ON THE TENSOR PRODUCT OF THETA REPRESENTATIONS OF GL 3

Gordan Savin

Let V be the theta representation of $\widetilde{G L}_{3}$-the two fold central extension of GL_{3}. Let W be a spherical representation of GL_{3}. We show that there is a nonzero GL_{3} invariant trilinear form on $V \otimes V^{*} \otimes W$ if and only if W is a lift from SL_{2}. In this case the form is unique up to a scalar.

Introduction. Let k be a global field and A its ring of adeles. Let σ be an irreducible 3 dimensional representation of the Galois group Γ of k. Assume, for simplicity, that $\sigma(\Gamma) \subset \mathrm{SL}_{3}(\mathbf{C})$. Then, according to Langlands there exists an automorphic representation $\pi \subset L^{2}\left(\mathrm{PGL}_{3}(k) \backslash \mathrm{PGL}_{3}(\mathbf{A})\right)$ such that the corresponding L-functions are equal. Consider the symmetric square of the representation σ. Then, conjecturally, the corresponding L function will have a pole only if the symmetric square representation contains a copy of trivial representation. But this means that there is a quadratic form invariant under σ and therefore $\sigma(\Gamma) \subset \mathrm{SO}_{3}(\mathbf{C})$. Since $\mathrm{SO}_{3}(\mathbf{C})={ }^{L} \mathrm{SL}_{2}$, the automorphic representation π should be a lift of an automorphic representation of SL_{2}. Let π_{v} be a local component of π. If it is spherical, π_{v} is the local lift of a representation of SL_{2} if $\pi_{v}=\operatorname{ind}_{B}^{\mathrm{PGL}_{3}} \chi$ where χ is a character of the diagonal subgroup of PGL_{3} given by

$$
\chi\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)=\mu\left(\frac{a}{c}\right)
$$

for some unramified character $\mu: k_{v}^{*} \rightarrow \mathbf{C}^{*}$.
On the other hand, Patterson and Piatetski-Shapiro [PP] have constructed the symmetric square L-function corresponding to a cuspidal automorphic representation π of PGL_{3}. Moreover, they showed that the residue at $s=1$ of this L-function is

$$
\int_{\mathrm{PGL}_{3}(k) \backslash \mathrm{PGL}_{3}(\mathbf{A})} \varphi(g) \theta(g) \theta^{\prime}(g) d g
$$

where $\varphi \in \pi$ and θ, θ^{\prime} are "theta functions" of Kazhdan and Patterson [KP]. They are certain automorphic forms on $\widetilde{\mathrm{GL}}_{3}$-the two
fold central extension of GL_{3}. Let F be a local field. In [FKS] we have constructed a smooth model $\left(\theta_{3}, V\right)$ of the local component of "theta functions". Let (π, W) be an irreducible representation of $\mathrm{PGL}_{3}(F)$. From what was explained above, it is natural to ask whether there is a GL_{3} invariant trilinear form on $V \otimes V^{*} \otimes W$. We have the following result:

Theorem. Let F be a local field of the characteristic $\neq 2$. Let (π, W) be a spherical representation of PGL_{3}. Then there exists a GL_{3} invariant trilinear form on $V \otimes V^{*} \otimes W$ if and only if π is the lift of a representation of SL_{2}. Moreover, the form is unique up to a scalar.

We remark that the article of Prasad $[\mathrm{P}]$ was perhaps the first result indicating relationship between special values of L-functions and invariant functionals.

Acknowledgment. I would like to thank Professor S. Rallis for suggesting the problem and R. Howe for the help.

Preliminaries and notation. Let P_{1} (resp. P_{2}) be the standard $(2,1)$ (resp. $(1,2)$ parabolic subgroup of GL_{3}. Let $P_{1}=M_{1} U_{1}$ and $P_{2}=M_{2} U_{2}$ be standard Levi decompositions. We shall use the letter N to denote the unipotent group of uppertriangular matrices of GL_{2} and GL_{3} and the letter T to denote the group of diagonal matrices of GL_{2} and GL_{3}. It will be clear from the context which is meant. Finally put $N_{1}=N \cap M_{1}, N_{2}=N \cap M_{2}$ and $B=T N$.

