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ON SIEVED ORTHOGONAL POLYNOMIALS IX:
ORTHOGONALITY ON THE UNIT CIRCLE

MOURAD E. H. ISMAIL AND XIN LI

We study sieved orthogonal polynomials on the unit circle and us-
ing a result of Szegδ we show that there is a one to one correspon-
dence between a family of sieved orthogonal polynomials on the unit
circle and two families of sieved orthogonal polynomials on the in-
terval [— 1, 1] , namely sieved polynomials of the first and second
kinds. We find explicit representations of the sieved polynomials and
the Herglotz transform of the measure with respect to which they are
orthogonal.

1. Introduction. Since Al-Salam, Allaway and Askey [1] introduced
sieved ultraspherical polynomials, the subject of sieved orthogonal
polynomials on a finite interval have been studied extensively by sev-
eral authors, [3], [4], [7], [10], [14]. In this work we consider the
problem of sieved orthogonal polynomials on the unit circle.

We also explore the connection between symmetric sieved orthogo-
nal polynomials on the interval [-1, 1] and sieved orthogonal poly-
nomials on the unit circle. This connection will shed new light on
sieved random walk polynomials [3].

Let dμ be a finite positive Borel measure on the unit circle Γ and
assume that dμ is normalized by

dμ(θ)=l, z = eiθeΓ.- I
2πJ0We shall further assume that the support of dμ is infinite. Let

{Φrt(z)}g° be the sequence of monic polynomials orthogonal on Γ
with respect to dμ. The Φn 's satisfy the recurrence relation

(1.1) Φn+ι(z) = zΦn(z)-anΦ*n(z), /! = 0 , 1 , . . . ,

[8], [9], [13], where an is

a» = -<"

and the reciprocal polynomial of Φn is

Φ*n(z):=z"φ-n(l/z)
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It is well-known that given an infinite sequence of complex numbers
do, a\, . . . , an , . . . with \an\ < 1, n = 0, 1, . . . , one can uniquely
define a sequence of monic polynomials {Φn(z)}, by demanding that
Φ0(z) = 1 and Φn(z) satisfy (1.1). Furthermore the Φn 's will be or-
thogonal on Γ [8], [13]. The an 's are called the reflection coefficients.

In §2 we start with a measure dμ, as above, or a sequence of monic
polynomials {Φn(z)} orthogonal on the unit circle and a positive
integer k, and generate a family of sieved orthogonal polynomials
{Sn(z)} by

(1.2) S0(z) = l,

in (1.2), an is

(13) α π ί
\ αm_i if n + 1 = m/c.

Our first main result, Theorem 1.4 below, provides an explicit rep-
resentation of the Sn 's in terms of the Φn 's and relates their orthog-
onality measures.

THEOREM 1.4. Let {Sn(z)} and {an} be defined as in (1.2) and
(1.3), respectively. Then

(1.5) Snk+J{z) = ziφn(zk), 7 = 0, l , . . . , * : - l ; / i = 0, 1 , . . . .

Furthermore if dv is the measure with respect to which the Sn 's are
orthogonal, then

(1.6) dv{β) = k'1 dμ(kθ), z = eiθ .

Theorem 1.4 will be proved in §2. One can think of Theorem 1.4
as a case when the polynomial mapping T(z) of [2] is zk and or-
thogonality is on the unit circle. The polynomial mapping approach
does not seem to have been applied to orthogonal polynomials on the
unit circle. In §2 we will also state and prove a result connecting the
Herglotz transforms of the measures dμ and dv .

Recall that a sequence of orthogonal polynomials {rn(x)} is a se-
quence of random walk polynomials if and only if there exists a se-
q u e n c e {dn}, 0<dn<l9 n> 0 , O<do<\ s u c h t h a t

(1.7) ro(x) = l , rι(x) = x/(l

xrn(x) = (1 - dn)rn+i(x) + dnrn_ι(x), n>0.

For example the spherical harmonics or ultraspherical polynomials
[6] are random walk polynomials with dn = n/{2n + 2λ). In §3 we



SIEVED POLYNOMIALS ON A CIRCLE 291

point out that any sequence of symmetric polynomials {pn(x)} (i-e.
pn(—x) = {-\)npn{x)) orthogonal on a subset of [-1, 1] is actually
a sequence of random walk polynomials. In [3] it was shown how
a family of random walk polynomials (1.7) generates two families of
sieved random walk polynomials. In §3 we show how a single sequence
of sieved polynomials orthogonal on the unit circle, when projected on
[-1, 1], gives rise to the two aforementioned families. We also give a
further generalization of [3]. In §4 we give a mild generalization of the
sieving concept of §2. The results of §2 may be viewed as orthogonal
polynomials on the Julia set associated with the polynomial mapping
T(z) = zk while the results in §4 deal with Julia sets associated with
iterations of different mappings.

