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THE EQUIVARIANT THOM ISOMORPHISM THEOREM

S. R. COSTENOBLE AND S. WANER

In this paper we extend ordinary RO(G)-graded cohomology to
a theory graded on virtual G-bundles over a G-space and show that
a Thom Isomorphism theorem for general G-vector bundles results.
Our approach uses Elmendorf’s topologized spectra. We also show
that the grading can be reduced from the group of virtual G-vector
bundles over a space to a quotient group, using ideas from a new
theory of equivariant orientations. As an application of the Thom
Isomorphism theorem, we give a new calculation of the additive struc-
ture of the equivariant cohomology of complex projective spaces for
G = Z/p , partly duplicating and partly extending a recent calculation
done by Lewis.

1. Introduction. Nonequivariantly, the Thom Isomorphism plays an
important role in calculations of cohomology groups. Equivariantly,
the Thom Isomorphism is a more elusive beast; Z-graded ordinary co-
homology is inadequate for its formulation, as can be seen by the fact
that the cohomology of the one-point compactification of a represen-
tation is usually radically different from the cohomology of a point.
Extending the Z-graded theory of an RO(G)-graded theory [LMM]
is still inadequate; the cohomology of the one-point compactification
of a fiber of a bundle is now the suspension of that of a point, but
the degree of the suspension depends on the group action on the fiber,
and in general this varies as we move around in the base space.

Here we shall extend the RO(G)-graded theory to a theory graded
on virtual G-bundles, and show that we can then prove a Thom Iso-
morphism theorem for general G-vector bundles. The use of virtual
G-bundles for grading equivariant cohomology is not entirely new—
Crabb [C], for example, considers stable cohomotopy, for Z/2-actions,
indexed in this way. Our approach differs in that it uses the topolo-
gized spectra that Elmendorf introduced in [E]. Although we could
phrase our definitions in terms of parametrized spectra, we have cho-
sen instead to take a more elementary approach. We also show that
the grading can be reduced from virtual G-vector bundles to their
“groupoid representations,” gadgets that capture the orientability data
of the bundles. This is a first step toward the construction of an
ordinary theory indexed on groupoid representations; these represen-
tations are fundamental to equivariant orientation theory as presented
in [CMW].
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As an application of the equivariant Thom Isomorphism theorem,
we give a new calculation of the additive structure of the equivariant
cohomology of complex projective space for G = Z/p. This partly
duplicates and partly extends a recent calculation done by Lewis [L1]
using different methods.

Along the way, we construct classifying spaces for arbitrary group-
oids over the orbit category and prove a classification theorem (Theo-
rem 3.8).

For the next section of this paper G may be any compact Lie group,
but we will specialize to finite groups in the third and later sections.

2. Cohomology theories graded on KO;(X). We use Elmendorf’s
notion of an equivariant spectrum [E], which we recall here. Let
be a G-universe, that is, a countably infinite dimensional orthogonal
G-representation which contains infinitely many copies of each finite
dimensional representation of G. We recall that a G-spectrum E
in the sense of Lewis, May and Steinberger [MS] consists of a col-
lection of based G-spaces E(V), one for each finite dimensional G-
invariant subspace V' of %, together with a collection of compatible
G-homeomorphisms E(V) = Q¥ (V @ W) for V L W. (see [MS]
for details.) Elmendorf [E] replaces the spaces E(V) with G-fiber
bundles p: E, — BgO, over the Grassmannian of n-planes in %,
with fiber over every G-invariant V' a copy of E(V'). Each bundle is
also equipped with a G-section ¢ giving the basepoint in each fiber.
Elmendorf shows that any G-spectrum in the sense of [LMS] gives
rise to a unique spectrum in his sense.

We want to describe how to define the E-cohomology of a space
X, graded on KOg(X). We will describe here how to grade on pairs
of subbundles of X x U ; in the Appendix we will refine this, and say
in exactly what sense we can grade on KOg(X).

Let X be an unbased G-space and let & and { be finite-dimensional
G-subbundles of X x . Then ¢ is classified by the Gauss map
& X — B;O,. If E is a G-spectrum, we define Eé‘g(X) as the
group of G-homotopy classes of section-preserving G-maps ¢ mak-
ing the following diagram commute:

st < E,

! l

X _~—) BGOn.
¢
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Here, S¢ is the fiberwise one-point compactification of ¢, and the
homotopies are required to preserve sections and to cover ¢. The
additive structure is a consequence of the structure of the spectrum
E . This construction is functorial in X ; we will give more details on
this point in the Appendix. Note that we are using the notation & —{
to mean simply the ordered pair (&, {).

