A REMARK ON THE SYMMETRY OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS

Ji Min

This note gives a necessary and sufficient condition for solutions of second order elliptic equations to be radially symmetric.

1. Introduction.

1.1. In an elegant paper [GNN], Gidas-Ni-Nirenberg proved that the positive solutions of

$$
\begin{cases}\Delta u=f(u) & \text { in } B, \tag{1}\\ u=0 & \text { on } \partial B, \\ u \in C^{2}(\bar{B}), & \end{cases}
$$

must be radially symmetric. Here f is C^{1} and B is the n-dimensional ball: $\left\{x \in R^{n} ;|x|<1\right\}$. Obviously a symmetric solution of (1) is not necessary to be positive. In this note, we give a necessary and sufficient condition for symmetric solutions of (1). The main result is the following

Theorem 1. Suppose $n \geq 2$. A solution u of (1) is radially symmetric if and only if its nodal set $\{x \in \bar{B} ; u(x)=0\}$ is radially symmetric.

Remark. It is interesting to note that Theorem 1 need not hold in case $n=1$. For, $u=\sin x$ solves

$$
u^{\prime \prime}=-u \quad \text { in }[-\pi, \pi]
$$

with the symmetric nodal set $\{0\} \cup\{-\pi, \pi\}$, but u is not radially symmetric since $\sin (-x)=-\sin x$.

It is clear that the result of [GNN] is a special case of Theorem 1 since the nodal set of a positive solution to (1) is the sphere ∂B.

In order to prove Theorem 1, we need the following two preliminary results.

Theorem 2. Let $u \in C^{2}(\bar{B})$ satisfy

$$
\begin{equation*}
\Delta u=f(u) \quad \text { in } B . \tag{2}
\end{equation*}
$$

If the nodal set of u consists of spheres with the center 0 , then these spheres must be isolated unless $u \equiv 0$.

Theorem 3. Let $n \geq 2$ and $u \in C^{2}(\bar{B})$ satisfy

$$
\begin{cases}\Delta u=f(u) & \text { in } B, \tag{3}\\ u>0 & \text { in } B \backslash\{0\}, \\ u=0 & \text { on } \partial B .\end{cases}
$$

Then $u>0$ in B.
Remark. In case $n=1$, Theorem 3 need not hold. For example, let $u(x)=\sin \left(x-\frac{\pi}{2}\right)+1$ for $x \in[-2 \pi, 2 \pi]$, we have

$$
\begin{cases}u^{\prime \prime}=1-u & \text { in }(-2 \pi, 2 \pi), \\ u>0 & \text { in }(-2 \pi, 2 \pi) \backslash\{0\}, \\ u=0 & \text { at } x=0,-2 \pi, 2 \pi .\end{cases}
$$

1.2. The proof of Theorem 3 is based on Lemma 12.1 in [GNN], we rewrite it in the form.

Lemma A. Let $p=\left(p^{1}, p^{2}, \ldots, p^{n}\right) \in \partial B$ with $p^{1}>0$. Assume for some $\varepsilon>0$ that u is a C^{2} function satisfying equation (2) in $\bar{\Omega}_{\varepsilon}$ where $\Omega_{\varepsilon}=B \cap\{x ;|x-p|<\varepsilon\}, u>0$ in $\bar{\Omega}_{\varepsilon} \backslash \partial B \cap\{x ;|x-p|<\varepsilon\}$ and $u=0$ on $\partial B \cap\{x ;|x-p|<\varepsilon\}$. Then there exists $\delta>0$ such that in $B \cap\{x ;|x-p|<\delta\}, \frac{\partial u}{\partial x_{1}}<0$.

