EXCEPTIONAL SETS FOR POISSON INTEGRALS OF POTENTIALS ON THE UNIT SPHERE IN $\mathbf{C}^{n}, p \leq 1$

Patrick Ahern and Carmen Cascante

Abstract

In this article we show that the exceptional sets for Poisson-Szego integrals of potentials of H^{p} functions in the unit ball in \mathbf{C}^{n} have a certain Hausdorff measure zero, and that this result is sharp.

Let B^{n} denote the unit ball in \mathbf{C}^{n} with boundary S, σ will denote the normalized Lebesgue measure on S. We let R denote the (holomorphic) radial derivative $R=\sum_{j=1}^{n} z_{j} \partial / \partial z_{j}$. A holomorphic function f belongs to \mathscr{H}^{p} if $\sup _{0<r<1} \int_{s}|f(r \zeta)|^{p} d \sigma(\zeta)<\infty$. In [2] and [5] it was shown that if $R^{k} f \in \mathscr{H}^{p}$ where $0<p \leq 1$ and $n-k p>0$ then the function f has an admissible limit on $S \backslash E$ where E has non-isotropic Hausdorff measure zero in dimension $m=n-k p$, and this result is sharp. For $p>1$, the proper measure for the exceptional sets is a certain capacity; see [4]. In [1] D. Adams proved an analogous result for harmonic functions, see also [2]. For harmonic functions the result is the following: if u is a fractional integral of order β (i.e. Bessel potential) of an $H^{p}\left(R^{n}\right)$ distribution, $0<p \leq 1$, then the Poisson integral of u has non-tangential limits on $R^{n} \backslash E$ where E has Hausdorff measure zero in dimension $m=n-\beta p$. Again, for $p>1$, the proper measure of the exceptional sets is capacity.

In this paper we prove an analogous result for certain non-isotropic potentials on S. If k is a positive integer, $k<n$, we let

$$
I_{k}(z, \zeta)=|1-\langle z, \zeta\rangle|^{k-n}, \quad z, \zeta \in S .
$$

For a function v on S let

$$
\left(I_{k} v\right)(z)=\int_{S} I_{k}(z, \zeta) v(\zeta) d \sigma(\zeta)
$$

The kernels I_{k} will play the role of the Bessel kernels in R^{n}. Indeed, I_{1} is the fundamental solution for a certain sublaplacian on S, see [9]. In contrast to the cases mentioned above we can handle only the case where k is an integer. If

$$
P(z, \zeta)=\frac{\left(1-|z|^{2}\right)^{n}}{|1-\langle z, \zeta\rangle|^{2 n}}, \quad z \in B^{n}, \zeta \in S
$$

is the Poisson-Szegő kernel we are interested in exceptional sets of functions

$$
P\left[I_{k} v\right](z)=\int_{S} P(z, \zeta)\left(I_{k} v\right)(\zeta) d \sigma(\zeta)
$$

where v is a distribution in the atomic Hardy space $H^{p}(S), 0<p \leq$ 1 , of Garnett and Latter [7]. We will show that the set where such a function fails to have an admissible limit has non-isotropic Hausdorff measure zero in dimension $m=n-k p$. The method of [2] shows the following: if u is a continuous function in B^{n} whose admissible maximal function $M u \in L^{p}(d \sigma), 0<p \leq 1$, and if

$$
F(z)=\int_{0}^{1}\left(\log \frac{1}{t}\right)^{k-1} u(t z) d t
$$

where $n-k p>0$ then the admissible maximal function $M F \in$ $L^{p}(d \nu)$ for any measure ν on S that satisfies $\nu(B(\zeta, \delta)) \leq \delta^{n-k p}$ for all $B(\zeta, \delta)=\{y \in S:|1-\langle\zeta, n\rangle|<\delta\}$. If we knew this to be true for all $F=P\left[I_{k} v\right], v \in H^{p}$, then it would follow in a standard way that all such $P\left[I_{k} v\right]$ have admissible limits on the complement of a set whose non-isotropic Hausdorff measure is zero in dimension $n-k p$, see [2] and [5]. Assuming this, our problem reduces to the following: Given $v \in H^{p}, 0<p \leq 1$, show that there is a u with $M u \in L^{p}(d \sigma)$ so that

$$
\begin{equation*}
P\left[I_{k} v\right](z)=\int_{0}^{1}\left(\log \frac{1}{t}\right)^{k-1} u(t z) d t . \tag{0.1}
\end{equation*}
$$

Now it is an elementary exercise in integration by parts to show that (0.1) holds if

$$
u(z)=\left(r \frac{\partial}{\partial r}+I d\right)^{k} P\left[I_{k} v\right](r z)=(R+\bar{R}+I d)^{k} P\left[I_{k} v\right](z)
$$

where $\bar{R}=\sum_{j=1}^{n} \bar{z}_{j} \partial / \partial \bar{z}_{j}$. In other words we want to show that if $F=P\left[I_{k} v\right], v \in H^{p}, 0<p \leq 1$, then $(R+\bar{R}+I d)^{k} F$ has its admissible maximal function in $L^{p}(d \sigma)$. This is the content of this paper.

