SOME REMARKS ON ACTIONS OF COMPACT MATRIX QUANTUM GROUPS ON C*-ALGEBRAS

Yuji Konishi, Masaru Nagisa, and Yasuo Watatani

In this paper we construct an action of a compact matrix quantum group on a Cuntz algebra or a UHF-algebra, and investigate the fixed point subalgebra of the algebra under the action. Especially we consider the action of $_{\mu}U(2)$ on the Cuntz algebra \mathscr{O}_2 and the action of $S_{\mu}U(2)$ on the UHF-algebra of type 2^{∞} . We show that these fixed point subalgebras are generated by a sequence of Jones' projections.

1. Compact matrix quantum groups and their actions. We use the terminology introduced by Woronowicz([6]).

DEFINITION. Let A be a unital C*-algebra and $u = (u_{kl})_{kl} \in M_n(A)$, and \mathscr{A} be the *-subalgebra of A generated by the entries of u. Then G = (A, u) is called a compact matrix quantum group (a compact matrix pseudogroup) if it satisfies the following three conditions:

(1) \mathscr{A} is dense in A.

(2) There exists a *-homomorphism Φ (comultiplication) from A to $A \otimes_{\alpha} A$ such that

$$\Phi(u_{kl}) = \sum_{r=1}^{n} u_{kr} \otimes u_{rl} \qquad (1 \le k, l \le n),$$

where the symbol \otimes_{α} means the spatial C^{*}-tensor product.

(3) There exists a linear, antimultiplicative mapping κ from \mathscr{A} to \mathscr{A} such that

$$\kappa(\kappa(a^*)^*) = a \qquad (a \in \mathscr{A})$$

and

$$\kappa(u_{kl}) = (u^{-1})_{kl}$$
 $(1 \le k, l \le n).$

We call $w \in B(C^N) \otimes A \cong M_N \otimes A$ a representation of a compact matrix quantum group G = (A, u) on C^N if $w \oplus w = (id \otimes \Phi)w$, where \oplus is a bilinear map of $(M_N \otimes A) \times (M_N \otimes A)$ to $M_N \otimes A \otimes A$ as follows:

$$(l \otimes a) \oplus (m \otimes b) = lm \otimes a \otimes b$$

for any $l, m \in M_N$ and $a, b \in A$.

120

It is known that a compact matrix quantum group G = (A, u) has the Haar measure h, that is, h is a state on A satisfying

$$(h \otimes id)\Phi(a) = (id \otimes h)\Phi(a) = h(a)1$$
 for any $a \in A$.

So any finite dimensional representation is equivalent to a unitary representation. In this paper we only treat a unitary representation of a compact matrix quantum group.

DEFINITION. Let B be a C*-algebra and π be a *-homomorphism from B to $B \otimes_{\alpha} A$. Then we call π an action of a compact matrix quantum group G = (A, u) on B if $(\pi \otimes id_A)\pi = (id_B \otimes \Phi)\pi$.

Let w be a unitary representation of a compact matrix quantum group G = (A, u) and belong to $M_N(A)$. We denote by \mathcal{O}_N the Cuntz algebra which is generated by isometries S_1, \ldots, S_N satisfying $\sum_{i=1}^N S_i S_i^* = 1$ ([1]). Then we can construct an action of G = (A, u)on \mathcal{O}_N simultaneously to [2], [3].

THEOREM 1. For a unitary representation $w \in M_N(A)$ of a compact matrix quantum group G = (A, u), there exists an action φ of the compact matrix quantum group G = (A, u) on the Cuntz algebra \mathscr{O}_N such that

$$\varphi(S_i) = \sum_{j=1}^N S_j \otimes w_{ji} \text{ for any } 1 \le i \le N.$$

