PSEUDO REGULAR ELEMENTS IN A NORMED RING

RICHARD F. ARENS

Let A be an algebra, and let f be a linear mapping of A into some normed linear space C. For a in A we will write af for the image of a under f. By abf we mean (ab)f. Suppose $\|abf\| \le M\|af\| \cdot \|bf\|$ for some real M, and all a, b in A. Then we will say that f is pseudo regular for A.

We study mainly the case when C=A and A is a commutative Banach algebra. We present some conditions which imply pseudo regularity, and some that prevent it. For example, if the non-zero elements of the spectrum of f are bounded away from zero, then f is pseudo regular. A result (5.3) in the other direction is that if $\sum_{-\infty}^{\infty} |tf(t)|dt < \infty$ for a pseudo regular element f of $L^1(\mathbb{Z})$, then the spectrum is bounded away from 0. Concerning the algebra $C^1[a,b]$, any f which has no zero in common with its derivative is pseudo regular.

- 2. The relation to regularity. Behavior on extension. Let A be a normed commutative algebra and let $f \in A$. One says that f is subregular in A if there is another commutative normed algebra B which contains A isomorphically, which has a unit 1, and in which the element corresponding to f in B has an inverse.
- (2.1) Proposition. If f is subregular in A, it is pseudo regular in A.

Proof. Let f have the inverse g in an algebra B containing A. Let a and b belong to A. Then $||afbfg|| = ||afbfg|| \le ||af|| \, ||bf|| \, ||g||$, so f is pseudo regular in A.

(2.2) Proposition. Pseudo regularity does not imply subregularity.

Here an example will suffice. Take A to be the space $C(S,\mathbb{C})$ of continuous functions on some compact Hausdorff space S with a non-trivial open-and-closed subset E. The characteristic function e of E satisfies $e^2 = e$, so it cannot have an inverse in any B. Thus e is not subregular. On the other hand, [A&G, Theorem 3.3, or (3.22) below] shows that e is pseudo regular.

The next theorem is needed for our further examples, and comes close to giving the essence of pseudo regularity for algebras resembling function algebras. It is a restatement of [A&G1, Th. 3.6].

- (2.3) Theorem [A&G1, Th. 3.6]. Let A be a function algebra. Let f belong to A and let Σ be the set of values f has on the Shilov boundary ∂_A [G, 10]. If there is now a real M such that $||a^2|| \leq M||af||^2$ for all a in A then 0 is not a limit point of the rest of Σ . On the other hand, if 0 is not a limit point of the rest of Σ , then f is pseudo regular.
- (2.2) THEOREM. Let f be an element of A, and let A be a subalgebra of a normed algebra B. If f is pseudo regular in B, it is pseudo regular in A; but not the other way around.

The first half is trivial, and for the second, an example will suffice. Let A be the disc algebra A(D) of those functions in $B = C(D, \mathbb{C})$ which are holomorphic in the interior of the disc D. Consider the complex variable z. It has an inverse (namely its complex conjugate) in the superalgebra $C(S^1, \mathbb{C})$ of the disc algebra A(D). By (2.1), it is pseudo regular in A. But consider its spectrum as an element of $B = C(D, \mathbb{C})$. The Shilov boundary is the disc D, as is the set Σ , and 0 is a limit of the punctured disc. Hence, by (2.3), f is not pseudo regular in B.

3. Strongly pseudo regular elements. An element f of a normed algebra shall be called *strongly pseudo regular* if there exists a real number M such that for every pair of elements u, v, of A, and every positive integer n, there hold the inequalities

$$||uvf^n|| \le M^n ||uf^n|| \, ||vf^n||.$$

The reason for introducing this concept is not merely its connection with pseudo regularity, but also because it can be neatly characterized.¹

(3.2) THEOREM. The statements (3.21), (3.22), (3.23) about an element of f of a semisimple² normed algebra A with unit are equivalent. The statements (3.24) and (3.25) are equivalent to each other.

(3.21) f is strongly pseudo regular,

¹Professor Johnson has shown that strong pseudo regularity is not equivalent to pseudo regularity. See [J] or (3.5) below.

²[L, 62]. We can do without the semi-simplicity by using the argument of Th. 3.4 below.

