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ON ORTHODOX SEMIGROUPS DETERMINED
BY THEIR BUNDLES OF CORRESPONDENCES

SIMON M. GOBERSTEIN

The author's theorem that fundamental inverse semigroups are
strongly determined by their bundles of correspondences is extended
to the class of orthodox semigroups with fundamental maximum in-
verse semigroup morphic images.

0. Introduction. Let S be a semigroup. A correspondence of S is
defined as any subsemigroup of S x S (including the empty one) or,
in other words, as any stable binary relation on S. Let &(S) denote
the set of all correspondences of S. Then &(S) is closed under
composition (o) of binary relations and the operation ( - 1 ) of taking
the inverse, p~ι, of any correspondence p of S. Thus {&(S), o , - 1 )
is a semigroup with an involution having a zero 0 and an identity Δ5
(= the equality, or "diagonal", relation on S). Moreover, (%?(S), C)
is an algebraic lattice and the partial order c is compatible with both
operations, composition and involution. Following Kurosh [10,11] we
say that the system (&(S), o, ~ι , c) is the bundle of correspondences
of S in what follows it will be denoted simply by %?(S). It is obvious
that &(S) = ^ ( S o p p ) where S o p p is the dual semigroup of S.

It ought to be mentioned that correspondences can, of course, be
introduced in the general frame of category theory [14] and considered
for other algebraic structures, not only for semigroups. In fact, the first
(known to the author) paper on bundles of correspondences was that of
Mac Lane [12] in which he studied correspondences of modules and
called them "additive relations" (the author is grateful to Professor
S. Mac Lane for this reference and for sending him an offprint of
[12]).

Let S and Sf be semigroups with isomorphic bundles of corre-
spondences. Then S and S' are said to be &-isomorphic and any
isomorphism of &(S) onto ^(S1) is called a &-isomorphism of S
onto Sr. We will say that a ^-isomorphism Φ of S onto S' is in-
duced by a bijection φ of S upon S' (or that φ induces Φ) if for
any p e &(S), pΦ = <p~ι o p o φ, that is, for all x, y G S, (x9y)ep
if and only if (xφ, yφ) e pΦ. It is obvious that any isomorphism or

71



72 SIMON M. GOBERSTEIN

antiisomorphism of S upon S' induces a ^-isomorphism of S onto
Sf. A semigroup S is called &-determined if for any semigroup Sr,
&(S) = &{S') if and only if S* £ 5 or S" = 5°PP (of course, the latter
might be omitted if S is antiisomorphic to itself—for example, if S
is commutative or inverse). We say that S is strongly &-determined
if any ^-isomorphism of S onto a semigroup Sf is induced by an
isomorphism or an antiisomorphism of S upon S1.

The ^-determinability of bands was established by Bredihin [1]. In
[5] the author proved that fundamental inverse semigroups are strongly
^-determined. The present paper extends these results to the class of
orthodox semigroups with fundamental maximum inverse semigroup
morphic images. This class is properly contained in the class of funda-
mental orthodox semigroups (see Lemma 2.6 below and T. E. Hall's
example [15, Example 1] which shows that even for the Hall semi-
group WE of a band E, the maximum inverse semigroup morphic
image may not be fundamental), however it forms a vast subclass
of the latter. For example, it is easily seen that an orthodox semi-
group is combinatorial if and only if its maximum inverse semigroup
morphic image is. Thus the class of orthodox semigroups with fun-
damental maximum inverse semigroup morphic images contains all
combinatorial orthodox semigroups (and, in particular, free orthodox
"-semigroups). Many other examples of semigroups which belong to
that class can be constructed using [15, Theorem 3 and Corollary 4a].