Proof. We set $T_i = \varphi(S_i) = \sum_{j=1}^N S_j \otimes w_{ji}$ for any i = 1, 2, ..., N. By the relation $S_i^* S_j = \delta_{ij}$ and the unitarity of w, T_i 's are isometries and $\sum_{i=1}^N T_i T_i^* = 1$. So φ can be extended to the *-homomorphism from \mathscr{O}_N to $\mathscr{O}_N \otimes_{\alpha} A$. Then we have

$$(\varphi \otimes \mathrm{id})\varphi(S_i) = \sum_{j,k=1}^N S_k \otimes w_{kj} \otimes w_{ji} = (\mathrm{id} \otimes \Phi)\varphi(S_i)$$

for any $1 \le i \le N$. This implies that $(\varphi \otimes id)\varphi = (id \otimes \Phi)\varphi$ on \mathscr{O}_N .

REMARK 2. Let ε be a *-character from \mathscr{A} to the algebra C of all the complex numbers such that

$$\varepsilon(u_{ij}) = \delta_{ij}$$

for any $1 \le i$, $j \le n$ ([6]). If the above unitary representation w belongs to $M_N(\mathscr{A})$, then the relation,

$$(id \otimes \varepsilon)\varphi = \mathrm{id}_{\mathscr{O}_{\mathcal{H}}},$$

holds on the dense *-subalgebra of \mathcal{O}_N generated by S_1, S_2, \ldots, S_N .

We denote by M_N^K the K-times tensor product of the $N \times N$ -matrix algebra M_N , and define a canonical embedding ι from M_N^K to \mathscr{O}_N by

$$\iota(e_{i_1j_1}\otimes\cdots\otimes e_{i_Kj_K})=S_{i_1}\cdots S_{i_K}S_{j_K}^*\cdots S_{j_1}^*$$

where $\{e_{ij}\}_{i,j=1}^{N}$ is a system of matrix units of M_N . This embedding i is compatible with the canonical inclusion of M_N^K into M_N^{K+1} . We denote by M_N^∞ the UHF-algebra of type N^∞ , which is obtained as the inductive limit C^* -algebra of $\{M_N^K\}_{K=1}^\infty$. We may consider the UHF-algebra M_N^∞ as a C^* -subalgebra of \mathscr{O}_N through the embedding.

COROLLARY 3. Let φ be the action of a compact matrix quantum group G = (A, u) on the Cuntz algebra \mathscr{O}_N defined by the unitary representation $w \in M_N(A)$ as in Theorem 1. Then the restriction ψ of φ on the UHF-algebra M_N^{∞} is also an action of G = (A, u) on M_N^{∞} satisfying

$$\psi(e_{i_1j_1} \otimes \cdots \otimes e_{i_Kj_K}) = \sum_{\substack{a_1, \dots, a_K \\ b_1, \dots, b_K}} e_{a_1b_1} \otimes \cdots \otimes e_{a_Kb_K}$$
$$\otimes w_{a_1i_1} \cdots w_{a_Ki_K} w_{b_Kj_K}^* \cdots w_{b_1j_1}^*$$

for any positive integer K.

REMARK 4. We define a bilinear map \oplus of $(M_N \otimes A) \times (M_N \otimes A)$ to $M_N \otimes M_N \otimes A$ as follows:

$$(l \otimes a) \oplus (m \otimes b) = l \otimes m \otimes ab$$

K times

for any $l, m \in M_N$ and $a, b \in A$. We denote $w \oplus \cdots \oplus w$ by w^K . Then w^K is a unitary representation of a compact matrix quantum group G = (A, u) if w is a unitary representation of G = (A, u). The above action ψ is represented by the following form

$$\psi(x) = w^K (x \otimes 1_A) (w^K)^*$$
 for any $x \in M_N^K$.

So we call the action ψ the product type action of G = (A, u) on the UHF-algebra M_N^{∞} .

DEFINITION. Let B be a C^{*}-algebra and π be an action of a compact matrix quantum group G = (A, u) on B. We define the fixed point subalgebra B^{π} of B by π as follows:

$$B^{\pi} = \{ x \in B | \pi(x) = x \otimes 1_A \}.$$

Let \mathscr{P}_N be the dense *-subalgebra of \mathscr{O}_N generated by S_1, S_2, \ldots, S_N and \mathscr{M}_N be the dense *-subalgebra $\bigcup_{K=1}^{\infty} M_N^K$ of M_N^{∞} .

