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ON THE REPRESENTATION
OF THE DETERMINANT OF HARISH-CHANDRA'’S
C-FUNCTION OF SL(n, R)

SHOHEI TANAKA

This paper gives the explicit representation of the determinant of
the Harish-Chandra C-function of SL(n, R) (n > 3) and some
application.

1. Introduction. Let G be a semisimple Lie group with finite center,
K a maximal compact subgroup of G. Let 6 be the Cartan involution
of G fixing K. Let P be a cuspidal parabolicAsubgroup and P =
MAN its Langlands decomposition. For ¢ in M; and y in K, we
set T = (y, y) and denote the space of the 7,s-spherical cusp forms
on M by %€y (M, t)). The Harish-Chandra C-function C?I p(l1:v)
has important information in the representation theory.

In the determinant of C3 i 5p(1 : V), L. Cohn has proved the following
results.

THEOREM (see [2], p. 129). There exist functions u, ..., 4r € a*
and constants p; j, q;,; (i=1,...,r,j=1,..., ;) depending on
T such that

r -l r‘(2<(l:laa>+q[ ])

detC};IP(l :v) = const - HH ey
i=1j= lr(z(# a)"‘Pt j)

b

where ay, ..., a, are reduced a-roots.

He gives a conjecture that the constants p; ; and g; ; are rational
numbers and depending linearly on the highest weight of the irre-
ducible components of 7.

Let G be SL(n,R) and P the minimal parameter subgroup of
G. In the case that » = 2, the Harish-Chandra C-function and
determinant of it are well known explicitly. If n is 3 or 4, in [4]
Eguchi and the author give the explicit formula of the determinant of
Harish-Chandra’s C-function of G, which solves Cohn’s conjecture
affirmatively. The purpose of this paper is to extend the result in [4]
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to G and apply it to the study of the reducibility of np , ,. The
application does not give any new result but it gives another proof of
Speh-Vogan’s reducibility condition ([12], [13]).

The author would like to thank Professor M. Eguchi and Professor
K. Okamoto for their helpful suggestions and encouragement.

2. Notation and preliminaries. Let G be a semisimple Lie group
with finite center and g its Lie algebra. Let [ be a maximal com-
pact subalgebra of g, g = [+ p the corresponding Cartan decompo-
sition and 6 the Cartan involution defining the decomposition. We
introduce an inner product By on g in the standard way such that
By(X,Y)=-B(X, 0Y), where B is the Killing form on g. Let q,
be a maximal abelian subgroup of p. We fix an order in the dual space
(ap)* of a,,and put n, =3 .9, Where g, denotes the root space
of the ap-root a, and we let v, = On,. Then we have an Iwasawa
decomposition g =[(+a, +n, of g. Let m, = Z(a,) the centralizer
of ap in [.

We now let K = Ng(I) be the normalizer of [ in G, M, = Zg(ay,)
the centralizer of a, in K and M), = Nk(ap) the normalizer of a, in
K. Let Ay, N, and V), be the analytic subgroups of G corresponding
to a,,n, and v, respectively.

Any conjugate of m, @ a, & n, is called a minimal parabolic sub-
algebra, and any Lie subalgebra s that contains a minimal parabolic
subalgebra is called parabolic. Then s has a Langlands decomposi-
tion (relative to 0) s=m@a®n. Here m® a = Z;(a), and we can
impose an ordering on the a-roots so that n is built from the positive
a-roots. Let v = On. If a), is a maximal abelian subspace of mNp,
then a® ays is a maximal abelian subspace of p and can be taken as
ap in our theory. When we introduce an ordering on the a,-roots so
that a comes before a,s, then the positive a-roots are the nonzero
restriction to a of the positive a,-roots. The sum of the root spaces
for the positive a,-roots that vanish on a is denoted by njs.

Let My, A, Ay, N, V, Njs be analytic subgroups corresponding
tom, a, ap, n, v, ny respectively and put M = MyM, . The group
P = MAN is a parabolic subgroup. The subgroups in our discussion
have the following properties (see e.g. [8]).

(1.1) (1) MA=Zg(a), MAN = Ng(m@adn), MAN is closed,
and (m,a,n)e M x Ax N — man € MAN is a dif-
feomorphism onto,

(2) 0|n is a Cartan involution of m, and K)y = KN M is
the corresponding maximal compact subgroup of A,
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(3) M = K Ay Ny is an Iwasawa decomposition of M ,

(4) Ap = AmA and N, = Ny N diffeomorphically,

(5) G=KMAN with the KM, A and N components
unique,

(6) KNMA=KnM,

(7) VNMAN = {1},

(8) the M, group for M equals the M, group for G.

Two parabolic subgroups with the same M A are associated. The
choices for N are in obvious one-to-one correspondence with the Weyl
chambers. Let M’ = Ng(a)M and W(a) = M'/M . If w isin M,
then w acts on characters of 4 and representations of M by

w-v(a)=v(wlaw), w.o(m)=cw mw).