The paper is organized as follows. Section 1 contains basic infor-
mation about ^-isomorphisms of arbitrary semigroups needed later.
Section 2 provides preliminaries on orthodox semigroups and their
^-isomorphisms. In particular, one of the lemmas from the author's
paper [5] is generalized here giving certain equivalent conditions for a
bijection between an arbitrary orthodox semigroup and a fundamen-
tal one to be an isomorphism (Lemma 2.5). We use this result along
with several others in §3 to prove our main theorem: if S is an ortho-
dox semigroup whose maximum inverse semigroup morphic image is
fundamental, then any ^-isomorphism of S onto a semigroup S' is
induced by a unique bijection, and this bijection is an isomorphism
or an antiisomorphism of S onto S' (Theorem 3.1).

1. ?-isomorphisms of semigroups, the background. Let S and S'
be ^-isomorphic semigroups, and let Φ be an isomorphism of %?(S)
onto %?(Sf). Then all properties of correspondences of S expressed in
terms of o , - 1 , and c are preserved under Φ. In particular, Δ^Φ =
As> since Δ^Φ is the identity of {^{Sr), o), and if e is a congruence
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on S, then εΦ is a congruence on S'. Let <9%S(S) denote the set
of all subsemigroups of S. To indicate that H e <9u/(S), we write
H < S. It will be assumed that 0 < S, so that ( ^ / ( 5 ) , c) is an
algebraic lattice. It is clear that if p e &{S), then p Q As if and
only if p = AH for some H < S. Thus Φ defines an isomorphism
Φ* of &kf{S) onto c5^/(S") by the formula Δ#Φ = Δ#φ* for any
H < S. If Φ is induced by a bijection #>: S —• S', then for every
H <S, AHΦ* = Δ#Φ = Δ/^ whence HΦ* = //#>, so that φ induces
also the lattice isomorphism Φ* of S onto Sf. It follows easily from
[16] that for any p e &{S),

(1) dom(/?Φ) = (dom p)Φ* and ran(/?Φ) = (ran p)Φ*,

and for any H < S,

(2) ^(//)Φ = ^( i/Φ*),

that is, the restriction of Φ to ^(H) is a ^-isomorphism of /ί onto
i/Φ*.

Let 5 be a semigroup. Take any x e S. If x has finite order, the
index of x is defined [9, p. 8] as the least positive integer m such
that xm = xm+n for some positive integer n in this case we write
indx = m. If x has infinite order, set indx = oo. Now define
indiS = sup{indx: x e S}. If X is a nonempty subset of S, the
subsemigroup of S generated by X is denoted by (X). In particular,
for any x, y e S, ( c) is the monogenic subsemigroup of S generated
by x and ((x9y)) is the monogenic subsemigroup of SxS generated
by (x,y).

RESULT 1.1 (Bredihin [2, Proposition 2.1 and its proof]; see also [5,
Result 1.3 with an outline of proof]). Let S and S' be %?-isomorphic
semigroups, and let Φ be a &-isomorphism of S onto S'. Suppose
that ind S > 1. Then Φ is induced by a unique bijection φ of S onto
Sr. This bijection φ can be defined by the formula

(3) ((a,s))Φ=((aφ9sφ))

for any s eS and any aeS such that indα > 1.

If ind £ > 2, one can obtain more information about φ .

RESULT 1.2 (Bredihin [2, Lemma 2.2]). Let Φ be a W-isomorphism
of a semigroup S onto a semigroup S1. Suppose ind S > 2 and let φ
be the unique bijection of S onto S' inducing Φ. Then for any x, y e
S and any integer n > 1, (xn)φ = (xφ)n and {x2 ,y2, xy, yx}φ =
{(xφ)2, (yφ)2, (xφ)(yφ), (yφ)(xφ)}.
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RESULT 1.3 (the author [5, Lemma 1.5]). Let S and S' be semi-
groups and Φ a &-isomorphism of S onto S'. Let elements Xj, y,
of S (i G /) and a mapping φ: S —• S' be such that ((x/,
((xtφ, yiψ)) for every i e l . Then

((*, p , J W ) : iel).