The main problem we face is that even though F is a Poisson-Szegő integral its derivatives may not be. However, the results of D. Geller give us a way around this difficulty. In [8], Geller introduces a family of differential operators

$$
\Delta_{\alpha \beta}=\left(1-|z|^{2}\right)\left\{\sum_{i, j}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right) \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}}+\alpha R+\beta \bar{R}-\alpha \beta\right\}
$$

and a family of kernels

$$
P_{\alpha \beta}(z, \zeta)=C_{\alpha, \beta} \frac{\left(1-|z|^{2}\right)^{n+\alpha+\beta}}{(1-\langle z, \zeta\rangle)^{n+\alpha}(1-\langle\zeta, z\rangle)^{n+\beta}}, \quad z \in B^{n}, \zeta \in S
$$

Here $\alpha, \beta \in \mathbf{C}$ and $C_{\alpha \beta}$ is an appropriate constant. Note that Δ_{00} is the invariant Laplacian of [11], and $P=P_{00}$ is the Poisson-Szegő kernel above. It is a straightforward calculation that $\Delta_{\alpha \beta} P_{\alpha \beta} \equiv 0$ (the differentiations being with respect to z) and that $P_{\alpha \beta}$ is an approximate identity as long as $\operatorname{Re}(n+\alpha+\beta)>0$, and hence for such values of α and β

$$
U(z)=\int_{S} P_{\alpha \beta}(z, \zeta) u(\zeta) d \sigma(\zeta)=P_{\alpha \beta}[u](z)
$$

solves the Dirichlet problem $\Delta_{\alpha \beta} U=0, U=u$ on S. The relevance of all this is that if $\Delta_{00} U=0$ then certain derivatives $D U$ satisfy $\Delta_{\alpha \beta} D U=0$ for appropriate α and β. Returning to our original problem we have $F=P\left[I_{k} v\right], v \in H^{p}, 0<p \leq 1$. We show that $(R+\bar{R}+I d)^{k} F$ can be written in the form $\sum S_{\alpha \beta}(R, \bar{R}) F$, where α, β are non-positive integers, $|\alpha|+|\beta| \leq k, S_{\alpha \beta}(R, \bar{R})$ has degree $|\beta|$ in R and $|\alpha|$ in \bar{R} and $\Delta_{\alpha \beta} S_{\alpha \beta}(R, \bar{R}) F=0$. That is we write $(R+R+I d)^{k} F$ as a sum of solutions to the equations $\Delta_{\alpha \beta} U=0$. After establishing a unicity theorem for the Dirichlet problem for certain values of α, β (a unicity theorem that is already implicit in the work of C. R. Graham [10] in the case of the Heisenberg group) we see that for each α, β we have

$$
S_{\alpha, \beta}(R, \bar{R}) F(z)=P_{\alpha \beta}\left[S_{\alpha \beta}(R, \bar{R}) F\right](z)
$$

Now we want to get into a position to apply standard techniques from harmonic analysis; singular integrals and approximate identities. For our range of α and $\beta, P_{\alpha \beta}$ is a smooth approximate identity and hence if $S_{\alpha \beta}(R, \bar{R}) F$ were in H^{p} it would follow that $P_{\alpha \beta}\left[S_{\alpha \beta}(R, \bar{R}) F\right]$ would have its admissible maximal function in L^{p}, which is what we want. So what we want to show is that if $F=$ $P\left[I_{k} v\right], v \in H^{p}$, then if $j+l \leq\left. k R^{j} \bar{R}^{l} F\right|_{s}$ lies in H^{p}. What we mean, of course, is that the map $\left.v \rightarrow R^{j} \bar{R}^{l} P\left[I_{k} v\right]\right|_{s}$, originally defined for smooth functions, can be realized as a standard singular integral on S and hence maps H^{p} to H^{p}. We do this by exploiting an idea of R . Graham [10] who showed that certain radial derivatives of $U=P[u]$, when restricted to the boundary, are actually tangential. What we show is this: if u is sufficiently restricted then for each
$\alpha, \beta,|\alpha|+|\beta| \leq k$, there is a polynomial $Q_{\alpha \beta}$ in two variables, of total degree at most $|\alpha|+|\beta|$ such that

$$
\left.S_{\alpha \beta}(R, \bar{R}) P[u]\right|_{s}=Q_{\alpha \beta}(L, \bar{L}) u
$$

on S. Here L, \bar{L} are certain tangential derivatives on S. Then it remains only to show that the map $v \rightarrow Q_{\alpha \beta}(L, \bar{L}) I_{k} v$ can be realized as a standard singular integral and hence maps H^{p} to H^{p}.