Let $P=M U$ be a parabolic subgroup and (π, V) a smooth module. Define $V(U)=\operatorname{span}\{v-\pi(u) v \mid v \in V, u \in U\}$. Then $V_{U}=$ $V / V(U)$ is the module of coinvariants.

Let X be an algebraic variety over the field F. Then $S(X)$ will denote the space of locally constant, compactly supported functions on X. Obviously, $S\left(X_{1} \times X_{2}\right)=S\left(X_{1}\right) \otimes S\left(X_{2}\right)$. Let q be an algebraic function on X. Then one can define a representation π of N on $S(X)$ by

$$
\pi\left(\left(\begin{array}{ll}
1 & n \\
& n
\end{array}\right)\right) f(x)=\phi(n q(x)) f(x)
$$

where ϕ is an additive character of F. It is easy to check that $S(X)_{N}=S(Y)$ where Y is the subvariety of X defined by $q=0$.

We need to recall some facts about the principal series representations of $\mathrm{GL}_{3}(F)$. Let St denote the Steinberg representation of GL_{2}.

Let λ be a multiplicative character of F^{*} such that $\lambda^{2}=1$. Put $\mathrm{St}_{\lambda}=\mathrm{St} \otimes \lambda(\mathrm{det})$.

Let μ be a character of F^{*}. It defines a character $\chi_{\mu}: T \rightarrow \mathbf{C}^{*}$ by the following formula:

$$
\chi_{\mu}\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)=\mu\left(\frac{a}{c}\right)
$$

Let $\pi(\mu)=\operatorname{ind}_{B}^{\mathrm{GL}_{3}} \chi_{\mu}$ (normalized induction). To describe the composition series of $\pi(\mu)$ we need to introduce σ_{1}, σ_{2} representations of GL_{3} defined as follows:

$$
\begin{aligned}
& 0 \rightarrow 1 \rightarrow \operatorname{ind}_{P_{1}}^{\mathrm{GL}_{3}} 1 \rightarrow \sigma_{1} \rightarrow 0 \\
& 0 \rightarrow 1 \rightarrow \operatorname{ind}_{P_{2}}^{\mathrm{GL}_{3}} 1 \rightarrow \sigma_{2} \rightarrow 0
\end{aligned}
$$

Here the induction is not normalized! We need the following result about the principal series representations. A reader can find details in Cartier's article [C, §III].

Proposition 1. The representations $\pi(\mu)$ are irreducible and $\pi(\mu)$ $\cong \pi\left(\mu^{-1}\right)$ unless μ is of the two following types:
(a) $\mu=\lambda|\cdot|^{ \pm 1 / 2}, \lambda^{2}=1$. The composition series consists of $\operatorname{ind}_{P}^{\mathrm{GL}_{3}} \lambda(\mathrm{det})$ and $\operatorname{ind}_{P}^{\mathrm{GL}_{3}} \mathrm{St}_{\lambda}$.
(b) $\mu=|\cdot|^{ \pm 1}$. The composition series consists of the trivial representation, the Steinberg representation, σ_{1} and σ_{2}.

The central extension and theta representation. Let $(\cdot, \cdot): F^{*} \times F^{*} \rightarrow$ $\{ \pm 1\}$ be the Hilbert symbol. Let $\widetilde{\mathrm{GL}}_{n}(F)$ be the 2 -fold central extension of $\mathrm{GL}_{n}(F)$ and $\mathbf{s}: \mathrm{GL}_{n} \rightarrow \widetilde{\mathrm{GL}}_{n}$ the section as in [FKS]. The extension can be characterized in the following way:

$$
\mathbf{s}\left(\operatorname{diag}\left(a_{i}\right)\right) \mathbf{s}\left(\operatorname{diag}\left(b_{i}\right)\right)=\mathbf{s}\left(\operatorname{diag}\left(a_{i} b_{i}\right)\right) \prod_{i<j}\left(a_{i}, b_{j}\right),
$$

where $\operatorname{diag}\left(a_{i}\right)$ denotes the diagonal matrix with entries a_{i}. Moreover the section \mathbf{s} is an isomorphism on N and we will identify N and $\mathbf{s}(N)$. Fix a nontrivial additive character $\phi: F \rightarrow \mathbf{C}^{*}$. Define a function $\gamma=\gamma_{\phi}: F^{*} \rightarrow \mathbf{C}^{*}$ by

$$
\gamma(a)=\frac{|a|^{1 / 2} \int \phi\left(a x^{2}\right) d x}{\int \phi\left(x^{2}\right) d x}
$$

