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INTERSECTIONS OF LEAST AREA SURFACES

JOEL HASS

It is shown that hyperbolic 3-space contains an embedded curve γ
with the property that any least area disk bounded by γ must inter-
sect P. It follows that least area surfaces in 3-manifolds sometimes
intersect more than topologically necessary.

Least area surfaces tend to intersect as little as possible, making
them useful tools in the study of 3-dimensional manifolds. This paper
will present a somewhat surprising phenomenon of excess intersection
between least area surfaces in Riemannian 3-manifolds, showing that
there is a limit to the generally correct philosophy that "least area
surfaces intersect least" [M-Y], [F-H-S].

A plane is said to have least area if any subdisk of the plane is
a solution of the Plateau problem for its boundary, so that no disk
with the same boundary has less area. We will give an example of
an embedded least area plane P and an embedded curve γ lying
on one side of P such that any least area disk D which solves the
Plateau problem for γ must intersect P. This contrasts with the
situation where the disk is embedded; an embedded least area disk is
always disjoint from P [M-Y], There is no topological necessity for
an intersection between D and P, since by finding a large disk E
on P containing DπP and contracting DnP within E, one can
push off slightly to obtain a disk bounded by γ and missing P. Thus
the example shows that least area surfaces can intersect more than
is topologically necessary. The example also shows that the "cut and
paste" technique developed by Papakyriakopoulos [P] and applied by
Meeks-Yau [M-Y] in the proofs of the geometric Sphere Theorem and
geometric Dehn's Lemma will not extend to the setting of immersed
surfaces.

THEOREM 1. There is an embedded least area plane P in hyperbolic
3-space and an embedded curve y lying on one side of P such that
any least area disk D which solves the Plateau problem for γ must
intersect P.

Proof. We will present the proof in two steps.
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θP running between P} and P2

θPCθH3, viewed from above

FIGURE 1

dP in the upper half-space model of H3. P misses the
totally geodesic planes whose ideal boundaries are round
circles.

Step 1. Construction of a least area plane in H3 which is not area
minimizing. We present a simple construction of a least area plane
in hyperbolic 3-space H3, based on an example in [A]. Consider the
upper half-space model of H3. An annulus is said to be least area if
there is no other annulus with the same boundary which has less area.
Note that this implies that the sum of the areas of two least area disks
with the same boundary as the annulus is not less than the area of the
annulus, since we can tube these two disks together with a zero area
tube to form an annulus.

On the ideal boundary of H3 we construct a smooth embedded
curve which runs between two pairs of round circles, as in Figure
1. Any simple smooth curve on dH3 is the ideal boundary of an
embedded least area plane P properly embedded in H3 [A]. If two
totally geodesic planes Pi and P2 are sufficiently close in H3 then we
can find on them curves a\ and #2 which cobound an embedded least
area annulus A whose area is strictly less than the sum of the areas
of the two totally geodesic disks that they bound on Pi U P2 [M-Y].
Note that P cannot intersect the hyperplanes in H3 corresponding
to each of the circles depicted in Figure 1, since if it did we could
find a hyperplane with boundary a smaller concentric circle which
touches P without crossing it, violating the maximal principle for
minimal surfaces. With Pi and P2 and A as above, a pair of parallel
components d\ and di of P n A cobound a least area subannulus



INTERSECTIONS OF LEAST AREA SURFACES 121

Af of A. A subannulus of a least area annulus is also least area. In
fact the area of A' is strictly less than the sum of the area of the least
area disks that its boundary curves bound, as otherwise the two disks
together with A - A' form a pair of disks bounding a\ U a2 with area
at most equal to the area of A and this area could be decreased by
smoothing off the corner where the disks join A - A!, contradicting
the assumption that A is least area. So P is not area minimizing.

Step 2. Construction of the curve γ c i / 3 . We now proceed to
construct an embedded curve γ which will have the property that
any disk of least area bounded by γ must intersect P. The curve is
indicated in Figure 2b.