- (3.22) There is a superalgebra B of A which has an element m such that $f = f^2m$;
 - (3.23) 0 is not a limit point of the rest of Σ .
 - (3.24) There is an element m of A such that $f = f^2m$,
 - (3.25) 0 is not a limit point of the rest of the spectrum of f.

Proof. Assume (3.21). Replace u in (3.1) by u^n and v by v^n . Take the nth root of both sides, and using [G, 5.2], obtain $|u_Av_Af_A| \le M |u_Af_A| |v_Af_A|$. Here the heavy bars indicate the spectral norm and the suffix A denotes the Gel'fand transform. This says that F_A is pseudo regular as an element of the algebra of Gel'fand transforms. We refer to (2.3) and declare that (3.23) holds.

Next assume (3.23). Let B be the algebra of all continuous complex valued functions on the Shilov boundary S. Define m to be 1/f where f is not 0, and 0 otherwise. Then $f^2m = f$, which shows (3.22); and (3.22) obviously implies (3.21).

Next, assume (3.25). Let σ be the spectrum of f. Let U_1 be a neighborhood of the origin in the complex plane. Let U_2 be a neighborhood of σ minus the origin. These U_i can and shall be chosen to be disjoint, precisely because of (3.31). Let η be a function which is 1 on the first set and 0 on the second. This function is holomorphic on a neighborhood of σ . We can use [G, 5.1 Theorem, 10] to obtain an element e of B which is 1 at the points of S where f is 0, and 0 where f is not 0. Clearly fe = 0. Moreover, the element f + e is never 0 on the space of maximal ideals. So there is an m in A such that m(f + e) = 1. Hence $f = mf^2$, which is (3.24).

A comparison of (3.2) and (2.3) shows that for an algebra $C(S, \mathbb{C})$, pseudo regularity implies strong pseudo regularity.

Another application, (3.3), of (3.2) shows the same for a convolution algebra. Let G be a compact abelian group, and let A be the algebra $L^1(G)$ of integrable³ complex valued functions on G, under convolution [L, 35D]. The space of maximal ideals is the character group Γ . Given an f in A, it has a Gel'fand transform f_A whose value at the point m in Γ is the Fourier coefficient [L, loc. cit.]

$$f_A(m) = \int_G f(\theta) m(\theta) d\theta.$$

³with respect to normalized Haar measure.

- (3.3) THEOREM. An f in $L^1(G)$ for which
- (3.31) only a finite number of Fourier coefficients are non-zero

is strongly pseudo regular. Conversely, (3.31) holds if f is pseudo regular.

Proof. Assume (3.31). Let m belong to Γ . If the mth Fourier coefficient of f is c_m and is not 0, let the mth Fourier coefficient of g be the reciprocal of c_m . Otherwise let it be also zero. This clearly defines a linear combination g of characters and thus an element of $L^1(G)$. It is easy to see that the Fourier transform of f * f * g - f is 0 and hence that f * f * g - f is 0. By (3.22), f is strongly pseudo regular.

Now suppose f is pseudo regular. Then there is a real M such that $||u*u*f|| \le M||u*f||^2$. Let u be one of the characters m [L, 38C]. Then u*u=u and $||u*f||=|c_m|$. Call this positive number C. So $C(1-CM) \le 0$. Thus if C is not 0 then it is not less than 1/M, so of course there can be only finitely many C not 0, because Fourier transforms of L^1 functions vanish at infinity [L, 154-5].

We will go beyond (3.2) in two ways. In the first way, we consider algebras which are not semisimple. In the second, we enlarge f to be a finite set of elements.

For the remainder of this section, let A be a commutative Banach algebra with unit. For an element a of A there is the Gel'fand transform a_A , a function defined on the space of maximal ideals of A. It may happen that a_A vanishes identically. Then a is a radical element.

- (3.4) Theorem. Let A be as above and let f be an element of A. Suppose that (as in (3.23))
- (3.41) 0 is not a limit point of the spectrum σ of f.

Then f differs from a strongly pseudo regular element g in A by at most a radical element r.

Proof. Construct the open set U_i and the function η as above in the proof of (3.2).

(3.42) Let γ be the function which is 0 on U_1 and z on U_2 .

Then $\gamma + \eta$ is never 0 on the union U of U_1 and U_2 . Obviously there is a function μ holomorphic on U such that $\mu(\gamma + \eta) = 1$. Hence $\gamma \mu(\gamma + \eta) = \gamma$ and indeed

$$(3.43) \gamma \mu \gamma = \mu$$

because $\gamma \eta = 0$, as is easily verified.

