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SUPERHARMONICITY OF CURVATURES
FOR SURFACES OF CONSTANT MEAN CURVATURE

WU-HSIUNG HUANG

For a hypersurface of constant mean curvature in an Euclidean
space, we illustrate the superharmonicity of various forms of curva-
tures. Applications in parametric capillary surfaces, constant rank
properties of surfaces and a Shiffman type theorem are discussed.

Given a hypersurface Mn of constant mean curvature in Rn+ι, we
study its geometry by showing the superharmonicity of various forms
of curvatures, such as the scalar curvature R, the Gauss-Kronecker
curvature Kn, the ι/th mean curvature Kv and the level curva-
ture L.

We first prove that, for Mn of positive sectional curvatures, R and
logKn are superharmonic [Theorems 1 and 3]. When Mn has non-
negative sectional curvatures, \ogKn is not everywhere defined, but
Kn still satisfies the strong minimum principle that it never attains in-
terior nonnegative minimum unless Mn is a portion of a sphere or of
a cylinder. Such findings explain various results, known or unknown,
on the geometry of Mn with a simple geometric version.

As an application, we consider a liquid contained but not full within
a convex closed container left in outer space, i.e. a space of zero grav-
ity. The Euler-Lagrange equation yields that the capillary surface of
the liquid has constant mean curvature with constant contact angle γ
against the wall of the container. Consider a C2-deformation of the
capillary surface by pouring in an extra amount of the liquid until a
small vacuum bubble remained in the middle. The superharmonicity
of logKn proves the convexity of capillary surfaces during the de-
formation, valid for γ = 0 and arbitrary dimension n [Theorems
2 and 4]. This can be regarded as a generalization of the results by
Chen-Huang [4] and Korevaar [11] where the nonparametric case was
considered. Nonconvex examples of the problem were obtained by
Finn [5] for nonzero γ. The strong minimum principle for Kn also
reveals the intrinsic geometric effect of γ = 0 on the convexity of
the capillary surface, with the argument that Kn nonnegative on the
boundary dM guaranteed by γ = 0 is to ensure Kn positive in the
interior.
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As a second application of superharmonicity of curvatures, we con-
sider a constant rank theorem established by Korevaar-Lewis [10] that
the Hessian of the height function u = u(x), x eΩ c Rn has constant
rank when the mean curvature H of a convex surface u = u(x) sat-
isfies H~ι being strictly convex in u. Refining our previous work by
considering the log-concavity of the z/th mean curvature Kv defined
by the i/th symmetric function of the principal curvatures, we prove
[Theorem 5] that given a convex hypersurface Mn in Rn+ι with con-
cave mean curvature H [the case that H = constant is included—see
§4.2], the second fundamental form (Ay) has constant rank.

We also point out that the superharmonicity of varoius forms of
curvatures gives rise to classical known results, such as the rigidity
of spheres, the classification of complete convex surfaces by Liebman-
Klotz-Osserman [9] and the convexity theorem of level curves on min-
imal surfaces by Shiίfman [14]. For the last one, we extend to surfaces
of constant mean curvature in §5, deal with the "level curvature" (i.e.
the curvature of level curves) and prove its superharmonicity in a sense
[Theorem 8]. The computation is relatively tedious. We thereby con-
clude that deforming smoothly a given annular-like soap film with two
ending curves lying in two respective horizontal planes to a vertical De-
launay surface, all the level curves are convex during the deformation,
if the outside pressure of the beginning soap film is no less than the
inside pressure [Theorem 9]. This generalizes Shiftman's theorem on
minimal surfaces. Our method is free from using the complex analysis
apparatus.

1. The superharmonicity of scalar curvature. Let Mn be an n~
dimensional hypersurface of constant mean curvature immersed in
RΠ+\ y/c choose an orthonormal frame {eA} such that {e\, . . . , en}
are tangent to M and en+\ normal. Let the corresponding coframe
be denoted by {wA} and the connection forms by {wAB}. The pull-
backs of them through the immersion are still denoted by {wA},
{WAB} i n the abuse of notation. Therefore in particular,

(1.1)

We use the index convention as follows,

1 < ί, 7, fc, •••<*; l<A9B,C9- <n + l.

The second fundamental form B is defined by the matrix (Ay) with

(1.2) Wi,n+1 =hijWj.
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We have the curvature tensor Rijkl expressed by

(1.3) Rijki = hikhji - huhjk.

The sectional curvature Ky of the plane spanned by {ef , ej) is de-
fined by

(1.4) Kij = Rijij = huhjj - hjj = λiλj (if i φ j)

where λ i , . . . , λn are the principal curvatures of Mn in Rn+ι, and
the scalar curvature R is defined by

(1.5)

We have

THEOREM 1. Let Mn be a hypersurface of constant mean curvature
immersed in Rn+ι. Then the Laplacian of the scalar curvature R is

(1.6)

where |VJ9|2 = Σij^hfjk' Furthermore if M is of non-negative
sectional curvatures , ίΛ^n i? w superharmonic on M.

Proof. We have a commutation formula,

(l 7 ) Λyjt/ = Λy/jt + hmjRimιk + himRjmlk,

while noting that h^ is symmetric in any two indices among the
three. This gives

(1.8) Δji/Λy = hjjkk (using the summation convention)

= hikkj + hmkRimkj +

On the other hand, we have

(1.9) Δ M i ? = Σ (huhjj - hfj)kk

- 2hijhijk)k

- 2hijkkhij)



294 WU-HSIUNG HUANG

Since the mean curvature H = Ydi ha is constant, it is clear that

(1.10) Σ A, ,**Λ/7 = ° = Σhnhjjkk
i j

and

(1.11)

Hence we obtain

(1.12) AMR = - £ 2hiikkhu - £ 2hjjk

i,k i,j,k

by suitably taking e\9 ... ,en to be the principal directions at a given
point p. We continue the computation that at p,

(1.13) AMR = -2^(hkkii + hmkRimki + himRkmki)hti - 2\VB\2

-2\VB\2

= -Σ(λi-λk)
2Kik-2\VB\2.

iφk

This proves formula (1.6).