Lemma 1 (Weil [W1]). The function γ has the following properties:
(a) $\gamma(a b)=\gamma(a) \gamma(b)(a, b)$,
(b) $\bar{\gamma}_{\phi}=\gamma_{\bar{\phi}}$.

Definition 1. Let $C_{2}(F)$ be the space of locally constant functions on F^{*} such that
(a) $f(x)=0$ if $|x|>c$,
(b) $f\left(y^{2} x\right)=f(x)$ if $|x|,\left|y^{2} x\right|<1 / c$,
where c is a constant depending on f.
The theta representation θ_{2} of $\widetilde{\mathrm{GL}}_{2}$ can be realized on the space of functions f on F^{*} such that $|x|^{1 / 4} f(x) \in C_{2}(F)$. The action of $\widetilde{\mathrm{GL}}_{2}$ is given by the following formulae [F]:

$$
\begin{aligned}
& \theta_{2}\left(\mathbf{s}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right)\right) f(x)=|a|^{1 / 2} f(a x) \\
& \theta_{2}\left(\mathbf{s}\left(\begin{array}{lr}
z & \\
& z
\end{array}\right)\right) f(x)=(x, z) \gamma(z) f(x) \\
& \theta_{2}\left(\left(\begin{array}{ll}
1 & n \\
& 1
\end{array}\right)\right) f(x)=\phi(n x) f(x) \\
& \theta_{2}\left(\mathbf{s}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) f(x)=c \gamma(x)|x|^{1 / 2} \int_{F}|y|^{1 / 2} f\left(x y^{2}\right) \phi(x y) d y
\end{aligned}
$$

for some constant c.
Proposition 2. Let λ be a multiplicative character of F^{*} such that $\lambda^{2}=1$. Then $\theta_{2} \cong \theta_{2} \otimes \lambda($ det $)$.

Proof. Let θ be the even Weil representation of $\widetilde{\mathrm{SL}}_{2}$. Let G be the subgroup of $\widetilde{\mathrm{GL}}_{2}$ consisting of the elements whose determinant is a square in F^{*}. It is easy to see that θ extends to G and that $\theta_{2}=\operatorname{ind}_{G}^{\widetilde{\mathrm{TL}_{2}}} \theta$. Since $\widetilde{\mathrm{GL}}_{2} / G \cong F^{*} /\left(F^{*}\right)^{2}$ the proposition follows.

Definition 2. Let H be a group and C its center. We say that H is a Heisenberg group if H / C is abelian.

To give a characterization of θ_{3} we need a simple result about Heisenberg groups (see [KP, §0.3]):

Lemma 2. Let H be a Heisenberg group and C its center. Let δ be a character of C. Assume that δ is faithful on $[H, H] \subset C$. Then there is unique irreducible representation π_{δ} of H such that C acts by multiplication by δ. Moreover, $\pi_{\delta} \otimes \pi_{\bar{\delta}}$ is just the regular representation of H / C.