2. Proofs.

2.1. Proof of Theorem 2. We may assume that the nodal set of u is $\bigcup_{\lambda \in \Lambda} S(\lambda)$ where $\Lambda \subset[0,1]$ and $S(\lambda)=\left\{x \in R^{n} ;|x|=\lambda\right\}$. It needs to be proved that the set Λ contains only isolated points unless $u \equiv 0$. Suppose that there is a sequence $\left\{\lambda_{i}\right\} \subset \Lambda$ with $\lambda_{i} \rightarrow \bar{\lambda}$. Using the polar coordinates $x=r \xi$ where $\xi \in S^{n-1}$ and $r^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$, we obtain that $u=\frac{\partial u}{\partial r}=\frac{\partial^{2} u}{\partial r^{2}}=0$ for $r=\bar{\lambda}$, which implies that

$$
u(0)=\frac{\partial u}{\partial x_{i}}(0)=\frac{\partial^{2} u}{\partial x_{l}^{2}}(0)=0 \quad(l=1,2, \ldots, n)
$$

when $\bar{\lambda}=0$, and that $u=D_{\xi} u=D_{\xi}^{2} u=0$ on $S(\bar{\lambda})$ when $\bar{\lambda}>0$. Thus, in both cases, $u=\Delta u=0$ on $S(\bar{\lambda})$, and, from (2) we conclude that $f(0)=0$. Set

$$
c(x)=\int_{0}^{1} f^{\prime}(t u(x)) d t
$$

In case $\bar{\lambda}>0$, we have

$$
\begin{cases}\Delta u-c(x) u=0 & \text { in }\{x ;|x|<\bar{\lambda}\} \\ u=\frac{\partial u}{\partial r}=0 & \text { on } S(\bar{\lambda})\end{cases}
$$

and obtain $u=0$ in B by uniqueness of solutions to Cauchy's problem of linear elliptic equations. Now it remains to consider the case $\bar{\lambda}=0$. Set

$$
w(x)=\cos N x_{1} \cdot \cos N x_{2} \cdot \cdots \cdot \cos N x_{n}
$$

where N is taken to be large enough so that

$$
\begin{equation*}
c(x)+N^{2} \geq 0 \tag{4}
\end{equation*}
$$

Put $u=w \cdot v$ for $|x|<\frac{\pi}{2 N}$. It is easy to see that

$$
\left\{\begin{array}{l}
\Delta w=-N^{2} w \\
w>0
\end{array} \quad \text { in }\left\{x ;|x|<\frac{\pi}{2 N}\right\}\right.
$$

and $S\left(\lambda_{i}\right) \subset\left\{x ;|x|<\frac{\pi}{2 N}\right\}$ for i large enough since $\lambda_{i} \rightarrow 0$ as $i \rightarrow \infty$. On account of (2), it follows

$$
\begin{cases}\Delta v+\frac{\nabla W}{W} \nabla v-\left(c(x)+N^{2}\right) v=0 & \text { in }\left\{x ;|x|<\lambda_{i}\right\} \\ v=0 & \text { on } S\left(\lambda_{i}\right)\end{cases}
$$

Because of (4), a well-known maximum principle for second order linear elliptic equations can be applied, and that $v=0$ is obtained, so $u=0$ for $|x|<\lambda_{i}$, and in turn $u=0$ in B. The proof is completed.
2.2. Proof of Theorem 3. Suppose for contradiction that $u(0)=0$. Automatically $\nabla u(0)=0$. For $0 \leq \lambda<1$, denote $\Sigma_{\lambda}=\{x \in B$; $\left.x_{1}>\lambda\right\} ; T_{\lambda}=\left\{x \in B ; x_{1}=\lambda\right\}$, and for $x \in \Sigma_{\lambda}$, denote by x^{λ} the reflexion of x with respect to T_{λ}, denote by $\Sigma_{\lambda}^{\prime}$ the reflexion of Σ_{λ} with respect to T_{λ}. Set

$$
\Lambda=\left\{\lambda \in(0,1) ; u\left(x^{\lambda}\right)>u(x) \text { in } \Sigma_{\lambda}, \frac{\partial u}{\partial x_{1}}<0 \text { on } T_{\lambda}\right\}
$$

which is not empty by Lemma A and a similar argument to [GNN]. First of all we prove $\inf \Lambda \in \Lambda$. Indeed, there holds

$$
\begin{cases}u\left(x^{\alpha}\right) \geq u(x) & \text { in } \Sigma_{\alpha} \\ \frac{\partial u}{\partial x_{1}} \geq 0 & \text { on } T_{\alpha}\end{cases}
$$

where $\alpha=\inf \Lambda$. Letting $w(x)=u\left(x^{\alpha}\right)$ for $x \in \Sigma_{\alpha}$ and

$$
c(x)=\int_{0}^{1} f^{\prime}(u+t(w-u)) d t
$$

we have

$$
\left\{\begin{array}{l}
\Delta(w-u)-c(x)(w-u)=0 \\
(w-u) \geq 0 \quad \text { in } \Sigma_{\alpha} \\
(w-u)=0 \text { on } T_{\alpha}
\end{array}\right.
$$