As a corollary for n = 2, we obtain a stronger form.

COROLLARY 1. Let M be a surface of constant mean curvature in
R? and K be its Gaussian curvature. Then at non-umbilic points, we
have

(1.14) AMK = -{λx -λi)2K - 4

And therefore K attains neither interior nonnegative minimum nor
interior negative maximum, unless M is a sphere or a cylinder.
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Proof. We have

k

= Σihukhn + hnh22k - 2h12hι2lc)
2

k

= (hnιh22 + huh22ι)
2 + (hx ι2h22 + hnh222)

2

(by choosing frame so that hχ2 = 0 at a given point)

= (hn-h22)
2(h2

2l+h2

n2)

(since hnι = -h22ι, h222 = -hn2)

and

2h2

2ι +h2

22l)

= 4(h2

22l + h2

n).

Hence

15)
= 4(h2

22l + h2

(1.16) 7YT\ϊ
(Λi -λ2y

By substituting R = 2K into (1.6), we obtain (1.14). The second
assertion is then evident.

REMARK 1.1. For n = 2, the formula (1.14) can also be proved in

a classical way. Consider the coefficient

Λ L-N . . .
Φ = — iM

of Hopf s differential, where L, M and TV are the coefficients of the
second fundamental form. By virtue of the Coddazzi equations, Φ
is holomorphic when the mean curvature is constant. Hence log|Φ2|
is harmonic on the surface. By computing Δ(log|Φ2|) with respect
to the metric of the surface at non-umbilic points, we easily obtain
formula (1.14). Since umbilic points attain maximal values for K,
the superharmonicity around umbilic points is still valid.

2. Parametric capillary surfaces. Given a liquid V contained but
not full in a bounded closed container C. Leave them in outer space,
i.e. in the field of zero gravity. Let M denote the liquid surface inside
C in equilibrium.

The Euler-Lagrange equation of energy function of the liquid im-
plies that M has constant contact angle γ independent of the shape
of C. This was originally observed by Pierre Simon Laplace [12],



296 WU-HSIUNG HUANG

Thomas-Young [18] and Carl Gauss [6], when the container is a ver-
tical tube.

A natural question is raised. How does the shape of C affect the
geometry of surface M ? For the case of tube with given cross section
Ω where M is expressed nonparametrically in u = u(x), x £ Ω,
related results have been obtained. In a joint work of the author
with J. T. Chen [4], it was proved that for γ = 0 the convexity of
Ω implies the strict convexity of the surface M in a strong sense
that the Gaussian curvature is positive at the interior points. (In this
paper we keep on using strictly convex to name the convexity in this
strong sense.) The result was soon generalized by Korevaar [11] to
higher dimensions of the domain Ω, using his maximum principle
of concavity function and a limiting argument that extends convexity
results in the gravitational field to outer space. On the other hand,
Finn [5] found counterexamples over trapezoids for each nonzero γ.

Why the assumption of γ = 0 is that essential has been partially re-
vealed in the proof of Korevaar and the examples of Finn. However,
based on (1.14) and the continuity method we obtain the superhar-
monicity of nonnegative Gaussian curvature K for general parametric
surfaces of constant mean curvature. This gives a more satisfactory
and geometric explanation for the essentiality of vanishing γ. In fact,
that γ = 0 guarantees nonnegative Gaussian curvature on the bound-
ary. The superharmonicity of K then shows its positiveness in the
interior.

We make precise arguments of this for general parametric capillary
hypersurfaces of dimension 2 and higher dimensions respectively in
the subsequent theorems.

THEOREM 2. Given a liquid contained inside a closed, strictly convex
container C (C denoting the bounding wall) in outer space. We sup-
pose that the material of the liquid and the container are made so that
γ = 0 wherever they contact Pouring more liquid gradually into the
container, it is assumed that the liquid surface M deforms smoothly
until the small vacuum part left in the middle of the liquid. Then the
interior of M is strictly convex in the beginning as well as during the
deformation. Moreover, we have the minimum principle,

(2.1) KM > minKc > 0

where KM and KQ denote the Gaussian curvature of M and C re-
spectively. And therefore the vacuum part at any stage is a strict convex
set.
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Proof. First we note that the small vacuum part left in the middle of
the liquid is bounded by a closed surface of constant mean curvature
embedded in B?. By a theorem of Aleksandrov [1], it is known that
the vacuum part is simply a sphere on which the Gaussian curvature is
a positive constant. We reverse the deformation process that we begin
with the sphere S2(ε$) = MQ and deform MQ smoothly into M\= M
through {Mt}. Suppose that (2.1) is not satisfied for M, then there
exists a smallest τ such that an interior point Po i n Mτ exists with
KMT(PO) = minji/TKMT > 0. But this is impossible by virtue of (1.14)
with the strong minimum principle. Hence

(2.2) KM>minKc>0

as required.

REMARK. For the non-parametric case, i.e. for the liquid contained
in a tube with convex cross section Ω, the above argument is modified
to deform the tube into a circular tube in which the capillary surface
is a lower hemisphere. We follow the reasoning in Theorem 2 except
we have to exclude the possibility that KM attains a zero minimum

'o

at a boundary point Po f°Γ certain to < 1. This can be argued by
a refined strong maximum principle. The remark also implies that
the assumption of strict convexity of C in Theorem 2 can weaken to
convexity.