We now apply the analytic-functional calculus as established in [A1, see 5.1, p. 427; G, ch. 3] The four functions z, γ , η , and μ give rise to four elements f, g, e, and m of A and they satisfy the relation $\mu g = g$ because the relation (3.43) is preserved under the functional calculus. Comparing this with (3.22), we see that g is strongly pseudo regular.

We observe that $z - \gamma$ is 0 on the spectrum σ . Therefore $f_A - g_A$ is 0 on the space of maximal ideals whence f - g is a radical element. Thus (3.4) is established.

Professor B. E. Johnson has kindly communicated to me the next theorem, and its consequence (3.6). See [J].

(3.5) THEOREM⁴. Let A be the Banach algebra $C^1[a, b]$. Let f(t) = t. Then f is a pseudo regular element of A.

Proof. If 0 does not lie in [a, b] then of course f is pseudo regular, but in any case the following argument will work.

Let J be the ideal of elements which vanish at 0. Let i belong to J. Define q(i) as the function whose value is i(t)/t for $t \neq 0$, and i'(0) otherwise. In this proof, let the supremum of the absolute value of any complex valued bounded function h be denoted by S(h). The norm ||h|| of an element of A is S(h) + S(h').

By the theorem of the mean

(3.51)
$$S(q(i)) \le S(i') \le ||i||.$$

If j is another element of J we have $S(q(i)j) \le ||i|| \cdot ||j||$.

We turn to (q(i)j)'. Its value at $t \neq 0$ is tq(i)'(t)[j(t)/t] + q(i)(t)j'(t), and the obvious limit thereof for t = 0. Thus $S((q(i)j)') \leq S(tq(i)'(t))S[j(t)/t] + S(q(i)(t))S(j'(t))$. Now $S[j(t)/t] \leq ||j||$ by (3.51). So $S((q(i)j)') \leq S(tq(i)'(t))||j|| + ||i|| \cdot ||j||$. As to tq(i)'(t), it is i'(t) + i(q)/t, so again by (3.51), $S(tq(i)'(t)) \leq S(i') + S(i') \leq 2||i||$. Thus $S((q(i)j)') \leq 3||i|| \cdot ||j||$. Therefore

$$(3.52) ||q(i)j|| \le 4||i|| \cdot ||j||.$$

⁴generalized in (3.9) below.

Take i(t) to be b(t)t where b is any element of A. So i = bf. It is easy to verify that q(i) = b itself, so $||bj|| \le 4||bf|| \cdot ||j||$. Now take j = af, and obtain the assertion that f is pseudo regular with M < 4.

(3.6) COROLLARY (B. E. Johnson). Pseudo regularity does not imply strong pseudo regularity.

Indeed, when 0 lies in the interval [a, b], the f above is not strongly pseudo regular by (3.23).

To this counterexample we may add another, namely (3.8) below. First another theorem.

(3.7) THEOREM. Assume the hypotheses of (3.5), and take [a, b] = [0, 1]. Then f^2 is not pseudo regular.

Proof. We use the S-notation of (3.5), but we use the norm N(h) = |h(0)| + S(h') in A. This is equivalent to $\|\cdot\|$. We will study f(t) = 1 - t, rather than t. This helps in the notation. Assume $N(f^2g^2) \leq N(f^2g)^2$ with $g(t) = t^n$. We will estimate $N(f^2g)$, which is $S((f^2g)')$. Now

$$(3.71) (f2g)' = [tn - tn-1][(n+2)t - n].$$

The extremal points of this expression are the two zeros of $(n+1)(n+2)t^2-2n(n+1)t+(n-1)n$. We expand these roots in powers of z=1/n. They are $t_{1,2}=1+\zeta z+\cdots$ where $\zeta=-2\pm\sqrt{2}$. Inserting either of these into (3.71) gives an expression of the order of z, so

$$(3.72) N(f^2g) is of the order of z = 1/n.$$

This implies that $N(f^2g^2)$ is of the order of 1/2n. So we get $K/n \le M(L/n)^2$ for all sufficiently large n. This forces M to be infinite. In other words, f^2 couldn't have been pseudo regular.