Let \widetilde{T} be the inverse image of T in $\widetilde{G L}_{3}$. Let Z be the center of GL_{3} and \widetilde{Z} the inverse image in $\widetilde{\mathrm{GL}}$. It is easy to check that \widetilde{Z} is the center of $\widetilde{G L}_{3}$. The group \widetilde{T} is a Heisenberg group with center $C=\widetilde{Z} \cdot \mathbf{s}\left(T^{2}\right)$ where T^{2} is the group of diagonal matrices whose entries are squares. Define a character δ of C by

$$
\delta\left(\mathbf{s}(z) \mathbf{s}\left(t^{2}\right) \zeta\right)=\gamma(z) \zeta, \quad \zeta \in\{ \pm 1\}
$$

Let π_{δ} be the corresponding representation of \widetilde{T}. Define ρ to be, as usual,

$$
\rho\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)=\left|\frac{a}{c}\right|
$$

In [FKS] we have the following theorem.
TheOrem 1. There is a unique representation $\left(\theta_{3}, V\right)$ of $\widetilde{\mathrm{GL}}_{3}$ such that $V_{N} \cong \rho^{1 / 2} \otimes \pi_{\delta}$. The properties of θ_{3} are:
(1) $\theta_{3}(\mathbf{s}(z))=\gamma(z)$ Id, $z \in Z$.
(2) $V_{U_{1}} \cong \theta_{2} \otimes|\operatorname{det}|^{1 / 4}, V_{U_{2}} \cong \theta_{2} \otimes|\operatorname{det}|^{-1 / 4}$.
(3) Let $V_{0}=V\left(U_{1}\right) \cap V\left(U_{2}\right)$; then $V_{0} \cong S\left(F^{*} \times F\right)$ with the action of \widetilde{B} given by

$$
\begin{aligned}
& \theta_{3}\left(\mathbf{s}\left(\begin{array}{lll}
a & b & \\
& d & \\
& & 1
\end{array}\right)\right) f(x, y)=(x, d)|a d|^{1 / 2} f(a x, b x+d y) \\
& \theta_{3}\left(\left(\begin{array}{lll}
1 & & u \\
& 1 & v \\
& & 1
\end{array}\right)\right) f(x, y)=\phi(u x+v y) f(x, y) \\
& \text { (4) } V\left(U_{1}\right)+V\left(U_{2}\right)=V(N)
\end{aligned}
$$

In particular, it follows that we have a filtration of V as a \widetilde{B} module such that the quotients are $V_{0}, V_{U_{1}}\left(N_{1}\right), V_{U_{2}}\left(N_{2}\right)$ and V_{N}.

Remark. Note that the dual representation θ_{3}^{*} is obtained by replacing ϕ by $\bar{\phi}$.

Proof of the Theorem. Let (π, W) be a representation of GL_{3}. Then the existence of a nontrivial trilinear GL_{3} invariant form is equivalent to the existence of a nontrivial GL_{3} intertwining map from $V \otimes V^{*}$ to W^{*}. Hence we have to compute $\operatorname{dim} \operatorname{Hom}_{G}\left(V \otimes V^{*}, W\right)$. Assume that $\pi=\operatorname{ind}_{B}^{G} \chi$. Then by the Frobenius reciprocity we have $\operatorname{dim} \operatorname{Hom}_{G}\left(V \otimes V^{*}, W\right)=\operatorname{dim} \operatorname{Hom}_{T}\left(\left(V \otimes V^{*}\right)_{N}, \rho \chi\right)$. In other words we have restricted the problem to computing the T equivariant functionals on $\left(V \otimes V^{*}\right)_{N}$. From \widetilde{B} filtration of V it follows that $\left(V \otimes V^{*}\right)_{N}$ has a filtration whose quotients are $\left(V_{0} \otimes V_{0}^{*}\right)_{N}$, $\left(V_{U_{1}}\left(N_{1}\right) \otimes V_{U_{1}}^{*}\left(N_{1}\right)\right)_{N_{1}},\left(V_{U_{2}}\left(N_{2}\right) \otimes V_{U_{2}}^{*}\left(N_{2}\right)\right)_{N_{2}}$ and $V_{N} \otimes V_{N}^{*}$.

Let Γ_{μ} be the functional on $S\left(F^{*}\right)^{2}$ given by

$$
\Gamma_{\mu}(f)=\int_{F^{*}} f(x) \mu\left(x^{-1}\right) \frac{d x}{|x|}
$$

Obviously, we have the following simple proposition:
Proposition 3. The functional Γ_{μ} is unique up to a nonzero constant μ-equivariant functional on $S\left(F^{*}\right)$ with respect to the standard action of F^{*}.