We now generalize to pairs of G-spaces, and based G-spaces in
particular. Asin [J], a G-ex-spaceisa G-map f:Y — X with a given
G-section; we also refer to this as a based- G-space over X if we wish
to emphasize X. Many of the constructions we use here involving
ex-spaces can be found in [J]. Given a G-ex-space Y — X as well as
G-vector bundles ¢ and { over X as above, define Eg‘c( Y - X) as
the collection of G-homotopy classes of section-preserving G-maps ¢
making the following diagram commute:

Xy <~ E,

! lf’

X —~') BGOn .
4

Here, XY is the fiberwise smash product of ¥ with S¢ over X.
This generalizes the special case described above: just take Y to be
the space X*, which is X with a disjoint section. Given a pair of
G-spaces (Y, B) over X, let C(Y, B) — X denote the fiberwise
cone of the inclusion BT — Y* (note that the arrow is part of the
notation), and define Eg‘c((Y, B)— X)= Eg‘g(C(Y, B) - X). In
particular, if 4 C X, define Eg_g(X, A) = EE“C(C, (X,A4) — X)
and E5(X) = E5 (X, ) if X is based at *.
We have the following form of suspension isomorphism.

ProrosITION 2.1. If n is any G-subbundle of X x % fiberwise per-
pendicular to both & and (, then

ESYY — X) = EO~C =1y - x).

Proof. We recall from [E] the definition of the structure maps of
E. Let BgO, n be the Grassmannian space of pairs of mutually
orthogonal subspaces of Z of dimension (n, m). There are maps
D1: B0y, m — BgO, and s: BGOy iy — BGOpim , given by projection
and sum respectively. Let y, denote the canonical bundle over B;0O, ,
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and also let it denote pjy,; similarly let y, denote the canonical
bundle over BzO,,» given by the second vector space. Then the
structure maps of E are maps X'npiE, — s*Ep,m over BGOy m,
such that the adjoint maps p}E, — Q%»s*E,,, are homeomorphisms.

Given then a map c¢: XY — E, covering &, we have a map
e: TEXNY — X'mpiE, covering the map (5, ): X = BGgOy, m in-
duced by the classifying maps for £ and ». The composite XY —
X'mptEy — S*Epim — Enym covers &+ i X — BgOpym classify-
ing the sum of the bundles. This describes the map Ef;—g(Y - X)—
E(Gr’J’é)_C(Z”Y — X). That this is an isomorphism can now be checked
from the fact that pjE, — Q’»s*E,,,, is a homeomorphism. a

It now follows from our definition of the cohomology of pairs, and
from [J, 7.2], that we have the usual long extact sequence associated
to a pair.

In order to reconcile Proposition 2.1 with the usual suspension iso-
morphism, involving the suspension of X, we need the following ex-
cision result. Let U be an open G-invariant subspace of X and let
(Y, B) be a pair of spaces over X. We say that (Y, B; p~}(U)) is
an excisive triad over X if U has a neighborhood W in X such that
p (W) cIntB.

LeEMMA 2.2 (Excision). Let (Y, B;p~'(U) = V) be an excisive
triad over X . If a =& — { is a difference of G-bundles over X, then

E(C(Y,B) = X)=EXC(Y-V,B-V)-X-U).
In particular, if (X, A; U) is an excisive triad, then
E&X,A)=EXX-U,A-U).

(Here, we are using o to denote both £—{ and its restriction to X —U.)

Proof . If f:XC(Y, B) — E,, the hypothesis allows us to see that
f is fiberwise homotopic to a map that takes X¢q—!(TU) to the fiber-
wise basepoints, where g: XC(Y, B) — X is the projection. The
result follows from this. o

Note that the lemma allows one to extend the grading in E}(X, A)
from G-bundles over X to G-bundles over X — U. This is needed
in formulating our first version of the Thom Isomorphism theorem,
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which generalizes the nonequivariant version with twisted coefficients,
as well as the usual suspension isomorphism.

PROPOSITION 2.3 (Thom Isomorphism—Twisted Form). If n is any
G-subbundle of X x % fiberwise perpendicular to both & and {, then
there is a natural isomorphism

B¢t () = EJ™™(Tn),

where Tn is the Thom space of 1. (See the comment at the end of the
proof for the definition of the second group.)

Proof. The result is a consequence of the following chain of natural
isomorphisms in which D(n) and S(75) represent the unit disc and
sphere bundles of # respectively, and a =& - (.