(3.8) COROLLARY. The product of pseudo regular elements need not be pseudo regular.

COROLLARY. Let f belong to A and suppose f'(x) is never 0. Then f is pseudo regular.

To prove this, just change the variable to t = f(x), and use (3.5).

So now we know that if either f is never 0 in $C^1[a, b]$, or f' is never 0, then f is pseudo regular. In fact, we can generalize this and (3.5) in one theorem.⁵

(3.9) THEOREM. Let f belong to $C^1[a, b]$ and suppose f and f' have no common zero. Then f is pseudo regular.

Proof. We will adapt Johnson's line of reasoning as presented in (3.5). Let J be the ideal elements of $C^1[a, b]$ which vanish on the set $Z = \{t_1, \ldots, t_n\}$ of zeros of f. For an element i of J we define q(i) as i(t)/f(t) or as i'(t)/f'(t) according to whether t is not, or is, a zero of f.

For each k there is an open interval V_k containing t_k on which f' is bounded away from 0. Let V be the union of these V_k . Then |f'| > r in V for some positive r. Moreover, |f| > s for some positive s, outside of V. By multiplying f by some constant, we can make sure that 1 will serve as r and s.

Now suppose t is outside of V. Then $|q(i)(t)| \le |i(t)|/|f(t)| \le S(i)$.

Next suppose t is in V. If t is a zero of f we have $|q(i)(t)| = |i'(t)|/|f'(t)| \le S(i')$. If t is not a zero of f then we can find a z which is a zero and such that the interval [z, t] lies in V, then

$$q(i)(t) = \frac{i(t) - i(z)}{f(t) - f(z)} = \frac{i'(v)}{f'(v)}$$

for some v in [z, t]. Hence

$$(3.91) |q(i)(t)| \le S(i') for all t in V.$$

We can therefore assert that

$$(3.92) S(q(i)) \le S(i) + S(i') = ||i||, and S(q(i)j) \le ||i|| \cdot ||j||$$

just as in (3.51). We now examine the (q(i)j)'. q(i)j is ij/f off Z. Using Leibniz' rule yields (q(i)j)' = i'q(j) + j'q(i) - q(i)q(j)f' on the (dense) complement of Z. Hence $S((q(i)j)') \leq S(i')S(q(j)) + S(j')S(q(i)) - S(q(i))S(q(j))S(f') \leq (2 + ||f'||)||i|| \cdot ||j||$, by a multiple use of (3.92). We must also consider the difference quotients where one or both points are on Z. The derivative there is easily found to be i'j'/f', since j is 0 on Z. Hence

$$(3.94) ||q(i)j|| = S(q(i)j) + S((q(i)j)') \le (3 + ||f'||)||i|| \cdot ||j||.$$

⁵Functions of several variables are discussed in §7 below.

Now take i = af and j = bf, and conclude that f is pseudo regular. Statement (3.7) shows that when f has a repeated zero, pseudo regularity may indeed fail.

4. Pseudo regular systems.

DEFINITION. Let F be a subset $\{f_1, \ldots, f_N\}$ of A. Let A be a subalgebra of a second Banach algebra in which there exist elements b_1, \ldots, b_N such that $f_1b_1 + \cdots + f_Nb_N = 1$. Then F is called *subregular*.

DEFINITION. Let F be a subset $\{f_1, \ldots, f_N\}$ of A. For each a in A define $T_F(a)$ to be $||f_1a|| + \cdots + ||f_Na||$. Then F is a pseudo regular system if there is a real constant M such that for any a, b in A one has $T_F(ab) \leq MT_F(a)T_F(b)$.

Pseudo regular system is the same sort of generalization of regular system [A] as pseudo regular element is of regular element.

Just for the record, we state without proof the obvious analogue of (2.1).

(4.1) PROPOSITION. If F is subregular in A, it is pseudo regular in A.

More substantial is the analogue of (3.2).

- (4.2) THEOREM. Let A be as above and let F be a finite set $\{f_1, \ldots, f_N\}$ of elements of A. Suppose that
- (4.21) the origin $\mathbf{0}$ is not a limit point of the joint spectrum σ of F.

Then F differs from a pseudo regular system G in A by an additive N-tuple $(r_1, r_2, ..., r_N)$ where the r_i are radical elements.

