S$.

In [10] it was proved that δ has a minimal implementation if \mathscr{A} contains the algebra $C(H)$ of all compact operators. From this and from Theorem 3.7 we obtain the following theorem.

Theorem 3.8. Let δ be a -derivation of a C^{*}-subalgebra \mathscr{A} of $B(H)$ into $B(H)$. If δ has a minimal implementation T (for example if $C(H) \subseteq \mathscr{A})$, if $\min \left(n_{+}(T), n_{-}(T)\right)<\infty$ and if either $D(\delta)=\mathscr{A}$ or π_{T} extends to a bounded representation of \mathscr{A}, then the representations π_{S} and $\pi_{S_{1}}$ are J-equivalent for all maximal symmetric implementations S and S_{1} of δ, so that $\operatorname{ind}(\delta, S)=\operatorname{ind}\left(\delta, S_{1}\right)$.
4. Isomorphism of symmetric operators. We shall apply the results about $*$-derivations of C^{*}-algebras to the investigation of symmetric operators. Every densely defined symmetric operator S has a *-algebra associated with it:

$$
\begin{aligned}
\mathscr{B}_{S}=\{A \in B(H): & A D(S) \subseteq D(S), A^{*} D(S) \subseteq D(S) \text { and } \\
& \left.\left.(S A-A S)\right|_{D(S)} \text { extends to a bounded operator }\right\} .
\end{aligned}
$$

By \mathscr{A}_{S} we denote the norm closure of \mathscr{B}_{S}. Then \mathscr{A}_{S} is a C^{*} algebra, $\left.\delta_{S}(A)\right|_{D(S)}=i\left[S,\left.A\right|_{D(S)}\right.$ is a closed $*$-derivation from \mathscr{A}_{S} into $B(H)$ and $D\left(\delta_{S}\right)=\mathscr{B}_{S}$. If S implements a $*$-derivation δ of a C^{*}-subalgebra \mathscr{A} of $B(H)$ into $B(H)$, then $D(\delta) \subseteq \mathscr{B}_{S}$ and $\mathscr{A} \subseteq \mathscr{A}_{S}$. Thus \mathscr{A}_{S} is the largest C^{*}-subalgebra of $B(H)$ on which S generates a closed $*$-derivation and π_{S} is a J-symmetric representation of \mathscr{B}_{S} on $N(S)$.
Problems. (i) Is S always a maximal symmetric implementation of δ_{S} ? In other words, does $\pi_{S}\left(\mathscr{B}_{S}\right)$ have null invariant subspaces in $N(S)$ or not? If $\pi_{S}\left(\mathscr{B}_{S}\right)$ has such subspaces, there exists a maximal
δ_{S}-extension T of S such that $\mathscr{B}_{S} \subseteq \mathscr{B}_{T}$ and that $\pi_{T}\left(\mathscr{B}_{S}\right)$ does not have null invariant subspaces in $N(T)$.
(ii) Let $\pi_{S}\left(\mathscr{B}_{S}\right)$ have no null invariant subspaces in $N(S)$. Assume also that π_{S} extends to a bounded J-symmetric representation $\tilde{\pi}_{S}$ of \mathscr{A}_{S} and that $N(S)=N[+] P$ where N and P are respectively uniformly negative and positive invariant subspaces for $\tilde{\pi}_{S}$. Are the restrictions of $\tilde{\pi}_{S}$ to N and P always irreducible?

Symmetric operators S and T on H and H_{1} respectively are isomorphic if there exists an isometry V from H onto H_{1} such that

$$
\begin{equation*}
V D(S)=D(T) \quad \text { and }\left.\quad V S\right|_{D(S)}=\left.T V\right|_{D(S)} \tag{9}
\end{equation*}
$$

Ginzburg [5] and Phillips [14] showed that in any Π_{k}-space H there is a one-to-one correspondence between maximal nonpositive subspaces N in H and operators K from H_{-}into H_{+}such that $\|K\| \leq 1: N=\left\{x+K x: x \in H_{-}\right\}$. If, in addition, N is uniformly negative, then $\|K\|<1$.