Eg(X) = Eg™(Z"X* - X)
= Eg™(C(D(n), S(n) — X)
= Eg "(C(D(n), S(n)) — D(n))
= Eg""(D(n), S(m)
= Eg“’(Tn) )
The third isomorphism follows from the G-ex-homotopy equivalence
of C(D(n),S(n)) — X and C(D(n), S(n)) — D(n) and Theorem
A.3(ii1) in the Appendix. The equality on the fourth line is by defi-
nition of the notation. Note that the last step is essentially excision
and G-ex-homotopy invariance if o+ 7 extends to a bundle over the
Thom space. More precisely, let U = Tn — D,n, where D, denotes
the disc bundle of radius 2. Then (75, Tn— Dn; U) is excisive in
the sense of Lemma 2.2. Hence, by Lemma 2.2 and Theorem A.3(ii),
we have
EG™(Tn) = Eg*"(Tn, Tn— Dn)
=E;"(Tn—-U,Tn—Dn-U)
= Eg™(D(n), S(n)).

If a+ n fails to extend, we can define Eg+'7(T n) to be
EG™(C(D(n), S(n)),

following the remark after Lemma 2.2. O
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The next result permits us to regard the theory as being graded on
KOg(X) rather than on formal differences of representations.

ProrosiTION 2.4. Let (¢, ) and (&', (') be pairs of representations
with [€ — (1= [¢' = ') in KOG(X). Then EGH(f) = Eg™°(f) for
any G-space f:Y — X over X.

Proof. Since [¢& — (] =[& —{'] in KOg(X), there is a G-bundle 5
with é@l'on=¢®{®n. One has
ESHY - X) = ES(EY — X)
E(é;eaC'@n(ZC@C’eBnY ~X)
o Eg’GBC@'I(ECGBC'@ﬂY —X)
= ESC(Y - X). o

IR

Although we have not specified choices of isomorphisms in the
proof above, it is possible to make Ej(—) into a functor on the cat-
egory of pairs (f, @) where f is a G-space over X (X allowed to
vary) and where « is a “virtual bundle” over X . This is deliberately
vague, but the Appendix gives the details. It does not appear that
we can create a well-defined functor on the category of pairs (f, a),
where a € KOg(X); some bundle maps must be specified. However,
we will write EZ(Y — X) when a € KOg(X), with the understand-
ing that this is natural in f and a only when we specify a particular
difference of subbundles of X x% representing o and particular pairs
of bundle maps.

3. Classifying spaces and ordinary cohomology graded on KOg(X).
We shall see in this section that, when the theory is ordinary coho-
mology, the grading introduced in the previous section reduces to a
quotient of KOg(X), and that this gives a Thom Isomorphism where
the shift in the grading is by the “dimension” of the bundle, rather
than the bundle itself. We restrict attention here to G finite, the de-
tails in the compact Lie case being somewhat messy. Let HT be the
G-spectrum representing ordinary RO(G)-graded equivariant coho-
mology with coefficients in the Mackey functor 7. (See, for example,
[LMM] or [CW].)

In order to describe the reduction of the grading, we first recall
the following definitions from [CMW], which are fundamental to
the theory of equivariant orientations presented there. If X is a
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G-space, the fundamental groupoid n(X; G) of X is the category
whose objects are the G-maps x: G/H — X, where H ranges over
the subgroups of G; equivalently, x is a point in X# . A morphism
x —y, y:G/K — X, is the equivalence class of a pair (0, w),
where ¢: G/H — G/K is a G-map, and where w: G/H xI — X 1s
a G-homotopy from x to y oo. Two such maps are equivalent if
there is a G-homotopy k: w ~ ' such that k(a, 0, t) = x(a) and
k(a,1,t)=yo0o(a) for a€ G/H and tel.

Let £ be the category of G-orbits and G-maps between them.
There is a functor ¢: n(X; G) — &, given by ¢(x: G/H — X) =
G/H on objects, and by ¢(g, w) = ¢ on morphisms. This turns
n(X ; G) into a groupoid over & in the sense of [CMW]. Precisely:

DEFINITION 3.1. A groupoid over a small category # consists of a
small category % and a functor ¢: @ — Z satisfying the following
properties:

(a) For each object b of Z, the fiber ¢~!(id;) is a groupoid in the
classical sense (i.e., all morphisms in C covering an identity map in
B are isomorphisms).

(b) (Source-lifting) For each object y of # and each morphism
a:a — ¢(y) in £, there exists a morphism f:x — y in & such
that ¢(f) = a.

(c) (Divisibility) For each pair of morphisms a:x—y and o': x'—
y in & and each morphism f: ¢(x) — ¢(x’) such that ¢(a) =
¢(a’) B , there exists a morphism y: x — x’ in % such that a = o'y
and ¢(y)=B.

A groupoid % has unique divisibility if the map y asserted to exist
in (c) is unique. All the groupoids we consider will have this property.
Notice in particular that 7(X ; G) is a groupoid over ¥ with unique
divisibility, and that the fiber ¢~'(G/H) is the usual fundamental
groupoid n(XH).