Proof. Find disjoint open sets U_1 and U_2 in complex N space where U_1 contains the origin $\mathbf{0}$ and U_2 contains the rest of σ . Define a function η to be 1 on U_1 and 0 on U_2 . Using the analytic functional calculus gives us an idempotent e such that e_A is 1 when all the f_{iA} are 0, and 1 otherwise. Now $f_i = ef_1 + (1-e)f_i$. Let $g_i = f_i(1-e)$. Then $f_i - g_i = ef_i$. Now e_A is 0 when any of the f_{iA} are not 0 and f_{iA} is of course 0 when all the f_{jA} are 0. So $f_i - g_i$ is a radical element.

I declare that the N tuple $(e_A + (1 - e_A)f_{1A}, \ldots, e_A + (1 - e_A)f_{NA})$ have no common 0. For when e_A is 1, then they are all 1, and when e_A is 0 they have the values of (f_{1A}, \ldots, f_{NA}) , which are not all 0 when e_A is 0.

So the g_i form a regular system, and there are elements m_i such that $1 = m_1(e+g_1) + \cdots + m_N(e+g_N)$. Fix a value of j and obtain $g_j = \sum_i m_i g_j g_i$ because $g_i e = 0$ for all i. Select any pair a, b from A and you have $g_j ab = \sum_i m_i g_j a g_i b$. Hence $\sum_j k \|g_j ab\| \le \sum_{i,j} \|g_j a\| \cdot \|g_i b\| M$, where M is the greatest of the norms of the m_i . Thus the g_i form a pseudo regular system.

5. Conditions preventing pseudo regularity. Let A be a subalgebra of a function algebra $C(S, \mathbb{C})$ where S is some compact Hausdorff space, and suppose that A separates [G, pp. 15, 4] the points of S and contains the unit.

REMARK. Let f be an element of such an algebra A. Suppose f is not pseudo regular in A. Then f must vanish somewhere on the Shilov boundary ∂_A , or it is not pseudo regular.

(5.1) Theorem. Let f be a non-zero element of such an algebra, and suppose the Shilov boundary ∂_A is connected. Then f is pseudo regular if and only if it does not vanish on ∂_A .

For if f does vanish on ∂_A then the part of ∂_A where f is not 0 must be an open set Z. If Z is empty then f is 0 (and thus pseudo regular in a trivial way) or ∂_A is not connected.

We now turn to a normed algebra with a norm other than the sup norm. Consider $A = L^1(\mathbb{Z})$ as an algebra under convolution

(5.2) THEOREM. Let $f = \{c(n): n \in \mathbb{Z}\}$ belong to $L^1(\mathbb{Z})$ and suppose the Gel'fand transform series

$$(5.21) \sum_{n} c(n)e^{in\theta}$$

never vanishes on the unit circle. Then f is pseudo regular.

We make this well-known statement only to draw attention to the converse. If (5.21) is sometimes 0, must it be *not* pseudo regular? We can *almost* prove it.⁶ Let $\|\cdot\|$ denote the usual norm in $A = L^1(\mathbb{Z})$. The operations are linear combination and convolution. We write simply fg for the convolution of f and g.

⁶ almost because we also assume (5.31).

(5.3) Theorem [Compare A&G2, 3.1]. Let $f \in L^1(\mathbb{Z})$ and suppose

$$(5.31) \sum_{-\infty}^{\infty} |tf(t)| dt < \infty,$$

(5.32) $||u^2 f|| \le M||uf||^2$ for some real M and at least for all u of finite support for which u(t) = 0 when t < 0.

Then f has an inverse in $L^1(\mathbb{Z})$ or f=0.

We insert two lemmas. We omit the proof of the first.

(5.4) LEMMA. Let $s(p) = \sum_{-\infty}^{p} f(t) dt$. Let N be a positive integer. Define u by setting u(t) be 1 when t lies in the interval [0, N], and 0 otherwise. Then

$$(5.41) uf(t) = s(t) - s(t - N - 1).$$

(5.5) Lemma. Let $J = \sum_{-\infty}^{0} |tf(t)| dt$. Let

$$D = f^{\wedge}(0) = \sum_{-\infty}^{\infty} f(t) dt$$

where f^{\wedge} is the Fourier transform of f. Let $K = \sum_{0}^{\infty} |tf(t)| dt$. Then

$$(5.51) \sum_{-\infty}^{0} |s(t)| dt \le J$$

and

$$(5.52) \sum_{0}^{\infty} |s(t) - D| dt \leq K.$$

These are readily obtained by reversing the order of summation. To derive (5.52) one starts by observing that

(5.53)
$$s(p) + \sum_{n=1}^{\infty} f(t) = D.$$

Define T by

(5.54)
$$T = \sum_{-\infty}^{\infty} |tf(t)|.$$

Then J + K = T.