LEMMA 5. Let h be the Haar measure on a compact matrix quantum group G = (A, u), and we define $E_{\varphi} = (\mathrm{id} \otimes h)\varphi$ and $E_{\psi} = (\mathrm{id} \otimes h)\psi$. Then E_{φ} (resp. E_{ψ}) is a projection of norm one from \mathcal{O}_N onto $(\mathcal{O}_N)^{\varphi}$ (resp. from M_N^{∞} onto $(M_N^{\infty})^{\psi}$) such that

$$E_{\varphi}(\mathscr{P}_N) \subset \mathscr{P}_N, \quad E_{\psi}(\mathscr{M}_N) \subset \mathscr{M}_N.$$

Proof. Clearly E_{φ} is a unital, completely positive map, $E_{\varphi}(x) = x$ for any $x \in (\mathscr{O}_N)^{\varphi}$, and $E_{\varphi}(\mathscr{P}_N) \subset \mathscr{P}_N$. By the property of the Haar measure, for any $x \in \mathscr{O}_N$, we have

$$E_{\varphi}(E_{\varphi}(x)) = (\mathrm{id} \otimes h \otimes \mathrm{id})(\varphi \otimes \mathrm{id})(\mathrm{id} \otimes h)\varphi(x)$$

= (\mathbf{id} \otimes h \otimes h)(\varphi \otimes \mathrm{id})\varphi(x)
= (\mathbf{id} \otimes h)(\mathbf{id} \otimes \Phi)\varphi(x) = (\mathbf{id} \otimes (h \otimes h) \Phi)\varphi(x)
= (\mathbf{id} \otimes h)\varphi(x) = E_{\varphi}(x).

So the assertion holds for E_{φ} .

Similarly the assertion also holds for E_{ψ} .

We can easily get the following lemma.

LEMMA 6. Let π be an action of a compact matrix quantum group G = (A, u) on a C*-algebra B and B_0 be a dense *-subalgebra of B. If E is a projection of norm one from B onto the fixed point subalgebra B^{π} of B by the action π such that $E(B_0) \subset B_0$, then $B_0 \cap B^{\pi}$ is dense in B^{π} .

We define a *-endomorphism σ of \mathscr{O}_N by $\sigma(X) = \sum_{i=1}^N S_i X S_i^*$ for any $X \in \mathscr{O}_N$. Then the restriction of σ to the UHF-algebra M_N^{∞} of type N^{∞} satisfies that $\sigma(X) = 1_{M_N} \otimes X$ for any $X \in M_N^{\infty}$. LEMMA 7. (1) If $X \in (\mathscr{O}_N)^{\varphi}$, then $\sigma(X) \in (\mathscr{O}_N)^{\varphi}$. (2) If $X \in (M_N^{\infty})^{\psi}$, then $\sigma(X) \in (M_N^{\infty})^{\psi}$.

Proof. (1) For $X \in (\mathscr{O}_N)^{\varphi}$, we have $\varphi(\sigma(X)) = \sum_{i=1}^N \varphi(S_i X S_i^*) = \sum_{i=1}^N \varphi(S_i) (X \otimes 1_A) \varphi(S_i)^*$ $= \sum_{i=1}^N S_j X S_k^* \otimes u_{ij} u_{ik}^* = \sum_{i=1}^N S_i X S_i^* \otimes 1_A = \sigma(X) \otimes 1_A.$

(2) The assertion follows that ψ is the restriction of φ .

2. Jones' projections and compact matrix quantum groups $S_{\mu}U(2)$ and $_{\mu}U(2)$. We shall consider the actions of $S_{\mu}U(2)$ and $_{\mu}U(2)$ coming from their fundamental representations.

