A REMARK ON THE SYMMETRY OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS

Ji Min

This note gives a necessary and sufficient condition for solutions of second order elliptic equations to be radially symmetric.

1. Introduction.

1.1. In an elegant paper [GNN], Gidas-Ni-Nirenberg proved that the positive solutions of

(1)
$$\begin{cases} \Delta u = f(u) & \text{in } B, \\ u = 0 & \text{on } \partial B, \\ u \in C^2(\overline{B}), \end{cases}$$

must be radially symmetric. Here f is C^1 and B is the *n*-dimensional ball: $\{x \in \mathbb{R}^n; |x| < 1\}$. Obviously a symmetric solution of (1) is not necessary to be positive. In this note, we give a necessary and sufficient condition for symmetric solutions of (1). The main result is the following

THEOREM 1. Suppose $n \ge 2$. A solution u of (1) is radially symmetric if and only if its nodal set $\{x \in \overline{B}; u(x) = 0\}$ is radially symmetric.

REMARK. It is interesting to note that Theorem 1 need not hold in case n = 1. For, $u = \sin x$ solves

$$u'' = -u \quad \text{in} \ [-\pi, \, \pi]$$

with the symmetric nodal set $\{0\} \cup \{-\pi, \pi\}$, but u is not radially symmetric since $\sin(-x) = -\sin x$.

It is clear that the result of [GNN] is a special case of Theorem 1 since the nodal set of a positive solution to (1) is the sphere ∂B .

In order to prove Theorem 1, we need the following two preliminary results.

THEOREM 2. Let $u \in C^2(\overline{B})$ satisfy (2) $\Delta u = f(u)$ in B. JI MIN

If the nodal set of u consists of spheres with the center 0, then these spheres must be isolated unless $u \equiv 0$.

THEOREM 3. Let
$$n \ge 2$$
 and $u \in C^2(\overline{B})$ satisfy
(3)
$$\begin{cases}
\Delta u = f(u) & \text{in } B, \\
u > 0 & \text{in } B \setminus \{0\}, \\
u = 0 & \text{on } \partial B.
\end{cases}$$

Then u > 0 in B.

REMARK. In case n = 1, Theorem 3 need not hold. For example, let $u(x) = \sin(x - \frac{\pi}{2}) + 1$ for $x \in [-2\pi, 2\pi]$, we have

$$\begin{cases} u'' = 1 - u & \text{in} (-2\pi, 2\pi), \\ u > 0 & \text{in} (-2\pi, 2\pi) \setminus \{0\}, \\ u = 0 & \text{at} x = 0, -2\pi, 2\pi \end{cases}$$

1.2. The proof of Theorem 3 is based on Lemma 12.1 in [GNN], we rewrite it in the form.

LEMMA A. Let $p = (p^1, p^2, ..., p^n) \in \partial B$ with $p^1 > 0$. Assume for some $\varepsilon > 0$ that u is a C^2 function satisfying equation (2) in $\overline{\Omega}_{\varepsilon}$ where $\Omega_{\varepsilon} = B \cap \{x; |x-p| < \varepsilon\}, u > 0$ in $\overline{\Omega}_{\varepsilon} \setminus \partial B \cap \{x; |x-p| < \varepsilon\}$ and u = 0 on $\partial B \cap \{x; |x-p| < \varepsilon\}$. Then there exists $\delta > 0$ such that in $B \cap \{x; |x-p| < \delta\}, \frac{\partial u}{\partial x_1} < 0$.

2. Proofs.

2.1. Proof of Theorem 2. We may assume that the nodal set of u is $\bigcup_{\lambda \in \Lambda} S(\lambda)$ where $\Lambda \subset [0, 1]$ and $S(\lambda) = \{x \in \mathbb{R}^n; |x| = \lambda\}$. It needs to be proved that the set Λ contains only isolated points unless $u \equiv 0$. Suppose that there is a sequence $\{\lambda_i\} \subset \Lambda$ with $\lambda_i \to \overline{\lambda}$. Using the polar coordinates $x = r\xi$ where $\xi \in S^{n-1}$ and $r^2 = x_1^2 + x_2^2 + \dots + x_n^2$, we obtain that $u = \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial r^2} = 0$ for $r = \overline{\lambda}$, which implies that

$$u(0) = \frac{\partial u}{\partial x_i}(0) = \frac{\partial^2 u}{\partial x_l^2}(0) = 0 \qquad (l = 1, 2, \dots, n)$$

when $\overline{\lambda} = 0$, and that $u = D_{\xi}u = D_{\xi}^2u = 0$ on $S(\overline{\lambda})$ when $\overline{\lambda} > 0$. Thus, in both cases, $u = \Delta u = 0$ on $S(\overline{\lambda})$, and, from (2) we conclude that f(0) = 0. Set

$$c(x) = \int_0^1 f'(tu(x)) dt.$$

In case $\overline{\lambda} > 0$, we have

$$\begin{cases} \Delta u - c(x)u = 0 & \text{in } \{x \, ; \, |x| < \overline{\lambda}\}, \\ u = \frac{\partial u}{\partial r} = 0 & \text{on } S(\overline{\lambda}), \end{cases}$$