Then W(a) acts on characters of 4 and classes of representations
of M. An a-root is said to be reduced if ra is not a root for 0 <
r<1 (reR). Let B be areduced a-root in the dual a*, Hp the
corresponding member of a under the identification set up by By,
and (Hp)* the orthogonal complement of R-Hy in a. We set n(A) =
> es08cp, 0B =0nB) =3 9.5 andlet gi#) be the subalgebra of g
generated by n® and v® . Let N#, V(®) and G® be the analytic
subgroups corresponding to n(#), o) and g(A) respectively.

Let K and M be the set of all equivalence classes of the irreducible
unitary representations of K and M respectively. For each 0 € M
we fix a representation (6, H%) in ¢ and, abusing notation, we use
also o for 6. For each y in K we fix an element (my, H”) in y.

We recall the generalized principal series representations. Let P =
MAN be a parabolic subgroup and pp = §- ¥ ,.¢(dimg,)a. Let o
bein M and v in af (the complexification of a*). Let Cp 5.,(G)
be the space of all continuous functions f from G to H® such that

f(xman) = e=W+P)1RA Gl f(x)  (x €G).

Let hf>9:¥ be the completion of Cp 4 ,(G) by the norm

11 = /K IfEIPdk  (f€Ch.g.u(G).
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The representation np 5 , is given by

np,o,u(8)f(x) = f(g7'x) (g€G).

The compact picture is the restriction of the induced picture to K.
Here the dense subspace C,;(K) is

{f: K — H°|f is continuous and f(km) = a(m)~' f(k)}
and is independent of v. According to the decomposition G =
KMAN of (1.1) each g € G is written as
g = k(g)u(g)(exp H(g))n(g),
(k(g) €K, u(g) e M, H(g) €a, n(g) EN).

Then representation is given by

7p.q.0(8) (k) = e TPIHE R f(1c(g~ k).
If y isin K, the projection operator E, defined by
E,=dnx,*f (f€C(K)),

where d(y) and x, denote the dimension and the character of y
respectively. For y in K, we put

HP,a,u — {fEHP’ﬂ’VIEyf:f}.

3. Some lemmas for the intertwining operators. Let P = MAN’
and P’ = MAN' be associated parabolic subgroups and let o be in
M and v in ag. For f in Cp 4, ,(G) we set

AP :P:0o:v)f(x) =/VnN,f(xv)dU,

where V = 6N and dv is the normalized Haar measure on V' N N’
by

/ e 2P HW) gy = 1,
VNN’

The operator A(P' : P : ¢ : v) is called the intertwining operator.
In this section we shall describe the properties of the intertwining
operators, which are well known results (see e.g. [8]).

The inner product By on g induces an inner product on the dual
a* of a, which we denote by (-, -).
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Let pjs be half the sum of the positive aps-roots. Since the para-
bolic subgroup P = M AN contains the minimal parabolic subgroup
P, = M,A,N, such that a, =a®ay .

For each a-root B, set Cg = max{py(H,)}, where the maximum
is taken over all a,-roots o satisfying a|, = f.

LEMMA 3.1. Let P=MAN and P'=MAN be associated parabolic
subgroups and suppose that (Re v, B) > Cg for every a-root f such
that gg Cnnv'. Then the integral A(P':P:o:v)f(x) (x€G, f¢€
Cp.s,,(G)) is a convergent. Moreover, if [ is a K-finite function
in the compact picture of np , , then the integral has an analytic
continuation to a global meromorphic function in v .

LemMaA 3.2. If o isin M and v in of., then we have
AP :P:o:v)np g, (8) =np , ,(8) AP :P:0:V)

forall g in G.
For w in M', let R(w)f(x) = f(xw). Then it follows from Lemma
3.2 that

(3.1) Ap(w, o, v)=Rw)A(w 'Pw:P:0:v)
satisfies
nP,'LUO’,’wV(')AP(ws g, V) = AP('LU 0, V)EP,O’,I/(')'

LEMMA 3.3. Let P=MAN and P'=MAN' be associated parabolic
subgroups. Then there exists a scalar-valued function y(P': P:0 :v)
meromorphic in v such that

(3.2) AP:P :0:v)AP :P:g:v)=nP' :P:0:v)l.

Let P=MAN and P' = MAN' be as in Lemma 3.3. A sequence
P, = MAN; (0<i<vr) iscalled a string from P to P’ if there are
P-positive reduced a-roots B; (1 <i<r) such that

VioinNi=V®B) or NB)  (1<i<r),
Ph=P and P =P.
The string P; from P to P’ is called minimal if we have
VianN=v¥8  (1<i<r),
Py=P and P,=P.
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LeEMMA 3.4. Suppose that P = MAN and P' = MAN' are associ-
ated parabolic subgroups and P; = MAN; (0 < i <r) is a minimal
string from P to P', with associated P-positive reduced a-roots {f;}.
Then

(1) the set {P;} is characterized as the set of reduced a-roots o that
are positive for P and negative for P'.

(2) r is characterized as the number of a-roots described in (1).

(3) the intertwining operators satisfy

AP\ :P:oc:v)=AP :P_y:0:v) AP :Py:0:v).

