ON THE TENSOR PRODUCT OF THETA REPRESENTATIONS OF GL₃

GORDAN SAVIN

Let V be the theta representation of GL_3 —the two fold central extension of GL_3 . Let W be a spherical representation of GL_3 . We show that there is a nonzero GL_3 invariant trilinear form on $V \otimes V^* \otimes W$ if and only if W is a lift from SL_2 . In this case the form is unique up to a scalar.

Introduction. Let k be a global field and A its ring of adeles. Let σ be an irreducible 3 dimensional representation of the Galois group Γ of k. Assume, for simplicity, that $\sigma(\Gamma) \subset SL_3(\mathbb{C})$. Then, according to Langlands there exists an automorphic representation $\pi \subset L^2(PGL_3(k) \setminus PGL_3(A))$ such that the corresponding L-functions are equal. Consider the symmetric square of the representation σ . Then, conjecturally, the corresponding L function will have a pole only if the symmetric square representation contains a copy of trivial representation. But this means that there is a quadratic form invariant under σ and therefore $\sigma(\Gamma) \subset SO_3(\mathbb{C})$. Since $SO_3(\mathbb{C}) = {}^LSL_2$, the automorphic representation π should be a lift of an automorphic representation of SL_2 . Let π_v be a local component of π . If it is spherical, π_v is the local lift of a representation of SL_2 if $\pi_v = \operatorname{ind}_B^{PGL_3} \chi$ where χ is a character of the diagonal subgroup of PGL_3 given by

$$\chi \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mu \left(\frac{a}{c} \right)$$

for some unramified character $\mu: k_v^* \to \mathbb{C}^*$.

On the other hand, Patterson and Piatetski-Shapiro [**PP**] have constructed the symmetric square *L*-function corresponding to a cuspidal automorphic representation π of PGL₃. Moreover, they showed that the residue at s = 1 of this *L*-function is

$$\int_{\mathrm{PGL}_{3}(k)\backslash\mathrm{PGL}_{3}(\mathbf{A})}\varphi(g)\theta(g)\theta'(g)\,dg$$

where $\varphi \in \pi$ and θ , θ' are "theta functions" of Kazhdan and Patterson [**KP**]. They are certain automorphic forms on \widetilde{GL}_3 —the two

fold central extension of GL_3 . Let F be a local field. In [FKS] we have constructed a smooth model (θ_3, V) of the local component of "theta functions". Let (π, W) be an irreducible representation of $PGL_3(F)$. From what was explained above, it is natural to ask whether there is a GL_3 invariant trilinear form on $V \otimes V^* \otimes W$. We have the following result:

THEOREM. Let F be a local field of the characteristic $\neq 2$. Let (π, W) be a spherical representation of PGL₃. Then there exists a GL₃ invariant trilinear form on $V \otimes V^* \otimes W$ if and only if π is the lift of a representation of SL₂. Moreover, the form is unique up to a scalar.

We remark that the article of Prasad [P] was perhaps the first result indicating relationship between special values of L-functions and invariant functionals.

Acknowledgment. I would like to thank Professor S. Rallis for suggesting the problem and R. Howe for the help.

Preliminaries and notation. Let P_1 (resp. P_2) be the standard (2, 1) (resp. (1, 2) parabolic subgroup of GL_3 . Let $P_1 = M_1U_1$ and $P_2 = M_2U_2$ be standard Levi decompositions. We shall use the letter N to denote the unipotent group of uppertriangular matrices of GL_2 and GL_3 and the letter T to denote the group of diagonal matrices of GL_2 and GL_3 . It will be clear from the context which is meant. Finally put $N_1 = N \cap M_1$, $N_2 = N \cap M_2$ and B = TN.

Let P = MU be a parabolic subgroup and (π, V) a smooth module. Define $V(U) = \text{span}\{v - \pi(u)v | v \in V, u \in U\}$. Then $V_U = V/V(U)$ is the module of coinvariants.

Let X be an algebraic variety over the field F. Then S(X) will denote the space of locally constant, compactly supported functions on X. Obviously, $S(X_1 \times X_2) = S(X_1) \otimes S(X_2)$. Let q be an algebraic function on X. Then one can define a representation π of N on S(X) by

$$\pi\left(\begin{pmatrix}1&n\\&n\end{pmatrix}\right)f(x) = \phi(nq(x))f(x)$$

where ϕ is an additive character of F. It is easy to check that $S(X)_N = S(Y)$ where Y is the subvariety of X defined by q = 0.