For any semigroup S, denote by E(S) the set of all idempotents
of S (of course, for some semigroups S, -EOS) may be empty).
Now let S and S' be ^-isomorphic semigroups, and let Φ be a
^-isomorphism of S onto Sr. It follows from [16, Theorem 1.2]
that E(S) and E(S') are either both empty or both nonempty and,
in the latter case, there is a bijection φE of E(S) onto E(S') defined
by the formula

(4) {(e9e)}Φ = {(eφE9eφE)}

for any e e E(S). Take any 5 e S. Since monogenic semigroups are
^-determined [1, Theorem 2.1(c)], formula (2) implies that (s)Φ*
is a monogenic subsemigroup of *S; isomorphic to (s). Moreover,
if ind*S > 1 and if ψ is the unique bijection of S onto S' which
induces Φ, then using formulae (1) and (3), it is easy to see that

Let ε be a congruence on a semigroup S, and let

% { β ) = { p e & { S ) : p o ε = ε o p = p } .

It is clear that (%(S), o, - 1 , c) is a subsystem of (&{S), o, - 1 , c ) .
For any σ e &(S/e), define

(5) σ θ ε = ε^oσo(ε^)- 1 ,

where e^ is the natural morphism of S onto S/ε. Then θ ε is an
isomorphism of W(S/e) onto %{S) (see [16, Theorem 1.7] where
this fact is established for any universal algebra S).

LEMMA 1.4. Let S be a semigroup, and let ε be a congruence on
S. Then

(i) for any σ e W(S/ε) and any a, b e S, (aε, bε) e σ if and
only if (aε) x (be) Q σθε

(ϋ) forany x,yeS, ((xε, yε))θε = ((xε) x (ye)).

REMARK. For the sake of clarity it should be emphasized that
((xε, yε)) is the monogenic subsemigroup of (S/ε) x (S/ε) gener-
ated by the pair (xε, yε) e (S/ε) x (S/ε) whereas ((jce) x (yε)) is the
subsemigroup of S x S generated by the subset (xε) x (yε) CSxS.
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Proof, (i) Let σ e W(S/ε) and a, b eS. Suppose that (aε, be) e
σ, and take any c e aε and d e be. Then cε^ = ae and c/ε15 = be,
so that (c, d) e ε11 o <τ o (ε^)" 1. Hence, according to formula (5),
(aε) x (be) c <τθε.

Conversely, assume that (ae) x (fee) c σ θ ε = ε* o a o (ε1 3)"1. Then
for some c, d e S, we have αε11 = cε, fee* = dε and (cε, dε) e σ.
However cε = αε and dε = bε, so that (αε, feε) e σ.

(ii) Take any X J E S , It is obvious that for any integer /? > 1,
the nth power of xε in the semigroup S/ε coincides with xnε, that
is, (xε)n = x n ε ; and likewise (yε)n = ynε. Since {(xε,yε)) =
{((xε)", ( jε) n ): « G N}, it follows from part (i) of the lemma
that ((xε,yε))Θε = U£=i[(*«)Λ x (yβ)Ί Therefore, ((xε, yε))θ ε =
((xε) x

Let Φ be a ^-isomorphism of a semigroup S onto a semigroup
5 ; , and let ε be a congruence on S. It is easy to see that Φ\%(S) is
an isomorphism of %(S) onto %Φ(S') . Define

(6) Φε = θ ε o ( φ | ^ ( 5 ) ) o ( θ ε φ ) - 1 .

Since (θeφ)" 1 is an isomorphism of %φ(Sr) onto W(S'/(εΦ)), the
following result is immediate.

RESULT 1.5 (from Bredihin [1, Lemma 1.1]). Let S and Sr be semi-
groups and Φ a %?-isomorphism of S onto S'. If ε is a congruence on
S and if Φ ε is defined by formula (6), then Φε is a &-isomorphism
of S/ε onto S'/(εΦ).