2. Sieved polynomials on the circle. We first record a lemma needed
in the proof of Theorem 1.4.

LEMMA 2.1 ([11], [12]). Let {φn(z)} be orthonormal polynomials
with respect to a finite positive Borel measure da on Γ. Then

(2.2) \φn{eiΘ)\-2 dθ -¥-> dθ, asn-+oo.

By (2.2) we mean that the limiting relation

lim f2πf(θ)\φn(eiθ)\-2dθ= f2

n-*°° Jo Jo

holds for every function f(θ) in Ciπ.

Proof of Theorem 1.4. We first use induction on n to show that

(2.3) Snk(z) = Φn(zk), n = 0 , l , . . .

Clearly (2.3) holds when n = 0. If (2.3) holds for an n consider
S{n+\)kiz). Since oίnk+j vanishes for j = 0, 1, . . . , k - 2, then (1.2)
implies Snk+j(z) = zjΦn(zk). Therefore

S(n+\)k(z) = z

= zkΦn(zk) - a-nΦ*n(zk) = Φn+ι(zk).

In the above equality we used the fact

ir (z) = (zk-ιΦn(zk)y = Φ*n(zk).

This completes the proof of (1.5). To prove the remaining part of
Theorem 1.4 first note that for n = 1, 2, . . . , we have, Geronimus
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[8, p. 133],

± / \Φn{eiθ)\2dμ{θ) = Π ( l - Wj\2) =: N2

n

and

iz ί \Snk(eiθ)\2 dv{θ) = fϊ [1 - K f ] = Π[l - \aj\2] = iVn

2

hence the polynomials φn(z) := Φn(z)/Nn and
/ \ ί> / \ / ΆT J L / Jf \ / TkT 1 / Jt"\

skn\z) •— ̂ kn\z)liyin — ^n\z )/iyιn — ψn\z )

are orthonormal with respect to ύίμ and rfz/, respectively. Applying
Lemma 2.1 and (2.3) we find that

f2πf(θ)du(θ)= lim [2π\snk(eiθ)\-2f(θ)dθ
Jo n-*°° Jo

= lim ίlπ\φn{eikθ)\-2f{θ)dθ
t/o

i ,. < 2kπ

2>/π

\φn(eia)\-2f(a/k)da.
J-\)π

If we restrict ourselves to functions / with period 2π/k, then the
extreme right-hand side of the above equalities is

2πf(θ/k)dμ(θ).
o

Finally the uniqueness of a Borel measure representing a continuous
linear functional on C2π establishes (1.6). D

The Herglotz transform of a finite Borel measure dσ(θ) supported
on [0, 2π) is defined by

(2.4) F{a;z):=

f2

Jo

In the open unit disc F(σ\ z) is an analytic function and has positive
real part [8, p. 23]. Furthermore the following inversion formula holds

1 rθ

(2.5) -[<7(0+O)+σ(0-O)] = Constant+lim / Re{F(σ; reiφ)}dφ.
2 r-^\- Jo
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THEOREM 2.6. Let dv be as in Theorem 1.4; then

(2.7) F(v;z) = F(μ;zk), \z\ < 1.

Before proving Theorem 2.6 we recall some basic facts. The monic
orthogonal polynomials of the second kind associated with {Φn(z)}
are [8, p. 5]

(2.8) Ψn(z) := -L J ^±l[φn{e

iθ) - Φn(z)] dμ(θ),

n>0, Ψ0(z) = l.

Note that Geronimus [8, (1.13), p. 5] erroneously defines Ψo(z) by
letting n — 0 in the integral in (2.8). It is not difficult to use (1.2) and
(1.2') on page 2 in [8] to show that {Ψn(z)} can be generated by

(2.9) Ψ 0 ( z ) = l , Ψ n + 1 (z) = zΨ«(z)+^Ψ*(z), Λ = 0, 1,2.. . .

The reflection coefficients in (2.9) have the opposite sign of the reflec-
tion coefficients in (1.1). Moreover [8, (1.16), p. 6]

(2.10) F(μ; z) - | | ^ = 0(z" + 1 ) , \z\ < 1, as n - oo.

Proof of Theorem (2.6). Let {ΨB(z)} and {Bn(z)} be the monic
polynomials of the second kind associated with the polynomials or-
thogonal with respect to dμ and dv , respectively. Now (2.9) implies
Bn(z) = Ψn(zk). Therefore

= lim Ψ*n(zk)/Φ*n(zk) = F(μ; zk), \z\ < 1,

and the theorem follows. D

3. Random walk polynomials. Let {pn(x)} be a sequence of monic
symmetric polynomials orthogonal on a subset of [-1, 1]. To see that
they must be a sequence of monic random walk polynomials assume
{Pn(x)} to be monic and generated by

PQ[XJ —— 1 , P\ \X) = ~ X ? XPn \X) ~ = PΪI-\- 1 vX) ' ^nPn 1 v ) ? *

It follows from [5, §4.2, p. 108] that the pn 's are orthogonal on a subset
of [-1, 1] if and only if {bn: 0 < n < oo} is a chain sequence, i.e.,
there is a parameter sequence { ^ : 0 < n < o o } such that bn admits
the factorization bn = gn(l - gn-\), n > 0, with 0 < go < 1
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0 < gn < 1, n > 0. If {bn} is a chain sequence one can always choose
{gn} to be a minimal parameter sequence, i.e. go = 0, [5, Theorem
5.3, p. 94]. Therefore, {pn(x)} is a sequence of constant multiples of
random walk polynomials.