3. The log-concavity of Gauss-Kronecker curvature. For a hypersur-
face Mn immersed in Rn+1, the Gauss-Kronecker curvature Kn is
defined by the product of principal curvature {Λ,;}, i.e. Kn=λιλ2" λn

= det htj. It describes the ratios of ^-dimensional infinitesimal areas
under the Gauss map

Mn -+ the unit sphere Sn(l),

which sends a point p to the unit normal en+\ at p.

THEOREM 3. For a hypersurface Mn immersed in Rn+ι with con-
stant mean curvature and nonnegative sectional curvatures, we have the
strong minimum principle for Kn, i.e.

(3.1) min Kn = min Kn

with Kn never attaining minimum in the interior unless Kn is constant.
Furthermore we have the following results: (i) logΛ^ is superharmonic
on the points where Kn > 0, (ii) On general points of Mn, logΛ^ is
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superharmonic where Kn = det(Λ/7 +
eδjj, δij being the Kronecker symbol

, ε > 0 and

REMARK. In the case that Kn is a positive constant, Mn is umbilic
by (3.10) and (3.11) and therefore it is a portion of ^-spheres. When
Kn has a zero minimum, Mn is a cylinder by (4.21).

Proof. We consider locally on Mn an orthonormal moving frame
e\, e2 > 5 Oι For a function w on Mn , the Laplacian Δw of w is
defined by :

(3.2) Au = ukk

where W/7 is the covariant derivative with respect to the frame and the
summation convention on k is used here and likewise in the sequel.
We recall that the Laplacian thus defined is the so-called Beltrami-
Laplace operator defined by the metric of Mn . It follows straightfor-
wardly that

(3.3)

and

(3Λ)AKn = Σ(-iy(hiσh2o

Kn

* 2 σ 2 * * Kσβk

Kσmkk\

nσn

+ hσfaσfaσ, ' ' ' K-\σn_xkKσnk\}

where σ = (σ\9 ... , σn) is a permutation of (1, . . . , ή). By choosing
the frame {ej} so that h^ = λx-δij at a given point p, we have

(3.5) hij = (λi +

at p. Formula (3.4) is reduced to

(3.6) AKn = [hnkkh22 - - hnn + h hnnkk\
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Hence we find

(3.7) AlθgKn = -^{[hnkkh22- • -hnn + • • • + hUh22

+ 2[(hnkh22k - *?2ik)*33 •••hn

x

1
- -ψjih\k~h22 Λ«n + + Λi 1A22 KnkΫ

It is clear that

(3.8) hijk = hijk and hijkl = hijkl,

and therefore

(3.9) hkkij = hkkij = 0.

By using the commutation formula (1.7) for h^u, the first term of
(3.7) at p becomes

(3.10) -^
κ

appears at the ith position)

Σ h k k R i k i k + haRkiki) •••hn

i,k

•••h

nn

Xnfίl k» J

hi hk

f£ iiJ \hkk

and the equality holds if and only if p is an umbilic or a cylindric
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point. The remaining terms of (3.7) equal

•••hnn + hnh22khi•••hn n + hnh22khi•••hnn

*?i

Therefore at a given point p on which Kn > 0, we have shown (ii)
of the theorem, i.e. we have proved the superharmonicity of ^
or more precisely,

(3.12) ^ J

where Kn = det(λ// + εδ(j), ε > 0, and the equality holds if and only
if p is umbilic or cylindric. The same computation follows evidently
for log Kn at p with Kn > 0. Thus we also obtain (i) of the theorem.

To show the strong minimum principle for Kn on general points
of M, we note that Kn satisfies strong minimum principle for each
e > 0, by virtue of (3.12). However,

(3.13) Kn = Kn(e) = det(hij + εδij)

= Kn+ Kn.xε + Kn_2£
2 + -' + Kxε

n~x + e

where Kv is the i^th mean curvature of Mn in RnJtX, defined by the
i/th symmetric function of principal curvatures λ\, λ2, , λn .

Suppose that Kn attains a zero minimum at an interior point Po
of Mn . A contradiction is shown to follow unless Kn is constantly
zero. The function Kn is real analytic on Mn, as Mn inherits a
real analytic structure from Rn+ι with all coordinate functions real
analytic in Mn. The set Z of minimal points of Kn on Mn is a
finite union of real analytic submanifolds around PQ . Notice that
on Z ,

£ ΞΞ log^(ε) = loge + log(^_! + eKn_2 + + en~ι)
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while on Mn - Z ,

XogK = \ogK{ε) = log[Kn + e(Kn-ι + εKn_2 + • • + e r t" 2)].

Let γ be a geodesic segment of Mn with γ(0) = PQ and γ - {Po}
contained in Mn-Z . As ε tends to zero,y(—0 and γ{t) have values
of \o%Kn bounded below, but at Po > ^ogKn tends to — oo. This gives
that

lim ^ ( 1 0 8 ^ 0 7(0X0) =+00.
ε-+0 t1

On the other hand, the second derivatives of \ogKn along the direc-
tions tangent to Z as well as the gradient of \ogKn are convergent
and therefore bounded when ε —• 0. It follows that as e —> 0,

ΔlogA^e) ->+oo a t P 0

This contradicts (3.12). The proof is completed.

REMARK. TO avoid using the real analyticity of the zero set Z , a
general rigorous argument of the above proof is given in [8].

Using Theorem 3, and following the argument in Theorem 2, we
obtain

THEOREM 4. The generalization of Theorem 2 to high dimensions is
valid.