__LeEMMA 3.5. Let P = MAN be a parabolic subgroup, let o be in
M and v in of such that Re v is in the open positive Weyl cham-
ber. Then mp o , has a unique irreducible quotient J(p, o, v) and
J(P, o,v) is isomorphic with the image of the intertwining operator
AP:P:o:v) on HY>9:V  where P = MAV .

4. The BJ-functions. In this section we shall work only with min-
imal parabolic subgroups and omit the subscripts p. Let P, P’ be
associated minimal parabolic subgroups and let y be in K , 0 in
M and 4 in Hom,,(V?, H?), where V7 denotes the representation
space of y. For v in af, v in V7, let

Lp(A, v, v)(kan) = e~ +r)008 D) 4(7, (k=)o)

for kK in K,a in A, n in N. Then an easy computation shows that
Lp(4,v,v) isin HF:7*Y . Furthermore the map

V? @ Homp (V?, H°) — HE 7",

given by v® A — Lp(A, v, v) is a bijective K-intertwining operator.
Set
Ay(P':P:0:v)=AP :P:0:v)|yron.

Then we have 4,(P': P:o:v) isin HomK(Hfl’o’”, HY-°YY,

LEMMA 4.1. (See [4], [15].) If v is in af and (Rev,a) > 0 for
all P-positive roots o then we have
Ay(P':P:o:v)Lp(A,v,v)=Lp(AoB,(P :P:v),v,v),

where

VNN’
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Furthermore B,(P': P :v) satisfies the following conditions,
(1) By(P': P:v) is absolutely convergent.
(2) By(P': P:v) isin End(V?) and satisfies

By(P':P:v)n,(m)B,(P':P:v) (meM).
Now we define B functions. If ¢ is in M , we denote the o-
component of V? by V). Let
BJ(P':P:v)=By(P': P:v)|pr.

Then BJ(P': P :v) isin End(V7) and from Lemma 3.1 it has an
analytic cor_l_tinuation to a global meromorphic function in v . Partic-
ularly, B,(P : P:v) is called Harish-Chandra’s C-function.

COROLLARY 4.2. If w isin M’, v isin a suchthat (Rev,a) >0
for all P-positive roots o, then we have

Ap(w,0,v)Lp(A,v,v)=Lp(AoBy(P,w, v)on,(w)™ ', v, wv),

where
B,(P,w,v)=B,(w 'Pw:P:v).

Let w bein M' such that
(4'1) w—IP'UJ = ﬁ and w = WrWy—q -+ Wy,

where each w; (1 < i <r) is the reflection with respect to the P-simple
a-root y; and r is the length of w. Then by the relation

(4.2) Ap(w,o0,v)
= Ap(Wr, Wy_y -+ W10, Wy_y---wyv)---Ap(wy, 0, V)

and Corollary 4.2, we have
(4.3) BJ(P:P:v)
= BJ(P, wy, v)as(w;)B)"’ (P, wy, wyv)
.. ,B;”r—l‘“wl”(P , Wy, Wy_p - WV)
oy (W) T (w).

In connection with Lemma 4.1 we have the following proposition.

PROPOSITION 4.3. Let w be as above. We set

P = (ww;_y - wy) ' P(ww;—q---wy)  (0<i<r)
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and
Bi=(wi—y-—wy)ly;  (1<i<r).
Then P; (0 < i <r) is a minimal string P to P, with associated
reduced P-positive a-roots {f;} and we have
AP:P:o:v)
=AP :P_1:0:V)APr_1:P,_y:0:v)-- APy : Py:0 V).

Proof. By an easy computation, we have
(4.4) VioinN;=VE)  (1<i<r).
We shall prove reduced a-roots f; (1 < i <r) are P-positive. For
an integer i such that 1 <i <r we set
[Ni] = {a|a is a P -positive and P, -positive reduced a-root}
and denote the cardinality of [N;] by »;. Since r is ny, we have
(4.5) ni_1—n;=1 (1<i<r).

From (4.4) and (4.5), B; (1 < i <r) are P-positive. Therefore P;
(1 <i<r) is the minimal string with associated P-positive reduced
a-roots {B;}. The other assertion follows from Lemma 3.4(3).

5. The B,-function in the SL(n, R) case. We shall specialize to
SL(n, R) the notation described in the previous sections. Our nota-
tion is as follows. Let G be in SL(n, R), the group of n-by-n real
matrices g of determinant one. Let

6 = — transpose,
K = SO(n),
a = the vector space of the diagonal matrices of trace 0,
M ={me G|m=diag(m;, ..., m,) and m; = x1 (1 <i<n)},
A= expa,
N = {n € G|n is the sum of the identity and strictly upper
triangular matrices},
P=MAN.
Then P is a minimal parabolic subgroup of G. Let ¢; (1 <j < n)
be the linear functional on ac that picks out the jth diagonal entry
and set aj =ej—e;;; (1 <j<n-1). Then simple a-roots are a;
(1 £j < n-1). We denote the simple reflection with respect to «;
by Sa, -
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LEMMA 5.1. If v isin af such that (Re v, a) > 0 for all P-positive
a-roots o, then for each integer j such that 1 <i<n-—1 we have

B(P. 5u, v) = Const - [ £, ()~ k() dx,

where
fx)=1+x)72, v =20, ) (aj, o))"
and
j-1
f(x)
(e \|
| | j—1
f(x)1 |
_____ F - —_ - - = =
) _ 11 —x|
k() = lx 11
_____ = —F - - - -
I I f(x)
[ [
I [ -
l ' f(x))

Since the results are obtained by an easy computation, we omit the
proof.