We end the introduction with a few more definitions: for $i<j$,

$$
T_{i j}=\bar{z}_{i} \frac{\partial}{\partial z_{j}}-\bar{z}_{j} \frac{\partial}{\partial z_{i}}
$$

and

$$
\bar{T}_{i j}=z_{i} \frac{\partial}{\partial \bar{z}_{j}}-z_{j} \frac{\partial}{\partial \bar{z}_{i}} .
$$

Then we define

$$
L=\sum_{i<j} \bar{T}_{i j} T_{i j}
$$

and

$$
\bar{L}=\sum_{i<j} T_{i j} \bar{T}_{i j}
$$

and

$$
\mathscr{L}_{0}=-\frac{1}{2}(L+\bar{L}) .
$$

In [8], Geller gives the following "radial-tangential" form for $\Delta_{\alpha \beta}$:

$$
\begin{aligned}
\Delta_{\alpha \beta}=\left(1-|z|^{2}\right)\left\{\frac { 1 } { | z | ^ { 2 } } \left(\left(1-|z|^{2}\right) R \bar{R}-\mathscr{L}_{0}+\frac{n-1}{2}(\right.\right. & R+\bar{R})) \\
& +\alpha R+\beta \bar{R}-\alpha \beta\} .
\end{aligned}
$$

For the definition of admissible limit we need the admissible approach region

$$
D_{\alpha}(\zeta)=\left\{z \in B^{n}:|1-\langle z, \zeta\rangle|<\frac{\alpha}{2}\left(1-|z|^{2}\right)\right\} .
$$

f has an admissible limit at ζ if

$$
\lim _{z \rightarrow \zeta, z \in D_{\alpha}(\zeta)} f(z)
$$

exists for all $\alpha>0$ and the admissible maximal function $M_{\alpha} f(\zeta)$ is defined as

$$
\sup _{z \in D_{\alpha}(\zeta)}|f(z)| .
$$

For the definition of non-isotropic Hausdorff measure, see [4].

Lemma 1.1. If $\Delta_{\alpha \beta} f=0$ then
(i) $\Delta_{\alpha, \beta-1}(R f-\beta f)=0$,
(ii) $\Delta_{\alpha-1, \beta}(\bar{R} f-\alpha f)=0$.

Proof. That something like this should hold is suggested by (1.3) of [8]. In fact a proof can be based on formulas (1.3) and (1.12) of [8]. If this line of reasoning is followed we see that, for example,

$$
\Delta_{\alpha, \beta-1}\left(R f-\beta f+\frac{\partial f}{\partial z_{1}}\right)=0
$$

and then we need to check directly that

$$
\Delta_{\alpha, \beta-1}\left(\frac{\partial f}{\partial z_{1}}\right)=0 .
$$

It seems just as easy to check the lemma directly. This is a straightforward calculation.

Corollary. Suppose $\Delta_{00} U=0$ in B^{n} and j, l are non-negative integers. Then there are polynomials $F_{\alpha, \beta}(x, y)$, with degree $-\alpha$ in x and $-\beta$ in y such that

$$
R^{j} \bar{R}^{l} U=\sum_{|\alpha|+|\beta| \leq j+l} F_{\alpha \beta}(R, \bar{R}) U
$$

and

$$
\Delta_{\alpha \beta} F_{\alpha \beta}(R, \bar{R}) U=0
$$

in B^{n}.
Proof. The proof follows by induction on $j+l$, using the lemma.
In [8], Geller introduces the kernels $P_{\alpha \beta}$ which solve the Dirichlet problem for the operator $\Delta_{\alpha \beta}$. We will need to know that, at least for certain values of α, β, this solution is unique. This uniqueness is implicit in the work of Graham [10]. However, since there is no proof in print we will provide one here. To that end we need the following lemma which gives the relation between the operators $\Delta_{\alpha, \beta}$ and certain automorphisms of the ball. The automorphisms are the φ_{a} given on page 25 of [11]. $\varphi_{a}(0)=a, \varphi_{a}(a)=0, \varphi_{a}^{-1}=\varphi_{a}$, among other properties. Given $a \in B$ and α, β define

$$
h_{a}^{\alpha, \beta}(z)=(1-\langle a, z\rangle)^{\alpha}(1-\langle z, a\rangle)^{\beta} .
$$

LEMMA 1.2.

$$
\Delta_{\alpha, \beta}\left[h_{a}^{\alpha, \beta}\left(U \circ \varphi_{a}\right)\right]=h_{a}^{\alpha, \beta}\left[\left(\Delta_{\alpha \beta} u\right) \circ \varphi_{a}\right] .
$$

(Just to be very clear, on neither side of the equation is $h_{a}^{\alpha, \beta}$ composed with φ_{a}.)