4. Log-concavity of z/th mean curvature and a constant rank theo-
rem. Before considering z/th mean curvatures, we mention that the
superharmonicity of curvatures explained classical known results. For
an example, Liebman-Klotz-Osserman [7] proved that a complete con-
vex surface M of constant mean curvature in i?3 is a cylinder, a plane
or a sphere. Since the complete surface M of nonnegative curvature
is parabolic, the superharmonicity of K when K > 0 implies im-
mediately that K is a constant. Hence M is a cylinder, a plane or
a sphere. The version also explains why the standard sphere is rigid
among the class of surfaces of a given constant mean curvature, while
examples with K of alternating sign may possibly be deformed.

By considering superharmonicity of logarithm of the i/th mean cur-
vature Kv of Mn in Rn+1, we obtain a constant rank theorem as a
further application. The z/th mean curvature Kv is defined by the
z/th symmetric function of principal curvatures λ\, λi, ... , λn . For
example,

(4.0) K\ = λ\ + λ2 H \-λn = mean curvtature H,
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and
Kn = λ\λ2 - " λn = Gauss-Kronecker curvature Kn.

It is then clear that

(4.1) det(*y +λδij) = Kn+Kn^λ + + Kχλn'1 + λn.

THEOREM 5. Let Mn be a connected convex hypersurface immersed
in Rn+ι with concave mean curvature H, i.e.

(4.2) ^H < 0

along any geodesic parametrized by t, or equivalently, the second co-
variant derivatives constitute a nonpositive matrix. Let the rank of the
second fundamental form (Ay) attain a minimum r0 at an interior
point po of Mn. Then (i) each Kμ with r$< μ<n vanishes on Mn,
(ii) the rank of (Ay) is constantly equal to ΓQ on Mn, (iii) the loga-
rithm of the ro th mean curvature KΓQ is superharmonic at the points
where KΓQ > 0, and (iv) Kr satisfies the strong minimum principle,
i.e.

(4.3) m i n # r =minKr

where KΓo has no interior minimum unless KΓo is constant.

REMARK 4.1. The statement shows that the constant rank theorem is
essentially a consequence of superharmonicity of logKμ, ΓQ < μ < n
(for the meaning of Kμ, see below). The details are contained in the
following proof.

Proof. It suffices to prove the strong minimum principle for Kv

with ΓQ < v < n, since ^ 0 +i , Kro+2 9 > Kn then vanish on M as
they attain a zero minimum at the interior point po. We use the in-
duction on v backward until v equals r0. For v = n, Theorem 3
has shown that the strong minimum principle holds for Kn . Now as-
suming Kv+\, Kv+2, - > Kn satisfies the strong minimum principle,
we claim that Kv does also. However this induction hypothesis yields
Kv+\ = Kv+ι = = Kn = 0 at every point of M. Given an interior
point p\ of Mn , we choose around p\ a local frame {e{\ on Mn by
the following construction:

(1) letting

(4.4) hij = λiδij at px,
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(2) defining eu+\ , ev+2, . . . , en in a neighborhood of p\ by prin-
cipal directions with zero principal curvature,

(4.5) λu+ι = λy+2 = = λn = 0.

It is direct to verify that the tangent subspace by {eu+\, . . . , en} on a
neighborhood of p\ is parallel in Mn . Hence we may construct a local
frame {e\, ... ,en} parallel along radial geodesies emanating from p\
by holding (1) and (2) valid. We now define hij, the perturbed hjj,
by

(4.6) hij = hu + βiδij

where
Γ ε; / =

1 0 ; / =
/ = 1 , 2 , . . . , i/,

v + 1, . . . , n,

ε being a small positive number. It is not difficult to see that

kjk = hkj + O(e)

uniformly in a compact neighborhood of p\. We also define Kv , the
perturbed Kv, by

(4.8) det(Λl7 + λδij) =Kn+ Kn_xλ + Kn_2λ
2 + + Kxλ

n~λ + λn.

It is clear that for any given μ with v + 1 < μ < n,

(4.9) W P i ) = 0,

(4.10) W P I ) = °

and

(4.11) hμμkk{pι) = {hkkμμ - hkkRμkμk + hμμRkμkμ){px) + 0{ε)

d2

= hkkμμ(Pι) + O{ε) = j^H + O(ε) axPι <O(e),

t being the parameter of the geodesic generated by eμ through px.

We now compute Δ log Kv . To avoid the complication of exhibiting
long indices, we simplify notations of formulas when the meaning is
obvious. We have

where the summation ranges over all / = (i\, 12,... , iv) with

(4.13) 1 < h < h < ••• < iv < n,
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and over all the permutations σj of / . It is straightforward that

(4.14) Ai—Z AK»

By virtue of (4.4), (4.5), (4.6), (4.9) and (4.10), most of the terms in
(4.14) vanish at p\ and we have

(4.15)

< —
h\\h22 -

hvι/kk]

- A l 2 * ) * 3 3 ^

1

{hnh22 -hvv)
2

+ 0(6).