Then for $K>0$,

$$
\Delta(w-u)-(K+c(x)) \cdot(w-u)=-K(w-u) \leq 0 \quad \text { in } \Sigma_{\alpha}
$$

Taking K large enough, we may apply the Hopf maximum principle to $(w-u)$ and obtain that either

$$
\begin{equation*}
(w-u)=0 \quad \text { in } \Sigma_{\alpha} \tag{5}
\end{equation*}
$$

or

$$
\left\{\begin{array}{l}
w(x)>u(x) \quad \text { in } \Sigma_{\alpha} \tag{6}\\
\frac{\partial}{\partial \bar{n}}(w-u)(p)<0
\end{array}\right.
$$

where $p \in \partial \Sigma_{\alpha}$ such that $(w-u)(p)=0$ and $\bar{n}=\bar{n}(p)$ is the outward normal vector of $\partial \Sigma_{\alpha}$ at p. Then (5) cannot hold since $n \geq 2$ and $u=0$ on $\partial B ; u>0$ in $B \backslash\{0\}$. Now (6) holds, then $u\left(x^{\alpha}\right)>u(x)$ in Σ_{α}, and on T_{α},

$$
2 \frac{\partial u}{\partial x_{1}}=\frac{\partial}{\partial\left(-x_{1}\right)}(w-u)<0
$$

since $(w-u)=0$, which means $\alpha \in \Lambda$. Next it is easy to see that $\alpha \geq \frac{1}{2}$. If $\alpha=\frac{1}{2}$, let $p_{0}=(1,0, \ldots, 0) \in \partial B$, then $p_{0}^{\alpha}=0$, and

$$
(w-u)\left(p_{0}\right)=u\left(p_{0}^{\alpha}\right)-u\left(p_{0}\right)=0
$$

By (6) we have

$$
\frac{\partial}{\partial x_{1}}(w-u)\left(p_{0}\right)<0, \quad \text { i.e. }-\frac{\partial u}{\partial x_{1}}(0)-\frac{\partial u}{\partial x_{1}}\left(p_{0}\right)<0
$$

Then we get

$$
\frac{\partial u}{\partial x_{1}}(0)>-\frac{\partial u}{\partial x_{1}}\left(p_{0}\right) \geq 0
$$

a contradiction since $\nabla u(0)=0$. Thus $\alpha>\frac{1}{2}$. In this case we claim that there exists $\alpha_{0}<\alpha$ such that $\alpha_{0} \in \Lambda$, which will contradict the assumption $\alpha=\inf \Lambda$ and our proof would then be completed. To
this end, we assume again for contradiction that there exists a sequence $\left\{\alpha_{i}\right\}$ with $\alpha_{i} \rightarrow \alpha$ but $\alpha_{i} \notin \Lambda$ which means that either

$$
\begin{equation*}
u\left(a_{i}^{\alpha_{i}}\right) \leq u\left(a_{i}\right) \quad \text { for some } a_{i} \in \Sigma_{\alpha_{i}} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial u}{\partial x_{1}}\left(b_{i}\right) \geq 0 \quad \text { for some } b_{i} \in T_{\alpha_{i}} . \tag{8}
\end{equation*}
$$