Let E;; (1 <1i,j<n) bethe matrix that is 1 in the i — jth entry
and O elsewhere. Set
h= Z R-Hj,

1<I<[n/2]
where H; = Ey_y 3 — E3 21—y (1 <1< [n/2]) and [f] (¢ €R) is
the integer satisfying [¢] < ¢ < [t]+ 1. Then exph is a maximal torus
of XK.

*

LEMMA 5.2. Let y be in K, u a weight of V' and v in ac -
If v, is a p-weight vector of V7, then for each integer j such that
0<j<n-1and j=1 (mod2), we have

B,(P, Sa, 5 v)v, = Const - a(vj, V=1u(Hyji1)/21))Vu s
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and
BJ’(Fa Sa} s V)U/l = Const 'a(—l/j s> V —lﬂ(‘[{[(1+l)/2]))vﬂ ’
where

(seC,nez).

Proof. From Lemma 5.1, we have
(5.1) By(P, Sa; V)Uy
= Const - /Oo £~ D, (f(x) ki (x) v, dx.
We note that
7, (exp tHy(j41y/2)0u = Py, (1€R).
Putting cost = f(x)~!, sint = x/f(x), we obtain that

14+ /= 1x> —V=Iu(Hy )
e V.

m () ) = (LS

Thus (5.1) is equal to

0 /— —V=Tu(Hyy, )
Const - / f(x)~®+D (u) dxv,.
—o0 f(x)

Therefore, the assertion of the lemma follows from the next proposi-
tion.

ProPoOSITION 5.3 (¢f. A.3 in [3]). Suppose that s is a complex num-
ber and n an integer. Then we have

[ ayorn (V2T VOROTC)

(14 x2)1/2

—00
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Let C; (1<1<[(n+1)/2]1-1) be the n-by-n matrix defined by

2/ -2
s’ \ma—
(1 I ! \
1 n x
2/ -2 o |
11 |
...._._+ _____ +___
I 1 |
I -1 I eM .
o1 |
_..._._.+ _____ +_.._._
| 11
| I 1
| |
[ | 1)

Then C,2 is equal to identity and we have
(5.2) Cp-ky(x)-Cil = ky_y(x),
whenever 1 <[ <[(n+1)/2]—-1 and x € R.

LEMMA 5.4. Suppose that y isin K, u a weight of V? and v in
at.. If v, is a u-weight vector of V7, then for each integer j such that
0<j<n-1and j=0 (mod2), we have

ny(Cjj2)By(P, Sa,, V)7y(Cjp2) = By(P, Sa,_» =(Cj2-v)),
where Cj;y-v isin ag defined by
Cip-v(H) = u(cj—/;ch/z) (H € ac).
Proof. By Lemma 5.1 and (5.2), we have
(5.3) my(Cjj2)By(P, o, v)7y(Cjj2)

— Const - / ) O, () Ky (1)) dx

Since the bilinear form (-, -) is invariant under the action of Cj/,,
we have

(—(Cjja-v), aj_1)-{aj_1, aj1)~"

=—(v, Cip-aj1)-{aj, ) = (v, aj) - {a;, a;)7".
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Therefore (5.3) is equal to

o0
= Const - / Fx)" GV, (£ () o1 (x)) ™ dx
—00
=By(P, s4,_,» =(Cjp2-v)).
This proves the lemma.
6. M-isotypic components of y. In this section we shall describe

the M-isotypic components of y in K. Wefix y in K. Let o be in
M and denote the o-isotypic component by V7. Then we have

Vv, = Z V7  (direct sum).
oeM

Let P, be the projection map V? — V). From Lemma 4.1(2), for
P, P in P(A) and v in af we have

Let u be a weight of V7 and let [u] denote the equivalence class
of u, which is defined as follows; 4’ isin [u] if and only if u(H)) is
equal to +u/(H;) for any integer / such that 1 </ <[n/2]. Let 7 be
the set of the equivalence classes [¢] and V7-# the u-weight space
of V7. Set

V] k= Po(V?-#) and VoM = Z Va””".
WEln]

LEMMA 6.1. In the above situation we have

vy=3 vlW  (direct sum).
[nley

Proof. Let m be a positive integer and y; (1 < k < m) a weight
of V7 such that u; is not equivalent to u; , if k # k’. Suppose vy,

(1 <k <m) arein V" which satisfy the following relation,

m
Z ’U[ﬂk] =0.
k=1

To prove the lemma, it is enough to show that

U[#k]=0 (ISkSm)
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We shall prove by induction on m. If m = 1 it is clear. Suppose
the assertion is true for 1 < m < t. We check the case that m = ¢.
Suppose that

t
(6.2) > v, =0.
k=1
Then for an integer i such that 1 <i </ we have
t
0=(By(P, wyi_1,v)—a(vri—1, V-1ui(H;))) (Z U[uk]) ,
k=1
by Lemma 5.2 and (6.1)
t
=Y (a(vaicy, V=T (Hy)) — a(vaiy , V=Tp1 (H;)))vp,) -
k=2

Applying the inductive hypothesis, we have
(a(vaiet s V=1pi(Hy)) — a(vaimy , V=11 (H;)))vp,) = 0
2<k<?t).
Since [ux] # [u1] (2 <k <t), we obtain
Vp1=0 (2<k<y).
From (6.2) we have
Vi =0 (1<k<y).