We need to recall some facts about the principal series representations of $GL_3(F)$. Let St denote the Steinberg representation of GL_2 . Let λ be a multiplicative character of F^* such that $\lambda^2 = 1$. Put $St_{\lambda} = St \otimes \lambda(det)$.

Let μ be a character of F^* . It defines a character $\chi_{\mu} \colon T \to \mathbb{C}^*$ by the following formula:

$$\chi_{\mu}\begin{pmatrix}a\\&b\\&&c\end{pmatrix}=\mu\left(\frac{a}{c}\right)\,.$$

Let $\pi(\mu) = \operatorname{ind}_{B}^{\operatorname{GL}_{3}} \chi_{\mu}$ (normalized induction). To describe the composition series of $\pi(\mu)$ we need to introduce σ_{1} , σ_{2} representations of GL₃ defined as follows:

$$0 \to 1 \to \operatorname{ind}_{P_1}^{\operatorname{GL}_3} 1 \to \sigma_1 \to 0,$$

$$0 \to 1 \to \operatorname{ind}_{P_2}^{\operatorname{GL}_3} 1 \to \sigma_2 \to 0.$$

Here the induction is not normalized! We need the following result about the principal series representations. A reader can find details in Cartier's article [C, §III].

PROPOSITION 1. The representations $\pi(\mu)$ are irreducible and $\pi(\mu) \cong \pi(\mu^{-1})$ unless μ is of the two following types:

(a) $\mu = \lambda |\cdot|^{\pm 1/2}$, $\lambda^2 = 1$. The composition series consists of $\operatorname{ind}_P^{\operatorname{GL}_3} \lambda(\det)$ and $\operatorname{ind}_P^{\operatorname{GL}_3} \operatorname{St}_{\lambda}$.

(b) $\mu = |\cdot|^{\pm 1}$. The composition series consists of the trivial representation, the Steinberg representation, σ_1 and σ_2 .

The central extension and theta representation. Let (\cdot, \cdot) : $F^* \times F^* \rightarrow \{\pm 1\}$ be the Hilbert symbol. Let $\widetilde{\operatorname{GL}}_n(F)$ be the 2-fold central extension of $\operatorname{GL}_n(F)$ and s: $\operatorname{GL}_n \rightarrow \widetilde{\operatorname{GL}}_n$ the section as in [FKS]. The extension can be characterized in the following way:

$$\mathbf{s}(\operatorname{diag}(a_i))\mathbf{s}(\operatorname{diag}(b_i)) = \mathbf{s}(\operatorname{diag}(a_ib_i))\prod_{i< j}(a_i, b_j),$$

where diag (a_i) denotes the diagonal matrix with entries a_i . Moreover the section **s** is an isomorphism on N and we will identify N and $\mathbf{s}(N)$. Fix a nontrivial additive character $\phi: F \to \mathbb{C}^*$. Define a function $\gamma = \gamma_{\phi}: F^* \to \mathbb{C}^*$ by

$$\gamma(a) = \frac{|a|^{1/2} \int \phi(ax^2) \, dx}{\int \phi(x^2) \, dx}$$

LEMMA 1 (Weil [W1]). The function γ has the following properties: (a) $\gamma(ab) = \gamma(a)\gamma(b)(a, b)$, (b) $\overline{\gamma}_{\phi} = \gamma_{\overline{\phi}}$.

DEFINITION 1. Let $C_2(F)$ be the space of locally constant functions on F^* such that

- (a) f(x) = 0 if |x| > c,
- (b) $f(y^2x) = f(x)$ if |x|, $|y^2x| < 1/c$,

where c is a constant depending on f.

The theta representation θ_2 of $\widetilde{\operatorname{GL}}_2$ can be realized on the space of functions f on F^* such that $|x|^{1/4}f(x) \in C_2(F)$. The action of $\widetilde{\operatorname{GL}}_2$ is given by the following formulae [F]:

$$\begin{aligned} \theta_2 \left(\mathbf{s} \begin{pmatrix} a \\ & 1 \end{pmatrix} \right) f(x) &= |a|^{1/2} f(ax) \,, \\ \theta_2 \left(\mathbf{s} \begin{pmatrix} z \\ & z \end{pmatrix} \right) f(x) &= (x, z) \gamma(z) f(x) \,, \\ \theta_2 \left(\begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} \right) f(x) &= \phi(nx) f(x) \,, \\ \theta_2 \left(\mathbf{s} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right) f(x) &= c \gamma(x) |x|^{1/2} \int_F |y|^{1/2} f(xy^2) \phi(xy) \, dy \end{aligned}$$

for some constant c.