Next we start with a monic polynomial set {Φn(z)} orthogonal on
the unit circle with respect to dμ(θ), z = eiθ . Let dp be the positive
Borel measure defined by

(3.1) dμ(θ) = \sinθ\dp(cosθ).

Further, let {Pn(x)} and {Qn(x)} be the monic polynomials orthogo-
nal on [—1, 1] with respect to dp(x) and (l-x2)dp(x), respectively.
Then, on writing x = (z + z~ι)/2, we get, see Szegό [13, §11.5],

(3.2) Pn(x) = { ^

and

(3.3) Qn_x(χ) = ί *1^ {z-nΦ2n(z) - znΦ2n(z-ι)}/(z - z-1),

n>0.

Now replace z by zk and use (3.3) to obtain after some simplification

Qn-l(Tk(x))

Z- Z v

where {Tn(x)} and {Un{x)} are Chebyshev polynomials of the first
and second kind, respectively. On the other hand starting with sym-
metric monic polynomial sequences {Pn(x)} and {Qn(x)} orthogonal
on [-1, 1] with respect to dp(x) and (1 -x2)dp(x), respectively
we can apply (11.5.1) and (11.5.2) in Szego [13] and find a polynomial
set {Φn{z)} orthogonal on the unit circle with respect to dμ(θ) of
(3.1). Once the sieved polynomials on the circle {Sn(x)} are defined,
we can again apply (11.5.1) and (11.5.2) in [13] and construct two
families {pn(x)} and {#«(•*)} of sieved polynomials orthogonal on
[-1, 1] with respect to da(x) and dβ(x) = (1 -x2)da(x). Thus we
proved the following theorem.

THEOREM 3.4. Let {Pn(x)}> {Qn(x)} and {Φ«(z)} be as above
and assume that {Sn(x)}, {pn(x)} and {qn{x)} are constructed from
them following the above procedure. Then we have

(3.5) pn(x) = 2~n {z-nS2n(z) + znS2n(z-1)},
1 +o2{Ό)
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and

(3.6) qn(x) = 2l~n {z-«S2n(z) - z«S2n(z-ι)}/(z - z " 1 ) .
1 -^2«(0)

In particular

(3.7)

It can be easily verified that

(3.8) da(x) = k-χ\Uk_x{x)\dp{Tk{x))> dβ{x) = (l-x2)da(x).

Formula (3.7) is in [3] when the Pn(x) 's are monic random walk poly-
nomials.

4. Iterated mappings. In this section we give a generalization of the
construction in §2.

We start with a polynomial set {Φn{z)\ n > 0} orthogonal on the
unit circle whose reflection coefficients are {an: n > 0} hence \an\ <
1, n > 0 and (1.1) holds. Assume further that we are given k - 1
numbers bo, b\, . . . , bk_2 such that \bj\ < 1, 0 < j < k - 2. Define
a sequence {an: n>0} of reflection coefficients as

The generalized sieved polynomials {iSrt(z)} are generated by the re-
flection coefficients {an}, i.e. (1.2) holds. The special pattern of the
an 's enables us to find a representation of Sn(z). This is achieved as
follows.

For j = 1, 2, . . . , k - 1 and for any polynomial v(z) define

(4.2)

... I z - ° o I I
y*(z)\ •

Next define a sequence {ζn(z): n > 0} as

(4.3) CQ{Z) = 1, ζ \{z) = zfh-_\(tn(zX) — H^ (fu_
It is straightforward to prove:

PROPOSITION 4.4. L ^ {an} and {Sn(z)} be as in (4.1) and (1.2),
respectively; then

(4.5) SBJk(z) = £,(*)

; = l , 2 , . . . , / c - l ; n = 0, 1 , . . . .
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In the special case when bo = b\ = = bk_2 = 0 and {Φn(z)} are
the original polynomials then

fj(Co(z)) = zJ,

and (1.5) follows.

One would like to relate the orthogonality measure of the Φn 's and
the Sn 's in the above construction. Unfortunately our attempts to
find such a relationship have not been successful.

Added in proof. After the final version of this paper was sent for
publication a paper of Sansigre and Marcellan appeared where they
considered the algebraic properties of the case k = 2 of our present
paper. The reference is G. Sansigre and F. Marcellan, Orthogonal
polynomials on the unit circle, symmetrization and quadratic decom-
position, J. Approximation Theory, 65 (1991), 109-119.
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