For every symmetric operator S we denote by $\mathscr{K}(S)$ the set of all operators K from the Hilbert space $N_{-}(S)$ into the Hilbert space $N_{+}(S)$ (with respect to the scalar product $\{$,$\}) such that \||K|\|<1$ $(|||K| \|$ is the norm of an operator K in $N(S)$ with respect to the scalar product $\{$,$\}) and such that the subspaces \{x+K x: x \in$ $\left.N_{-}(S)\right\}$ are invariant for the representation π_{S} of the algebra \mathscr{B}_{S}.

The following lemma gives necessary conditions for two symmetric operators to be isomorphic in terms of the representations π_{S} of the algebras \mathscr{B}_{S} and in terms of the sets $\mathscr{K}(S)$.

Lemma 4.1. Let symmetric operators S on H and T on L be isomorphic and let V be the isometry from H onto L such that $V S=$ $T V$. then $V \mathscr{B}_{S} V^{*}=\mathscr{B}_{T}$ and there exists an isometry U from $N(S)$ onto $N(T)\left(\|\|U x|\|=\|||x|\|, x \in N(S))\right.$ such that $U N_{d}(S)=N_{d}(T)$, $d= \pm$, and such that

$$
\pi_{T}\left(V A V^{*}\right)=U \pi_{S}(A) U^{*}, \quad A \in \mathscr{B}_{S}
$$

and

$$
\mathscr{K}(T)=U \mathscr{K}(S) U^{*}=\left\{U K U^{*}: K \in \mathscr{K}(S)\right\} .
$$

Proof. We have that $V^{*} V=1_{H}$ and $V V^{*}=1_{L}$. From this and from (9) we obtain that

$$
\begin{aligned}
& V^{*} D\left(T^{*}\right)=D\left(S^{*}\right), \quad V^{*} D(T)=D(S),\left.\quad S^{*} V^{*}\right|_{D(T)}=\left.V^{*} T^{*}\right|_{D(T)}, \\
& V D\left(S^{*}\right)=D\left(T^{*}\right),\left.\quad S V^{*}\right|_{D(T)}=\left.V^{*} T\right|_{D(T)},\left.\quad V S^{*}\right|_{D(S)}=\left.T^{*} V\right|_{D(S)} .
\end{aligned}
$$

Therefore it follows immediately that

$$
V N_{d}(S)=N_{d}(T) \quad \text { and } \quad V^{*} N_{d}(T)=N_{d}(S), \quad d= \pm,
$$

and that

$$
V \mathscr{B}_{S} V^{*}=\mathscr{B}_{T} \quad \text { and } \quad V \mathscr{A}_{S} V^{*}=\mathscr{A}_{T} .
$$

We also have that for $x, y \in D\left(S^{*}\right)$,

$$
\begin{aligned}
\{V x, V y\} & =(V x, V y)+\left(T^{*} V x, T^{*} V y\right) \\
& =(x, y)+\left(V S^{*} x, V S^{*} y\right) \\
& =(x, y)+\left(S^{*} x, S^{*} y\right)=\{x, y\} .
\end{aligned}
$$

Therefore V generates an isometry $U=Q_{T} V Q_{S}$ from $N(S)$ onto $N(T)$, where Q_{S} is the projection onto $N(S)$ in $D\left(S^{*}\right)$ and where Q_{T} is the projection onto $N(T)$ in $D\left(T^{*}\right)$. Since $V Q_{S}=Q_{T} V$,

$$
\begin{aligned}
\pi_{T}\left(V A V^{*}\right) & =Q_{T} V A V^{*} Q_{T} \\
& =Q_{T} V Q_{S} A Q_{S} V^{*} Q_{T}=U \pi_{S}(A) U^{*} \quad \text { for all } A \in \mathscr{B}_{S} .
\end{aligned}
$$