2. Orthodox semigroups and ^-isomorphisms, preliminaries. Recall
that an orthodox semigroup is a regular semigroup in which the idem-
potents form a subsemigroup. In particular, bands (i.e., semigroups in
which every element is idempotent) and inverse semigroups are spe-
cial cases of orthodox semigroups. Therefore, in order to find out
which orthodox semigroups are ^-determined, it is natural at first
to consider this problem for bands and for inverse semigroups. The
following two results treat these particular cases respectively and are
important ingredients of the proof of our main theorem.

RESULT 2.1 (Bredihin [1, Theorem 2.1 (a)]). Let E be a band and
Ef an arbitrary semigroup. If Φ is a &-isomorphism of E onto E1,
then Er is also a band and the mapping φE, defined by formula (4),
is an isomorphism or an antiisomorphism of E onto E'.
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Moreover, it is easily seen that ψE induces Φ and is the only bi-
jection of E onto Ef with this property. Thus bands are strongly
^-determined.

Let S be a regular semigroup. Denote by μ$ the maximum congru-
ence on S contained in Green's relation %? (or, which is the same [9,
Proposition II.4.8], the maximum idempotent-separating congruence
on S). If μs = Δs, S is called fundamental. In [5] we established that
fundamental inverse semigroups are strongly ^-determined. More
precisely, the following theorem was proved.

RESULT 2.2 (the author [5, Theorem 2.5]). Let T be a fundamen-
tal inverse semigroup and V an arbitrary semigroup. Then W(T) =
Ψ{T') if and only if T = V. Furthermore, any Ψ-isomorphism of
T onto V is induced by a unique bijection, and this bijection is an
isomorphism or an antiisomorphism of T onto V.

Turning now to ^-isomorphisms of arbitrary orthodox semigroups,
we begin with the following generalization of Result 2.1.

LEMMA 2.3. Let S be an orthodox semigroup, S' an arbitrary semi-
group ^-isomorphic to S, and Φ a &-isomorphism of S onto Sf.
Then S' is also orthodox and the mapping ψE, defined by formula
(4), is an isomorphism or an antiisomorphism of E = E{S) onto
E1 = E(S').

Proof. Since Sf is ^-isomorphic to S and S is a regular semi-
group, by [2, Corollary 2.1], S' is also regular. We know that the
mapping φE given by formula (4) is a bijection of E = E(S) onto
E' = E(S'). According to formula (2), Φ\W(E) is a ^-isomorphism
of E onto EΦ*. Then, by Result 2.1, isΦ* is a band and the map-
ping ψE is an isomorphism or an antiisomorphism of E onto EΦ*.
It remains to note that EΦ* = ran ψ£ = E'.

If x is an element of a semigroup S, the set of all inverses of x in
S is denoted by Vs(x) (or simply by V(x) if there is no ambiguity
about S). Let S be an orthodox semigroup, and let p$ = {(*> y) Ξ
S x S : Vs(x) = Vs(y)}. It is known [9, Theorem VI.1.12] that ys is a
congruence on S and that, in fact, it is the smallest inverse semigroup
congruence on S. Thus S/p$ is the maximum inverse semigroup
morphic image of S.

Let S be an orthodox semigroup and let Φ be a ^-isomorphism of
S onto a semigroup S'. Then, by Lemma 2.3, S' is also an orthodox



ORTHODOX SEMIGROUPS 77

semigroup. To simplify the notation, we will write y and y instead
of ^s and ys< respectively. By Result 1.5, Φγ is a ^-isomorphism
of Sjy onto S'/(yφ). Moreover, in the notation of this paragraph,
we have

LEMMA 2.4. The image of y under Φ coincides with y , so that
Φy is a &-isomorphism of Sjy onto S'/y.

Proof. Since Sjy is an inverse semigroup, by [2, Corollary 2.2],
Sι'/(J^Φ) is also inverse. Hence y c yφ. Now note that Φ 1 is
a ^-isomorphism of Sf onto S. Hence, by symmetry, y c J^ 'φ- 1

whence J^Φ c y . Therefore

The next lemma generalizes part of [5, Lemma 2.1]. It will play an
important role in the proof of the main theorem.