(5.55) Define h(t) to be 0 for t < 0 and 1 for all other values.

PROPOSITION. According to (5.41), $uf = s - s^{N-1}$ where s^{N+1} is s shifted N+1 units to the right. As to its norm,

$$||uf|| \le (N+1)|D| + 2T.$$

Proof. $s-s^{N+1}=s-Dh+Dh-Dh^{N+1}+Dh^{N+1}-s^{N+1}$. Therefore $\|s-s^{N+1}\| \le \|s-Dh\|+\|Dh-Dh^{N+1}\|+\|Dh^{N+1}-s^{N+1}\|$. Now $\|s-Dh\|=\|Dh^{N+1}-s^{N+1}\|$ which is not greater than J+K

Now $||s - Dh|| = ||Dh^{N+1} - s^{N+1}||$ which is not greater than J + K by (5.51) and (5.52). The term $||Dh - Dh^{N+1}|| = (N+1)|D|$. From this, (5.6) follows.

We resume the proof of (5.3) by deducing from this that the right side of the inequality in (5.32) is $M[(N+1)|D|+2T]^2$, and turn to the left side.

A real number α represents a point of the space of maximal ideals of A. The value of the Gel'fand transform of f there is $f^{\wedge}(\alpha)$. This has to be numerically at most equal to the norm of u^2f , and hence, assuming (5.32),

$$|u^{\wedge}(\alpha)^2| |f^{\wedge}(\alpha)| \le M[(N+1)|D| + 2T]^2$$
.

Let us evaluate this for $\alpha=0$, noting $u^{\wedge}(0)=N+1$. So $(N+1)^2|D|\leq M[(N+1)|D|+2T]^2$. Since N is arbitrary, we have $|D|\leq M|D|^2$. Thus either $f^{\wedge}(0)=0$, or $1/M\leq |f^{\wedge}(0)|$.

The property of pseudo regularity has the invariance property that for each character α , $e^{-i\alpha t}f(t)$ is pseudo regular if f is. Thus we either have

$$(5.7) f^{\wedge}(\alpha) = 0,$$

or

$$(5.8) 1/M \le |f^{\wedge}(\alpha)|.$$

If (5.7) holds for some α , it must hold for all, because f^{\wedge} is continuous, and f must be 0. If (5.8) holds then f^{\wedge} does not vanish anywhere on the space of maximal ideals, and hence f has an inverse.

It almost goes without saying that the converse is true, too.

6. The situation based on the action of $L^1(\mathbb{Z})$ on $L^2(\mathbb{Z})$. A $u \in L^1(\mathbb{Z})$ works on an element f in $L^2(\mathbb{Z})$ by sending it into u*f in $L^2(\mathbb{Z})$. So we are defining uf as u*f in this situation. Then f is pseudo regular if there is a real M such that $\|(u*v)*f\| \le M\|u*f\|\|v*f\|$ where the norm is that of $L^2(\mathbb{Z})$.

(6.1) THEOREM. Let $f \in L^1(\mathbb{Z})$ and suppose

(6.11)
$$\sum_{-\infty}^{\infty} |tf(t)| dt < \infty,$$

(6.12) $||u^2 f|| \le M||uf||^2$ for some real M and at least for all those u in $L^2(\mathbb{Z})$ for which u(t) = 0 when t < 0.

Then f = 0.