[hnkh21 ' + huh22 • • •

For any given / with 1 < i < n, we note that by (4.2),

(4.16) hiikk = hkkii - hkkRikik + huRkiki + O(ε)

< 0 - Σ (λk + e)(λiλk) +
i,k=l i,k=\

Letting the three parts of (4.15) corresponding to the three brackets
in (4.15) be denoted respectively by I, II and III, we have

( 4 . 1 7 ) I < -
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For the sum II + III, we cancel the terms of the sort,

(4.18) 2(/*n/*22 "KΛιkh22kh33 '"huv

in II with the cross terms of the sort

(4.19) -2(hnkh22h33''' hvv)(hxxhllkh^ hw)

to obtain

(4.20) π + m = -2 f * ^ + . . . ] - f ^ + ̂ t + ...l
[hh J [ h 2 h\ \
f ^ ] f ^
[huh22 J [ h 2

n
v v U2

Combining (4.17) and (4.20), we obtain

(4.21) Δ l o g ^ < - Σ {λi-λj)2-

hl,,
J ^ J

We therefore conclude that ΔlogΛ^ < 0 for small ε > 0. For other-
wise λ\ = = λv and Vhij = 0 in a compact neighborhood U of
Px, since the term O(e) tends to zero uniformly in compact neighbor-
hood of p\. But this means that in U, λ\ = = λv = a positive
constant and λu+\ = = λn = 0, which implies ^ is a positive
constant in U, contradicting the assumption of ΔlogΛ^ > 0 at p\.
Hence Kv satisfies the strong minimum principle for r§<v <n. A
similar argument at the end of the proof of Theorem 3 now applies
and passes the strong minimum principle for Kv = Ku(ε) to that of
the limit Ku as ε tends to zero (for more precisely details, see [8]).
This completes the proof of Theorem 5.

5. Superharmonicity for level curvatures. Brascamp-Lieb proved in
[2] that the first eigenfunction μ of the Laplacian over a convex do-
main Ω in R2 with zero boundary value on 9Ω has its level curves
all convex. In the works of Lee-Wang [13] and Shih [15], the problem
has been considered for convex domains in spheres or in hyperbolic
planes, among which Shih used the expression

k = {-u\u22 + 2uιu2un - u2

2un)l\Vuγ

for the curvature of level curves to illustrate a counterexample of the
Brascamp-Lieb theorem in hyperbolic planes.
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We consider in this section the level curves of surfaces of constant
mean curvature. Shiffman [14] dealt with them for minimal surfaces
using complex setting. In this note we tackle the problem by directly
computing the Laplacian of the curvature of level curves and show
its superharmonicity under C2-deformation. This provides a more
geometric version.

Let Mn be a hypersurface of constant mean curvature H immersed
in JR W + 1 via

X:Mn -

and

be a height function relative to the direction ξ of Rn+ι. For each
real number a, the level set

Na = {XeMn\u(X) = a}

has Gauss-Kronecker curvature L in i?2 = {X e Rn+ι\u(X) = a}
defined by the product of principal curvatures λ\, λ'2, . . . , λ'n_x of
Na in i?2. We call L the level curvature of Mn relative to ζ and a
chosen normal field en+\ of Mn in i ? π + 1 . It is easy to see that

(5.1) L = {uiUjHiJ)/\Vu\*

where Uj9 I < i < n, are the covariant derivatives of u relative to
an orthonormal local frame {ez} of Mn and //y the cofactor of the
second fundamental form (Λy) with respect to en+\ of Mn in Rn+ι.
We have

(5.2) hijHjk = δikύet(hu) = δikKn

where Kn is the Gauss-Kronecker curvature of Mn in Rn+ι consid-
ered in §§3, 4. On the other hand, the Hessian Ujj has the forms as
follows:

(5.3) Uij = (X, ξ)u = (X/7, {> = (Vii+i» f >

where
n

(5.4) W = ±jl - |Viι|2 = (e Λ + 1 , 0 , VM = grad u =

and en+\ is the unit normal of Mn in i?w + 1 with

(5.5) hij = (Xij
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We also remark that

(5.6) Vu = jr me, = Σ(Xi, ξ)ei = ] [ > , ξ)ei = ξτ

ι = l i=\ /=1

which is the tangential component of ξ on tangent space of Mn and
if we define

(5.7) p = \Vu\

then 0 < p < 1, since

(5.8) p2 = | V M | 2 - \ζτ\2 < \ξ\2 = 1

and

(5.9) \W\ = Vl-p2 = \ζN\

= the length of normal component of ξ.

To abbreviate notations, we define

(5.10) La = (uiUjHij)/\Vu\a,

by which we have

(5.11) LQ = UiUjHij , and L — L3(w; M;/ί,-7 )/|Vw|3.

In the following, we first compute ΔLo and then ΔL3. Our idea is to
express

ALa = A + BLa + C • VLa

so that A < 0, B < 0. Then deform M into a standard surface such
as a catenoid to conclude La > 0 at every stage.

Step 1.

(5.12) A(UjiijHij) = (UiUjHij)kk (summation convention used

unless otherwise declared)

UiUjHijk)k

2uikujkHij

+ 4uikUjHijk + UiUjHijkk

where the four terms are denoted respectively by

21,211,4111, and IV.

Step 2.

(5.13) I = uikkUjHij = {ukki + umRkmki)UjHij

= [ihkkW)i + umRkmki\UjHij [by (5.3)]

jHij + umUjHuRkmki.
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However, we have

(5.14) hkkiW = HiW = 0 and

Wt = (en+ι, ξ)i = {-haeι, ζ) = -hauι.

Since H is constant,

(5.15) hkkWiUjHij =-HihuufiUjHij [by (5.3)]

= -HuιujδljKn [by (5.2)]

= -\Vu\2HKn

and

(5.16) UmUjHijRkmki = umUjHij{hkk - hmi - hkihmk)

= umUj(SjmKn)H - umUj(δjkKn)hmk

= \Vu\2HKn - umUjhmjKn

= [\Vu\2H-B{Vu,Vu))Kn

where B denotes the bilinear form defined by the second fundamental
form (ha) of Mn in Rm+ι. It follows that

(5.17) l = -B(Vu,Vu)Kn.

Step 3.

(5.18) II = uikujkHu = W2hikhjkHij = W2hik{δkiKn)

= W2HKn = (1 - \Vu\2)HKn.