This proves the lemma.

LEMMA 6.2. Suppose v is in ot and j an integer such that 1 <
j<n-—1. Then By (P, Sa, » v) are diagonalizable and
()if j=1 (mod2), we have
deg(B)?(P3 aj, V))
= Const - ] a(vj, V=Tu(Hgj11)2))40-7- 1D,
[uley
(2)if j=0 (mod2), we have
det(By(P, aj, v))

= Const - H a(Vj , V— 1'[[(}[[(]_'_.1)/2]))‘1(7 s Gy 14D ,
(uley
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where d(y, o, [u]) is the dimension of the space V] and Cip-o
(1<j<n-1,j=0 (mod2)) are defined by

Cj/2~a( )—G'(C/Z m- Cj/z) (meM).

Proof. The relation (1) follows immediately from Lemma 5.2, Lem-
ma 6.1 and (6.2). The relation (2) follows from Lemma 5.4 and (1).
The first assertion is obvious.

7. The determinant of the C-function. Let w be in W and satisfy
that .
w'lPw=P and w=ww,_; - w,

where each w; (1 <i <r) is the reflection with respect to the simple
a-root ; and r is the length of w. Then we have
AP:P:0:v)=R(w)dp(w, o, V).
By the relation
(7.1)  Ap(w, 0,v)=Ap(Wy, Wy_y -+ WT, Wy_y -+ WV)
"AP('LU2, w0, ’LUII/)
'AP(wl 0, V)
and by Corollary 4.2, we have for y in K
(7'2) B}’(F 1P V) = BJ’(Pa wy, V)nY(wl)B}’(Pﬁ wy, ’l,UIU)
By(P, wy, wy_y -+ -wyv)
- Ty (wr) 7y (W) -

For each integer j such that 1 < j <n-—1, we define C.o (e M )
as follows:

if j=0 (mod2),
E’j-a=Cj-(wj_1---wla),
if j=1 (mod2),

Ci-o=w;_1---wo.

THEOREM 7.1. Suppose v is in af,y in K and o in M. Then
we have

det(BI(P: P: v))

= Const - H [T a2 (v, Bi) - (Bis B!, V=Tu(Hj 41y27)) %

i=1{uley
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where B; (1 <i<r) areasin Corollary 3.3 and
diy=4d(, éj,. 0, [u]).
Proof. From (7.2), we have
BJ(P:P:v)=BJ(P,w, V)n)‘,’(wl)B;f"a(P, wy, wiv)
...B;”r—l”'wl"(p, Wy, Wy_y -+ WV)
T (w)a (w),
where pJ(w’) (w' € W) is n,,(w’)|V”r.
Let i be an integer sucll1 that 0<i<n-1 and~q’ in M such that
V4 #{0}. We extend BY (w;, -) to an operator BY (w;, -) of V7 by
' (o, . Y
(7.3) By (wi, ) = { f:lyelg:;; ) Zz IIE:’Z, (0" # a')
and define
(7.4) BS(P:P:v)=BI(P,w;, v)nl(w;)B,"" (P, wy, wiv)
B (P, w, Wy - wy )

) n;”'—""“""(w,)n;w(w ).

Then we have

(71.5) BI(P:P:v)lyy =BJ(P:P:v)
and
(7.6) det(BS(P: P:v)) =d;- det(BI(P: P:v)),

where d; is a nonzero constant which is independent of . On the

other hand, from (7.3) and (7.4) we have

(7.7) det(BS(P: P:v))=d,- det(BI(P, w;, v))
---det(B;,U"""w‘a(P, Wy, Wy_y - Wiv)),

where d; is a constant such that |d>| = 1. Therefore, from (7.6) and
(7.7) we have

det(BJ(P: P :v))
= Const - det(B) (P, wy, v))
- det(BYr-1"Y(P, wy, Wp_y - W V))
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by Lemma 6.2

,
= Const - [T [ e((wi-1---wiv); , V=Tu(Hys1/2)) %

i=1[uley

by Proposition 4.3

= Const - H IT « Y- (Bis B 'y V=1u(Hyr 1)) m .

i=1[uley

This proves the theorem.

8. The reducibility of np , , in the nonsingular case. Let v be in
ac such that (Re v, a) # 0 for all P-positive roots. In this section
we shall describe a necessary and sufficient condition for that 7np 4 ,
is reducible.