DEFINITION ([7]). A compact matrix quantum group G = (A, u)is called $S_{\mu}U(2)$ if A is the universal C*-algebra generated by α, γ satisfying

$$\alpha^* \alpha + \gamma^* \gamma = 1 \,, \quad \alpha \alpha^* + \mu^2 \gamma \gamma^* = 1 \,, \quad \gamma^* \gamma = \gamma \gamma^* \,,$$

 $\mu\gamma\alpha = \alpha\gamma, \quad \mu\gamma^*\alpha = \alpha\gamma^*, \quad \mu\alpha^*\gamma = \gamma\alpha^*, \quad \mu\alpha^*\gamma^* = \gamma^*\alpha^*,$

where
$$-1 \le \mu \le 1$$
. Its fundamental representation u is as follows:

$$u = \begin{pmatrix} \alpha & -\mu\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(A).$$

The comultiplication Φ associated with $S_{\mu}U(2)$ is defined by

$$\Phi(\alpha) = \alpha \otimes \alpha - \mu \gamma^* \otimes \gamma, \quad \Phi(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

We shall introduce the quantum U(2) group $\mu U(2)$, which is obtained by the unitarization of the quantum GL(2) group.

DEFINITION. A compact matrix quantum group H = (B, v) is called ${}_{\mu}U(2)$ if B is the universal C*-algebra generated by α, γ, D satisfying

$$D^*D = DD^* = 1, \quad \alpha D = D\alpha, \quad \gamma D = D\gamma, \quad \alpha^*D = D\alpha^*,$$

$$\gamma^*D = D\gamma^*, \quad \alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + \mu^2\gamma\gamma^* = 1, \quad \gamma^*\gamma = \gamma\gamma^*,$$

$$\mu\gamma\alpha = \alpha\gamma, \quad \mu\gamma^*\alpha = \alpha\gamma^*, \quad \mu\alpha^*\gamma = \gamma\alpha^*, \quad \mu\alpha^*\gamma^* = \gamma^*\alpha^*,$$

123

where $-1 \le \mu \le 1$. Its fundamental representation v is as follows:

$$v = \begin{pmatrix} lpha & -\mu D\gamma^* \\ \gamma & D\alpha^* \end{pmatrix} \in M_2(B).$$

The comultiplication Ψ associated with $_{\mu}U(2)$ is defined by

$$\Psi(\alpha) = \alpha \otimes \alpha - \mu D \gamma^* \otimes \gamma, \quad \Psi(\gamma) = \gamma \otimes \alpha + D \alpha^* \otimes \gamma,$$
$$\Psi(D) = D \otimes D.$$

REMARK 8. The above C^* -algebra B associated with the compact matrix quantum group ${}_{\mu}U(2) = H = (B, v)$ is isomorphic to $A \otimes_{\alpha} C(T)$ as a C^* -algebra, where A is the C^* -algebra associated with the compact matrix quantum group $S_{\mu}U(2) = G = (A, u)$ and C(T) is the algebra of all the continuous functions on the one dimensional torus T. The elements α and γ in H satisfy the same relation of α and γ in G. But the values of the comultiplication Ψ at α, γ differ from ones of the comultiplication Φ at α, γ .

In the rest of the paper, we fix a number $\mu \in [-1, 1] \setminus \{0\}$.

We denote by φ_1 (resp. by φ_2) the action of the compact matrix quantum group ${}_{\mu}U(2) = (B, v)$ (resp. $S_{\mu}U(2) = (A, u)$) on the Cuntz algebra \mathscr{O}_2 coming from the fundamental representation v (resp. u) as in Theorem 1. We also denote ψ_1 (resp. ψ_2) the product type action of the compact matrix quantum group ${}_{\mu}U(2) = (B, v)$ (resp. $S_{\mu}U(2) = (A, u)$) on the UHF-algebra M_2^{∞} of type 2^{∞} coming from v (resp. u) as in Corollary 3.

From now on, we shall determine the fixed point subalgebras of the above actions.