Proof. First we need the following: fix $0<r<1$ and let

$$
\varphi(z)=\left(\frac{z_{1}-r}{1-r z_{1}}, \frac{s z_{2}}{1-r z_{1}}, \ldots, \frac{s z_{n}}{1-r z_{1}}\right)
$$

where $s=\sqrt{1-r^{2}}$. Let $h(z)=\left(1-r \bar{z}_{1}\right)^{\alpha}\left(1-r z_{1}\right)^{\beta}$. We need to know that

$$
\begin{equation*}
\Delta_{\alpha \beta}(h \cdot u \circ \varphi)=h \cdot\left(\Delta_{\alpha \beta} u\right) \circ \varphi . \tag{1.1}
\end{equation*}
$$

This can be done by appealing to formula (1.12) of [8] and using the dilation invariance of analogous operators $\Delta_{\alpha \beta}^{H}$ defined in the Siegel upper half space. Or it can be proved by a rather lengthy direct calculation which we omit. We will now assume (1.1) holds. Let U be defined by $U(z)=-z$, and apply (1.1) to $u \circ U$ and we have the conclusion of the lemma for $a=(r, 0, \ldots, 0)$, if we take into account the fact that $\Delta_{\alpha, \beta}$ commutes with any unitary matrix. Now if we use the formula $U \varphi_{a}=\varphi_{U a} U$, which is easily verified for any unitary U, we have the result of the lemma.

In [8], it is shown that if $\Delta_{\alpha \beta} f=0$ in B^{n} then for every $0<r<1$, we have

$$
\begin{equation*}
F\left(-\alpha,-\beta ; n ; r^{2}\right) f(0)=\int_{S} f(r \zeta) d \sigma(\zeta) \tag{1.2}
\end{equation*}
$$

Here $F(a, b ; c ; x)$ denotes the usual hypergeometric function. Now supposing that $\Delta_{\alpha \beta} u=0$, and $w \in B^{n}$ we may apply (1.2) to $u=$ $h_{w}^{\alpha \beta}\left(u \circ \varphi_{w}\right)$ to obtain

$$
\begin{equation*}
g_{\alpha \beta}(r) u(w)=\int_{S} h_{w}^{\alpha \beta}(r \zeta) u\left(\varphi_{w}(r \zeta)\right) d \sigma(\zeta) \tag{1.3}
\end{equation*}
$$

where we let $g_{\alpha \beta}(r)=F\left(-\alpha,-\beta ; n ; r^{2}\right)$. We will use (1.3) to draw some conclusions about boundary behaviour and uniqueness of solutions of $\Delta_{\alpha \beta} u=0$.

Lemma 1.3. Fix $\alpha, \beta \in \mathbf{C}$.
(i) There is a bounded $u, u \not \equiv 0$ such that $\Delta_{\alpha \beta} u \equiv 0$ if and only if $g_{\alpha \beta}$ is bounded.
(ii) There is a function u continuous on $\bar{B}^{n}, u \not \equiv 0$, such that $\Delta_{\alpha \beta} u \equiv 0$ in B^{n}, if and only if $\lim _{r \rightarrow 1} g_{\alpha \beta}(r)$ exists.
(iii) There is a function u continuous on $\bar{B}^{n}, u \equiv 0$ on $\partial \bar{B}^{n}$, $u \not \equiv 0$, and $\Delta_{\alpha \beta} u \equiv 0$ in B^{n} if and only if $\lim _{r \rightarrow 1} g_{\alpha \beta}(r)$ exists and is zero.