DEeFINITION 3.2. If ¢: & — % is a continuous functor of topolog-
ical categories and « and b are objects in %, let h%(a, b) be the
space obtained from the map ¢: #(a, b) — Z(¢p(a), ¢(b)) by replac-
ing each preimage ¢~!(f) with myé~1(f), its space of components
(using the quotient topology). This gives a new category A% having
the same objects as %, and a functor h¢: h& — % . Say that &
is a groupoid-like category over % if h¢: h% — % is a groupoid
over & .
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Let hG# be the category of orthogonal G-bundles over G-orbits
and G-homotopy classes of linear maps, so there is again a functor
¢: hG# — %, giving the base-space. A representation of n(X; G) is
a functor p: n(X; G) » hGF such that ¢p = ¢; that is, it is a func-
tor over ¥. We add representations in the obvious way, by taking
direct sums of bundles. Taking isomorphism classes of representa-
tions gives a monoid; applying the Grothendieck construction gives
RO(n(X ; G)), the group of virtual representations of the fundamen-
tal groupoid of X . If V' is arepresentation of G, we will write V' also
for the representation of 7 (X ; G) that sends every object over G/H
to the bundle G/H x V', and every morphism over o: G/H — G/K
to g x 1. In this way we can think of RO(G) Cc RO(n(X ; G)).

If £ is a G-bundle over X, then ¢ determines a representation
p(&) of n(X; G) given by p(&)(x: G/H — X) = x*(£) on objects.
p(&) is defined on maps using the lifting property for G-bundles.
Since p preserves addition, it extends to a homomorphism p:
KOg(X) — RO(n(X; G)). Let DOg(X) denote the image of p.
Roughly speaking, DOg(X) is the group of equivalence classes of vir-
tual bundles over X where two virtual G-bundles are equivalent if
they have the same local representations and the same action of the
fundamental groupoid on fibers. We think of p(a) as the dimension
of «. The main theorem of this section is:

THEOREM 3.3. If o and B € KOg(X) and p(a) = p(B), then
HXY - X; T)=HL(Y - X; T).

An immediate consequence of Theorem 3.3 is that we can grade
ordinary cohomology on DOg(—) instead of KOg(—). In fact, the
ultimate result in this direction should be that we can grade ordi-
nary cohomology on the group of stable spherical representations of
(X ; G); this we may show in a future paper. Another consequence
of the theorem, together with Proposition 2.3, is the following.

THEOREM 3.4 (Thom Isomorphism). If n is any G-vector bundle
over X and if o € DOg(X), then there is a natural isomorphism

HE(X; T) = HZ*"™(Ty; T)
Jor any coefficient system T . In particular, if p(n) =V, then

HY(X; T)= HY (Tn; T). O
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As in Proposition 2.3, we define He™"(Tn;T) to be

H '’ ™(D(n), S(n); T) if a and # do not extend to the Thom space.
The second conclusion of Theorem 3.4 has been previously noticed for
RO(G)-graded cohomology; the condition p(n) = V implies that 7 is
an “orientable V'-bundle” in the sense of [W2], but is slightly stronger.

The proof of Theorem 3.3 requires several preliminary results on
classifying spaces of groupoids over & . Several such constructions are
known; see for example [CMW] for one case. If the groupoids in ques-
tion have discrete topologies, then there are simpler constructions than
the one that follows [M2], but we have need of the topological case.
We shall work with a set G%, of n-dimensional G-vector bundles over
orbits. These G-bundles have the form v(H,V): GxygV — G/H,
where H C G and V C % is an H-invariant n-dimensional subspace.
A category over G%, is a category whose underlying set of objects is
G%, and which comes equipped with a functor ¢: C — & taking the
object v(H, V) to G/H. If # is a topological category over G%,,
we define the classifying G-space of € by the formula

Bg% = B(x, %, ¢).

Here, B(—, —, —) denotes the two-sided geometric bar construction
[M1]. On the simplicial level B (x, %, ¢), for k > 0, consists of
tuples (*[fi, ..., fxlgH;) where fi:v(H;, V;) - v(H;_1, Vi_1) is a
morphism in ¥ and gH, € G/H,. We take By(*, &, ¢) to be the
space of cosets (x[ ]¢Hp)y indexed on the objects v = v(Hp, Vp) in
% . G acts on B;% through its action on the last coordinate.

Following are the examples we shall need.