Let $K \in \mathscr{K}(S)$. Then $\||K|\|<1$ and the subspace $N=\{x+$ $\left.K x: x \in N_{-}(S)\right\}$ is invariant for the representation π_{S} of the algebra \mathscr{B}_{S}. Set $K^{1}=U K U^{*}$. Then $\left\|K^{1}\right\| \|<1$ and the subspace $M=$ $U N=\left\{y+K^{1} y: y \in N_{-}(T)\right\}$ is invariant for the representation π_{T} of the algebra \mathscr{B}_{T}, since

$$
\pi_{T}\left(V A V^{*}\right) M=U \pi_{S}(A) U^{*} U N=U \pi_{S}(A) N \subseteq U N=M
$$

for all $A \in \mathscr{B}_{S}$. Therefore $K^{1} \in \mathscr{K}(T)$.
If $K^{1} \in \mathscr{K}(T)$, similarly we obtain that $U^{*} K^{1} U=K$ belongs to $\mathscr{K}(S)$ which concludes the proof of the lemma.

It follows from Lemma 4.1 that in order to prove that two symmetric operators S and T are not isomorphic it is sufficient to show that there does not exist an isometry U from $N(S)$ onto $N(T)$ such that $U N_{d}(S)=N_{d}(T), d= \pm$, and such that $\mathscr{K}(T)=U \mathscr{K}(S) U^{*}$.
We shall now consider symmetric operators S such that $n_{+}(S)=$ $n_{-}(S)=1$. We shall also assume that the representations π_{S} of \mathscr{B}_{S} on $N(S)$ do not have null invariant subspaces. By Theorem 3.1(iv), π_{S} extend to bounded representations of C^{*}-algebras \mathscr{A}_{S}. It follows from Theorem 3.2 that $N(S)=N[+] P$ where N and P are respectively negative and positive subspaces invariant for π_{S} and that the representations $\left.\pi_{S}\right|_{N}$ and $\left.\pi_{S}\right|_{P}$ are not equivalent. Then N and P are the only subspaces in $N(S)$ invarinat for $\pi_{S}, \operatorname{dim} N=\operatorname{dim} P=1$
and $N=\left\{x+K x: x \in N_{-}(S)\right\}$, where K are operators from $N_{-}(S)$ into $N_{+}(S)$ such that $||K| \|<1$. Set

$$
\beta(S)=\| \| K \| .
$$

Then $0 \leq \beta(S)<1$ and from Lemma 4.1 it follows that $\beta(S)=\beta(T)$ if S and T are isomorphic.

For every $\lambda \in[0,1)$, we shall construct a symmetric operator S such that $n_{-}(S)=n_{+}(S)=1$ and such that $\beta(S)=\lambda$. The question arises as to whether $\beta(S)$ classifies up to isomorphism all the symmetric operators S such that $n_{+}(S)=n_{-}(S)=1$ and such that π_{S} do not have null invariant subspaces.

It is easy to construct a symmetric operator S such that $\beta(S)=0$. Let

$$
\begin{aligned}
S_{+} & =i \frac{d}{d x}, \\
D\left(S_{+}\right) & =\left\{y(x): y \text { and } y^{\prime} \text { in } L_{2}(-\infty, 0), y(-\infty)=y(0)=0\right\}, \\
S_{-} & =i \frac{d}{d x}, \\
D\left(S_{-}\right) & =\left\{y(x): y \text { and } y^{\prime} \text { in } L_{2}(0, \infty), y(0)=y(\infty)=0\right\} .
\end{aligned}
$$

Set $S=S_{+} \oplus S_{-}$on $H=L_{2}(-\infty, 0) \oplus L_{2}(0, \infty)$. Then $n_{+}(S)=$ $n_{-}(S)=1$ and it can be shown that $N_{+}(S)$ and $N_{-}(S)$ are invariant for π_{S}. Therefore $K=0$, so that $\beta(S)=0$.
Let us consider the following symmetric differential operators

$$
\begin{aligned}
S_{a} & =i \frac{d}{d x} \\
D\left(S_{a}\right) & =\left\{y(x): y \text { and } y^{\prime} \text { in } L_{2}(0, a), y(0)=y(a)=0\right\}
\end{aligned}
$$

$0<a<\infty$. It is well-known that $n_{-}\left(S_{a}\right)=n_{+}\left(S_{a}\right)=1$ for all $0<$ $a<\infty$. Schmudgen [19] showed that S_{a} and S_{b} are not isomorphic if $a \neq b$. Using Lemma 4.1 we shall give another proof of this result and show that $0<\beta\left(S_{a}\right)=e^{-a}<1$, so that $\beta(S)$ takes all values in $[0,1)$.