Let B be a reduced P-positive a-root and G'#) as in §1. In this
case GA) is isomorphic to SL(2, R) and we can put

MﬂG(ﬂ)={e,mﬂ},

where e is the identity matrix. Let ¢ be in M. Since M is abelian
and any element of M is of order two, o(m) (m € M) is a scalar
operator and the scalar is £1. We define integers o such that 0 <
op < 1 by

o(mg)=(=1)%-1,

where I is the identity operator.

LEMMA 8.1. Let ¢ bein M, y in K and u a weight of V. Let
j be an integer such that 0< j<n—-1 and j=1 (mod2). Suppose
that

(8.1) v—l,u(H[(jH)/z]) —Gaj =1 (mod2)
Then we have
v = {0},
Proof. Let v be in V?'“1. By an easy computation, we have
7y (Mo )V = vV —=1pu(Hjy1)/2))V
On the other hand, we have

ny(maj)v = 0o,V
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Therefore, from (8.1) the element v must be zero. This proves the
lemma.

LEMMA 8.2. Let y be in K, o in M and let j be an integer
suchthat 1 < j<n-1and j=1 (mod2). If v isin a; such
that (Re v, aj) >0, then the operator BJ (P, Sa, > v) has a nontrivial
kernel if and only if

(c1) v; is an integer and vj+1=0, (mod2).

(c2) there exists a weight u of V' such that

W=Tu(Hyji1ym) 2 vi+1 and V2™ {0},

(c3) there exists a weight 1’ of V7 such that
V=1 (Hyjyrym)l <vj+1 and V] W1£{0},

where v; are as in §5.
Proof. Suppose that By (P, Sa, » v) has the nontrivial kernel. By

Lemma 5.4, the conditions (c2), (c3) are obvious and v; is an integral.
Moreover, we have

(82) Vi + 1+v —lﬂ(H[(J+1)/2]) =0 (mod2) .
Therefore, by Lemma 8.1, we have
vi+1=0, (mod2).

Conversely, suppose that (cl1), (c2) and (c3) are satisfied. Then from
Lemma 8.1 and (cl), it follows that any weight x4 of V7 such that
v I £ {0} satisfies (8.2). Therefore, from Lemma 5.1, (c2) and
(c3) it follows that BJ (P, Sa, » v) has the nontrivial kernel.

COROLLARY 8.3. Let y bein K, o in M and let j be an integer
suchthat 1< j<n-1.Ifv isin o, such that (Re v, a;) >0 then
the operator Bj (P, Sa, » v) has the nontrivial kernel if and only if

(c1) v; is an integer and vj+ 1 =0, (mod2),

(c2) there exists a weight u of V? such that

W=1u(Hyjrrym) 2 vi+1 and V2 £ {0},
(c3) there exists a weight 1’ of V? such that
V=Tl (Haap)l <vj+1 and V21 240},

where v; (1<j<n-1) areasin§s.
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Proof. If the integer j is odd, then the assertion is that of Lemma
6.2. Thus we may assume that j is even. By Lemma 5.4, the operator
By (Pp , Sa, » v) has the nontrivial kernel if and only if the operator

Bycj/z"’(p, Sa,_, » —(Cjs2-v)) does also. Since

1

(Re(—(Cjp2-v)), aj) =(Rev, a;_1) >0,

C .-
we can apply Lemma 8.2 to the operator B, J(P s Sa, s —(Cjpa-v)).
We note that

(83) (Cj/2 : U)a}. = aaj_l and (—(Cj/z : V))] =Vj_1.

Combining Lemma 8.2 and the relations (8.3) we have the assertion
of the corollary.

LEMMA 8.4. Let v be in of such that (Rev,a) > 0 for all P-
positive roots o and o in M. Then A(P: P : o :v) has the non-
trivial kernel if and only if there exists a reduced P-positive a-root f
satisfying the following conditions:

(*) 2{v, B)-(B, B)~! is an integer and 2(v, B)- (B, B)"' +1 =
og, (mod2).

Proof. Let w be in M’ such that
w'lPw=P and w=wW_;-- Wi,
where each w; (1 < i < r) is the reflection with respect to the P-
simple a-root ay (1 < k; # n—1) and r is the length of w. Let
P; (1 <i<r) be the minimal string P to P, which is described in
Proposition 4.3. From Lemma 4.1 it follows that A(P: P: 0 : v) has
the nontrivial kernel if and only if

(cl) there exists y in K such that By (P : P:v) has the nontrivial
kernel.

Moreover, the condition (cl) is equivalent to
(c2) there exist y in K and an integer j (1 < j < r) such that
B, (P, wj, wj_; ---wyv) has the nontrivial kernel.
Since we have
(wi—y---wyv, aj) =(v, B;) >0,
from Corollary 6.3 the condition (c2) is equivalent to

(c3) there exist y in K, weights of V'u, u' and an integer j
(1 < j £ r) satisfying the following relations:
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(8.4) 2-(v, Bj)- (B, B €L,
R SO TR A (U8
2-v, Bj)-(Bj, Bj) '+ 1= Jo, (mod2),
WV=Tu(H ) 2 1+2-(v, B;)- (B, B,
V=T (O < L+2-(v, B)- By B)~
From Proposition 8.5, the condition (c3) is equivalent to

(c3’) there exists an integer j (1 < j < r) such that 2-(v, B;)-
J
(B;, Bj)~! is an integer and satisfies the relation (8.4).