ExAMmPLEs 3.5. (i) Take & = O,, the category of pairs (H, V),
where V is an H-invariant n-dimensional subspace of %, and where
a morphism (H, V) — (J, W) is an orthogonal G-bundle map G xpy
V — G x ;W . The resulting space B;% is the classifying space B;0,
for n-dimensional orthogonal G-bundles [W1], and is G-homotopy
equivalent to the Grassmannian of n-planes in % .

(ii) Take & = hO, , the homotopy category over & associated with
O, by Definition 3.2. If [Z, hO,]< denotes the set of natural isomor-
phism classes of maps over &, then [n(X; G), hO,]e is the set of
isomorphism classes of n-dimensional representations of n(X; G).
Note that there is a discretization map B;0, — BghO, . In Theorem
3.8 we will show that B;hO, classifies representations of the funda-
mental groupoids of G-spaces, so that the discretization map repre-
sents the passage from a G-vector bundle to the associated groupoid
representation.
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(i) If V € Z is an H-invariant n-dimensional subspace of %,
let K(T|H,V) be an H-equivariant Eilenberg-Mac Lane space of
type (T|H,V) [LMM, CW]. Take ¥ = # T,, the category whose
morphisms v(H, V) — v(J, W) covering f: G/H — G/J con-
sist of the fiberwise G-homotopy equivalences G xyg K(T|H, V) —
G x; K(T|J, W) covering f. The resulting space Bg# T, classi-
fies G-fibrations whose fibers over H-fixed points are H-equivariantly
equivalent to K(7T'|H, V') for some V', by [W1; 2.3.6]. In particular,
in the spectrum HT, the fibration HT, — B;0, is classified by a
G-map y: B;O, —» B¢Z'T,.

(iv) Take € = h#'T,, the homotopy category over £ associ-
ated with # T,,. The morphism spaces Z T,,(a, b) have weakly con-
tractible components. To see this, it suffices to show that

n,map(K(T, V), K(T, V)X =0 forn>0,
but one has that
nnmap(K(T, V), K(T, V)X = H{""(K(T, V); T) =0

for n > 0. This in turn is true since 7, (K(T, V)’) = I?JV(S’”; T)
HJ(SV;T) = 0 for m < |V7|, which, by [L2, 7.1] is enough to
show the vanishing of HY ~"(K(T, V'); T) for n > 0. It follows that
the discretization functor h: #' T, — h#' T, is a weak equivalence
on morphism spaces. We shall see below that 4 induces a weak G-
equivalence of classifying spaces.

If o is an object of #, let %, be the category of maps out of «,
or the category of objects under «; i.e., the objects are maps a — f
in # and morphisms are commutative triangles. Also define #/¢ to
be the category whose objects are those of % and whose morphisms
are equivalence classes of morphisms of # under the identification

fr~gif ¢(f)=¢(g).

LEMMA 3.6. Let € be a groupoid-like category over & . Then the
space (Bg®)Y is a disjoint union of copies of the connected spaces
B(x,%, (¢/d)a), one for each isomorphism class [a] of objects in
h& with ¢(a)=G/H.

1

Proof. Let o be an object in & with ¢(a) = G/H . It is clear that
B(x, %, (Z/9)a) C (BGZ)H . It follows from the source-lifting prop-
erty that (B;%)¥ is the union of subspaces of this form. Inclusion
of the first simplicial filtration is a mp-equivalence, and we can use
this, together with the divisibility property, to see that if a and S
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are non-isomorphic objects of 4% mapping to G/H under ¢, then
B(x, %, (%/9).) and B(*, &, (£/¢)p) lie in distinct components of
(BGZ)" . Further, each subspace B(x, #, (¥/$),) may be seen to
be connected by again considering 7. The result now follows by
combining this collection of observations. o

LemMmA 3.7. The map Bgh: BGcZ T, — BghZ T, is a weak G-
equivalence.

Proof. Let H C G; we show that (Bgh)? is a (nonequivariant)
weak equivalence. In view of the previous lemma, it suffices to show
that, for each a € G%,, , the map

B(x, ZTy, (ZTn/$)a) = B(x, hZ Ty, (hZ Tu/¢)a)

is a weak equivalence. For this, consider the diagram
HT,(a,a), B(x, #T,, (%T,),) —— B, ZT,,(ZT,/d),)

l J l

hZET, (a, a)y —— B(x, hZT,, (hZT,),) —— B(x, hZT,, (hZT,/d),),

where #(a, a); is the space of morphisms a — a in & over the
identity on ¢(«). Each row is a quasifibration, using the Dold-Thom
criterion; for details, see [M1, §7.6] (our groupoid-like property re-
places his group-like assumption). As mentioned in 3.5(iv), the verti-
cal map on the left is a weak equivalence. The spaces in the middle of
each line are contractible, so the middle map is also an equivalence.
Therefore, the map on the right is a weak equivalence. o

Finally, we need the following important result.