LEMMA 2.5. Let S and Sf be orthodox semigroups and ψ a bijec-
tionofS onto S' which maps E(S) onto E(S'). IfS' is fundamental,
then the following statements are equivalent:

(i) for any s e S, any s! e V(s) and any e e E(S), (ss')φ =
{sφ)(s'φ), (es)φ = (eφ){sφ) and (se)φ = {sφ){eφ)

(ii) for any s e S, any sf e V(s) and any e e E(S), s'φ e V(sφ)
and {s'es)φ — (s'φ)(eφ){sφ)

(iii) φ is an isomorphism of S onto S'.

Proof, (i) => (ii). To prove this implication we do not need the
assumption that S' is fundamental. Suppose that (i) holds and take
any s e S, s' e V{s) and e e E{S). Then

(sφ)(s'φ)(sφ) = {ssf)φ (sφ) — (ssfs)φ = sφ

and by symmetry {s!φ)(sφ)(sfφ) = s'φ, so s'φ e V(sφ). Since s'e e
V(es) [9, Theorem VI. 1.1] we also have

(s'es)φ = [(sfe)(es)]φ = (s'e)φ {es)φ

= (s'φ){eφ){eφ)(sφ) = (s'φ)(eφ)(sφ).

(ii) => (iii). Assume that (ii) holds and suppose that S' is funda-
mental. Take any x, y e S and any x' e V(x), y1 e V(y). Again by
[9, Theorem VI.1.1], y'x' e V(xy). Therefore (y'x')φ e V({xy)φ)
and for each e e E(S),

(y'x')φ {eφ) (xy)φ = [(y'x')e{xy)]φ = \y'{x'ex)y]φ

= {y'ψ) (χ'ex)φ (yφ) = [(
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Since {y'φ){x'φ) e V{xφ -yφ) and E(S)φ = E{S'), it follows that
((xy)φ, (xφ){yφ)) € μs» (see [9, Theorem VI. 1.17]). However we
assumed that μs> = As*, so that (xy)φ = {xφ){yφ). Hence 9? is an
isomorphism of S onto S'.

Since (iii) trivially implies (i), the lemma is proved.

Let S be an orthodox semigroup and let T = Sjy. If (a, b) €
it is immediate from [9, Theorems V.3.2 and VI.1.17] that [aφ
e μτ. Thus μs C ^ o μ Γ o ( f ^ ) " 1 . If μ Γ = Δ Γ , then μ 5 C
J ^ o ( J ^ ) - i = ̂ , so by [9, formula (VI. 1.16)], μs = μsny C / n f
= As and hence μ$ = Δ5. We have proved

LEMMA 2.6. Lei S Z>e an orthodox semigroup and T its maximum
inverse semigroup morphic image. If T is fundamental then S is
fundamental as well

An element of a semigroup S is called nongroup if it does not be-
long to any subgroup of S. It is obvious that if S is an orthodox
semigroup, / a proper ideal of S and p a congruence on S such
that xpy for some x e S\I and y e / , then there exist /^-related
idempotents e e Dx and f E I (e.g., for any x1 E V(X) and any
{yx')r E V{yxf), we have xxrpyx'{yx'yxxf). Now as a simple corol-
lary to [4] we obtain the following result (which could also be proved
directly).

LEMMA 2.7. Let S be an orthodox semigroup, s an arbitrary non-
group element of S and sf e V(s). Then either {s, sf, ss', s's} is the
top &-class of {s, s') or inds = 00.

