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ON A CHARACTERIZATION OF VELOCITY MAPS
IN THE SPACE OF OBSERVABLES

B. V. RAJARAMA BHAT

Motivated by Heisenberg's picture of quantum dynamics the notion
of a velocity map is introduced and its properties are investigated. The
main theorem in the present exposition strengthens the well-known
result that every derivation on the algebra of all bounded operators on
a complex separable Hubert space is inner. A constructive proof leads
to an inversion formula for the observables inducing the derivation.

1. Introduction. Let si be a von Neumann algebra. Then a deriva-
tion δ on si is a linear map δ\ s/ -* sf satisfying δ{XY) =
Xδ(Y) + δ(X)Y for every X, Y in si . Inner derivations are the
derivations of the form δ(X) = [£>, X] for some D in si. It is
a well-known result of Sakai and Kadison (cf. [1], [2]) that every
derivation δ on a von Neumann algebra si is inner.

In Heisenberg's picture of quantum dynamics maps of the form
δ(X) = i[H 9 X], where H, X are self-adjoint operators, determine
the rate of change (or velocity) of observables. However, in this case,
we are interested in the action of δ only on the real linear space (9 of
observables (self-adjoint elements) of the algebra and not on the full
algebra si . Keeping this in mind K. R. Parthasarathy suggested the
following "axioms" for a velocity map which measures rate of change
of observables:

Let (9 be the real linear space of all self-adjoint elements of a von
Neumann algebra si . Then a map δ: (9 —> (9 is called a velocity map
if it satisfies the following conditions.

(1.1) δ(aX) = aδ(X) VαeR

(1.2) δ(X + Y) = δ(X) + δ(Y) VX,

(1.3) δ(XY) = Xδ(Y) + δ(X)Y VX, 7e^with[X, Y] = 0.

It should be noted that the requirement [X 9Y] = 0 in (1.3) is an
algebraic necessity to define δ(XY). We insist on the same require-
ment in (1.2) for the purely physical reason that the observables X, Y
and X + Y are simultaneously measurable if and only if [X, Y] = 0.
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In this paper we study continuous velocity maps. (Here and through-
out this paper by continuity we mean norm continuity.) Under the
assumption of continuity we show that if a map δ: 0 —> 0 satisfies
(1.1) and (1.3) then it automatically satisfies (1.2) and hence becomes
a velocity map.

A priori, it is not clear whether such a velocity map can be extended
to a derivation on si . We expect that such derivations are also inner
in the sense δ(X) = i[H, X] for some H in 0 and hence can be
extended to a derivation on si in a unique way.

In this paper we have an elementary constructive proof that this is
indeed so for linear velocity maps on the von Neumann algebra of all
bounded operators on a complex separable Hubert space. In fact we
have an explicit inversion formula for H in terms of δ.

2. Velocity maps. Let 0 be the real linear space of observables of
a von Neumann algebra si . For non-zero real numbers c define the
map δc: 0 -> 0 by

(2.1) δc(X) = cXlog\X\ VXed?.

As the function fc{x) = cxlog|.x| (which is defined to be 0 at the
origin) is a continuous function on the real line δc is well-defined. δc

clearly satisfies the condition (1.3), that is,

δc(XY) = Xδc(Y) + δc(X)Y MX, Y in 0 with [X,Y] = 0.

However δc does not satisfy conditions (1.1) and (1.2). In contrast to
this we have the following theorem which shows that if a continuous
map δ: 0 -» 0 satisfies (1.3) and a weakened (1.1) namely,

(2.2) δ(al) = θ VαeR

then δ satisfies both (1.1) and (1.2).

THEOREM 2.1. Let 0 be the real linear space of all self-adjoint el-
ements of a von Neumann algebra si . If δ: 0 —> 0 is a continuous
map satisfying (1.3) and (2.2) then it is a velocity map.

Proof. Condition (1.3) implies

= aI-δ(X) + δ(aI)X

= aδ(X) VαeR,X

This proves (1.1).
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Now for any natural number n if we have n mutually orthogonal
projections P\, P2, . . . , Pn in &, we claim,

(2.3) (J ί 2 α,P7 j = Σ ajδ(Pj) for a} e R V7.

We have proved this for n — \. For « > 1, put

Then we have
n+\ n

ΣPj=I and Σ β ^ = Σ
7 7=1 7=1

By (1.3), for every A; > 1

= δ{akPk)

δ ( Σ ajpj)p^ = δ^akpk) - Σ ^

- akδ{Pk) + ̂  α^(P,-)PΛ - akPkδ{Pk)

Adding over k and using (1.3) we get

δ

j ) k

aj{{I - Pj)δ(Pj) + δ(Pj)(I -

δ(Pj) - δ(Pj)Pj}
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Let Z , W be commuting elements in (9 with finite number of
points in the spectrum. We know that spectral projections of elements
of (9 are in ^ . So we can write Z , W in the form

z = £ > ,
i=l i=\

where at 's and fy 's are real numbers and Pz 's are mutually orthogonal
projections.