Next we need to describe F^{*} equivariant functionals on $C_{2}(F)$.
Proposition 4 (see [W2]). Let μ be a character of F^{*}. The functional Γ_{μ} extends to $C_{2}(F)$ if $\mu^{2} \neq 1$.

Proof. Let \mathcal{O} be the ring of integers of F and ϖ a uniformizing element. Put $q=|\varpi|^{-1}$. Assume that $\mu^{2}(x)=|x|^{-s}$. Let $f \in$ $C_{2}(F)$. Consider the integral

$$
\Lambda_{s}(f)=\int_{F^{*}}\left(f(x)-f\left(\varpi^{2} x\right)\right)|x|^{s} \frac{d x}{|x|} .
$$

Obviously $\Lambda_{s}(f)$ is defined for every s and if $\operatorname{Re}(s)>0$ then

$$
\Lambda_{s}(f)=\left(1-q^{s}\right) \Gamma_{\mu}(f)
$$

This formula extends the functional Γ_{μ} to $C_{2}(F)$ if $\mu^{2}(x)=|x|^{-s}$ and $s \neq 0$. If μ^{2} is ramified then Γ_{μ} extends by taking the Principal Value integral. The proposition is proved.

Proposition 5. Let χ be a character of T. The space of χ-equivariant linear functionals on $V_{N} \otimes V_{N}^{*}$ is at most 1-dimensional. It has the
dimension one if and only if $\chi=\rho \lambda$

$$
\lambda\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)=\mu_{1}(a) \mu_{2}(b) \mu_{3}(c)
$$

$\mu_{i}^{2}=1$ and $\mu_{1} \cdot \mu_{2} \cdot \mu_{3}=1$.
Proof. It follows from Lemma 2.
Let μ be a multiplicative character of F^{*}. Let $\delta_{1,2}(\mu), \delta_{1,3}(\mu)$ and $\delta_{1,3}(\mu)$ be the characters of T defined by

$$
\begin{aligned}
& \delta_{12}(\mu)(t)=\mu(a) \mu(b)^{-1} \\
& \delta_{23}(\mu)(t)=\mu(b) \mu(c)^{-1} \\
& \delta_{13}(\mu)(t)=\mu(a) \mu(c)^{-1}
\end{aligned}
$$

where $t=\operatorname{diag}(a, b, c)$. Let $W^{T, \chi}$ denote the space of χ-equivariant functionals on a smooth T module W.

Proposition 6.
(a)

$$
\operatorname{dim}\left(V_{U_{1}}\left(N_{1}\right) \otimes V_{U_{1}}^{*}\left(N_{1}\right)\right)_{N_{1}}^{T, \chi}= \begin{cases}1 & \text { if } \chi=\rho \delta_{12}(\mu), \\ 0 & \text { otherwise }\end{cases}
$$

(b) $\quad \operatorname{dim}\left(V_{U_{2}}\left(N_{2}\right) \otimes V_{U_{2}}^{*}\left(N_{2}\right)\right)_{N_{2}}^{T, x}= \begin{cases}1 & \text { if } \chi=\rho \delta_{23}(\mu), \\ 0 & \text { otherwise } .\end{cases}$

Proof. Using property (2) of θ_{3} and the description of θ_{2} it is easy to check that $V_{U_{1}}\left(N_{1}\right) \cong S\left(F^{*}\right)$ and therefore $\left(V_{U_{1}}\left(N_{1}\right) \otimes V_{U_{1}}^{*}\left(N_{1}\right)\right)_{N_{1}} \cong$ $S\left(F^{*}\right)$ with the action of T given by

$$
\theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)\right) f(x)=\left|\frac{a}{c}\right|\left|\frac{a}{b}\right|^{1 / 2} f\left(\frac{a}{b} x\right)
$$

Part (a) now follows from Proposition 3. Part (b) is proved analogously.