Proof. Let F = (p, q) be the free orthodox semigroup on two mu-
tually inverse generators p and q. Then (s 9 s') = F/e for some
congruence e on F. Let ^ = yF and £ = £(JF). If β C | < ,
the free monogenic inverse semigroup ^VJ^ is a morphic image of
(s, s') and hence inds = 00. Suppose that ε <£ p" and recall that s
is a nongroup element. Then, by [4, Theorem 2.1], there exist con-
gruences ζ and η on S such that ζ C η C e, ζ V y = 1/ V ^ ,
η Π(E x E) = eΠ(E x E) and F/C is described by one of the fol-
lowing results from [4]: (a) Result 2.3, (b) Result 2.6, or (c) Result
2.5 (in fact, in cases (a) and (b), η = ε). In case (a), the bicyclic
semigroup is a morphic image of (s, s'), so inds = 00. In cases (b)
and (c), F/ζ has the top ϋ^-class {p, q, pq, qp}. By [3, Lemma
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2.2], the congruence η/ζ can identify only ^-related idempotents of
F/ζ, and it is clear that ε/η is an idempotent-separating congruence
on F/ηΦ In view of the remark preceding this lemma, it follows that
in cases (b) and (c), {s, s', ssr, s's} is the top ^-class of (s, sf).

3. The main theorem. We are ready to establish the main result of
the paper.

THEOREM 3.1. Let S be an orthodox semigroup whose maximum
inverse semigroup morphic image is fundamental and let Sf be an
arbitrary semigroup. If S and Sf are W-isomorphic, then any *%-
isomorphism of S onto S' is induced by a unique bijection, and this
bijection is an isomorphism or an antiisomorphism of S onto S'. In
particular, S is strongly &-determined.

Proof. It will be convenient to present several stages of the argument
as lemmas. They will be formulated and proved within the main proof
at appropriate places without further comments. Suppose that S and
S' are ^-isomorphic, and let Φ be a ^-isomorphism of S onto 5".
By Lemma 2.3, S' is an orthodox semigroup and the mapping ψβ,
defined by formula (4), is an isomorphism or an antiisomorphism
of E = E(S) onto E' = E(S'). As in §2, denote y = % and
y = ys . Let T = S/y and V = S'ly. By Lemma 2.4, Φy is
a ^-isomorphism of T onto V. According to the assumption, T is
a fundamental inverse semigroup. Suppose, first, that T is a union
of groups. Then T is a fundamental Clifford semigroup and hence
a semilattice. Take any s e S. Since (sp")2 = sp^, by Lallement's
Lemma [9, Lemma II.4.6], sy = ey for some e e E. Thus s e

e y = V(e), so by [9, Theorem VI. 1.1], s e E. Therefore S = E
and the theorem holds in this case by Result 2.1 and the remark that
follows it.

Now suppose that T contains nongroup elements. Let us choose
a nongroup element b of T and fix it. Since the monogenic inverse
subsemigroup φ, b~ι) of T is not a group, it follows (see, for ex-
ample [13, Chapter IX]) that either {b, b'1, bb~ι, b~ιb} is the top
i^-class of φ9b~ι) or φ, b~ι) is the bicyclic semigroup; in the lat-
ter case, without loss of generality, we may assume that bb~ι > b~ιb
(so that bb~ι is the identity element of φ, b~1)). Let us also choose
and fix an arbitrary element a e S such that ap^ = b. Since J ^ is a
morphism of S upon T and b is a nongroup element of T, we have
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that a is a nongroup element of S. It is clear that indα > 1 and
inάb > 1. By Result 1.1, there exists a unique bijection φ: S —• S'
inducing Φ, and there exists a unique bijection φy: T —• V which
induces Φγ ψ is given by formula (3) and ψy by the similar for-
mula

(7) {(b , t))Φy

for any t e T. Since Γ is fundamental, by Result 2.2, ^ is an
isomorphism or an antiisomorphism of T onto V.

Cose I. Assume that φy is an isomorphism of T onto V.

LEMMA 3.2. The restriction of φ to E coincides with ψ£ and hence
is an isomorphism or an antiisomorphism of E onto E'.

Proof. Take any e e E. Since ((α, e))o{(e, e)} = ((α, e)), we have
{(a, e))Φ o {(^, e)}Φ = ((α, e))Φ, so ((α^, eφ)) o {(eφE,
((aφ, ^p)) and therefore eφ = e ^ . Thus φ\E = (pE

LEMMA 3.3. For α«y ^ G 5, (sy)φ<y = (sφ)p".