In [8] Woronowicz defines the 4×4 -matrix

$$g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \mu & 0 \\ 0 & \mu & 1 - \mu^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_2 \otimes M_2 \subset M_2^{\infty}$$

and shows that the algebra $\{x \in M_2^K | u^K(x \otimes 1_A) = (x \otimes 1_A)u^K\}$ is generated by $g_1, g_2, \ldots, g_{K-1}$, where $g_{i+1} = \sigma^i(g)$ $(i = 0, 1, \ldots, K-2)$.

We set

$$e_i = \frac{1}{1+\mu^2}(1-g_i)$$
 for any $i = 1, 2, ..., K-1$,

124

then the sequence $\{e_n\}_{n=1}^{\infty}$ of projections satisfies the Jones' relation

$$e_i e_{i\pm 1} e_i = \frac{\mu^2}{(1+\mu^2)^2} e_i$$
, $e_i e_j = e_j e_i$ (if $|i-j| > 1$).

We denote by $C^*(\{e_n\}_{n=1}^{\infty})$ the unital C^* -algebra generated by the projections $\{e_n\}_{n=1}^{\infty}$.

PROPOSITION 9. The fixed point subalgebra $(M_2^{\infty})^{S_{\mu}U(2)}$ of the UHFalgebra M_2^{∞} by the action ψ_2 of $S_{\mu}U(2)$ is generated by the above Jones' projections $\{e_n\}_{n=1}^{\infty}$.

Proof. By Remark 4, $M_2^K \cap (M_2^\infty)^{\psi_2} = \{x \in M_2^K | u^K(x \otimes 1_A) = (x \otimes 1_A)u^K\}$. So $M_2^K \cap (M_2^\infty)^{\psi_2}$ is generated by $e_1, e_2, \ldots, e_{K-1}$. The assertion follows from Lemma 5 and Lemma 6.

THEOREM 10. The fixed point subalgebra $(\mathscr{O}_2)^{\mu}^{U(2)}$ of the Cuntz algebra \mathscr{O}_2 by the action φ_1 of ${}_{\mu}U(2) = (B, v)$ coincides with the fixed point subalgebra $(M_2^{\infty})^{S_{\mu}U(2)}$ of the UHF-algebra M_2^{∞} by the action ψ_2 of $S_{\mu}U(2) = (A, u)$.

In particular,

$$(\mathscr{O}_2)^{\mu^{U(2)}} = (M_2^{\infty})^{\mu^{U(2)}} = (M_2^{\infty})^{S_{\mu^{U(2)}}} = C^*(\{e_n\}_{n=1}^{\infty}).$$

Proof. It is clear that $(\mathscr{O}_2)^{\mu}{}^{U(2)} \supset (M_2^{\infty})^{\mu}{}^{U(2)}$. In order to show that $(\mathscr{O}_2)^{\mu}{}^{U(2)} \subset (M_2^{\infty})^{\mu}{}^{U(2)}$, it is sufficient to show that $\mathscr{P}_2 \cap (\mathscr{O}_2)^{\varphi_1} \subset (\mathscr{M}_2 \cap (M_2^{\infty})^{\psi_1})$ by Lemma 5 and Lemma 6. Let $x \in \mathscr{P}_2 \cap (\mathscr{O}_2)^{\varphi_1}$ and θ be a *-homomorphism of B onto $C^*(D)$ such that $\theta(\alpha) = D$, $\theta(\gamma) = 0$ and $\theta(D) = D^2$. The element x has the unique representation

$$x = \sum_{i>0} (S_1^*)^i A_{-i} + A_0 + \sum_{i>0} A_i (S_1)^i,$$

where each A_i $(i = 0, \pm 1, \pm 2, ...)$ belongs to \mathcal{M}_2 ([1]). Since $(\mathrm{id}_{\mathscr{O}_1} \otimes \theta) \varphi_1(S_i) = S_i \otimes D$ for any i = 1, 2,

$$x \otimes 1_B = (\mathrm{id}_{\mathscr{O}_2} \otimes \theta) \varphi_1(x)$$

= $\sum_{i>0} (S_1^*)^i A_{-i} \otimes (D^*)^i + A_0 \otimes 1_B + \sum_{i>0} A_i (S_1)^i \otimes D^i$.