Proposition 7.

$$
\left(V_{0} \otimes V_{0}^{*}\right)_{N}^{T, \chi}= \begin{cases}1 & \text { if } \chi=\rho \delta_{13}(\mu) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Using property (3) of θ_{3} it follows that

$$
\left(V_{0} \otimes V_{0}^{*}\right)_{U_{1}} \cong S\left(F^{*} \times F\right)
$$

with the action of $T N_{1}$ given by

$$
\begin{aligned}
& \theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)\right) f(x, y)=\left|\frac{a b}{c^{2}}\right| f\left(\frac{a}{c} x, \frac{b}{c} y\right) \quad \text { and } \\
& \theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{ccc}
1 & n & \\
& 1 & \\
& & 1
\end{array}\right)\right) f(x, y)=f(x, n x+y)
\end{aligned}
$$

After taking the Fourier transform in the second variable the action becomes

$$
\begin{aligned}
& \theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)\right) f(x, y)=\left|\frac{a}{c}\right| f\left(\frac{a}{c} x, \frac{c}{b} y\right) \quad \text { and } \\
& \theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{lll}
1 & n & \\
& 1 & \\
& & 1
\end{array}\right)\right) f(x, y)=f(x, y) \phi(n x y)
\end{aligned}
$$

Therefore $\left(V_{0} \otimes V_{0}^{*}\right)_{N} \cong S\left(F^{*}\right)$ with the action of T given by

$$
\theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)\right) f(x)=\left|\frac{a}{c}\right| f\left(\frac{a}{c} x\right)
$$

The proposition follows from Proposition 3.
Let us call T equivariant functionals appearing in Proposition 5 (resp. Propositions 6 and 7) of type I (resp. II and III). Since $V_{N} \otimes V_{N}^{*}$ is a quotient of $\left(V \otimes V^{*}\right)_{N}$, functionals of type I extend to $(V \otimes$ $\left.V^{*}\right)_{N}$. In the next several propositions we are studying extension of the functionals of type II and III to $\left(V \otimes V^{*}\right)_{N}$.

Proposition 8. The functionals of type II extend to $\left(V \otimes V^{*}\right)_{N}$ if and only if $\mu^{2} \neq 1$.

Proof. Since $V_{U_{1}}$ is a quotient of V it follows that $\left(V_{U_{1}} \otimes V_{U_{1}}^{*}\right)_{N_{1}}$ is a quotient of $\left(V \otimes V^{*}\right)_{N}$. Recall that $V_{U_{1}} \cong \theta_{2} \otimes|\operatorname{det}|^{1 / 4}$. The value of a $\rho \delta_{12}(\mu)$ equivariant functional on $\left(V_{U_{1}}\left(N_{1}\right) \otimes V_{U_{1}}^{*}\left(N_{1}\right)\right)_{N_{1}}$ is given by the following integral.

$$
I_{\mu}\left(f \otimes f^{*}\right)=\int_{F^{*}}|x|^{1 / 2} f(x) f^{*}(x) \mu\left(x^{-1}\right) \frac{d x}{|x|}
$$

If $f \in \theta_{2} \otimes|\operatorname{det}|^{1 / 4}$ and $f^{*} \in \theta_{2}^{*} \otimes|\operatorname{det}|^{1 / 4}$ it follows from the description of θ_{2} that $|x|^{1 / 4} f(x)$ and $|x|^{1 / 4} f^{*}(x) \in C_{2}(F)$. Therefore
I_{μ} defines a $\rho \delta_{12}(\mu)$ equivariant functional on $\left(V \otimes V^{*}\right)_{N}$ if $\mu^{2} \neq 1$ by Proposition 4. It remains to deal with $\mu, \mu^{2}=1$. Let $\varphi \in V_{U_{1}}$ be a function given by

$$
\varphi(x)= \begin{cases}|x|^{-1 / 4} & \text { if }|x| \leq 1 \text { and } x \text { is a square }, \\ 0 & \text { otherwise } .\end{cases}
$$

Let

$$
v=|\varpi|^{2} \varphi \otimes \varphi^{*}-|\varpi| \theta_{2} \otimes \theta_{2}^{*}\left(\left(\begin{array}{ll}
\varpi^{2} & \\
& 1
\end{array}\right)\right) \varphi \otimes \varphi^{*} .
$$