Since B = oy , the assertion of the lemma follows from the condition
J
(c3).

PROPOSITION 8.5. Let ¢ be in M and k an integer such that 1 <
k<n-—1and k=1 (mod2). Then for any positive integer | which
satisfies (6.1), there exists y in K such that

v £ {0y and W(Hyginm) =1,
where [ is the highest weight of V7.

Proof. Let 7 be an element in K such that the highest weight of
V7 is . We put
nj=v-1u(Hygp) (1<j<n-1,j=1(mod2)).
Then each n; is an integer. By the representation theory of compact
groups, we can choose y in K satisfying the following conditions;

np=n,
nij#0 and n;-0;=0 (1<j<n-1, j=1(mod2)).

Let vz be a u-weight vector. We shall prove that Ps(vgz) # 0. We
can easily see that

P(vp)= ]
1<i<n—1
=0 (mod 2)
where I is the identity operator on V7. On the other hand, for
integers i, j suchthat 1 <i,j<n-1,1=0 (mod2) and j =1
(mod?2) we have

(I + Ual : n)’(ma,))(vﬁ) >

N =

—n; (I<1<j<i+l),
n;j  otherwise.

V=1my - @f(Hyj1)2) = {
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Therefore, P;(vg) # 0. This proves the assertion of the lemma.

THEOREM 8.7. Let v be an element in af such that (Re v, o) #0
for all P-positive roots o and o in M. Then mp,g,v 1S reducible if
and only if there exists a reduced P-positive a-root B satisfying the
following conditions:

(*) 2(v, B)-(B, B)~! isanintegerand 2(v, B)-(B, B)~'+1 =0y
(mod 2).

Proof. Suppose that (Rev,a) > 0 for all P-positive a-roots
a. Then by Lemma 3.5 np s , is reducible if and only if
A(P : P : o : v) has the nontrivial kernel. Thus in this case, the
assertion of the theorem follows from Lemma 8.4. In general, there
exists w in W(a) such that (Re wv, a) > 0 for all P-positive a-
roots. Since 7p , , and 7p 44 4y have equivalent composition
series, mp 5 , is reducible if and only if there exists a reduced P-
positive a-root B such that wf satisfies the condition (). Since the
inner product (-, -) is W/(a)-invariant and g, = g, Theorem 8.6 is
proved.

9. The reducibility of zp , , in the singular cases. Let 1y be in ag
such that (Re vy, o) > 0 for all P-positive a-roots. Set

Af(P)={i€N|1<i<n-1and (Re v, a;) # 0}.

Then we have
Re Vg = Z b j@j,
jea, (P)

where b; (j € A;,‘o (P)) are positive real numbers and w; (1 < j <
n—1) in a¢ are defined by

(@, wj)=6;; (1<i,j<n-1).

We take
= > R-H,, aw= Y R-H,
JEAL (P) JEAY (P)
n= ) g, m= ) g,
Bex* Bex*
Bl,#0 Bl,=0
m=m&adn du,, My = Zk(a)(M1)o,

Py = M ANy, Py =MA;N,,
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where Xt is the set of P-positive a-roots. Then P; is a parabolic
subgroup of G and P, is a minimal parabolic subgroup of AM;. Let
us write vy = v{+v¢ correspondingly, with v} = v, and v§ = vola, .
From the double induction formula (see [8], p. 170), indg ol
and ind,cfl (indj!‘,jl c®ri®1)®vi ®1 are infinitesimally equivalent.

ind‘};{' o® ug ® 1 is a tempered unitary representation of M; and we
denote it by & .
Set P/ = MAN,N; and let w’, w” be elements in W (a) such that
(,w/)—-lP,w/ — P/ , (wr/)—IP/,w// — ?"
respectively. Suppose that w' = w;-w!_,---w] and w” = wy.

s—1°
w;_;---w{ are the minimal expressions, respectively. Let w =

w” .w’. Then we have
wl'Pw="P.

By Lemma 3.4, the length of w is equal to r +s and
w = w;’.fwél_l ...fwi'.'w;.w;_l rwi

is the minimal expression. Let P; (1 < i < s+t) be the minimal string
P to P with associated reduced P-positive a-roots {f;}, which are
described in Proposition 4.3.

LEMMA 9.1. Let B; (1 <i<s+t) be defined as above. We have

ny = Z Yep, -

1<is

c>0
Therefore, we have
(9.2) (Revg, i) =0 (1<i<ys),
(9.3) (Revg, ;) =0  (s+1<j<s+1).

Since the proof is easy, it is left to the reader.

For o inﬁandy in I?,weset

Fa’y"/o = {ieNll <i<s and B;U,-_,---wIG(P’ w;, wz{—l wiy)

has a singularity at vy} .

LEMMA 9.2. Set F; , = Fg,y,,, . Then we have

Fa,uo = Fa,y,uo-
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Proof. The assertion of the lemma follows from Lemma 6.2 and
Lemma 8.1.