Let D\ denote a least area disk with boundary a\ c P\, D2 & least
area disk with boundary a2 C Pi and recall that A is a least area
annulus cobounding a\ and a2 Then by our choice of P\ and P2
we have that Area(Di) + Area(jD2) - ε > Area(^) for some positive
constant ε. Fix an orientation on A and orient a\ and a2 as the
boundary of A. Let b be a simple arc on the same side of P as a\
and a2 which joins a\ to α 2 , let a be a simple arc on A joining the
endpoint of b on a\ to the endpoint of b on a^ and let E be a disk
in H3 bounded by a U b.

band along b

FIGURE 2a FIGURE 2b

Pick a large integer k such that kε > 2 Area(£") and let the curve
/ be obtained by running k times around a\, once along b, k times
around #2 and back along &. The singular curve / bounds a disk
Z>' formed by taking a copy of each of the k-ΐold branch covers of D\
and D2 and banding them together along a zero width band running
along g. D' misses P. Area(Z)/) = /: A r e a ^ ) + k Ave^(D2), and
since Z>i and Z>2 are totally geodesic, intersection theory implies that
no disk bounded by / and missing P has less area. So D1 has least
area among disks in the complement of P. But / bounds a disk D
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meeting P formed by taking the k-ϊolά cover of the annulus A, cut-
ting it open along the arc a to get a disk, and gluing on two copies of
E along a . The area of this disk is precisely k Area(yl) + 2 Area(£).
So Area(D) = k Area(^) + 2 Area(£) < k Area(£>i) + k Area(Z)2) -
kε + 2 Area(£) < k Area(Z>i) + fc Area(D2)-kε + ke = Area(Z>'). Any
disk in the complement of P has area strictly larger than Area(Z)'),
but the disk D meeting P has strictly less area. There is a con-
stant δ > 0 such that the least area disk D" in H3 with boundary
/ has Area(£>") < Area(Z>') - 2δ. / can be perturbed slightly to
give an embedded curve γ missing P, and the perturbation can be
picked sufficiently small so that γ and / cobound an annulus of area
less than δ. It then follows that γ lies on one side of P and that
any least area disk which solves the Plateau problem for γ must
intersect P.

REMARKS. It is not essential that the ambient manifold in which
we construct the above example is hyperbolic 3-space. The same con-
struction can be carried out in any manifold where there is a least area
plane P for which one can find an annulus mapped properly into the
complement of P whose boundary components bound two disjoint
disks in P with area greater than the area of the annulus. Such a least
area plane cannot be found in i? 3 , or in a manifold of nonnegative
scalar curvature [S-Y], so there are some restrictions on the ambient
manifold.

This example also provides an immersed curve lying on a least area
plane which bounds a least area disk not on the plane. Note that
one can solve the existence problem for least area disks with singular
curves as boundaries [H]. For embedded curves, the least area disk
lies on the plane by definition. Singular curves exhibit a markedly
different behavior.

REFERENCES

[A] M. Anderson, Complete minimal hypersurfaces in hyperbolic n-manifolds,
Comment. Math Helvetia, 58 (1983), 264-290.

[F-H-S] M. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in
3-manifolds, Invent. Math., 71 (1983), 609-642.

[H] J. Hass, Singular curves and the Plateau problem, Intl. J. Math., 2 (1991),
1-16.

[M-Y] W. H. Meeks III and S. T. Yau, Topology of three dimensional manifolds
and the embedding theorems in minimal surface theory, Annals of Math.,
112(1980), 441-484.



INTERSECTIONS OF LEAST AREA SURFACES 123

[P] C. D. Papakyriakopoulos, On Dehn 's lemma and the asphericity of knots,
Annals of Math., 66 (1957), 1-26.

[S-Y] R. Schoen and S. T. Yau, Complete three dimensional manifolds with posi-
tive Ricci curvature and scalar curvature, Seminar on Differential Geometry,
Annals of Math. Studies, 102 (1982), 209-228.

Received September 5, 1990. Partially supported by NSF grant DMS-8823009 & a
grant from the Sloan Foundation.

INSTITUTE FOR ADVANCED STUDY
PRINCETON, NJ 08540

Current address: University of California
Davis, CA 95616
jhass@ucdavis.edu