PROPOSITION 2. Let λ be a multiplicative character of F^* such that $\lambda^2 = 1$. Then $\theta_2 \cong \theta_2 \otimes \lambda(\det)$.

Proof. Let θ be the even Weil representation of \widetilde{SL}_2 . Let G be the subgroup of \widetilde{GL}_2 consisting of the elements whose determinant is a square in F^* . It is easy to see that θ extends to G and that $\theta_2 = \operatorname{ind}_{G}^{\widetilde{GL}_2} \theta$. Since $\widetilde{GL}_2/G \cong F^*/(F^*)^2$ the proposition follows.

DEFINITION 2. Let H be a group and C its center. We say that H is a Heisenberg group if H/C is abelian.

To give a characterization of θ_3 we need a simple result about Heisenberg groups (see [**KP**, §0.3]):

LEMMA 2. Let H be a Heisenberg group and C its center. Let δ be a character of C. Assume that δ is faithful on $[H, H] \subset C$. Then there is unique irreducible representation π_{δ} of H such that C acts by multiplication by δ . Moreover, $\pi_{\delta} \otimes \pi_{\overline{\delta}}$ is just the regular representation of H/C.

Let \widetilde{T} be the inverse image of T in $\widetilde{\operatorname{GL}}_3$. Let Z be the center of GL_3 and \widetilde{Z} the inverse image in \widetilde{GL} . It is easy to check that \widetilde{Z} is the center of $\widetilde{\operatorname{GL}}_3$. The group \widetilde{T} is a Heisenberg group with center $C = \widetilde{Z} \cdot \mathbf{s}(T^2)$ where T^2 is the group of diagonal matrices whose entries are squares. Define a character δ of C by

$$\delta(\mathbf{s}(z)\mathbf{s}(t^2)\zeta) = \gamma(z)\zeta, \qquad \zeta \in \{\pm 1\}.$$

Let π_{δ} be the corresponding representation of \widetilde{T} . Define ρ to be, as usual,

$$\rho \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \left| \frac{a}{c} \right|.$$

In **[FKS]** we have the following theorem.

THEOREM 1. There is a unique representation (θ_3, V) of $\widetilde{\operatorname{GL}}_3$ such that $V_N \cong \rho^{1/2} \otimes \pi_{\delta}$. The properties of θ_3 are:

- (1) $\theta_3(\mathbf{s}(z)) = \gamma(z) \operatorname{Id}, z \in \mathbb{Z}$.

(2) $V_{U_1} \cong \theta_2 \otimes |\det|^{1/4}$, $V_{U_2} \cong \theta_2 \otimes |\det|^{-1/4}$. (3) Let $V_0 = V(U_1) \cap V(U_2)$; then $V_0 \cong S(F^* \times F)$ with the action of \overline{B} given by

$$\theta_3 \begin{pmatrix} \mathbf{s} \begin{pmatrix} a & b \\ & d \end{pmatrix} \end{pmatrix} f(x, y) = (x, d) |ad|^{1/2} f(ax, bx + dy),$$

$$\theta_3 \begin{pmatrix} \begin{pmatrix} 1 & u \\ & 1 & v \\ & & 1 \end{pmatrix} \end{pmatrix} f(x, y) = \phi(ux + vy) f(x, y).$$

(4)
$$V(U_1) + V(U_2) = V(N)$$
.

In particular, it follows that we have a filtration of V as a \widetilde{B} module such that the quotients are V_0 , $V_{U_1}(N_1)$, $V_{U_2}(N_2)$ and V_N .

REMARK. Note that the dual representation θ_3^* is obtained by replacing ϕ by $\overline{\phi}$.