By (2.3)

= δ (J>, + bi)Pή = $ > / + bi)δ(Pi)

Let X, Y be any two commuting elements in &. Using spectral
theorem we can approximate X, Y by commuting finite spectrum
elements of (9. By (2.4) and continuity of <5 we get

δ(X + Y) = δ(X) + δ(Y). D

REMARK 2.2. In Theorem 2.1 if (9 is finite dimensional then we
need not assume that δ is continuous.

This is clear from (2.4).

3. Main result. Let β? be a complex separable Hubert space with
inner product ( ) which is conjugate linear in the first variable and
linear in the second variable. For any two vectors x, y in £?, \x)(y\
is the operator defined by

(3.1) \x)(y\z = {y,z)x VzeJT.

Observe that | } ( | is linear in the first variable and conjugate linear in
the second variable and for any unit vector x, \x) (x\ is the projection
on the one dimensional subspace generated by x.

Let 3${2f) be the von Neumann algebra of all bounded operators
on %? and ^f(^) be the real linear space of bounded self-adjoint
operators on %?. Let δ\ &{β?) -• &{??) be a linear map satisfying
the condition (1.3), that is,

VX, Y i n ^ ( r ) with[X, 7] = 0.
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Now we would like to obtain a self-adjoint operator H such that
δ(X) = i[H, X] VX e 0{&). To recover the H from δ we study
the action of δ on various rank one projections. To avoid trivialities,
assume d imX > 3.

LEMMA 3.1. Let u be a unit vector in %?. Then there is a unique vec-
tor φ{ύ) such that δ(\u)(u\) = i(\φ(u))(u\-\u)(φ(u)\) and (u, φ{u)) =
0. Moreover if v is a unit vector orthogonal to u then (φ(u), v) =
(u, φ{υ)).

Proof. Let u be a unit vector in %f. Define φ{u) by

(3.2) φ(u) - -iδ(\u)(u\)u.

As \u)(u\ is a projection we have

(3.3) δ(\u){u\) = δ(\u)(u\)\u)(u\ + \u){u\δ(\u){u\)

= \δ(\u){u\)u)(u\ + \u)(δ(\u)(u\)u\

(3.4) =i(\φ(u)){u\-\u)(φ(u)\).

To prove the second assertion use (3.3) to get

(u, <$(|K)(K|)M> = (u,δ(\u){u\)u) + (u, δ(\u)(u\)u).

Then

(u,δ(\u)(u\)u) = 0

which implies, by the definition of φ{u),

(3.5) {u,φ(u))=0.

Uniqueness is obvious as whenever {u, φ{u)) = 0 we have,

i{\φ(u)){u\-\u){φ{u)\)u = ί(l

Again by (1.3)

Now using the formula (3.4) for δ(\u){u\) and δ(\v)(v\) we get

-i(φ(u), υ)\u)(υ\ + i(u, φ{v))\u)(v\ = 0

which means

(φ(u), v) = (u, φ{v)). D
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Analysing the action of δ on some more projections we have

LEMMA 3.2. Let u, v and w be three mutually orthogonal unit
vectors in %?. Then the following equalities hold:

(i) (w,δ(\u){v\ + \v)(u\)w)=0;
(ii) (w , δ(\u)(v\ + \υ)(u\)v) = i(w , φ(u))

(iii) Re(w, δ(\u)(v\ + |υ)(w|)t;) = 0;
(iv) {u, δ(\u)(iv\ + | i t ;>(M|) ιv) - (u,δ(\u)(v\ + \υ)(u\)υ)
(v) (u,δ(\u)(v\ + \v)(u\)u) = / ( M , p(v)> - Ϊ ( V , 9>(w))

(vi) ( M , ^ ( I M X ^ I + | U ) ( M | ) V ) = (w, ί ( | w ) ( ^ | + \w)(u\)w)
+{w , δ(\w)(v\ + \v)(w\)v).