THEOREM 3.8. Let ¢: € — & be a groupoid with unique divisibility
such that the topology on & is discrete. If X has the G-homotopy type
ofa G- CW complex, then

[X, BGZle =[n(X; G), Zlg,

where [—, —]g denotes G-homotopy classes of G-maps, and[—, —]g
denotes natural isomorphism classes of maps over & . In other words,
Bg is right adjoint to ©.

Proof. We construct maps in both directions. Start with the map

@: [X, BG¥lg — [n(X; G), Flg.
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This will be induced by an equivalence of groupoids u: & —
n(Bg%; G) over & (i.e., this will be the inverse of the counit of the
adjunction we are constructing). On objects, u is specified by tak-
ing o to the vertex ((x[ JeH)q; 1) in (Bg%)Y, where ¢(a) = G/H .
(Here we are following May’s notation from [M1, §11].) If w: a — 8
is a morphism in %, then define u(w) to be the homotopy class of the
path ¢t — (x[wleH; (¢, 1 —t)). This is a path from u(a) to gu(p),
where ¢(w)(eH) = gK , and thus specifies a morphism in n(Bg% ; G)
from u(a) to u(f) covering ¢(w). Next, we show that u is an equiv-
alence by showing that it restricts to an isomorphism of sketeta. (A
skeleton of a groupoid over & has only one object from each isomor-
phism class over the identity on each orbit in ¥.) By Lemma 3.6,
the image of a skeleton of # is a skeleton of n(B;% ; G),and u isa
one-to-one correspondence on objects. It remains to show that u is bi-
jective on morphisms, and we do this in two steps. First, we show that
U 1s bijective on automorphisms over the identity. One has the princi-
pal fibration B(x, ¥, ,) — B(x, &, (¥/¢),) with fiber Aut(a) and
contractible total space, where Aut(a) is the group of automorphisms
over idg(,) . Consider the commutative diagram

Aut(a) —— B, %,%2) —— B(x,%,(%/4),)

I L |

QB(x, €, (€/¢),) —— PB(x, %, (¥/¢),) —— B(*,%,(Z/d),).

Here the bottom row is the path-space fibration,

v(Lfis oo Sl X)) = (LA s Sy Tas (62, 1=1)),

C(f) = ([ Na; (¢, 1 =1)), and u = 7my(¢). Each row is fibration se-
quence with contractible total space. It now follows that { is a homo-
topy equivalence on the fibers, and hence that x is an isomorphism on
maps over the identity. The unique divisibility property now implies
that u is an isomorphism on sets of morphisms over maps other than
the identity. The map ® is now specified by ®[f]=ulon(f; G).

We now construct the inverse, ¥, of ®. Start with a map of
groupoids 6: n(X; G) - & = n(Bg% ; G). 6 specifies a well-defined
homotopy class of G-maps from the 1-skeleton of X to Bz% . Fur-
ther, we can extend such a map over the 2-skeleton, since € is a map
of groupoids, so that inessential loops go to inessential loops. Since,
by the discussion above, each component Y of each fixed set of B;%
has 7;(Y) =0 if i > 2, it follows by elementary obstruction theory
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that we can extend the map to all of X. We define ¥(6) to be the
homotopy class of this extension 6.

From the constructions, it is clear that ®¥ = 1. On the other hand,
since it is easy to see that # is unique up to G-homotopy, it follows
that ® is injective, and we are done. o

We can now prove Theorem 3.3.

Proof of Theorem 3.3. If a and B are two elements of KOg(X)
agreeing in DOg(X), we can assume that a = [£ —#] and B = [{—7]
with ¢ and { giving the same representation of n(X ; G). Consider
the following diagram:

¢
X = BgO, & BexT,

¢
N =
BGhOVl ﬂ} BGh%Tn .

Since ¢ and { give the same representation, and since B;hO, classi-
fies representations of n(X ; G) by the theorem just proved, the com-
posites do& and do( are G-homotopic. It now follows by a diagram
chase that y o and y o { are G-homotopic. Since now the pull-
backs along ¢ and { of the bundle HT,, — B;0O, are fiber homotopy
equivalent, it follows that HZ(Y — X; T) = H(Y — X; T), as
claimed. O

4. Cohomology of projective spaces. Let G = Z/p. In [L1], Lewis
gives an explicit equivariant cell structure for the complex projec-
tive space CP(V) = S(V)/U(1), where S(V') is the unit sphere of
the unitary representation ». He then uses this decomposition to
compute its ordinary RO(G)-graded cohomology with Burnside coef-
ficients. Here we show how to obtain the same result using the Thom
isomorphism theorem, and also extend the calculation to a larger grad-
ing.