Theorem 4.2. For every $a \neq 0$, the representation $\pi_{S_{a}}$ of $\mathscr{S}_{S_{a}}$ does not have null invariant subspaces and $\beta\left(S_{a}\right)=e^{-a}$. The symmetric operators S_{a} and S_{b} are only isomorphic if $a=b$.

Proof. We have that

$$
\left(S_{a}\right)^{*}=i \frac{d}{d x} \text { and } D\left(\left(S_{a}\right)^{*}\right)=\left\{y(x): y \text { and } y^{\prime} \text { in } L_{2}(0, a)\right\} .
$$

Set $h=h(x)=e^{x}$ and $g=g(x)=e^{a-x}$. Then

$$
h(x), g(x) \in D\left(\left(S_{a}\right)^{*}\right)
$$

$$
\left(S_{a}\right)^{*} h(x)=i h(x) \text { and }\left(S_{a}\right)^{*} g(x)=-i g(x)
$$

so that $N_{-}\left(S_{a}\right)=\{g(x)\}$ and $N_{+}\left(S_{a}\right)=\{h(x)\}$. We also have that

$$
\begin{align*}
\|h\| \|^{2} & =\|h(x)\|^{2}+\left\|S_{a}^{*} h(x)\right\|^{2} \tag{10}\\
& =2\|h(x)\|^{2}=\|g g\| \|^{2}=e^{2 a}-1
\end{align*}
$$

Let A be the bounded operator of multiplication by x, i.e., $A y(x)$ $=x y(x)$. Then

$$
A D\left(S_{a}\right) \subseteq D\left(S_{a}\right) \quad \text { and }\left.\quad i\left[S_{a}, A\right]\right|_{D\left(S_{a}\right)}=-\left.1\right|_{D\left(S_{a}\right)}
$$

Therefore $A \in \mathscr{B}_{S_{a}}$. Set

$$
\begin{align*}
& y(x)=h(x)-e^{-a} g(x)=e^{x}-e^{-x} \\
& z(x)=g(x)-e^{-a} h(x)=e^{a-x}-e^{x-a} \tag{11}
\end{align*}
$$

Then $y(x)$ and $z(x)$ form a basis in $N\left(S_{a}\right)$ and

$$
\begin{aligned}
& A y(x)=x\left(e^{x}-e^{-x}\right)=a\left(e^{x}-e^{-x}\right)+f(x)=a y(x)+f(x) \\
& A z(x)=x\left(e^{a-x}-e^{x-a}\right)=q(x)
\end{aligned}
$$

where the functions $f(x)$ and $q(x)$ belong to $D\left(S_{a}\right)$. Therefore

$$
\pi_{S_{a}}(A) y(x)=y(x) \quad \text { and } \quad \pi_{S_{a}}(A) z(x)=0
$$

Since g and h are J-orthogonal, we have that

$$
\begin{aligned}
{[y, y]^{S_{a}} } & =[h, h]^{S_{a}}+e^{-2 a}[g, g]^{S_{a}}=\left\|\left|\|h \mid\|^{2}-e^{-2 a}\|g\| \|^{2}\right.\right. \\
& =\left(e^{2 a}-1\right)\left(1-e^{-2 a}\right)>0
\end{aligned}
$$

and

$$
[z, z]^{S_{a}}=[g, g]^{S_{a}}+e^{-2 a}[h, h]^{S_{a}}=\left(e^{2 a}-1\right)\left(e^{-2 a}-1\right)<0
$$