Proof. The proof follows immediately from (1.3) and the fact that if we define $G(z)=g(|z|)$ then $\Delta_{\alpha \beta} G \equiv 0$ in B^{n}, a fact which is clear from the discussion on page 369 of [8]. Part (iii) tells us that if $\lim _{r \rightarrow 1} g_{\alpha, \beta}(r)$ exists and is not zero then we have uniqueness for the Dirichlet problem for $\Delta_{\alpha \beta}$, i.e. if $u_{1}, u_{2} \in C\left(\bar{B}^{n}\right)$ and $\Delta_{\alpha \beta} u_{1} \equiv$ $\Delta_{\alpha \beta} u_{2} \equiv 0$ in B^{n} and $u_{1} \equiv u_{2}$ on ∂B^{n} then $u_{1} \equiv u_{2}$ in B^{n}. Note that this is the case when α, β are real and $n+\alpha+\beta>0$.

Now assuming that α, β are non-positive integers and $n+\alpha+$ $\beta>0$, then the Dirichlet problem $\Delta_{\alpha \beta} u=0, u=f$ on ∂B^{n} has a unique solution u, for any continuous f, given by $u(z)=$ $\int P_{\alpha, \beta}(z, \zeta) f(\zeta) d \sigma(\zeta)$. We want to see what this solution looks like when $f \in H(p, q)$, the space of harmonic homogeneous polynomials of bidegree (p, q). As in [6], we look for a solution of the form $u(r \zeta)=h\left(r^{2}\right) f(r \zeta)$. We conclude that the function h is a solution of the hypergeometric equation

$$
\begin{aligned}
& t(1-t) h^{\prime \prime}(t)+[(p+q+n)-(p-\alpha+q-\beta+1) t] h^{\prime}(t) \\
&-(p-\alpha)(q-\beta) h(t)=0 .
\end{aligned}
$$

The only solutions of this equation which are smooth at 0 are multiples of the hypergeometric function $F(p-\alpha, q-\beta ; p+q+n ; t)$. It follows that

$$
u(r \zeta)=\frac{F\left(p-\alpha, q-\beta ; p+q+n ; r^{2}\right)}{F(p-\alpha, q-\beta ; p+q+n ; 1)} f(\zeta) .
$$

From known properties of the hypergeometric series we have that

$$
\begin{equation*}
h(r)=f_{1}(r)+f_{2}(r)(1-r)^{n+\alpha+\beta} \log (1-r) \tag{1.4}
\end{equation*}
$$

where f_{1}, f_{2} are analytic at $r=1$.
Our next result shows if $\Delta_{\alpha \beta} u=0$ then, with appropriate restrictions on α and β, certain radial derivatives of u are actually tangential. This type of phenomenon was first studied by R. Graham, [10].

Lemma 1.4. Suppose $\alpha, \beta \leq 0$ and $n+\alpha+\beta \geq 2$. Take $u \in$ $H(p, q)$ for some p, q and let $U=P_{\alpha \beta}[u]$, then we have

$$
\begin{aligned}
\left.R U\right|_{s} & =\frac{1}{\alpha+\beta+n-1}\left\{\frac{\beta}{n-1} \bar{L}-\left(\frac{\beta+n-1}{n-1}\right) L-\alpha \beta\right\} u \\
& =q_{\alpha \beta}(L, \bar{L}) u \\
\left.\bar{R} U\right|_{s} & =\frac{1}{\alpha+\beta+n-1}\left\{\frac{\alpha}{n-1} L-\left(\frac{\alpha+n-1}{n-1}\right) \bar{L}-\alpha \beta\right\} u \\
& =q_{\alpha \beta}(L, \bar{L}) u .
\end{aligned}
$$

Proof. Using the "radial tangential" form for $\Delta_{\alpha \beta}$ we see that

$$
\begin{aligned}
\frac{1}{|z|^{2}}\left\{\left(1-|z|^{2}\right) R \bar{R} U-\mathscr{L}_{0} U+\frac{n-1}{2}(\right. & R+\bar{R}) U\} \\
& +\alpha R U+\beta \bar{R} U-\alpha \beta U \equiv 0 .
\end{aligned}
$$

Since $n+\alpha+\beta \geq 2$, it follows from (1.4) that $R \bar{R} U=O\left(\log \frac{1}{1-r}\right)$, as $r \rightarrow 1$, and hence that $\left(1-|z|^{2}\right) R \bar{R} U \rightarrow 0$ as $|z| \rightarrow 1$. Letting $|z| \rightarrow 1$ we have, since $\mathscr{L}_{0}=-\frac{1}{2}(L+\bar{L})$,

$$
\frac{1}{2}(L+\bar{L}) U+\frac{n-1}{2}(R+\bar{R}) U+\alpha R U+\beta \bar{R} U-\alpha \beta U \equiv 0
$$

on S, or,

$$
\left(\frac{n-1}{2}+\alpha\right) R U+\left(\frac{n-1}{2}+\beta\right) \bar{R} U=\alpha \beta U-\frac{1}{2}(L+\bar{L}) U
$$

on S. But we also have that

$$
R-\bar{R}=\frac{1}{n-1}(\bar{L}-L)
$$

as differential operators. If we solve these two equations for $R U$ and $\bar{R} U$ on S we get the lemma.