Hence $x = A_0 \in \mathscr{M}_2 \cap (\mathscr{M}_2^\infty)^{\psi_1}$. Therefore $(\mathscr{O}_2)^{\mu^{U(2)}} = (\mathscr{M}_2^\infty)^{\mu^{U(2)}}$.

We define a *-homomorphism η of B onto A such that $\eta(\alpha) =$ α , $\eta(\gamma) = \gamma$ and $\eta(D) = 1$. Then the following diagram commutes

$$\begin{array}{cccc} M_2^{\infty} & \stackrel{\psi_1}{\longrightarrow} & M_2^{\infty} \otimes_{\alpha} B \\ \\ & & & & & & \\ \parallel & & & & & \\ M_2^{\infty} & \stackrel{\psi_2}{\longrightarrow} & M_2^{\infty} \otimes_{\alpha} A. \end{array}$$

So $(M_2^{\infty})^{\mu}{}^{U(2)} \subset (M_2^{\infty})^{S_{\mu}U(2)}$. We shall show that $(M_2^{\infty})^{\mu}{}^{U(2)} \supset (M_2^{\infty})^{S_{\mu}U(2)}$. It is sufficient to show that $(M_2^{\infty})^{\mu}{}^{U(2)}$ contains $\{e_n\}_{n=1}^{\infty}$ by Proposition 9. We set

$$\tau = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & D & 0 & 0 \\ 0 & 0 & D & 0 \\ 0 & 0 & 0 & D^2 \end{pmatrix} \in M_4(B) \cong M_2 \otimes M_2 \otimes B \,,$$

then

$$v \ominus v = \left(\begin{pmatrix} lpha & -\mu\gamma^* \\ \gamma & lpha^* \end{pmatrix} \ominus \begin{pmatrix} lpha & -\mu\gamma^* \\ \gamma & lpha^* \end{pmatrix}
ight) au$$

and

$$\tau(e_1\otimes 1_B)=(e_1\otimes 1_B)\tau.$$

Then we have

$$\begin{split} \psi_{1}(e_{1}) &= (v \oplus v)(e_{1} \otimes 1_{B})(v \oplus v)^{*} \\ &= \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \oplus \begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right) \Rightarrow \left(\begin{pmatrix} \alpha & -\mu\gamma^{*} \\ \gamma & \alpha^{*} \end{pmatrix} \right)$$

By this fact and Lemma 7, $e_n \in (M_2^{\infty})^{\mu^{U(2)}}$ for any positive integer n.

So the theorem holds.

REMARK 11. In the case $\mu = 1$,

$$e_i e_{i\pm 1} e_i = \frac{\mu^2}{(1+\mu^2)^2} e_i = \frac{1}{4} e_i,$$

and the projection e_1 is represented as follows:

$$e_1 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Therefore the above theorem is a C^* -version of a deformation of Jones' result ([2], [4], [5]).

References

- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys., 57 (1977), 173-185.
- [2] M. Enomoto and Y. Watatani, Young diagrams and C*-algebras, Math. Japon., 25 (1980), 395-404.
- [3] D. E. Evans, On O_n, Publ. Res. Inst. Math. Sci., 16 (1980), 915–927.
- [4] F. M. Goodman, P. de la Harpe and V. F. R. Jones, *Coxeter Graphs and Towers of Algebras*, Mathematical Sciences Research Institute Publications 14, Springer-Verlag.
- [5] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1–25.
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), 613-665.
- [7] ____, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181.
- [8] ____, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., 93 (1988), 35–76.

Received April 4, 1990.

Niigata University Niigata 950-21, Japan

Chiba University Chiba 260, Japan

AND

Hokkaido University Sapporo 060, Japan