Proof. The norm $\|\cdot\|$ shall now refer to $L^2(\mathbb{Z})$. Define D, h, u and s as in (5.3)–(5.55). We want an upper estimate for $\|s-s^{N+1}\|\cdot\|s-s^{N+1}\| \le \|s-Dh\| + \|Dh-Dh^{N+1}\| + \|Dh^{N+1}-s^{N+1}\|$. Now $\|Dh^{N+1}-s^{N+1}\| = \|s-Dh\|$, and our next step is to show that

$$(6.13) ||s-Dh|| is finite.$$

$$||s - Dh||^{2} = \sum_{p = -\infty}^{-1} |s(p)|^{2} + \sum_{p = 0}^{\infty} |s(p) - D|^{2}$$

$$= \sum_{p = -\infty}^{-1} \left| \sum_{t = -\infty}^{p} f(t) \right|^{2} + \sum_{p = 0}^{\infty} \left| \sum_{t = p + 1}^{\infty} f(t) \right|^{2}$$

$$\leq \sum_{p = -\infty}^{-1} \left| \sum_{t = -\infty}^{p} f_{t} \right|^{2} + \sum_{p = 0}^{\infty} \left| \sum_{t = p + 1}^{\infty} f_{t} \right|^{2}$$

where f_t is an abbreviation for |f(t)|. Let these two terms be called S_1 and S_2 respectively, for a moment. Take S_1 and let the index p be called -q. Then

$$S_1 = \sum_{a=1}^{\infty} \left| \sum_{t=a}^{\infty} f_{-t} \right|^2$$

which we will call T^- . Concerning S_2 we can surely say $S_2 \leq \sum_{q=1}^{\infty} |\sum_{t=q}^{\infty} f_t|^2$ which sum we shall call T^+ . We may rewrite T^+ as $\sum_{q=1}^{\infty} \sum_{t=q}^{\infty} \sum_{u=q}^{\infty} f_t f_u$. This is twice the sum over all lattice points for which $u \geq t \geq q \geq 0$. Thus

$$T^{+} = 2\sum_{u \ge t \ge 0} \sum_{q=0}^{t} f_{t} f_{u} \sum_{u \ge t \ge 0} (t+1) f_{t} f_{u} \le 2(T+U)U$$

where T is given in (5.54), and U is the L^1 norm of f. The reason for the \leq is that in the summing for T^+ only the values of f_t with nonnegative suffix are used, whereas in U all suffixes are involved.

It is easy to see that T^- also is not greater than 2(T+U)U, and consequently (6.13) is true.

Concerning $||Dh - Dh^{N+1}||$ it is easy to see that it is equal to $|D|\sqrt{N+1}$. This gives the dominant term on the right side of the inequality $||u^2f|| \le M||uf||^2$ in (6.12). Squaring both sides it implies $||u^2f|| \le (b+|D|\sqrt{N+1})^2$. By Parseval,

$$||u^2 f||^2 = (1/2\pi) \int_{-\pi}^{\pi} |u^{\wedge}|^4 |f^{\wedge}|^2 d\theta.$$

It is not hard to compute that $(1/2\pi) \int_{-\pi}^{\pi} |u^{\wedge}|^4 d\theta$ is a polynomial N_3 of degree 3 in N, and that $|u^{\wedge}|^4/N_3$ satisfy the conditions (i), (ii), (iii) of [**Z**, 3.201] associated with the concept of an approximate identity. Therefore $(1/2\pi) \int_{-\pi}^{\pi} p(1/N_3) |u^{\wedge}|^4 |f^{\wedge}|^2 d\theta$ tends to $|f^{\wedge}(0)|^2$ as N goes to ∞ . But $(b+|D|\sqrt{N+1})^2/N_3$ tends to 0, so $f^{\wedge}(0)=0$.

Appealing again to the invariance which led to (5.7), we conclude that f = 0.

One might wonder what about (5.8). Apparently regular elements are not pseudo regular in this situation. If the identity element of $L^1(\mathbb{Z})$ were pseudo regular, then $L^2(\mathbb{Z})$ would be a Banach algebra.

7. C^1 algebras of functions of several variables. The general idea is that if the differential df is not 0 anywhere on the set Z of zeros of f, then f should be pseudo regular. In order to prove any theorems, we have to augment this hypothesis with some technical details which cannot be overlooked. We will assume that M is a Riemannian manifold, or a closed interval in some \mathbb{R}^m , and consider the algebra of C' functions on M. For any numerical valued function f on M we define S(f) to be the sup of the values |f(t)| for t in M. If f is C^1 , we denote by f' the gradient of f. Let |f'| be the length of f' and abbreviate S(|f'|) by S(f'). We consider the algebra of those C^1 functions f for which ||f|| = S(f) + S(f') is finite.

We will now define an f', u curve in M, where u > 0. It is a C^1 curve with tangents T such that $T \cdot f' > u|T| \cdot |f'|$.