Therefore the subspaces $P=\{y(x)\}$ and $N=\{z(x)\}$ are respectively positive and negative subspaces in $N\left(S_{a}\right)$ invariant for $\pi_{S_{a}}(A)$. Moreover, they are the only subspaces in $N\left(S_{a}\right)$ invariant for $\pi_{S_{a}}(A)$. Therefore $\pi_{S_{a}}\left(\mathscr{B}_{S_{a}}\right)$ does not have null invariant subspaces and it follows from Theorem 3.2 that the subspaces N and P are invariant for the representation $\pi_{S_{a}}$ of the algebra $\mathscr{B}_{S_{a}}$. Thus $\mathscr{K}\left(S_{a}\right)$ consists of
only one operator K and, by (11),

$$
K g(x)=-e^{-a} h(x) .
$$

It follows from (10) that $\||K|\|=e^{-a}$. Thus $0<\beta\left(S_{a}\right)<1$.
If $a \neq b, \beta\left(S_{a}\right) \neq \beta\left(S_{b}\right)$, so that S_{a} and S_{b} are not isomorphic. The theorem is proved.

References

[1] N. I. Ahiezer and I. M. Glazman, The theory of linear operators in Hilbert spaces, GITTL, Moscow, 1950; English transl., Ungar, New York, 1961.
[2] W. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, Number 409, 1989.
[3] ___, An addition formula for the index of semigroups of endomorphisms of $B(H)$, Pacific J. Math., 137 (1989), 19-36.
[4] J. P. Ginzburg, Projection in a Hilbert space with bilinear metric, Dokl. Akad. Nauk SSSR, 139 (1961), 775-778=Soviet Math. Dokl., 2 (1961), 980-983.
[5] N. Dunford and J. T. Schwartz, Linear Operators, vol. II, Interscience Inc., New York, 1988 (new edn).
[6] P. E. T. Jorgensen, Selfadjoint extension operators commuting with an algebra, Math. Z., 169 (1979), 41-62.
[7] P. E. T. Jorgensen and P. S. Muhly, Self adjoint extensions satisfying the Weyl operator commutation relations, J. D'Anal. Math., 37 (1980), 46-99.
[8] P. E. T. Jorgensen and G. L. Price, Index theory and second quantization of boundary value problems, 1990, preprint.
[9] E. V. Kissin, Symmetric operator extensions of unbounded derivations of C^{*} algebras, J. Funct. Anal., 81 (1988), 38-53.
[10] , Deficiency indices sets of unbounded derivations of C^{*}-algebras, preprint, 1989.
[11] __, Dissipative implementations of $*$-derivations of C^{*}-algebras and representations in indefinite metric spaces, J. London Math. Soc., to appear.
[12] M. G. Krein, Introduction to the geometry of indefinite J-spaces and to the theory of operators in those spaces, Amer. Math. Soc. Transl., 93 (1970), 103-176.
[13] M. A. Naimark, Normed algebras, Nauka, Moscow, 1968.
[14] R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc., 90 (1959), 193-254.
[15] ___, On dissipative operators, In: Lecture series in differential equations, ed. A. K. Aziz, Van Nostrand Math. Studies 19, Vol. II, New York, Van Nostrand 1969.
[16] R. T. Powers, An index theory for semigroups of *-endomorphisms of $B(H)$ and type II_{1} factors, Canad. J. Math., 40 (1988), 86-114.
[17] R. T. Powers and D. W. Robinson, An index for continuous semigroups of $B(H)$, J. Funct. Anal., 84 (1989), 85-96.
[18] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
[19] K. Schmudgen, On the Heisenberg commutation relation, J. Funct. Anal., 50 (1983), 8-49.
[20] V. S. Shul'man, On representations of C^{*}-algebras on indefinite metric spaces, Mat. Zametki, 22 (1977), 583-592 =Math. Notes 22 (1977).
[21] C. F. Skau, Positive selfadjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand., 44 (1979), 171-195.
[22] S. P. Slinker, On commuting selfadjoint extensions of unbounded operators, Indiana Univ. Math. J., 27 (1978), 629-636.

Received March 22, 1990 and in revised form October 15, 1990.
School of Mathematical Studies
The Polytechnic of North London, Holloway
London N7 8DB, Great Britain