LEMMA 9.3. Let v be in af, o in M and y in K. Then the
function
Il -w.B8)*BJ(P:P:v)BJ((P):P:v)
i€F,
U,Vo

has no singularity at vy .

Proof. For any u in W, we define nj(u) by n,,(u)lyy«. By the
relation (4.3), we have
BJ(P:P:v)
= BJ(P, w}, v)py"* (w})
By TP w, wi_y - wiv)a o (w)
BYO(P, wi, wy)my " (w])

--B;U'"‘lmw:'w'a(P wy, wi_y - wiw'y)
b b —_
-y (wy )y (w),
1 n !
=BJ(P,w', v)my ”('w’)B;"'”(P, wy, w’u)n}”‘ Y (wl
" n !

w, W, wao
By (P wy, wil - w{w'v)my (w)) my (w)

Thus we have
BJ(P:P:v)
=BJ(P, w, u)n}”'”(w’)B}f"(P, wl, wv)m " (wl)

w .-.wl w

.. By t—1
BI((P"):P:v).

(P, wy', wly - wiw'v)my? (wy')my (w)

From Lemma 6.2 and Lemma 9.1, the functions

”n lo

BV (P, w!, w'v)

wll ..
t—1
.- B,

" '

P, wy wly - wlw'y)rR () (w)

and

II . B)BS(P, w', v)

I€F,

g,
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have no singularity at vy. On the other hand, we have

BI((P"):P':v)=B,(P,w',v)

! !
= W _ W0~
= BJ (P, wy, v)ny(wy)---B,*" (P, wg, wy_y - wy’)
(we)my (w')

’
wo

.7[})

by Lemma 5.2,

(9.6) = BI (P, w), —v)ag(w})--- By (P, w), —w)_, - wiv)

y O (wy)my (w')

Then the function [[,.z (v, B;)BJ((P’) : P : v) also has no singu-
larity at v . Therefore, from the relation (9.5), the function

Il -, B)BI(P:P:v)BI((P):P:v)
ieF

o,y

has no singularity at vg.

CoROLLARY 9.4. Let v be in af and o in M . Then the operator

IT —w. B A(P):P:0:v)AP:P:0:v)
icF

7,y

has no singularity at vy .

LEMMA 9.5. Let v be in o and o in M. Then the kernel of the
operator
lim [[ (v, B)A(P):P:0:v)

Vo,
leFd,l/o

is equal to {0} .

Proof. 1t is enough to show that for any y in K, the kernel of the
operator
lim J] (v, B)?BJ((P): P:v)
S

a,vy

is equal to {0} . The assertion of the lemma follows from Lemma 6.2
and (9.6).
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THEOREM 9.6. Let v bein af, g in M. Then we have

Im(yli_{rl} H (—v, BYA(P:P:0: 1/)) ~Im(A(P,: Py : E: 1)),
®ieF,

(infinitesimally equivalent).
Proof. We have
im [] -, B)A((P):P:o:v) lim ] -/, B)

ek, ~YicF,
“A(P:P:0:V)
= lim Il -w.B)*4(@P):P:0:v)A(P:P:0:v)
T ieF

g,y

= lim Il -w.8)n@:(P):0:v)A(P): P:0:wp).
®jeF,

g,

Thus, from Lemma 9.5 we have

. _ N A(P-P- -
(9.7) Im (Vlggo .ElF'[ (v, Bi)*A(P:P:o: 1/))
L 0,!/0

=~ lim II -w.8)n@:(P):0:0)A(P): P:0:1p).
% ieF.

0%
Since we have for any y in K

nP:(P):0:v)=BJ(P:(P):v)Bj(P"):P:v)
and o

BJ(P:(P"):v)=BJ(P':P:v),

we obtain

nP:(P):o:v)=BS(P,w',v)BI(P , v, v).
Thus by Lemma 5.2, we have

,}ij{}o ie;[ ~(v, B)’n(P:(P):0:v)#0,
o0

and (9.7) is infinitesimally equivalent to Im(A(P"): P: o : vp). From
the double induction formula we have

Im(A((P):P:0:v)) ~ImAP:P:&E:vh)).
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Therefore, we have

Im(lim 1T —<l/,ﬂi)A(FIPIG'21/))ZIm(A(FZPIfZVI)).

vy,
leFﬂ L)

THEOREM 9.7. The representation np 4, is reducible if and only if
the tempered unitary representation & of M is reducible or there exists
a P-positive reduced a-root B satisfying the following conditions:

(*) 2(v, B)-(B, B)~! isanintegerand 2(v, B)-(B, B)~'+1 =0y
(mod2),

(%) Bla, #0.

Proof. According to Lemma 3.4, TP,o,v, is reducible if and only
if A(P: P :¢: 1)) has the nontrivial kernel or ¢ is reducible. By
Theorem 9.6 or the double induction formula, A(P : P : & : »}) has
the nontrivial kernel if and only if A((P’) : P : vy) does so. Thus
by similar argument to that in §8, we can prove the assertion of the
theorem.
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