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A REMARK ON THE SYMMETRY OF SOLUTIONS
TO NONLINEAR ELLIPTIC EQUATIONS

Jl M l N

This note gives a necessary and sufficient condition for solutions
of second order elliptic equations to be radially symmetric.

1. Introduction.

1.1. In an elegant paper [GNN], Gidas-Ni-Nirenberg proved that
the positive solutions of

{ Au = f{u) in B,

M = 0 on OB,

ueC2(B),
must be radially symmetric. Here/is C 1 and B is the ^-dimensional
ball: {x e Rn |JΓ| < 1}. Obviously a symmetric solution of (1) is
not necessary to be positive. In this note, we give a necessary and
sufficient condition for symmetric solutions of (1). The main result is
the following

T H E O R E M 1. Suppose n>2. A solution u of (I) is radially symmet-
ric if and only if its nodal set {x e B u(x) = 0} is radially symmetric.

REMARK. It is interesting to note that Theorem 1 need not hold in
case n = 1. For, u = sinx solves

u" = — u in [—π, π]

with the symmetric nodal set {0} U {-π, π} , but u is not radially
symmetric since sin(-x) = - s i n x .

It is clear that the result of [GNN] is a special case of Theorem 1
since the nodal set of a positive solution to (1) is the sphere dB .

In order to prove Theorem 1, we need the following two preliminary
results.

THEOREM 2. Let u e C2(B) satisfy

(2) Au = f(u) in B.
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If the nodal set of u consists of spheres with the center 0, then these
spheres must be isolated unless u = 0.

THEOREM 3. Let n > 2 and u e C2(B) satisfy

{ Au = f(u) in B,

u>0 inB\{0},

u = 0 ondB.

Then u>0 in B.
REMARK. In case n = 1, Theorem 3 need not hold. For example,

let u(x) = sin(x - f) + 1 for x e [-2π, 2π], we have

u" = 1 - u in (-2π, In),

u>0 in(-2π, 2π)\{0},

u = 0 at x = 0, -2π, 2π.
1.2. The proof of Theorem 3 is based on Lemma 12.1 in [GNN],

we rewrite it in the form.

LEMMA A. Let p = (ρι, p2, ... , ρn) e dB with pι > 0. Assume
for some ε > 0 that u is a C2 function satisfying equation (2) in Ωβ

where Ωε = Bn{x\ \x-ρ\ < ε}, u>0 in tϊε\dBn{x; \x-ρ\< ε}
and u = 0 on dB n {x \x - p\ < ε}. Then there exists δ > 0 such
thatin Bn{x; \x-p\ <δ}, | f < 0 .

2. Proofs.

2.1. Proof of Theorem 2. We may assume that the nodal set of u is
UλeAS(λ) where Λ c [0, 1] and S(λ) = {xeRn; \x\ = λ}. It needs
to be proved that the set Λ contains only isolated points unless u = 0.
Suppose that there is a sequence {/I/} c Λ with λj —• I . Using the
polar coordinates x = r^ where £ € S72"1 and r2 = χ2+χ2-\ \-χ2

 9

we obtain that w = |~ = | 4 = 0 for r = A, which implies that

"(0) = £ f : ( 0 ) = ̂ τ i ( O ) = 0 ( / = 1, 2 , . . . , »)

when X = 0, and that u = Dξu = D\u = 0 on S(λ) when X > 0.

Thus, in both cases, u = Au = 0 on S(λ), and, from (2) we conclude
that /(0) = 0. Set

= C f\tu{x))dt.
Jo
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In case A > 0, we have

{ Au - c(x)u = 0 in {x \x\ < A},

u = ^ = 0 onS(A),

and obtain u = 0 in B by uniqueness of solutions to Cauchy's prob-
lem of linear elliptic equations. Now it remains to consider the case
A = 0. Set

w(x) = cos Nx\ cos Nx2 cos Nxn ,

where JV is taken to be large enough so that

(4) c(x) + N2>0.

Put w = w v for \x\ < jffj . It is easy to see that

Aw = -N2w

v > 0

and S(λi) C {x \x\ < ^ } for / large enough since A/ —• 0 as i —• oo.
On account of (2), it follows

Aυ + ^-Vv - (c(x) + N2)v = 0 in {x |JC| < A/},

i; = 0 on

Because of (4), a well-known maximum principle for second order
linear elliptic equations can be applied, and that υ = 0 is obtained,
so u = 0 for |x| < A, , and in turn u = 0 in 1?. The proof is
completed.