Corollary. Suppose $u \in H(p, q)$ for some p, q and $j+l<n$. Then there is a polynomial Q in 2 variables of total degree $\leq j+l$ so that if $U=P_{00}[u]$ then $\left.R^{j} \bar{R}^{l} U\right|_{s}=Q(L, \bar{L}) u$.

Proof. We do induction on $j+l$. From the corollary to Lemma 1.1 we have

$$
R^{j-1} \bar{R}^{l} U=\sum_{|\alpha|+|\beta| \leq j+l-1} F_{\alpha \beta}(R, \bar{R}) U,
$$

where $\Delta_{\alpha \beta} F_{\alpha \beta}(R, \bar{R}) U=0$. Hence $R^{j} \bar{R}^{l} U=\sum R F_{\alpha \beta}(R, \bar{R}) U$. By Lemma 1.4

$$
\left.R\left(F_{\alpha \beta}(R, R) U\right)\right|_{s}=\left.l(L, \bar{L})\left(F_{\alpha \beta}(R, \bar{R}) U\right)\right|_{s}
$$

where l is first degree. By induction $\left.F_{\alpha \beta}(R, \bar{R}) U\right|_{s}$ is a polynomial in L, \bar{L} of degree at most $j+l-1$ acting on u.
If we now combine the corollaries to Lemmas $1.1,1.4$ we get the following.

Theorem 1. Suppose $j+l<n$. Then there are polynomials $Q_{\alpha \beta}$, $|\alpha|+|\beta| \leq j+l$ such that if $u \in H(p, q)$ and $U=P_{00}[u]$ we have

$$
R^{j} \bar{R}^{l} U=\sum_{|\alpha|+|\beta| \leq j+l} P_{\alpha \beta}\left[Q_{\alpha \beta}(L, \bar{L}) u\right] .
$$

Proof. From the corollary to Lemma 1.1 we have

$$
R^{j} \bar{R}^{l} U=\sum_{|\alpha|+|\beta| \leq j+l} F_{\alpha \beta}(R, \bar{R}) U
$$

where $\Delta_{\alpha \beta} F_{\alpha \beta}(R, \bar{R}) U=0$. Since $j+l<n, F_{\alpha \beta}(R, \bar{R}) U \in C^{1}\left(\bar{B}^{n}\right)$ and hence by uniqueness for the Dirichlet problem we have

$$
F_{\alpha \beta}(R, \bar{R}) U=P_{\alpha \beta}\left[F_{\alpha \beta}(R, \bar{R}) U\right] .
$$

Now on $S, F_{\alpha \beta}(R, \bar{R}) U=Q_{\alpha \beta}(L, \bar{L}) u$ by the corollary to Lemma 1.4.

We have proved the theorem for $u \in H(p, q)$, we will need to extend it to the case $u=I_{k} v$ where $v \in L^{2}$, provided $j+l \leq k$. We need to know how I_{k} acts on $H(p, q)$.

Lemma 1.5. For $v \in H(p, q)$,

$$
I_{k} v=\frac{\Gamma(k)}{\Gamma\left(\frac{n-k}{2}\right)^{2}}\left\{\left(p+\frac{n-k}{2}\right)_{k}\left(q+\frac{n-k}{2}\right)_{k}\right\}^{-1} v
$$

Proof. It is easy to check that $I_{k}(v \circ U)=\left(I_{k} v\right) \circ U$ for any unitary U. Since $H(p, q)$ is minimal under the action of the unitary group, it is enough to prove the lemma in case $v(\zeta)=\zeta_{1}^{p} \bar{\zeta}_{2}^{q}$. We write

$$
|1-\langle z, \zeta\rangle|^{k-n}=(1-\langle z, \zeta\rangle)^{-\left(\frac{n-k}{2}\right)}(1-\langle\zeta, z\rangle)^{-\left(\frac{n-k}{2}\right)} .
$$

If we expand each factor in a binomial series and integrate term by term we arrive at

$$
\left(I_{k} v\right)(z)=\frac{1}{\Gamma\left(\frac{n-k}{2}\right)}\left(\sum_{j=0}^{\infty} \frac{\Gamma\left(\frac{n-k}{2}+p+j\right) \Gamma\left(\frac{n-k}{2}+q+j\right)}{\Gamma(p+q+n+j) j!}\right) z_{1}^{p} \bar{z}_{2}^{q} .
$$