The projection of v on $\left(V_{U_{1}} \otimes V_{U_{1}}^{*}\right)_{N_{1}}$ lies in $\left(V_{U_{1}}\left(N_{1}\right) \otimes V_{U_{1}}^{*}\left(N_{1}\right)\right)_{N_{1}} \cong$ $S\left(F^{*}\right)$ and is given by

$$
\begin{aligned}
& |\varpi|^{2} \varphi(x) \varphi^{*}(x)-|\varpi|^{3} \varphi\left(\varpi^{2} x\right) \varphi^{*}\left(\varpi^{2} x\right) \\
& \quad= \begin{cases}-|\varpi| & \text { if }|x|=|\varpi|^{-2} \text { and } x \text { is a square }, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

It follows that $I_{\mu}(v)<0$. On the other hand, if the functional I_{μ} extends to $\left(V \otimes V^{*}\right)_{N}$ then the equivariance implies $I_{\mu}(v)=0$. Contradiction. Similar conclusions can be obtained for the characters $\rho \delta_{23}(\mu)$. The proposition is proved.

Let $m_{i j}(\mu)$ be the multiplicity of $\rho \delta_{i j}(\mu)$ equivariant functionals on $\left(V \otimes V^{*}\right)_{N}$. If the principal series representation $\pi(\mu)$ is irreducible then $\pi(\mu)=\operatorname{ind}_{B}^{G} \delta_{i j}(\mu)$ for all $1 \leq i<j \leq 3$ [C]. In particular, $m_{i j}(\mu)$ is independent of i, j. Therefore, we have obtained the following corollary.

Corollary 1. The functional $\rho \delta_{13}(\mu)$ of type III extends to $\left(V \otimes V^{*}\right)_{N}$ if $\mu \neq|\cdot|^{ \pm 1}, \mu^{2} \neq|\cdot|^{ \pm 1}$ and $\mu^{2} \neq 1$. If $\mu^{2}=1$ and $\mu \neq 1$ then it does not extend.

It remains to deal with $\rho \delta_{13}(1)$.
Proposition 9. The functional $\rho \delta_{13}(1)$ of type III does not extend to $\left(V \otimes V^{*}\right)_{N}$.

Proof. The value of a $\rho \delta_{13}(\mu)$ equivariant functional on $\left(V_{0} \otimes V_{0}^{*}\right)_{N}$ is given by the following integral:

$$
I_{\mu}\left(f \otimes f^{*}\right)=\int_{F^{*}} \int_{F} f(x, y) f^{*}(x, y) \mu\left(x^{-1}\right) \frac{d x}{|x|} d y
$$

Let φ be a function on $F^{*} \times F$ given by

$$
\varphi(x, y)= \begin{cases}1 & \text { if }|x| \leq 1 \text { and }|y|=1, \\ 0 & \text { otherwise } .\end{cases}
$$

Then $\varphi \in V\left(U_{1}\right)$ and let

$$
v=|\varpi| \varphi \otimes \varphi^{*}-\theta_{3} \otimes \theta_{3}^{*}\left(\left(\begin{array}{ccc}
\varpi & & \\
& 1 & \\
& & 1
\end{array}\right)\right) \varphi \otimes \varphi^{*} .
$$

The projection of v on $\left(V\left(U_{1}\right) \otimes V^{*}\left(U_{1}\right)\right)_{U_{1}}$ lies in $\left(V_{0} \otimes V_{0}^{*}\right)_{U_{1}} \cong$ $S\left(F^{*} \times F\right)$ and is given by

$$
\begin{aligned}
& |\varpi| \varphi(x, y) \varphi^{*}(x, y)-|\varpi| \varphi(\varpi x, y) \varphi^{*}(\varpi x, y) \\
& \quad= \begin{cases}-|\varpi| & \text { if }|x|=|\varpi|^{-1} \text { and }|y|=1, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

It follows that $I_{1}(v)<0$. On the other hand, if the functional I_{1} extends to $\left(V \otimes V^{*}\right)_{N}$ then the equivariance implies $I_{1}(v)=0$. Contradiction. The proposition is proved.