Proof of the Theorem. Let (π, W) be a representation of GL₃. Then the existence of a nontrivial trilinear GL₃ invariant form is equivalent to the existence of a nontrivial GL₃ intertwining map from $V \otimes V^*$ to W^* . Hence we have to compute dim Hom_G($V \otimes V^*$, W). Assume that $\pi = ind_B^G \chi$. Then by the Frobenius reciprocity we have dim Hom_G($V \otimes V^*$, W) = dim Hom_T(($V \otimes V^*$)_N, $\rho \chi$). In other words we have restricted the problem to computing the Tequivariant functionals on $(V \otimes V^*)_N$. From \tilde{B} filtration of V it follows that $(V \otimes V^*)_N$ has a filtration whose quotients are $(V_0 \otimes V_0^*)_N$, $(V_{U_1}(N_1) \otimes V_{U_1}^*(N_1))_{N_1}$, $(V_{U_2}(N_2) \otimes V_{U_2}^*(N_2))_{N_2}$ and $V_N \otimes V_N^*$.

Let Γ_{μ} be the functional on $S(F^*)^2$ given by

$$\Gamma_{\mu}(f) = \int_{F^{*}} f(x)\mu(x^{-1})\frac{dx}{|x|} \,.$$

Obviously, we have the following simple proposition:

PROPOSITION 3. The functional Γ_{μ} is unique up to a nonzero constant μ -equivariant functional on $S(F^*)$ with respect to the standard action of F^* .

Next we need to describe F^* equivariant functionals on $C_2(F)$.

PROPOSITION 4 (see [W2]). Let μ be a character of F^* . The functional Γ_{μ} extends to $C_2(F)$ if $\mu^2 \neq 1$.

Proof. Let \mathscr{O} be the ring of integers of F and ϖ a uniformizing element. Put $q = |\varpi|^{-1}$. Assume that $\mu^2(x) = |x|^{-s}$. Let $f \in C_2(F)$. Consider the integral

$$\Lambda_s(f) = \int_{F^*} (f(x) - f(\varpi^2 x)) |x|^s \frac{dx}{|x|}.$$

Obviously $\Lambda_s(f)$ is defined for every s and if $\operatorname{Re}(s) > 0$ then

$$\Lambda_s(f) = (1-q^s)\Gamma_\mu(f)\,.$$

This formula extends the functional Γ_{μ} to $C_2(F)$ if $\mu^2(x) = |x|^{-s}$ and $s \neq 0$. If μ^2 is ramified then Γ_{μ} extends by taking the Principal Value integral. The proposition is proved.

PROPOSITION 5. Let χ be a character of T. The space of χ -equivariant linear functionals on $V_N \otimes V_N^*$ is at most 1-dimensional. It has the

dimension one if and only if $\chi = \rho \lambda$

$$\lambda \begin{pmatrix} a & \\ & b \\ & & c \end{pmatrix} = \mu_1(a)\mu_2(b)\mu_3(c),$$

 $\mu_i^2 = 1$ and $\mu_1 \cdot \mu_2 \cdot \mu_3 = 1$.

Proof. It follows from Lemma 2.

Let μ be a multiplicative character of F^* . Let $\delta_{1,2}(\mu)$, $\delta_{1,3}(\mu)$ and $\delta_{1,3}(\mu)$ be the characters of T defined by

$$\begin{split} \delta_{12}(\mu)(t) &= \mu(a)\mu(b)^{-1}, \\ \delta_{23}(\mu)(t) &= \mu(b)\mu(c)^{-1}, \\ \delta_{13}(\mu)(t) &= \mu(a)\mu(c)^{-1} \end{split}$$

where t = diag(a, b, c). Let $W^{T,\chi}$ denote the space of χ -equivariant functionals on a smooth T module W.

Proposition 6.

(a)
$$\dim(V_{U_1}(N_1) \otimes V_{U_1}^*(N_1))_{N_1}^{T,\chi} = \begin{cases} 1 & \text{if } \chi = \rho \delta_{12}(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

(b)
$$\dim(V_{U_2}(N_2) \otimes V_{U_2}^*(N_2))_{N_2}^{T,\chi} = \begin{cases} 1 & \text{if } \chi = \rho \delta_{23}(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Using property (2) of θ_3 and the description of θ_2 it is easy to check that $V_{U_1}(N_1) \cong S(F^*)$ and therefore $(V_{U_1}(N_1) \otimes V_{U_1}^*(N_1))_{N_1} \cong S(F^*)$ with the action of T given by

$$\theta_3 \otimes \theta_3^* \left(\begin{pmatrix} a & \\ & b \\ & & c \end{pmatrix} \right) f(x) = \left| \frac{a}{c} \right| \left| \frac{a}{b} \right|^{1/2} f\left(\frac{a}{b} x \right).$$

Part (a) now follows from Proposition 3. Part (b) is proved analogously.