and obtain u = 0 in B by uniqueness of solutions to Cauchy's problem of linear elliptic equations. Now it remains to consider the case $\overline{\lambda} = 0$. Set

$$w(x) = \cos N x_1 \cdot \cos N x_2 \cdot \cdots \cdot \cos N x_n,$$

where N is taken to be large enough so that

$$(4) c(x) + N^2 \ge 0.$$

Put $u = w \cdot v$ for $|x| < \frac{\pi}{2N}$. It is easy to see that

$$\begin{cases} \Delta w = -N^2 w \\ & \text{in } \left\{ x \, ; \, |x| < \frac{\pi}{2N} \right\} \\ w > 0 \end{cases}$$

and $S(\lambda_i) \subset \{x; |x| < \frac{\pi}{2N}\}$ for *i* large enough since $\lambda_i \to 0$ as $i \to \infty$. On account of (2), it follows

$$\begin{cases} \Delta v + \frac{\nabla W}{W} \nabla v - (c(x) + N^2)v = 0 & \text{in } \{x \, ; \, |x| < \lambda_i\}, \\ v = 0 & \text{on } S(\lambda_i). \end{cases}$$

Because of (4), a well-known maximum principle for second order linear elliptic equations can be applied, and that v = 0 is obtained, so u = 0 for $|x| < \lambda_i$, and in turn u = 0 in *B*. The proof is completed.

2.2. Proof of Theorem 3. Suppose for contradiction that u(0) = 0. Automatically $\nabla u(0) = 0$. For $0 \le \lambda < 1$, denote $\Sigma_{\lambda} = \{x \in B; x_1 > \lambda\}; T_{\lambda} = \{x \in B; x_1 = \lambda\}$, and for $x \in \Sigma_{\lambda}$, denote by x^{λ} the reflexion of x with respect to T_{λ} , denote by Σ'_{λ} the reflexion of Σ_{λ} with respect to T_{λ} . Set

$$\Lambda = \left\{ \lambda \in (0, 1); \, u(x^{\lambda}) > u(x) \text{ in } \Sigma_{\lambda}, \, \frac{\partial u}{\partial x_1} < 0 \text{ on } T_{\lambda} \right\},\,$$

which is not empty by Lemma A and a similar argument to [GNN]. First of all we prove $\inf \Lambda \in \Lambda$. Indeed, there holds

$$\begin{cases} u(x^{\alpha}) \ge u(x) & \text{in } \Sigma_{\alpha}, \\ \frac{\partial u}{\partial x_{1}} \ge 0 & \text{on } T_{\alpha} \end{cases}$$

JI MIN

where $\alpha = \inf \Lambda$. Letting $w(x) = u(x^{\alpha})$ for $x \in \Sigma_{\alpha}$ and

$$c(x) = \int_0^1 f'(u + t(w - u)) dt,$$

we have

$$\begin{cases} \Delta(w-u) - c(x)(w-u) = 0, \\ (w-u) \ge 0 \quad \text{in } \Sigma_{\alpha}, \\ (w-u) = 0 \quad \text{on } T_{\alpha}. \end{cases}$$

Then for K > 0,

$$\Delta(w-u)-(K+c(x))\cdot(w-u)=-K(w-u)\leq 0 \quad \text{in } \Sigma_{\alpha}.$$

Taking K large enough, we may apply the Hopf maximum principle to (w - u) and obtain that either

(5)
$$(w-u) = 0$$
 in Σ_{α}

or

(6)
$$\begin{cases} w(x) > u(x) & \text{in } \Sigma_{\alpha}, \\ \frac{\partial}{\partial \overline{n}} (w - u)(p) < 0, \end{cases}$$

where $p \in \partial \Sigma_{\alpha}$ such that (w-u)(p) = 0 and $\overline{n} = \overline{n}(p)$ is the outward normal vector of $\partial \Sigma_{\alpha}$ at p. Then (5) cannot hold since $n \ge 2$ and u = 0 on ∂B ; u > 0 in $B \setminus \{0\}$. Now (6) holds, then $u(x^{\alpha}) > u(x)$ in Σ_{α} , and on T_{α} ,

$$2\frac{\partial u}{\partial x_1} = \frac{\partial}{\partial (-x_1)}(w-u) < 0$$

since (w - u) = 0, which means $\alpha \in \Lambda$. Next it is easy to see that $\alpha \ge \frac{1}{2}$. If $\alpha = \frac{1}{2}$, let $p_0 = (1, 0, ..., 0) \in \partial B$, then $p_0^{\alpha} = 0$, and

$$(w-u)(p_0) = u(p_0^{\alpha}) - u(p_0) = 0.$$

By (6) we have

$$\frac{\partial}{\partial x_1}(w-u)(p_0) < 0$$
, i.e. $-\frac{\partial u}{\partial x_1}(0) - \frac{\partial u}{\partial x_1}(p_0) < 0$.