Recognizing the series as essentially

$$
F\left(\frac{n-k}{2}+p, \frac{n-k}{2}+q ; p+q+n ; 1\right)
$$

we arrive at the desired formula.
On the other hand if $u \in H(p, q)$ then $L u=-p(q+n-1) u$ and $\bar{L} u=-q(p+n-1) u$, see [3]. Hence if $v \in H(p, q)$ and $\operatorname{deg} Q_{\alpha \beta}(L, \bar{L}) \leq j+l=k$ then

$$
Q_{\alpha \beta}(L, \bar{L}) I_{k} v=C(p, q) v
$$

where

$$
|C(p, q)| \leq \frac{C[2 p q+(p+q)(n-1)]^{k}}{\left(p+\frac{n-k}{2}\right)_{k}\left(q+\frac{n-k}{2}\right)_{k}} \leq C
$$

independent of p, q.
Hence the mapping

$$
v \rightarrow Q_{\alpha \beta}(L, \bar{L}) I_{k} v
$$

extends to be a bounded map from L^{2} to L^{2}. Moreover, when $v \in L^{2}$ then the differential operator $Q_{\alpha \beta}(L, \bar{L})$ applied to $I_{k} v$ in the sense of distributions is the same as the operator just described above. From this it follows that if $I_{k} v$ is C^{∞} on some open set $\Omega \subseteq S$ then the $Q_{\alpha \beta}(L, \bar{L}) I_{k} v$ just described and the function obtained by applying the differential operator $Q_{\alpha \beta}(L, \bar{L})$ to $I_{k} v$ agree on Ω. This will be used later.

We now summarize our results so far.
Theorem 2. Fix $k<n$, then there are polynomials $Q_{\alpha \beta}$ in 2 variables of total degree at most k so that for $v \in L^{2}$ we have

$$
(R+\bar{R}+I)^{k} P_{00}\left[I_{k} v\right]=\sum_{|\alpha|+|\beta| \leq k} P_{\alpha \beta}\left[Q_{\alpha \beta}(L, \bar{L}) I_{k} v\right] .
$$

Proof. We just note that $(R+\bar{R}+I)^{k}$ is a sum of terms of the form $R^{j} \bar{R}^{l}$ with $j+l \leq k$. We just add and group like terms.

Next we want to show that the operators $Q_{\alpha \beta}(L, \bar{L}) I_{k}$, which extend to be bounded in L^{2} actually extend to be bounded in H^{p}, $0<p \leq 1$.

Theorem 3. Suppose $r+s \leq k$ and let K be the operator defined by $K v=L^{r} \bar{L}^{s} I_{k} v$, then K is bounded in $H^{p}, 0<p \leq 1$.

Proof. We consider the smooth approximations K_{r} where $I_{k}(z, \zeta)$ is replaced by $|1-r\langle z, \zeta\rangle|^{k-n} . K_{r}$ is a multiplier on each $H(p, q)$ and in fact if $K u=C(p, q) u$ for $u \in H(p, q)$, then

$$
K_{r} u=r^{p+q} C(p, q) u
$$

and so it follows that $\left\|K_{r} u-K u\right\|_{L^{2}} \rightarrow 0$ as $r \rightarrow 1$. If we can show that for every (p, ∞) atom a we have $\left\|K_{r} a\right\|_{H^{p}} \leq C$ where C is independent of r and a, then the theorem will follow in a standard way. To establish this we note the following: we calculate that for $a, b>0$ we have that

$$
\bar{T}_{i j} T_{i j}(1-r\langle\zeta, w\rangle)^{-a}(1-r\langle w, \zeta\rangle)^{-b}
$$

is a sum of two terms, one of the form

$$
\left|\zeta_{i} w_{j}-w_{j} \zeta_{i}\right|^{2}(1-r\langle\zeta, w\rangle)^{-a-1}(1-r\langle w, \zeta\rangle)^{-b-1}
$$

and the other of the form

$$
\left(\zeta_{i} \bar{w}_{i}+\zeta_{j} \bar{w}_{j}\right)(1-r\langle\zeta, w\rangle)^{-a-1}(1-r\langle w, \zeta\rangle)^{-b} .
$$

If we add on $i<j$ and use the fact that $\sum_{i<j}\left|\zeta_{i} w_{j}-\zeta_{j} w_{i}\right|^{2}=$ $1-|\langle\zeta, w\rangle|^{2}$ we see that $L_{\zeta}(1-r\langle\zeta, w\rangle)^{-a}(1-r\langle w, \zeta\rangle)^{-b}$ is a sum of terms of the form

$$
\left(1-|\langle\zeta, w\rangle|^{2}\right)(1-r\langle\zeta, w\rangle)^{-a-1}(1-r\langle w, \zeta\rangle)^{-b-1}
$$

and

$$
\langle\zeta, w\rangle(1-r\langle\zeta, w\rangle)^{-a-1}(1-r\langle w, \zeta\rangle)^{-b} .
$$