PROPOSITION 7.

$$(V_0 \otimes V_0^*)_N^{T,\chi} = \begin{cases} 1 & \text{if } \chi = \rho \delta_{13}(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Using property (3) of θ_3 it follows that

$$(V_0 \otimes V_0^*)_{U_1} \cong S(F^* \times F)$$

with the action of TN_1 given by

$$\theta_3 \otimes \theta_3^* \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \right) f(x, y) = \left| \frac{ab}{c^2} \right| f\left(\frac{a}{c}x, \frac{b}{c}y \right) \text{ and } \\ \theta_3 \otimes \theta_3^* \left(\begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} \right) f(x, y) = f(x, nx + y).$$

After taking the Fourier transform in the second variable the action becomes

$$\theta_3 \otimes \theta_3^* \left(\begin{pmatrix} a & \\ & b & \\ & & c \end{pmatrix} \right) f(x, y) = \left| \frac{a}{c} \right| f\left(\frac{a}{c}x, \frac{c}{b}y \right) \quad \text{and}$$
$$\theta_3 \otimes \theta_3^* \left(\begin{pmatrix} 1 & n & \\ & 1 & \\ & & 1 \end{pmatrix} \right) f(x, y) = f(x, y)\phi(nxy).$$

Therefore $(V_0 \otimes V_0^*)_N \cong S(F^*)$ with the action of T given by

$$\theta_3 \otimes \theta_3^* \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \right) f(x) = \left| \frac{a}{c} \right| f\left(\frac{a}{c} x \right).$$

The proposition follows from Proposition 3.

Let us call T equivariant functionals appearing in Proposition 5 (resp. Propositions 6 and 7) of type I (resp. II and III). Since $V_N \otimes V_N^*$ is a quotient of $(V \otimes V^*)_N$, functionals of type I extend to $(V \otimes V^*)_N$. In the next several propositions we are studying extension of the functionals of type II and III to $(V \otimes V^*)_N$.

PROPOSITION 8. The functionals of type II extend to $(V \otimes V^*)_N$ if and only if $\mu^2 \neq 1$.

Proof. Since V_{U_1} is a quotient of V it follows that $(V_{U_1} \otimes V_{U_1}^*)_{N_1}$ is a quotient of $(V \otimes V^*)_N$. Recall that $V_{U_1} \cong \theta_2 \otimes |\det|^{1/4}$. The value of a $\rho \delta_{12}(\mu)$ equivariant functional on $(V_{U_1}(N_1) \otimes V_{U_1}^*(N_1))_{N_1}$ is given by the following integral.

$$I_{\mu}(f \otimes f^*) = \int_{F^*} |x|^{1/2} f(x) f^*(x) \mu(x^{-1}) \frac{dx}{|x|}.$$

If $f \in \theta_2 \otimes |\det|^{1/4}$ and $f^* \in \theta_2^* \otimes |\det|^{1/4}$ it follows from the description of θ_2 that $|x|^{1/4} f(x)$ and $|x|^{1/4} f^*(x) \in C_2(F)$. Therefore

 I_{μ} defines a $\rho \delta_{12}(\mu)$ equivariant functional on $(V \otimes V^*)_N$ if $\mu^2 \neq 1$ by Proposition 4. It remains to deal with μ , $\mu^2 = 1$. Let $\varphi \in V_{U_1}$ be a function given by

$$\varphi(x) = \begin{cases} |x|^{-1/4} & \text{if } |x| \le 1 \text{ and } x \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$v = |\varpi|^2 \varphi \otimes \varphi^* - |\varpi| \theta_2 \otimes \theta_2^* \left(\begin{pmatrix} \varpi^2 \\ 1 \end{pmatrix} \right) \varphi \otimes \varphi^*.$$

The projection of v on $(V_{U_1} \otimes V_{U_1}^*)_{N_1}$ lies in $(V_{U_1}(N_1) \otimes V_{U_1}^*(N_1))_{N_1} \cong S(F^*)$ and is given by

$$|\varpi|^2 \varphi(x) \varphi^*(x) - |\varpi|^3 \varphi(\varpi^2 x) \varphi^*(\varpi^2 x)$$

=
$$\begin{cases} -|\varpi| & \text{if } |x| = |\varpi|^{-2} \text{ and } x \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

It follows that $I_{\mu}(v) < 0$. On the other hand, if the functional I_{μ} extends to $(V \otimes V^*)_N$ then the equivariance implies $I_{\mu}(v) = 0$. Contradiction. Similar conclusions can be obtained for the characters $\rho \delta_{23}(\mu)$. The proposition is proved.