2.2. Proof of Theorem 3. Suppose for contradiction that w(0) = 0.
Automatically Vκ(0) = 0. For 0 < A < 1, denote Σλ = {x e B
Xi > λ} Tλ = {x e B x\ = A}, and for x e Σ^, denote by xλ the
reflexion of x with respect to Tλ, denote by Σ^ the reflexion of Σ^
with respect to Tλ. Set

Λ = JA G (0 , 1) W ( x A ) > u(x) in Σ A , ^ < 0 on Γ A | ,

which is not empty by Lemma A and a similar argument to [GNN].
First of all we prove inf Λ e A. Indeed, there holds

u(xa) > u(x) in Σ α ,

P>O onTa
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where a = infΛ. Letting w(x) = u(xa) for x eΣa and

ι

t(w-u))dt9

= /
Jo

we have

Δ(w - u) - c(x)(w - u) = 0,

(w - u) > 0 in Σa,

(w-u) = O onTa.

Then for K > 0,

Δ(ω - u) - (K + c{x)) -{w-u) = -K(w - u) < 0 in Σ a .

Taking K large enough, we may apply the Hopf maximum principle
to (w - u) and obtain that either

(5) (w - ύ) = 0 in Σ α

or

' i n

(6)
— ( w — u)(v)

where p e dΣa such that (w-u)(p) = 0 and n = n(p) is the outward
normal vector of dΣa at p. Then (5) cannot hold since n > 2 and
w = 0 on 9 5 ; w > 0 in #\{0}. Now (6) holds, then u(xa) > u(x)
in Σa, and on Γα,

since (tυ - u) = 0, which means α e Λ. Next it is easy to see that
a > \ . If a = \ , let p0 = (1 , 0, . . . , 0) G 5 5 , then /$ = 0, and

{w - u)(p0) = u(p§) - u(p0) = 0.

By (6) we have

9
-(tϋ - M)(PO) < 0 > i e. ~ ^—(0) - -—(po) < 0.

UΛ\ OX\ UX\

Then we get

a contradiction since Vw(0) = 0. Thus a > ^ . In this case we claim
that there exists QLQ < a such that αo € Λ, which will contradict the
assumption a = infΛ and our proof would then be completed. To
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this end, we assume again for contradiction that there exists a sequence
{αz} with α, —> α but α; $. Λ which means that either

(7) w(α^) < w(α/) for some α, G Σα.

or

(8) P~{bi)>0 for some bt e Ta .
υX\ ι

The latter cannot always remain true for any subsequence of {/} since,
otherwise, it implies that M- > 0 at some point on Ta when {&/} do

σ Λ i

not approach dB, contradicting α G Λ, and that there exists a point
in any neighborhood of b such that 4%- > 0 when bj —> b E dB,
contradicting Lemma A since b = (bι, . . . , feΛ) with 61 = α > 0.
Now let α, -> S e Sα. From (7) 11(3°) < κ(α), and a e dΣa by
a G Λ. But because α > ^, for x G dΣa\Ta c 9 5 , where Γ α is
the closure of Ta, obviously w(xα) > 0 = u(x). Thus we further
have a eTa- Let Lz be the segment joining a"' and at, having
(1, 0, . . . , 0) as the tangent vector. From (7) it is seen that there
exists yi G Lf such that 4%-(yj) > 0. Since aeΎa, yi must also tend

to α. And automatically §% (a) > 0, which leads to a contradiction

when aeTa. Then α G dTa c S 5 . But we have seen that §f(yi) >

0 and yi —> a, which contradicts Lemma A. Thus we complete the

proof.

2.3. Proof of Theorem 1. Denote B{λ) = {xeRn\ \x\ < λ}. The
necessity is obvious. For sufficiency, by Theorem 2, the nodal set of
u must be |J?=i s(λi) w h ^ r e 0 < λx < λ2 < < λk = 1. We further
prove λ\ > 0.

Indeed suppose λ\ = 0, i.e. w(0) = 0. We see that there are no
nodal points of u in B(λ2)\{0}, which, together with the fact that
B(λ2)\{0} is path-connected (since n > 2), implies that u is positive
(or negative) in B(λ2)\{0}. Then from Theorem 3 we have u(0) > 0
(or M(0) < 0) also. It contradicts u(0) = 0, which shows λ\ > 0.

Now in B(λ\), u is positive (or negative). It allows us to apply the
result of [GNN] to conclude that u is radially symmetric in B{λ\).
It is clear that

(9) | ^ = const. o n S μ O .

Let T: Rn —> Rn be any rotation transform. Since equation (2) is
invariant under the transform T, v = u(Tx) also solves (2). On
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S(λ\)9 obviously υ = w, and §7 = §7 by (9). Then (v - u) is a
solution to the Cauchy problem

Aw = I I f(tυ + (l -t)u)dt\ w in£,

and constantly equals 0 by the uniqueness of the Cauchy problem, i.e.
u(x) = u(Tx) in B for any rotation transforms Γ, which means u
is radially symmetric in B. We finish the proof of our main theorem.
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REFERENCES

[GNN] B. Gidus, W.-M. Ni and L. Nirenberg, Symmetry and related properties via
the maximum principle, Comm. Math. Phys., 68 No. 3, (1979), 209-243.

Received July 30, 1990.

INTERNATIONAL CENTER FOR THEORETICAL PHYSICS

TRIESTE, ITALY