Step 4. We will express III in terms of L and VL when n = 2.
Consider a frame {e\,e2, ... ,en} of M" such that e\ is perpendic-
ular to the level sets Na, aeR. Then

(5.19) Vu = uίeι.

Now at a given point po of M", we select β2, eι, ... , en so that
hij — δij at po for i, j > 2. We call such a frame a level principal
frame of Mn at po with respect to ξ. It is evident that

(5.20) III = uikUjHijk = UjWhikHijk = u,

= M7 W(£ B ); [since hikk = /zfcfcί = //,- = 0]

= ^FVM VKn.

On the other hand, when n = 2 we consider

(5.21)
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where

(5.22) (L0)i = {UiUjHίj)λ = lunUjHij + UiUjHm

and

(5.23) (Lo)2 = (UiUjHijh = u2Hn2 = |Vw|2A222.

Hence we have for n = 2,

(5.24) III = uikUjHijk = uikU\Hnk

= uxW{hnh22X + hι2(h222 - Am) - h22hϊ22)

i + 2hnh222)

noting that hijk is symmetric with respect to each pair of i, j , k. By
substituting (5.22) and (5.23) into (5.24), we obtain

(5.25) III = -^-.[(hn-h22)e1+2hl2e2]-VL0-2W2 (H-^Λ Kn

I \U\ \ I Vii| /

where Λ22 = LQ/\VU\2 has been considered. Therefore we have

ί W1 \

(5.26) III = - 2W2HKn + ̂ 4^^Knj Lo
W
ψ^i[(hn - h22)eχ + 2hl2e2] VL0

for n = 2.

Step 5. Let σ,, be a permutation

1 2 ••• / ••• n
σ\ σ2 ••• O i ••• σn

with σi = j . Then

(5.27) H
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where " ̂  " denotes the deletion of the term, and we have

(5.28) TV=UiUjHijkk

= Uj

= Uiuj

kk

• • hij • • • h n

+ ••• + hϊσh2σi • hnσkk\

+ hχσh2σ2 • • • hij • • • hn_x

By taking a level principal frame at po, we have

( 5 . 2 9 ) I V = u \ { [ h 2 2 k k h π •••hnn + --- + h 2 2 h ^ • • • h n n k k \

hl3k)h44•••hnn

+ ••• + h22h33 • • • {hn_Un_ukhnnk -h2

n_lnk)]}

On the other hand, for each / with 2 < i < n,

(5.30) hiikk = hkkii + hmiRkmki + hkmRimki

= 0 + hmi{hkkhmi - hkihmk) + hkm(hikhmi - huhmk)
2

u + hji)-hii\\B\\2

where the summation convention applies only on k while / is a. fixed
index. We obtain

(5.31) IV = \Vu\2H[h2

nhΏh44 • • • hnn + h22h
2

nh44 • • • hnn + •• •]

+ \ V u \ 2 H [ h 2 2 + h i 3 + h 4 4 + --- + h n n ] h 2 2 h 3 3 h 4 4 ---hnn

- \ \ B \ \ 2 L Q + Q

where Q denotes the second term of (5.29). However the first term
of (5.31) equals to

\Vu\2H(huh22---hnn(5.32)

Adding this to the second term of (5.31), it simplifies to

(5.33) H2L0 - \Vu\2HKn.
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We conclude with

(5.34) IV = H2L0 - \Vu\2HKn - | | £ | | 2 L 0 + Q

= 2K2L0 - IVu\2HKn + Q

where K2 is the 2nd mean curvature defined in (4.0) and the term Q
has the properties:

(i) For n = 2 , Q = 0,
(ii) At a zero minimal point po of La, a > 0 (for a = 0, 1, also

assume |Vw| ^ 0 at po), we have

(5.36) Q < 0.

In fact, the frame {ez} at po can be taken such that

(5.37) h22(Po) = 0

and /*33(/>o) 9 9 hnn{Po) all nonnegative, since

and " = 0 " holds at p0. By parallelly transporting {̂ /} to neighboring
points of po along radial geodesies from /?o > w ^ have also

(5.38) /*22*(#)) = (dhn)(ek) at p 0 = 0.

Using (5.37) and (5.38), all the terms of Q vanish except the terms
of the type

(5.39) -hl3kh44--hnn

which are clearly not greater than zero. For n = 2, (5.34) reduces to

(5.40) IV = -I Vu\2HK + 2KL0.

THEOREM 6. For a surface M of constant mean curvature H im-
mersed in R?, let Lo be defined by (5.11); then

(5.41) p2AL0 = - 3p2(2-p2)HK + 4(4 - 3p2)KL0

-P2)[(hn - h22)eγ + 2hl2e2] VL0

where p = |Vu| < 1, AT is the Gaussian curvature of M, and {hij
is the second fundamental form relative to the level principal frame
{e\, e2}).

Proof Combining (5.17), (5.18), (5.26), (5.40), we obtain

p2AL0 = 2p2I + 2p2II + 4/?2IΠ + p2lV
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where

2p2l = -2p2B{Vu, Vu)K = -2p4hnK = -2p4(H - h22)K

2p2ll = 2p2{\ -p2)HK = 2p2HK - 2p4HK,

4p2ΐll = -8p2(l -p2)HK+ 16(1 -p2)KL0

+ 4p(l-p2)[(hn-h22)eι+2hne2]-VL0,

p2ΐV = -p4HK + 2p2KL0.

Hence (5.41) follows.