Let $m_{ij}(\mu)$ be the multiplicity of $\rho \delta_{ij}(\mu)$ equivariant functionals on $(V \otimes V^*)_N$. If the principal series representation $\pi(\mu)$ is irreducible then $\pi(\mu) = \operatorname{ind}_B^G \delta_{ij}(\mu)$ for all $1 \le i < j \le 3$ [C]. In particular, $m_{ij}(\mu)$ is independent of i, j. Therefore, we have obtained the following corollary.

COROLLARY 1. The functional $\rho \delta_{13}(\mu)$ of type III extends to $(V \otimes V^*)_N$ if $\mu \neq |\cdot|^{\pm 1}$, $\mu^2 \neq |\cdot|^{\pm 1}$ and $\mu^2 \neq 1$. If $\mu^2 = 1$ and $\mu \neq 1$ then it does not extend.

It remains to deal with $\rho \delta_{13}(1)$.

PROPOSITION 9. The functional $\rho \delta_{13}(1)$ of type III does not extend to $(V \otimes V^*)_N$.

Proof. The value of a $\rho \delta_{13}(\mu)$ equivariant functional on $(V_0 \otimes V_0^*)_N$ is given by the following integral:

$$I_{\mu}(f \otimes f^{*}) = \int_{F^{*}} \int_{F} f(x, y) f^{*}(x, y) \mu(x^{-1}) \frac{dx}{|x|} dy.$$

Let φ be a function on $F^* \times F$ given by

$$\varphi(x, y) = \begin{cases} 1 & \text{if } |x| \le 1 \text{ and } |y| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\varphi \in V(U_1)$ and let

$$v = |\varpi| \varphi \otimes \varphi^* - \theta_3 \otimes \theta_3^* \left(\begin{pmatrix} \varpi & & \\ & 1 & \\ & & 1 \end{pmatrix} \right) \varphi \otimes \varphi^*.$$

The projection of v on $(V(U_1) \otimes V^*(U_1))_{U_1}$ lies in $(V_0 \otimes V_0^*)_{U_1} \cong$ $S(F^* \times F)$ and is given by

$$\begin{aligned} |\varpi|\varphi(x, y)\varphi^*(x, y) - |\varpi|\varphi(\varpi x, y)\varphi^*(\varpi x, y) \\ &= \begin{cases} -|\varpi| & \text{if } |x| = |\varpi|^{-1} \text{ and } |y| = 1, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

It follows that $I_1(v) < 0$. On the other hand, if the functional I_1 extends to $(V \otimes V^*)_N$ then the equivariance implies $I_1(v) = 0$. Contradiction. The proposition is proved.

COROLLARY 2. Let χ be a character of T. Then $\dim(V \otimes V^*)^{T, \chi}_N$ ≤ 1 .

Let μ_1 , μ_2 , μ_3 be three characters of F^* such that $\mu_i^2 = 1$ and $\mu_1 \cdot \mu_2 \cdot \mu_3 = 1$. Let χ be a character of T defined by $\chi(\text{diag}(a, b, c))$ $= \mu_1(a)\mu_2(b)\mu_3(c)$. Define $\pi(\mu_1, \mu_2, \mu_3) = \operatorname{ind}_B^G \chi$ (normalized induction). It is unitary irreducible representation. We are now ready to formulate our main result:

THEOREM. Let (π, W) be a quotient of a principal series representation of GL_3 . Then the space of GL_3 invariant trilinear forms on $V \otimes V^* \otimes W$ is 0 or 1 dimensional. The dimension is 0 unless π is one of the following:

- (a) $\pi(\mu_1, \mu_2, \mu_3)$, $\mu_i^2 = 1$ and $\mu_1 \mu_2 \mu_3 = 1$, (b) $\pi(\mu)$, $\mu^2 \neq |\cdot|^{\pm 1}$ and $\mu \neq |\cdot|^{\pm 1}$,
- (c) trivial representation,
- (d) $\operatorname{ind}_{P}^{\operatorname{GL}_{3}}\mu$, $\mu^{2} = 1$, (e) $\operatorname{ind}_{P}^{\operatorname{GL}_{3}}\operatorname{St}_{\mu}$, $\mu^{2} = 1$, (f) σ_{1} , σ_{2} and St.