Proof. By linearity,

u + v U + V

V2
Then (i) is obvious. To show (ii) we consider

{w, δ(\u){v\ + \v){u\)v)
u + v \ I u + v

u - v u-υ

= (w, δ

- (w, δ

i

u-v
V2

u — v

72 w, φ

φ{w), -

'), u) =

φ[w),

u — v
"72"

u — v

By (3.5)

tu+v\ u+v xφ I — — I , — — ) = 0 and φ
u-v\ u—v

y/2 ) > yjl I — V V y/2

Making use of these equalities we obtain

u + v\ I u + v

72
= 0.

u, δ
yβ

V

u + v
"72"
u + v

"72"

i / (u+v

τλφv^uv

i I (u + v

72
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and

u, δ
U — V \ I U — V

yβ

-I

yβ
u-v
"72"
u-v

u-v

u-v

, v

, u

So (iii) follows.
In order to show (iv) define the projection,

Pι =

It is clear that

(3.6) {u,

u /1 + /

yβ
+ /

= Uu, δ(\u)(u\)υ) + Uu, δ(\v)(v\)υ)
Z* Z*

Zy/Z

1

^(u, φ{v))

(u,δ(\u)(iυ\ + \iv}{u\)iv)

- /(M, δ(\u)(iv\ + \iv)(u\)iυ}}.

As Pi is a projection we have

(u, δ(Px)u) = (u, δ(Pι)PιU) + (u, Pχδ(Px)u)

= 2Rc(u,δ(Pι)Pιu)
1 u fί + i

l + i
v .
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This means

Then from earlier computation (3.6)

Re(l + i){(u9 δ(\u)(υ\ + \v)(u\)v) - i(u9δ(\u)(iυ\ + \iv)(u\)iυ)} = 0

and from (iii)

Re{(w, δ(\u)(v\ + \v)(u\)v)} = 0,

Re{{u,δ(\u){iυ\ + \iυ){u\)iυ)} = 0;

combining these we obtain (iv).
In order to show (v) define the projection

U , yft \/U , V3^

Evidently,

(3.7) (u,δ(P2)u) = (u,δ ( | | \ + &

and

{u,δ(P2)P2u) = -(u,

1

-{u,δ(P2)u)

4

S o b y (iii)

(3.8) 2Re(u, δ(P2)P2u) = ±(u,δ(P2)u)
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But by (3.7)

(3.9) 2 Re(«, δ(P2)P2u) = (u, δ(P2)u)

Combining (3.8) and (3.9) we get (v).
The relation (vi) is obtained in a similar way by considering the

projection
u + υ + w \ I u + v + w

and the equation

(u,δ{P3)υ) = {u,δ(P3)P3υ) + (P3u9

Now we would like to exploit the linearity of δ by considering unit
vectors of the form cu + dv for some complex numbers c and d.
For this purpose we extend Lemma 3.2 to get

LEMMA 3.3. Let u, v and w be three mutually orthogonal unit
vectors in 3?. Let c and d be any two complex numbers. Then we
have the following relations:

(ii) (w , δ(\cu)(dv\ + \dv)(cu\)v) — cdi(w , φ(u))
(iii) (u, δ(\cu)(dv\ + \dv)(cu\)v) = cd(u9 δ(\u)(v\ + \y)(u\)v)
(iv) (w, δ(\cu)(dv\ + \dv)(cu\)u) = cdi{u, φ(v)) - cdi(v , φ(u)).

Proof. Write c, d in C as

C = C\ + IC2 , C\ , C2 S K ,

d — d\ + ίdi, d\, ί/2 £ ^

Then we have

><^l + \v)(u\)
{c\d2 - c2έ/i)(5(|M>(zt;| + \iv)(u\).

Now note that (iv) is also a unit vector orthogonal to u and w.
Then the result is immediate from Lemma 3.2 and linearity of δ . D

Now we are ready to recover H from <5. Note that if δ(X) =
i[H, X] for every X in ^ ( ^ ) then for any real number a we have
δ(X) = /[// + α/, JΓ]. This nonuniqueness of // is taken care of
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by insisting (UQ , HuQ) = 0 for some fixed unit vector UQ in %?. So
choose and fix a unit vector UQ in H. Define // : ̂  —• βf by

(3.10) tfκ0 = -iδ(\uQ)(u0\)u0 =

-/<J(|ι;)(ι;|)i; + /(«0, δ(\uo)(v\ + \v)(uo\)v)v

for v e J%* with (v, u0) = 0 and ||ι;|| = 1.

for α e C and z e Γ with (z, w0) = 0.

Note that we do have (UQ , //Ί/o) = 0 We use Lemma 3.2 and Lemma
3.3 to obtain the linearity of H.

LEMMA 3.4. The map H defined above in (3.10) is linear.