Let V^r be the set of points where |f| < r.

We now enumerate the precise conditions imposed on f.

(7.1) There are r, s > 0 such that |f'| > s on V^r .

(7.2) There is a u > 0 such that given any point t of V^r , there is an f', u curve lying in V^r and connecting t to Z.

Let f satisfy these. It is enough to treat the case r = s = 1. We will abbreviate V^1 to V. We will follow the line of reasoning of (3.9). Let J be the ideal of elements of $C^1[M]$ which vanish on the set Z of zeros of F. Let i belong to J. We define q(i) as

$$(7.3) i(t)/f(t)$$

or as

$$(7.31) i'(t) \cdot f'(t) / f'(t) \cdot f'(t)$$

according to whether t is not, or is, a zero of f. (7.31) obviously defines a function continuous on Z. It is not hard to show that (7.3) approaches (7.31) as t approaches a point of Z. So q is continuous on M.

Now suppose t is outside of V. Then $|q(i)(t)| \le |i(t)|/|f(t)| \le S(i)$. If t is in Z, we can see from (7.31) that $|q(i)(t)| \le |i'(t)| \le S(i') \le ||i||$ for such t.

Now suppose t is in V. Then we can find an f', u curve c leading from z in Z to t, c lying in V. Now $i(t) = \int i' \cdot T \, ds$, where the integral is over c, T is the unit tangent to c, and s is the arc length. By the theorem of the mean, $i(t) = i' \cdot Ts$, where now $i' \cdot T$ is evaluated somewhere along c, so inside V. The same thing holds for f. Now $|i' \cdot T| \leq S(i') \leq |i|$, and $uS(f')| \leq |f' \cdot T|$, so

$$(7.32) |q(i)(t)| \le ||i||.$$

We can therefore assert that

$$(7.34) \quad S(q(i)) \le S(i) + S(i') = ||i||, \quad \text{and} \quad S(q(i)j) \le ||i|| \cdot ||j||.$$

We now examine the (q(i)j)'. q(i)j is ij/f off Z. Using Leibniz' rule yields (q(i)j)'=i'q(j)+j'q(i)-q(i)q(j)f' on the (dense) complement of Z. Hence $S((q(i)j)')\leq S(i')(q(j))+S(j')S(q(i))-S(q(i))S(f')\leq (2+\|f'\|)\|i\|\cdot\|j\|$, by a multiple use of (7.34). We must also consider the difference quotients where one or both points are on Z, on which j is 0. The derivative there is

⁷Let M be the closed first quadrant in \mathbb{R}^2 and let $f=x^2-y$. Then for each u, (7.2) does not hold for t=(0,v) when v is sufficiently small. It fails because Z is tangent to the boundary of M.

 $(i' \cdot f'/f' \cdot f')j'$. Hence

$$(7.35) ||q(i)j|| = S(q(i)j) + S((q(i)j)') \le (3 + ||f'||)||i|| \cdot ||j||.$$

Now take i = af and j = bf, and observe that f is pseudo regular.

REFERENCES

[A&G]	R. F. Arens and M. Goldberg, Multiplicativity factors for seminorms, J.
	Math. Anal. Appl., 146 (1990), 469–481.

- [A & G1] ____, A class of seminorms on function algebras, to appear in the same J. Math. Anal. Appl.
- [A & G2] \longrightarrow , M factors for $L^1(\mathbb{Z})$, in preparation.
- [A&K] R. F. Arens and I. Kaplansky, *Topological representation of algebras*, Trans. Amer. Math. Soc., **63** (1948), 457-481.
- [A] R. F. Arens, Dense inverse limit rings, Michigan Math. J., 5 (1958), 169-182.
- [A1] _____, The analytic-functional calculus in commutative topological algebras, Pacific J. Math., 11 (1961), 405-429.
- [G] T. W. Gamelin, *Uniform Algebras*, Prentice-Hall, Inc., 1969.
- [J] B. E. Johnson, Pseudo regular elements and the auxiliary multiplication they induce, to appear Pacific J. Math.
- [L] Lynn H. Loomis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, Princeton, 1963.
- [Z] Antoni Zygmund, Trigonometrical Series, 1935.

Received March 4, 1991 and in revised form May 15, 1991.

University of California Los Angeles, CA 90024–1555