In cases (a)-(d) the dimension is 1. In cases (e) and (f) the dimension is ≤ 1 .

Proof. Clearly the dimension is 0 unless π is one of the representations in (a)-(f). Since representations in (a) and (b) are irreducible these two cases follow from Corollary 2. The trace tr: $V \times V^* \to \mathbf{C}$

is a GL₃ invariant trilinear form for $\pi = 1$. We can similarly deal with the representations in (d). Indeed, $V_U \otimes V_U^*$ is a quotient of $(V \otimes V^*)_U$. Since $V_U \cong \theta_2 \otimes |\det|^{1/4}$ and $\theta_2 \cong \theta_2 \otimes \mu(\det)$ by Proposition 2 we can define an appropriate *P*-equivariant functional on $(V \otimes V^*)_U$ defining a map from $V \otimes V^*$ into $\operatorname{ind}_P^G \mu$. The theorem is proved.

COROLLARY. Let (π, W) be a spherical representation of GL₃. Then there exists a GL₃ invariant trilinear form on $V \otimes V^* \otimes W$ if and only if π is the lift of a representation of SL₂. In this case the form is unique up to a scalar.

Proof. Note that there is only one nontrivial unramified character μ of F^* such that $\mu^2 = 1$. Therefore if $\pi(\mu_1, \mu_2, \mu_3)$ is spherical then $\pi(\mu_1, \mu_2, \mu_3) \cong \pi(\mu, 1, \mu^{-1})$ for some unramified character μ , $\mu^2 = 1$.

A final remark. Recently Bump and Ginsburg [**BG**] have generalized the work of Patterson and Piatetski-Shapiro to construct an integral representation of the symmetric square *L*-function corresponding to a cuspidal automorphic representation π of PGL_n. As in the case n = 3, the residue at s = 1 of the *L*-function is

$$\int_{\mathrm{PGL}_n(k)\backslash \mathrm{PGL}_n(\mathbf{A})} \varphi(g) \theta(g) \theta'(g) \, dg$$

where $\varphi \in \pi$ and θ , θ' are "theta functions" of GL_n —the two fold central extension of GL_n . The result of Bump and Ginzburg suggests the following generalization of our result:

CONJECTURE. Let F be a local field of the characteristic $\neq 2$ and let (θ, V) be the theta representation of $\widetilde{\operatorname{GL}}_n$. Let (π, W) be a spherical representation of PGL_n . Then there exists a GL_n invariant trilinear form on $V \otimes V^* \otimes W$ if and only if π is the lift of a representation of $\operatorname{Sp}(2m)$ if n = 2m + 1 or π is the lift of a representation of $\operatorname{SO}(2m)$ if n = 2m.

References

 [BG] D. Bump and D. Ginzburg, Symmetric square L-functions on GL(r), preprint.
 [C] P. Cartier, Representations of p-adic groups, Proceedings of Symposia in Pure Mathematics, XXXIII (1979), 111–156.

- [F] Y. Flicker, *Explicit realization of a higher metaplectic representation*, Indag. Math., Vol. I, (1990), 417-434.
- [FKS] Y. Flicker, D. Kazhdan and G. Savin, *Explicit realization of a metaplectic representation*, J. Analyse Math., 55 (1990), 17-39.
- [KP] D. Kazhdan and S. J. Patterson, *Metaplectic forms*, Publ. Math. IHES, 59 (1984), 35-142.
- [PP] S. J. Patterson and I. Piatetski-Shapiro, The symmetric square L-function attached to a cuspid automorphic representation of GL₃, Math. Ann., 283 (1989), 551-572.
- [P] D. Prasad, Trilinear forms for GL(2) of a local field and ε-factors, Comp. Math., 75 (1990), 1-40.
- [W1] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.
- [W2] ____, Séminaire Bourbaki, No. 312.

Received March 12, 1991. Partially supported by NSF.

Yale University New Haven, CT 06520