The latter cannot always remain true for any subsequence of $\{i\}$ since, otherwise, it implies that $\frac{\partial u}{\partial x_{1}} \geq 0$ at some point on T_{α} when $\left\{b_{i}\right\}$ do not approach ∂B, contradicting $\alpha \in \Lambda$, and that there exists a point in any neighborhood of b such that $\frac{\partial u}{\partial x_{1}} \geq 0$ when $b_{i} \rightarrow b \in \partial B$, contradicting Lemma A since $b=\left(b^{1}, \ldots, b^{n}\right)$ with $b^{1}=\alpha>0$. Now let $a_{i} \rightarrow \bar{a} \in \bar{\Sigma}_{\alpha}$. From (7) $u\left(\bar{a}^{\alpha}\right) \leq u(\bar{a})$, and $\bar{a} \in \partial \Sigma_{\alpha}$ by $\alpha \in \Lambda$. But because $\alpha>\frac{1}{2}$, for $x \in \partial \Sigma_{\alpha} \backslash \bar{T}_{\alpha} \subset \partial B$, where \bar{T}_{α} is the closure of T_{α}, obviously $u\left(x^{\alpha}\right)>0=u(x)$. Thus we further have $\bar{a} \in \bar{T}_{\alpha}$. Let L_{i} be the segment joining $a_{i}^{\alpha_{i}}$ and a_{i}, having $(1,0, \ldots, 0)$ as the tangent vector. From (7) it is seen that there exists $y_{i} \in L_{i}$ such that $\frac{\partial u}{\partial x_{1}}\left(y_{i}\right) \geq 0$. Since $\bar{a} \in \bar{T}_{\alpha}, y_{i}$ must also tend to \bar{a}. And automatically $\frac{\partial u}{\partial x_{1}}(\bar{a}) \geq 0$, which leads to a contradiction when $\bar{a} \in T_{\alpha}$. Then $\bar{a} \in \partial \bar{T}_{\alpha} \subset \partial B$. But we have seen that $\frac{\partial u}{\partial x_{1}}\left(y_{i}\right) \geq$ 0 and $y_{i} \rightarrow \bar{a}$, which contradicts Lemma A. Thus we complete the proof.
2.3. Proof of Theorem 1. Denote $B(\lambda)=\left\{x \in R^{n} ;|x|<\lambda\right\}$. The necessity is obvious. For sufficiency, by Theorem 2, the nodal set of u must be $\bigcup_{i=1}^{k} S\left(\lambda_{i}\right)$ where $0 \leq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}=1$. We further prove $\lambda_{1}>0$.

Indeed suppose $\lambda_{1}=0$, i.e. $u(0)=0$. We see that there are no nodal points of u in $B\left(\lambda_{2}\right) \backslash\{0\}$, which, together with the fact that $B\left(\lambda_{2}\right) \backslash\{0\}$ is path-connected (since $n \geq 2$), implies that u is positive (or negative) in $B\left(\lambda_{2}\right) \backslash\{0\}$. Then from Theorem 3 we have $u(0)>0$ (or $u(0)<0$) also. It contradicts $u(0)=0$, which shows $\lambda_{1}>0$.

Now in $B\left(\lambda_{1}\right), u$ is positive (or negative). It allows us to apply the result of [GNN] to conclude that u is radially symmetric in $B\left(\lambda_{1}\right)$. It is clear that

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\text { const. } \quad \text { on } S\left(\lambda_{1}\right) . \tag{9}
\end{equation*}
$$

Let $T: R^{n} \rightarrow R^{n}$ be any rotation transform. Since equation (2) is invariant under the transform $T, v=u(T x)$ also solves (2). On
$S\left(\lambda_{1}\right)$, obviously $v=u$, and $\frac{\partial v}{\partial r}=\frac{\partial u}{\partial r}$ by (9). Then $(v-u)$ is a solution to the Cauchy problem

$$
\begin{aligned}
\Delta w & =\left(\int_{0}^{1} f^{\prime}(t v+(1-t) u) d t\right) \cdot w \quad \text { in } B \\
w & =\frac{\partial w}{\partial r}=0 \quad \text { on } S\left(\lambda_{1}\right)
\end{aligned}
$$

and constantly equals 0 by the uniqueness of the Cauchy problem, i.e. $u(x)=u(T x)$ in B for any rotation transforms T, which means u is radially symmetric in B. We finish the proof of our main theorem.

Acknowledgment. It is a pleasure to thank Professor W.-M. Ni for helpful discussions.

References

[GNN] B. Gidus, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 No. 3, (1979), 209-243.

Received July 30, 1990.
International Center for Theoretical Physics
Trieste, Italy