Then we get

$$\frac{\partial u}{\partial x_1}(0) > -\frac{\partial u}{\partial x_1}(p_0) \ge 0,$$

a contradiction since $\nabla u(0) = 0$. Thus $\alpha > \frac{1}{2}$. In this case we claim that there exists $\alpha_0 < \alpha$ such that $\alpha_0 \in \Lambda$, which will contradict the assumption $\alpha = \inf \Lambda$ and our proof would then be completed. To

160

this end, we assume again for contradiction that there exists a sequence $\{\alpha_i\}$ with $\alpha_i \to \alpha$ but $\alpha_i \notin \Lambda$ which means that either

(7)
$$u(a_i^{\alpha_i}) \le u(a_i)$$
 for some $a_i \in \Sigma_{\alpha_i}$

or

(8)
$$\frac{\partial u}{\partial x_1}(b_i) \ge 0 \text{ for some } b_i \in T_{\alpha_i}.$$

The latter cannot always remain true for any subsequence of $\{i\}$ since, otherwise, it implies that $\frac{\partial u}{\partial x_1} \ge 0$ at some point on T_{α} when $\{b_i\}$ do not approach ∂B , contradicting $\alpha \in \Lambda$, and that there exists a point in any neighborhood of b such that $\frac{\partial u}{\partial x_1} \ge 0$ when $b_i \to b \in \partial B$, contradicting Lemma A since $b = (b^1, \ldots, b^n)$ with $b^1 = \alpha > 0$. Now let $a_i \to \overline{a} \in \overline{\Sigma}_{\alpha}$. From (7) $u(\overline{a}^{\alpha}) \le u(\overline{a})$, and $\overline{a} \in \partial \Sigma_{\alpha}$ by $\alpha \in \Lambda$. But because $\alpha > \frac{1}{2}$, for $x \in \partial \Sigma_{\alpha} \setminus \overline{T}_{\alpha} \subset \partial B$, where \overline{T}_{α} is the closure of T_{α} , obviously $u(x^{\alpha}) > 0 = u(x)$. Thus we further have $\overline{a} \in \overline{T}_{\alpha}$. Let L_i be the segment joining $a_i^{\alpha_i}$ and a_i , having $(1, 0, \ldots, 0)$ as the tangent vector. From (7) it is seen that there exists $y_i \in L_i$ such that $\frac{\partial u}{\partial x_1}(\overline{a}) \ge 0$, which leads to a contradiction when $\overline{a} \in T_{\alpha}$. Then $\overline{a} \in \partial \overline{T}_{\alpha} \subset \partial B$. But we have seen that $\frac{\partial u}{\partial x_1}(y_i) \ge 0$ and $y_i \to \overline{a}$, which contradicts Lemma A. Thus we complete the proof.

2.3. Proof of Theorem 1. Denote $B(\lambda) = \{x \in \mathbb{R}^n; |x| < \lambda\}$. The necessity is obvious. For sufficiency, by Theorem 2, the nodal set of u must be $\bigcup_{i=1}^k S(\lambda_i)$ where $0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_k = 1$. We further prove $\lambda_1 > 0$.

Indeed suppose $\lambda_1 = 0$, i.e. u(0) = 0. We see that there are no nodal points of u in $B(\lambda_2) \setminus \{0\}$, which, together with the fact that $B(\lambda_2) \setminus \{0\}$ is path-connected (since $n \ge 2$), implies that u is positive (or negative) in $B(\lambda_2) \setminus \{0\}$. Then from Theorem 3 we have u(0) > 0 (or u(0) < 0) also. It contradicts u(0) = 0, which shows $\lambda_1 > 0$.

Now in $B(\lambda_1)$, u is positive (or negative). It allows us to apply the result of [GNN] to conclude that u is radially symmetric in $B(\lambda_1)$. It is clear that

(9)
$$\frac{\partial u}{\partial r} = \text{const.} \text{ on } S(\lambda_1).$$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be any rotation transform. Since equation (2) is invariant under the transform T, v = u(Tx) also solves (2). On

JI MIN

 $S(\lambda_1)$, obviously v = u, and $\frac{\partial v}{\partial r} = \frac{\partial u}{\partial r}$ by (9). Then (v - u) is a solution to the Cauchy problem

$$\Delta w = \left(\int_0^1 f'(tv + (1-t)u) \, dt \right) \cdot w \quad \text{in } B,$$
$$w = \frac{\partial w}{\partial r} = 0 \quad \text{on } S(\lambda_1)$$

and constantly equals 0 by the uniqueness of the Cauchy problem, i.e. u(x) = u(Tx) in B for any rotation transforms T, which means u is radially symmetric in B. We finish the proof of our main theorem.

Acknowledgment. It is a pleasure to thank Professor W.-M. Ni for helpful discussions.

References

[GNN] B. Gidus, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 No. 3, (1979), 209-243.

Received July 30, 1990.

INTERNATIONAL CENTER FOR THEORETICAL PHYSICS TRIESTE, ITALY

162