Proof. Take any s e 5* and set sψ = ί. Using formula (7) and
Lemma 1.4(ii), we find that

{(b, t))(Φγ o Qy,) = {φψy , tψy))Qy = ((6^) X

On the other hand, applying Lemma 1.4(ii) again, we get

Therefore, by formula (6) and Lemma 2.4, (bxt)Φ =
that is, ((ay) x (s?))Φ = ((ay)φy x

Since ^ induces Φ, using Result 1.3 and Lemma 2.4, we obtain

x (sy))Φ =((x,

, yψ): x^ e {aφψf,

x

Thus ({ay)φy x (sy)φy) = ((aφ)p" x (5^)|^/). Applying Lemma
1.4(ii) and recalling that θy is an isomorphism of ^{S1 jψ1) onto
«y'(S'), we get (((fl^)^y, ( ^ ) ^ ) ) = (((fl^)^, ( ^ ) ^ ) > Since
βj^ is a nongroup element of T and ^ is an isomorphism of T
onto Tf, {ay)ψγ is a nongroup element of T'. Then it is easily seen
that ((ay)φy, (sy)φy) = ((aφ)JT, (sφψ1), and so
(sφW'
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LEMMA 3.4. For any s eS and any sf e V(s), s'φ e V(sφ).

Proof. Take any s e S and s' e V(s). Using Lemma 3.3 and the
fact that ψy is an isomoφhism of T onto V, we obtain

'' (s'φψ1

and by symmetry (s*φ)p"isφ)p"is'φ)2" = (s'φ)yf. Hence
= [(s<PWTl = ((s<P)'W for some (sφ)' e V(sφ). Since ({sφ)'W

9, formula (VI. 1.13)], we have s> G V(sφ).

LEMMA 3.5. .For any s\, s2eS, V{{s\S2)φ) = V({s\φ){s2φ)).

Proof. Take any SΊ , 52 ̂  S. Since ^ is an isomorphism of T
onto V, applying Lemma 3.3, we have

Therefore V{{sxs2)φ) = V{(sxφ)(s2φ)).

LEMMA 3.6. For any nongroup element s of S and any s1 e V(s),
(ss')φ = (sφ)(s'φ).

Proof. Let s be an arbitrary nongroup element of S. It is easily
shown (see, for example, [16, Theorem 2.6]) that if H is a subgroup
of S, then HΦ* (= Hφ) is a subgroup of S1. Therefore Λ ̂  is a
nongroup element of Sf. Take any s' e V(s) and note that

(s,s')Φ* = ((s) V (y»Φ* = (j)Φ* V (

V ( j» = (j^, s'φ).

By Lemma 2.7 we have that either {5, s', ss', s's} is the top
of (s 9 s') or ind.s = 00. In the first case, {ssf, ^ j and {(sφ)(s'φ)9

(s'φ)(sφ)} are the sets of maximal idempotents of semigroups
{s, s') and (59?, s'φ), respectively, and therefore, by Lemma 3.2,
{ss', s's}φ = {(sφ)(s'φ), (s'φ)(sφ)}. If inds = 00, then, by Re-
sult 1.2, {s2, (5θ2, ss>, s's}φ = {{sφ)2,(sfφ)\ {sφ){s'φ), {s'φ){sφ)},
(s2)φ = (sφ)2 and [{s')2]φ = (^V)2 ? whence {ss', 5^}^

again.
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Suppose that (ss')φ = (s'φ)(sφ). By Lemma 3.5, V((ss')φ) =
V((sφ)(s'φ)). Denote x = sφ and x' = s'φ . Then V(xxf) = V{x'x)
and by Lemma 3.4, x' e V{x). It follows that x'x G V(xx') and
therefore, by [9, Theorem II.3.5 (i)], Hx and Hx* contain idempo-
tents. However this contradicts the fact that x = sφ is a nongroup
element. Therefore (ss')φ = {sφ)(s'φ).