Before stating the result, we need some notation. Since G = Z/p,
we can decompose V' as a sum of one-dimensional unitary represen-
tations: V =Lo®L;®---. Let 19 =0, and for each i > 0, let

i—1
Ai = Zf, Qc Lj.
=0

For i >0 let
n; = dimg A9 .
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Thus, n; is twice the number of times L; appears up to isomorphism
in E;;(l) Lj.If a € KOg(CP(V)),let a; be the restriction of « to the
point CP(L;), thought of as a representation of G, i.e. a; € RO(G).
We shall denote ordinary cohomology with Burnside coefficients by

Hi(—).
THEOREM 4.1. Assume that a € KOg(CP(V)) and that
dimg(e;)% — dimR(aj)G < n; — n; whenever i > j .

Then
Hg(CP(vV) =Y HE™
i>0
Further, if we grade on the coset o+ RO(G), then this isomorphism is
one of modules over the RO(G)-graded cohomology of a point.

The following is now an immediate consequence of the theorem.

COROLLARY 4.2 (L. G. Lewis). If (n;) is a non-decreasing sequence,
then the conclusion of Theorem 4.1 holds for any o € RO(G).

Lewis also computes the multiplicative structure, and this is far
more complicated. For details, see [L1]. Both our result and Lewis’
hinge on explicit information about the RO(G)-graded cohomology
of a point as first calculated by Stong (unpublished) and we state what
little we shall need in the following lemma. (A complete description
of the cohomology of a point appears in [L1].)

LEMMA 4.3. Let G=Z/p and o € RO(G). Then HZ(x) =0 when
dimg(0) and dimg(c©) are odd, dimg(c) <0, and dimg(c®) < 1.0

Proof of Theorem 4.1. We first assume that V' is finite dimensional,
and induct on m = dim¢ V' . The beginning of the induction, m =1,
is trivial. For the inductive step, we consider the inclusion

1:CP(Liy®---®L,) =CP(LydLi®---&Ly).

By a standard geometric argument, the normal bundle of 1 is v =
Hom(¢, Ly) = £ ® Ly, where & is the canonical line bundle over
the subspace CP(L, & ---® L,), and the associated Thom space is
CP(Ly®L;®---® L,) with basepoint CP(Ly). By the Thom iso-
morphism,

HECP(Lo® L @ ®L,) = HZ"(CP(Ly & & Ly)).
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(Note that o and v are defined on all of CP(Lo® L @ ---® L,).)
By induction, H&™"(CP(L1®--@®Ly)) = X0 HS (), where 4; =
> o0<j<i—1 Li®cL; and where the hypothesis on a—v and the sequence
L,,..., L, may be checked to hold. The long exact sequence of the
pair (CP(V), CP(Ly) now becomes

<= STHG (%) — HYCP(V)) = HP(x) 25 STHS T () -
>0 i>0

We claim that the connecting homomorphism 9 is zero. To see this,
it suffices to show that 9 is zero with a replaced by a—ayg, since 9 1is
a map of RO(G)-graded H[(x)-modules and the generator of H((x)
lies in degree 0. However, the summands Hg'—a""x'H (x) are all zero,
by Lemma 4.3. Since H{(*) is projective as a module over itself, the
resulting short exact sequence splits, completing the inductive step,
and hence the proof for the case V finite.

If V' is countably infinite dimensional, the result follows by pas-
sage to inverse limits—the lim'-terms vanishing since the maps of
the system are epimorphisms. O

Appendix. Virtual bundles. We construct, carefully, a category of
virtual bundles, in order to explain how to reduce the grading of co-
homology theories given in §2 from pairs of bundles to a category
whose isomorphism classes give KOg(X), and obtain a well-defined
functor of X . This construction is essentially the one that appears in
[CMW].

DEFINITION Al. (a) Let Z be a G-universe. Define G7~ to be the
category whose objects are pairs (X, &), where X is a G-space and
¢ is a finite-dimensional G-subbundle of X x % . The morphisms are
the G-bundle maps. We shall usually write ¢ for (X, &).

(b) Let G7” be the category whose objects are pairs of bundles
over the same base space, and whose maps (¢, {) — (&', {’) are equiv-
alence classes of pairs of G-bundle maps (f, g): (E+n,{+1n) —
(& +1n',{ +1n') covering the same map of base spaces. The equiva-
lence relation is the one generated by three elementary equivalences.
First, (f, g) ~ (f +1id,, g +1id,), where, if £ and (' are bundles
over X and f and g cover the map F on base spaces, then u is any
subbundle of X x # perpendicular to & + ' and (' + ', with F*u
perpendicular to {47 and {47, and by id, we mean the canonical
map F*u—pu.
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Secondly, let

(f,8):E+n, C+m)— & +n',+7)
~h k) (E+p, C+p)—(E+u, 0+ i)
if there are bundle maps n — u and n’ — u’ making the following
diagrams both fiber homotopy commute:

E+np —— &'+ 7' {+n — {'+7f
| | e | |
E+u — &+ C+p — O+ u.