There is a similar expression for \bar{L}_{ζ}. So if we apply $L_{\zeta}-\bar{L}_{\zeta}$ to

$$
(1-r\langle\zeta, w\rangle)^{\frac{k-n}{2}}(1-r\langle w, \zeta\rangle)^{\frac{k-n}{2}}
$$

we get a sum of terms of the form

$$
\left(1-|\langle\zeta, w\rangle|^{2}\right)^{l}(1-r\langle\zeta, w\rangle)^{-a}(1-r\langle w, \zeta\rangle)^{b}
$$

where $a+b-l \leq n-k+r+s$. Now if we let D_{w} denote any w derivative which has $k T_{i j}$'s and $(R-\bar{R}) l$-times we see that we have

$$
\left|D_{w} K_{r}(\zeta, w)\right| \leq \frac{C}{|1-\langle\zeta, w\rangle|^{n+\frac{k}{2}+l}} .
$$

From this estimate it follows in a standard way that K_{r} is uniformly bounded on (p, ∞) atoms (see [4]).

Finally we point out that in our case, $(\alpha, \beta \leq 0, n+\alpha+\beta>0) P_{\alpha \beta}$ is a smooth approximate identity and hence we have

Theorem. For $0<p \leq 1$ we have

$$
\left\|M P_{\alpha \beta} f\right\|_{L^{p}} \leq C\|f\|_{H^{p}}
$$

Putting all these results together, as indicated in the introduction we have our main theorem.

Theorem 4. Suppose $0<k<n, k$ is a positive integer and $0<$ $p \leq 1$, and $n-k p>0$. Then there is a constant C such that if ν is a measure on S that satisfies $\nu(B(\zeta, \delta)) \leq \delta^{n-k p}$, then

$$
\int M_{\alpha} P\left[I_{k} \nu\right]^{p} d \nu \leq C\|v\|_{H^{p}}^{p}
$$

for all $v \in H^{p}$, all $\alpha>0$.
Corollary. For each $v \in H^{p}, 0<p \leq 1$, there is a set $E \subseteq S$ with non-isotropic Hausdorff measure zero in dimension $n-k p$ such that $F=P\left[I_{k} v\right]$ has admissible limits on $S \backslash E$.

Proof. The corollary follows from the theorem and results of W. Cohn [5].

References

[1] D. Adams, The classification problem associated with the Besov and TriebelLizorkin spaces, preprint.
[2] P. Ahern, Exceptional sets for holomorphic Sobolev functions, Michigan Math. J., 35 (1988), 29-41.
[3] P. Ahern and J. Bruna, Maximal and area integral characterizations of HardySobolev spaces in the unit ball of \mathbf{C}^{n}, Revista Mat. Iberoamericana, 4, no. 1, (1988), 123-153.
[4] P. Ahern and W. Cohn, Exceptional sets for Hardy Sobolev functions, p>1, Indiana University Math. J., 38, no. 2 (1989), 417-453.
[5] W. Cohn, Nonisotropic Hausdorff measure and exceptional sets for holomorphic Sobolev functions, Illinois J. Math., (to appear).
[6] G. Folland, The spherical harmonic expansion of the Poisson-Szegö kernel for the ball, Proc. Amer. Math. Soc., 47 (1975), 401-408.
[7] J. Garnett and R. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J., 45 (1978), 814-845.
[8] D. Geller, Some results on H^{p} theory for the Heisenberg group, Duke Math. J., 47, no. 2 (1980), 365-390.
[9] D. Geller, The Laplacian and the Kohn Laplacian for the sphere, J. Differential Geom., 15 (1980), 417-435.
[10] C. R. Graham, The Dirichlet problem for the Bergman Laplacian I, Comm. P.D.E., 8 (1983), 433-476.
[11] W. Rudin, Function Theory in the Unit Ball in \mathbf{C}^{n}, New York, Springer, 1980.
Received September 4, 1990 and in revised form March 8, 1991. The first author was partially supported by a grant from NSF. The second author was partially supported by a fellowship from Ministerio de Educación y Ciencia, Spain, and a grant from D.G.I.C.Y.T. PB89-0311.

University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706

AND
Universitat de Barcelona
Gran Via 585
08071 Barcelona, Spain