Proof. Let υ , w be mutually orthogonal unit vectors in %? which
are also orthogonal to UQ . Let z be a vector in ^ orthogonal to v
and ιu . Let c, d bt any two complex numbers. Then we show

(3.11) (υ , /ί(cτ; + ί/iϋ)> = c(υ , //^) + rf(v , /ίtϋ)

and

(3.12) (z, H{cv + rfίi;)) = c(z, 7/̂ ;) + J ( z , Hw).

From these linearity of H follows. From the definition of H,

= - ίδ(\ίv)(iv\)ίv + /(w0, δ(\uo){ίv\ + |/^)(wo |)^)^

By (iv) of Lemma 3.2 we get H(iv) = iHv .

Now a simple computation shows that H{ax) = <z//.x for any com-
plex number α and any vector x. So without loss of generality we can
assume |c | 2 + |d | 2 = 1, while showing (3.11) and (3.12). As (cv + dw)
is now a unit vector, we have

(3.13) {υ,H(cv + dw))

= -i(v, <J(|α; + dw)(cv + dw\)(cυ + dw))

+ ic(u0, δ(\uo)(cv + dw\ + \cυ + dw)(uo\)(cυ + dw))

= S{+S2 (say).

Linearity of δ implies

Sx = (-i){d\c\2(v , δ(\v)(v\)w) + d\d\2(v , ί(|u;>(ii;|)u;>

+ c{v , δ(\cυ){dw\ + \dw){cυ\)v)

+ d(v , δ(\cv)(dw\ + \dw)(cv\)w)}.
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Using (3.4) in the first two terms and (iv) and (iii) of Lemma 3.3 in
the next two terms we get

S{ = (-i){d\c\2(-i)(φ(v), w) + d\d\2(i)(φ(v), w)

+ ccdi(φ(v), w) — ccdi(φ(w), υ)

+ dcd{v, δ(\v){w\ + \w)(v\)w)}

= (-i){d\d\2(i)(φ(v), w)-c2d(i)(φ(w),v)

+ c\d\2{υ, δ(\υ){w\ + \w){υ\)w)},

S2 = ic{c(u0, δ(\uo)(dw\ + \dw)(uo\)v)

+ d{u0, δ(\uo){cv\ + \cv)(uo\)w)

+ c{u0, δ(\uo)(cv\ + \cv)(uQ\)υ)

+ d(u0, δ{\uo){dw\ + \dw)(uo\)w)}.

Using (ii) of Lemma 3.3 in the first two terms and (iii) of Lemma 3.3
in the last two terms we obtain

S2 = ic{cd(-i)(φ(w), v)+cd(-i){φ(v), w)

+ \c\2{uo,δ(\uo)(v\ + \v){uo\)v)

+ \d\2(uQ,δ(\u0)(w\ + \w)(u0\)w)}.

Now coming back to (3.13) we have

(υ , H(cv + dw)) =SX +S2

= d(\d\2 + \c\2){φ(v),w)

+ {-i)c\d\2(υ, δ(\v)(w\ + \w)(v\)w)

+ ic\c\2{u0,δ(\u0){υ\ + \V)(UQ\)V)

+ ic\d\2(uo,δ{\uo)(w\ + \w)(uo\)w).

(iii) and (vi) of Lemma 3.2 imply

(v, H(cυ + dw))

= d(φ(v), w) + ic\d\2(w , δ(\w)(v\ + \v)(w\)v)

+ ic\c\2(u0,δ(\u0)(v\ + \v)(u0\)v)

+ ic\d\2(u0, δ(\uo)(w\ + \w){uo\)w)

= d(φ(v), w) + ic(\c\2 + |ΰf|2){Mo, δ(\uo){v\ + \v)(uo\)υ)

= d(φ{v), w) + ic(uo,δ{\uo)(v\ + \v)(uo\)v)

= d{v , Hw) + c{υ, Hv).
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This proves (3.11). To show (3.12) we consider

(z, H(cv + dw)) = (—i)(z, δ(\cv + dw)(cv + dw\)(cv + dw))

= (-/){φ| 2(z, ^(|v><v|)v> + d\d\2(z, δ(\w)(w\)w)

+ c{z, δ(\cv)(dw\ + \dw)(cv\)v)

+ d(z, δ(\cv)(dw\ + \dw)(cυ\)w)}.

Then use (3.4) in the first two terms and (ii) of Lemma 3.3 in the last
two terms to obtain

(z, H{cv + dw)) = (-i){c\c\2i{z, φ(υ)) + d\d\2i(z, φ{w))

+ ccdi(z, φ{w)) + dcdi(z, φ(y))}

= (-i){ci(z, φ{v)) + di{z, φ(w))}

= c{z, Hv) + d(z, Hw). Π

Now we are ready to prove our main result.