Step 7. In order to compute ALa, we note that

(5.42) L0=paLa,

(5.43) p2AL0=p2A(paLa)

= pa+2ALa + 2p2VLa • Vpa + p2LQ{Apa)

and

(5.44) Apa = (pa)kk = (apa-ιpk)k = {aP

a'

A straightforward calculation implies

(5.45) Ap" = apa-2((a - 2) - (a - I)p2)(h2

n + h2

2)

+ apa-\\-p2){h2

u+2h2

2 + h1

2)

and

(5.46) (L0)k = (paLa)k=pa{La)k + ocpa\

Substituting (5.41), (5.44), (5.45) and (5.46) into (5.43), we get for
a = 3 the following main formula:

THEOREM 7. For a surface M2 of constant mean curvature H im-
mersed in R3, let L be the level curvature of M2 relative to a given
direction ξ. Then

(5.47) p5AL= -3p2(2-p2)HK

+ {p3K + 3p\2-p2)H2 - 3/?4(3 - 2p2)HL}L

+ 2pWl-P2[-{hn + 2h22)eι + 2hϊ2e2] • VL

where the notations are defined as in Theorem 6.

When the mean curvature H = 0, we have the theorem:
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THEOREM 8. Let M2 be a compact surface with boundary ΘM and

X\M2 -+R3

be a minimal immersion of M2 into R3. Given a unit vector ξ of
R3, consider the height function u defined by

u(X) = (X,ξ).

Let L denote the level curvature (i.e. the curvature of level curves)
relative to the vertical direction ξ. Then

(5.48) \S7u\2AL = KL (mod VL)

and therefore L attains neither nonnegative interior minimum nor non-
positive interior maximum.

Proof. This is a direct consequence of (5.47).

As an application, we illustrate a plausible but simple geometric
proof of Shiίfman's theorem. Given an annular minimal surface M
in R3 with its two boundary curves Γi, Γ2 convex in two horizontal
planes respectively. Suppose there is a C2-deformation of M into a
catenoid as the two boundary curves are deformed into two circles on
the given horizontal planes. Since K < 0 on minimal surfaces, the
formula (5.48) together with the continuity method shows by Shiίf-
man's theorem that

(5.49) L > 0.

In fact, we obtain a stronger estimate that

(5.50) L > min{curvature of Tx, Γ2} > 0.

However with this argument, we have to assume additionally that
|VM| Φ 0 during the deformation.

Using the main formula (5.47) we prove our main theorem of this
section, which can be regarded as a partial generalization of Shiffman's
theorem to surfaces of constant mean curvature.

THEOREM 9. Given an annular surface M of constant mean curva-
ture H in R3 such that dM = Γi UΓ2, each Γ/ being a convex curve
in a plane Π̂ ^ / = 1 > 2 , and Πi is parallel to Π2. Suppose that the mean
curvature vector is outward from the tubular compartment V enclosed
by Πi , Π2 and M. This is equivalent to that H < 0 in the above
setting, or equivalent to that the exterior pressure of the soap film M
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is no less than the inner pressure in V. Consider a C2-deformation
{Mt\ 0 < t < 1}, each Mt having constant mean curvature Ht, of
M = M\ with Ht increasing into a minimal surface MQ (for an ex-
ample, we increase the inner pressure in V until both sides of the soap
film reach equal pressures). Assume also that each Mt has no point
tangent to a "horizontal plane (i.e. a plane parallel to Π;) so that the
curvature of level curves on Mt is well defined. Then the level curves of
each Mt,0 <t < 1, are all convex.

REMARK 5.1. We can also consider the deformation by taking M
into a Delaunay surface corresponding to a rotating hyperbola, while
deforming each Γ; into a circle in Π, .

Before proving the theorem, we consider a stronger form of constant
rank theorem.

LEMMA 5.1. Given a surface M of constant mean curvature H in
R3, let the level curvature L relative to a given vertical direction ξ
attain zero minimum at a point XQ , interior in M or on its boundary
dM. Additionally, if the tangent of the level curve at XQ is a principal
direction of zero normal curvature, then M is either a circular cylinder
or a plane.

REMARK 5.2. This is a stronger form of constant rank theorem for
n = 2, that instead of assuming K > 0 around Xo > we assume the
level curvature L > 0 around XQ . I do not know whether the lemma
is true for higher dimensions.

REMARK 5.3. Caffarelli-Friedman [3] have proved that for

Au = γ(u) in Ω γ(u) / in u, γ(0) = 0,

u\Γι = M, u\r2 = m M > m > 0 constants,

Γi and Γ2 being inner and outer strictly convex C2'α-boundary
curves of Ω, the solution surface u = u(x) has all level curves strictly
convex. Compared with the condition H < 0 in our Theorem 9, the
assumption Au = γ(u) > γ(0) = 0 are parallel in the linear case.

Proof of Lemma 5.1. We use the second-order comparison method
developed as in [2]. Let Z be a cylinder of radius l/\H\, contacting
M at Xo of at least second order. This is possible since

(5.51) L(x0) = 0 = K(x0)
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and therefore the horizontal direction tangent to M at XQ is a princi-
pal direction with zero principal curvature. On every horizontal plane
Π, the straight line Z n Π intersects the convex level curve in at most
two points unless M = Z. This implies that the function u - υ al-
ternates its sign at most four times when turning around XQ , where
u = u(x, y), v = v(x, y) are nonparametric functions of the surfaces
M and Z on (x, y) of Π, respectively. However a theorem of Hopf
shows that

(5.52) u - v = Re(λ(ζ + iη)k) + o((ξ2 + ηψ1)

where λ is a complex number, (ζ, η) is a coordinate change of (x, y)
with (0, 0) corresponding to XQ and

(5.53) k = contact order + 1.

By the above construction of Z , k > 3, this leads to a contradiction.
Hence M = Z.