The last relation is fiber-homotopy of maps (over a fixed base map).
We call the objects of #GZ” virtual bundles, and the morphisms vir-
tual bundle maps.

(c) If X is a G-space, let #GZ(X) be the subcategory of #GZ7~
consisting of virtual bundles over X and maps over the identity map
of X.

We are interested mainly in the isomorphism classes of these cate-
gories, for we have:

PROPOSITION A.2. There is a natural one-to-one correspondence be-
tween the isomorphism classes of objects of #G7 (X ) and the elements
of KOg(X).

Proof. The correspondence is given by taking the isomorphism class
of the pair (&, {) to the element [¢ — {] € KOg(X), and it is easy
to check that this gives a well-defined bijection. In particular, no-
tice that the elementary equivalences of A.1(b) above add no new
isomorphisms. O

Now let GEx be the category of G-ex-spaces. Both GEx and
ZG7" map to the category G%Z of G-spaces by taking base-spaces,
and we can form the pullback category GEx x4 . GZ", the category
of G-ex-spaces and virtual bundles on the base-spaces.

The following result shows the sense in which we can grade coho-
mology theories of KOg(X). It also shows in what sense it is homo-
topy invariant.

THEOREM A3. (i) If E is a G-spectrum and (W — X, &, () isan
0~bject of GEX Xgy hGZ", then the assignment (W — X, &, () —
Eg*g(W — X) defines a contravariant functor on GEx Xgy h GV .
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(i1) The functor of part (i) factors through the homotopy category of
GEX Xgy h¥G7 .

Proof. (i) Recall that an element of Eg"gl(W — X) is a homotopy
class of maps making the diagram

X'W - E,

! l

X f’ BGOn
@
commute, where é’ is the Gauss map. Now suppose given a G-ex-map
(F F): (Y - Z)— (W — X), with F:Y—>Wand F: Z — X.
Suppose also given a virtual bundle map (¢, {) — (&', ') over F,
represented by the pair of bundle maps (f,8):&+n,C+n —
(& +n', ¢ +7'). Starting with a € Eg‘cl(W — X) represented by
the diagram above, we suspend the diagram by #’, obtaining

D

! l

X  —— BGOpk.
&+
Now, the bundle map & + 7 — &' + 7' specifies a homotopy class of
homotopies from &+ to (& + #') o F ; using the covermg homotopy
property of fiber bundles, and the G-map X+1Z — U+ W specified
by F and the bundle map {+n — (' + 7', gives us a commutative
diagram
Iz s Ey ik

! !

Y —— BOnk-
c+il

Finally, we can take adjoints to obtain the diagram
ZCZ - Em

! !

¢
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representing an element of Eg"C(Y — X) (for details about the sus-
pension and adjunction used, see [E]). This defines the map

EE YW - X)—-ESYNZ - Y).

We can write what we just did as defining a sequence of homomor-
phisms

Eg—C'(W — X) __,Eg’*‘ﬂ’)“(C'M?')(W - X)
— ESt-C(z vy S ESNZ - Y).
We now need to show that this construction respects the elementary
equivalences given in A.1.(b) above. That it respects the first is easy
to see. For the second, suppose given maps # — u and n' — u

making the diagram in A.1.(b) commute, we can form the following
commutative diagram:

gl ’o ~
Eg +n)—(§ +n )(W - X) Eg*"l)—(“"l)(z —7Y)

- a N\,
EEE (Wa)i)' l J ESYZ - Y)

N

el oo ~
E(Gc +u)—({ +p )(W . X) Eg+l‘)_({+l‘)(z - Y) .

The vertical arrow are defined in the same way that the middle arrow
was defined in the step above. One can now check that the outer
triangles and middle square of this diagram commute, showing that the
paths around the top and the bottom give the same homomorphism.

Finally, to see that this construction respects fiber-homotopy is
straightforward, since we are only concerned with homotopy classes
in the defining diagram.

For (ii), again we are only concerned with homotopy classes, so this
is straightforward. O

One should not expect to make cohomology into a functor on the
obvious category of pairs (Z — X,a € KOg(X)), as the virtual
bundle maps are crucial to the functoriality and there is no canonical
way of choosing such maps in this situation.
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