THEOREM 3.5. Let %? be a complex separable Hubert space. Let
be the real linear space of all bounded self-adjoint operators on

. If δ : <9{%?) -* rfffi) is a continuous linear map satisfying

δ(XY) = Xδ(Y) + δ{X)Y MX, Y in &{&) with [X,Y] = 0.

Define H\MT -+X by

H{au0 + bv) = a(-i)δ(\uo)(uo\)uo

+ b{-iδ(\v){v\)v + i(u0, δ(\uo)(v\ + |v)<fiol)t;)t;}

for a fixed unit vector UQ in X and a, b e C, v e %* with (v, v) = 1
and (v, UQ) = 0. Then H is a bounded self-adjoint operator on %*
satisfying

Proof. We have already shown that H is linear. For any unit vector
v we have

(v, Hv) = i(uθ9δ(\uo)(υ\ + \υ)(uo\)v).

(iii) of Lemma 3.2 implies

(υ , Hv) € R.

As H is defined on the whole of %? we conclude that if is a bounded
self-adjoint operator. It remains to show that

δ(X) = i[H ,X] V i e &(JT)
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First, we prove this for rank one projections, then for all projections
and finally use the continuity of δ to prove the result for all X in

. It is clear that if X — \v){v\ is a rank one projection, then

] = i[H,\v)(v\]

= i(\Hv){v\-\v){Hv\)

= i{\(-i)δ(\υ)(v\)v)(v\ + /{(wo, δ(\uo)(υ\ + \υ)(uo\)v)}\v)(υ\

-\v)((-i)δ(\v){v\)v\

+ (-i){uo,δ(\uo)(v\ + \v)(uo\)v)\υ)(υ\}

= i(\φ(υ))(v\-\υ)(φ(υ)\)

= δ(\v}(v\).

Let P be a projection and v be a unit vector in the range of P. We
have

P\υ)(υ\ = \υ)(v\P = \υ){v\,

δ(\υ)(υ\)=δ(P)\υ)(v\+Pδ(\v)(v\).

A p p l y i n g o n v a n d us ing g{\v)(v\) = i[H, \v)(v\] w e h a v e

i[H, \υ){v\]υ = δ(P)υ + P(i[H, \v)(υ\])υ ,

iHv - i(Hυ , υ)v = δ(P)v + iPHv - ί(Hv , v)v.

So

(3.14) δ{P)v = iHv - iPHv = iHPυ - iPHv = i[H, P]v.

On the other hand if w is a unit vector orthogonal to the range of P,

P\w)(w\ = \w)(w\P = 0.

So

δ(P)(\w){w\) + P(δ(\w)(w\)) = O,

δ(P)(\w)(w\)+P(i[H,\w)(w\]) = O,

\δ(P)w)(w\ + i\PHw)(w\ = 0.

This means
{w , w)δ(P)w + (w , w)iPHw = 0,

(3.15) δ{P)w = -iPHw = iHPw - iPHw = i[H, P]w.

Combining (3.14) and (3.15) δ{P) = i[H,P]. That is δ(X) =
i[H, X] whenever X is a projection. By linearity δ(X) = i[H, X]
whenever X is a finite linear combination of projections. Now an
application of the spectral theorem combined with the continuity of
δ completes the proof. •
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The proof in [1] of the fact that every derivation on a C* algebra
is bounded can be imitated to show that every linear velocity map is
continuous. So we have

REMARK 3.6. Theorem 3.5 is true even without the assumption of
continuity of δ.

Let <9\, ^2 be the spaces of self-adjoint elements of von Neumann
algebras sf\, s/2 respectively. Then <9\ Θ @2 is the space of self-
adjoint elements of the von Neumann algebra i i θ ^ If δ is a
linear velocity map on (9\ @@2 then we can write δ as δ\ ®δ2 where
δ\ and δ2 are linear velocity maps on &\, @2 respectively. If δ\ and
02 are inner in the sense δ\ (X) = i[H\, X] for some H\ in <9\ and
δ2(Y) = /[i/2? 5Ί f° r some H2 in f̂2? where X, 7 are elements of
^ i , ^2 respectively then <J is also inner as we have

δ(X®Y) = i[Hx ®H2,X@Y].

As a corollary we have the following generalisation of Theorem 3.5.

THEOREM 3.7. Let sf be a subalgebra with identity of Mn(C) for
some natural number n. If δ is a linear velocity map on the space &
of all self adjoint elements in srf, then δ(X) = i[H, X] X e @, for
some H in &.

Proof. This is clear from the discussion above as si is isomorphic to
Mn (C)θAfrt (C)θ -@Mn{C) for some natural numbers n\, n2, . . . ,
n^ and we can use Theorem 3.5. D
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