Proof of Theorem 9. Suppose there is Mt with some level curves
nonconvex; then there would exist Mτ, τ e ( 0 , ί ] , with zero minimal
point XQ for the level curvature L on Mτ. It is clear that

(5.54) K(XQ) = hnh22 - h\2 = * π 0 - *?2 < 0

for hιι = L/p = 0 at XQ , p = |Vw|. By Lemma 5.1, unless M = Z
the possibility of K(XQ) = 0 is also excluded. Hence K(XQ) < 0 and
the main formula (5.47) implies

(5.55) p5AL = -3p2(2-p2)HK<0 at x0

contradicting the minimality of L at XQ . This completes the proof.

6. Concluding remarks. Given a compact surface M of constant
mean curvature in R3 with M convex and the boundary ΘM, is M
then convex in the interior? i.e. does

(6.1) K\dM > 0 imply K > 0 in M,

where f̂ is the Gaussian curvature of MΊ The implication is seen
not necessarily true in general by considering, for an example, one
of Wente's immersed tori [13] and cutting off a small neighborhood
of a point of positive K. Adding topological conditions such as em-
bedding or restriction on topological type is insufficient. In fact, we
consider a Delaunay surface defined by revolving around an axis the
locus of one of the two foci of a given ellipse which rotates on the axis.



316 WU-HSIUNG HUANG

The Delaunay surface is a periodic surface of revolution. We take a
segment of the Delaunay surface bounded by two largest meridians. It
gives an example of embedded nonconvex surfaces of constant mean
curvature in i?3 which are convex around the boundary.

Certain stability seems required. A connection with capillary treat-
ment leads to the capillary stability defined as follows. Let Mn be
a hypersurface of constant mean curvature Ho embedded in Rn+ι,
and let Ω"+ 1 be a bounded convex domain with C2-boundary C =
d Ω " + 1 , such that Mn c Ω"+ 1 and dMn meets C in a constant angle
γo. Let E be the energy function given by

E = AreaM - (cos 7o)Area C* + ni/0Vol(Ω*)

where Ω* is a component of Ω.-M away from which points the mean
curvature vector of M. Also C* denotes Ω o n C . The energy function
E is indeed defined on the space Σ7o of all the surfaces embedded in
Ω with their boundary meeting with C in the given constant angle
γo. It is easily seen that E is critical on Σγ at the given surface M
of constant mean curvature Ho with constant contact angle γo with
C at the boundary points, or equivalently, the first variation of E at
such M is zero for any perturbation of M in Σ ? o , i.e.

(6.2) E' = 0 a tM.

We now call M capillarity stable with respect to the container C
and the given contact angle γo if the second variation of E at M is
nonnegative for any perturbation of M in Σ 7 o , i.e.

(6.3) E">0 a tM.

Problem 1. Let γo = 0 and suppose M minimizes E for a given
convex container C. Does there exist a 1-parameter C2-family {Mt\
0 < t < 1} of surfaces in Σ 7 o , each Mt minimizing E with a cor-
responding HQ = Ho(t) (but γo = 0, independent of t) such that
Mo = M and Mx = a small n-sphere? If it does, a capillary stable
surface M with respect to a convex container C is convex in the
interior by Theorems 2 and 4.

Whether the Dirichlet stability is related with capillary stability and
is involved in order for (6.1) to be valid seems also interesting to know.

Another equally interesting question first proposed by Rosenberg
[personal conversation, 1984 Stanford] is the following.

Problem 2. Does an embedded disk-type surface M of constant
mean curvature in R? having its boundary dM a convex closed curve
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on a plane Π intersect with every plane parallel to Π (such a plane
is called later "horizontal") in a convex closed curve?

The problem is also a type of Shiftman's problem. Suppose there is
a C2-deformation {Mt} of M into a spherical cap as dM deformed
into a circle, each Mt having constant mean curvature. We reverse
the process as in the proofs of Theorem 2 and Theorem 4 and notice
that a point of zero Gaussian curvature is impossible to appear first
in the interior. However it may show up on the boundary and whence
spread into a region of concave set M- , i.e. the set with K < 0. It is
evident that for a while after a point of zero K sneaks in across the
boundary, the set D of the directions of nonpositive normal curva-
ture at a point of the concave set Λ/_ does not contain a horizontal
direction. Formula (5.47) yields that at an interior zero minimal point
of the level curvature L,AL = -3p~3(2 -p2)HK > 0. This does not
exclude the possibility that at a certain stage in the reversed deforma-
tion, the set D finally touches a horizontal direction. And then there
may start to appear a region of negative L. With this observation,
the existence of counter examples for Problem 2 perhaps should not
be excluded.

Even for the annular type, the generalized Shiftman's theorem es-
tablished in Theorem 9 is not completed. In Theorem 9 we only
consider the case H < 0, i.e. the inner pressure is not greater than the
outer one. How is the case H > 0 ? It nevertheless has no essential
difference in this case and the case of Problem 2.

Finally, we would like to mention the following related questions
of interest.

Problem 3. Is Shiffman's theorem of H < 0 valid for hypersurfaces
of higher dimensions? Does there exist a dimension bound?

Problem 4. For a nonparametric surface M of constant mean cur-
vature in R? given by u = u(x), x e Ω c R2, with u\dQ = 0, what is
the least pinching number of the curvature K of the boundary curve
dΩ in order for the surface M to be convex? Here the pinching num-
ber of K is defined by the ratio, κm{n to κ m a x , the minimum to the
maximum of K of the curve dΩ in R2.

Note. A. N. Wang [16] has found, after the preprint of this paper
was circulated, a counterexample showing that the level curves are not
all convex when H > 0 as mentioned in the comments of Problem 2.
Therefore the assumption H < 0 in Theorem 9 is essential.
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