LEMMA 3.7. For any s e S and any e G E, (es)φ = (eφ)(sφ) and
(se)φ = (sφ)(eφ). In particular, φ\E is an isomorphism of E onto
E'.

Proof. From the way the element b eT was chosen, it follows that
the only possibility to get b~λ as the result of some product of b~ιb
and b~ι is to take (b~ιb)nb~ι for some n > 0 (see [5, the proof
of Theorem 2.5, p. 482] with b in place of a there). Let ar be an
arbitrary inverse of a. Since J ^ is a morphism of S onto T and
a^ = b, we conclude that the only way to get ar as the result of
some product of a'a and af is to take (afa)naf, w > 0. Choose any
5* G S and any e eE. Let

From the above remark, it follows that a'ζ = {s, es}. Using Result
1.3, we get

CΦ = (((afa)φ, έ?p), {a'φ, ̂ ) > .

Now recall that φy is an isomorphism of T onto Γ' and that
bψy = {aφ){y')l by Lemma 3.3, a'φ e V(aφ) by Lemma 3.4,
and (aίa)φ = (afφ)(aφ) by Lemma 3.6. Therefore, similarly to the
above, (a'φ)(ζΦ) = {sφ, (eφ)(sφ)}. Since φ induces Φ, it fol-
lows that {s, es}φ = {sφ, (ep)(sp)} whence {es)φ = (e^)(5^). Fi-
nally, note that Φ is also a ^-isomorphism of S o p p onto (S') o p p

induced by the same unique bijection φ and that a' E F$°w(a),
α ^ G V(S>γw{aφ) and (α 7 *α)^ = (αV)*(^^) where * denotes multi-
plication in 5 o p p and (S ' ) o p p . Therefore, dually, (e*s)φ =
that is, (5^)^ = {sφ)(eφ).

LEMMA 3.8. For any s eS and any s1 e V(s), (ss')φ = {sφ){s'φ).

Proof. Take any s e S and any ^ € K(j). By Lemma 3.6, we
have to consider only the case when s belongs to a certain subgroup
of S. Thus suppose that the ^-class Hs is a group. If s' eHs, then

G i/5Φ* = #5$? and therefore (ss')φ = (sφ)(sfφ). Now assume
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that s' φ Hs. Since S is orthodox, Hs> is also a group. Let e be
the identity of Hs and / the identity of Hs>. By [9, Theorem II.3.5
(i)], (e9 ss') e& and (/, ssf) e&. According to Lemma 3.7, φ\E
is an isomorphism of E onto E'. Therefore (eφ, (ss')φ) € 3ί and
(fφ9 (ss')φ) e &. Since i ϊ ^ = Hsφ and i / ^ = Hs*φ9 again by
[9, Theorem Π.3.5 (i)], (sφ)(s'φ) G i ? ^ n Lfφ . However i ? ^ Π Lfφ

contains only one idempotent. Hence (ss')φ = (sφ)(s'φ) and the
lemma is proved.

Now take any s e S, any 5' G F(s) and any e eE. Since T 7, being
isomorphic to T, is fundamental, according to Lemma 2.6, 5" is also
fundamental. By Lemma 3.8, (ss')φ = (sφ)(s'φ), and by Lemma 3.7,
(es)φ = (eφ)(sφ) and (.se)p = ( J ^ ) ( ^ ^ ) . Therefore, according to
Lemma 2.5, φ is an isomorphism of S onto S 7.

Case II. Now assume that ψγ is an antiisomorphism of T onto

r.
Recall that Φ, being a ^-isomorphism of S onto 5", is also a

^"-isomorphism of 5 o p p onto Sf induced by the same unique bijec-
tion φ. It is clear that |^oP P = ys and S°^/y = Γ o p p . Since
φy is an isomorphism of Γ o p p onto V, from what was proved in
Case I it follows that φ is an isomorphism of S o p p onto Sf, that is,
an antiisomorphism of S onto S1. This completes the proof of the
theorem.
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