Corollary 2. Let χ be a character of T. Then $\operatorname{dim}\left(V \otimes V^{*}\right)_{N}^{T, \chi}$ ≤ 1.

Let $\mu_{1}, \mu_{2}, \mu_{3}$ be three characters of F^{*} such that $\mu_{i}^{2}=1$ and $\mu_{1} \cdot \mu_{2} \cdot \mu_{3}=1$. Let χ be a character of T defined by $\chi(\operatorname{diag}(a, b, c))$ $=\mu_{1}(a) \mu_{2}(b) \mu_{3}(c)$. Define $\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=\operatorname{ind}_{B}^{G} \chi$ (normalized induction). It is unitary irreducible representation. We are now ready to formulate our main result:

Theorem. Let (π, W) be a quotient of a principal series representation of GL_{3}. Then the space of GL_{3} invariant trilinear forms on $V \otimes V^{*} \otimes W$ is 0 or 1 dimensional. The dimension is 0 unless π is one of the following:
(a) $\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \mu_{i}^{2}=1$ and $\mu_{1} \mu_{2} \mu_{3}=1$,
(b) $\pi(\mu), \mu^{2} \neq|\cdot|^{ \pm 1}$ and $\mu \neq|\cdot|^{ \pm 1}$,
(c) trivial representation,
(d) $\operatorname{ind}_{P}^{\mathrm{GL}_{3}} \mu, \mu^{2}=1$,
(e) $\operatorname{ind}_{P}^{\mathrm{GL}_{3}} \mathrm{St}_{\mu}, \mu^{2}=1$,
(f) σ_{1}, σ_{2} and St.

In cases (a)-(d) the dimension is 1 . In cases (e) and (f) the dimension is ≤ 1.

Proof. Clearly the dimension is 0 unless π is one of the representations in (a)-(f). Since representations in (a) and (b) are irreducible these two cases follow from Corollary 2. The trace $\operatorname{tr}: V \times V^{*} \rightarrow \mathbf{C}$
is a GL_{3} invariant trilinear form for $\pi=1$. We can similarly deal with the representations in (d). Indeed, $V_{U} \otimes V_{U}^{*}$ is a quotient of $\left(V \otimes V^{*}\right)_{U}$. Since $V_{U} \cong \theta_{2} \otimes|\operatorname{det}|^{1 / 4}$ and $\theta_{2} \cong \theta_{2} \otimes \mu(\operatorname{det})$ by Proposition 2 we can define an appropriate P-equivariant functional on $\left(V \otimes V^{*}\right)_{U}$ defining a map from $V \otimes V^{*}$ into ind $_{P}^{G} \mu$. The theorem is proved.

Corollary. Let (π, W) be a spherical representation of GL_{3}. Then there exists a GL_{3} invariant trilinear form on $V \otimes V^{*} \otimes W$ if and only if π is the lift of a representation of SL_{2}. In this case the form is unique up to a scalar.

Proof. Note that there is only one nontrivial unramified character μ of F^{*} such that $\mu^{2}=1$. Therefore if $\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is spherical then $\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \cong \pi\left(\mu, 1, \mu^{-1}\right)$ for some unramified character μ, $\mu^{2}=1$.

A final remark. Recently Bump and Ginsburg [BG] have generalized the work of Patterson and Piatetski-Shapiro to construct an integral representation of the symmetric square L-function corresponding to a cuspidal automorphic representation π of PGL_{n}. As in the case $n=3$, the residue at $s=1$ of the L-function is

$$
\int_{\mathrm{PGL}_{n}(k) \backslash \mathrm{PGL}_{n}(\mathbf{A})} \varphi(g) \theta(g) \theta^{\prime}(g) d g
$$

where $\varphi \in \pi$ and θ, θ^{\prime} are "theta functions" of $\widetilde{G L}_{n}$-the two fold central extension of GL_{n}. The result of Bump and Ginzburg suggests the following generalization of our result:

Conjecture. Let F be a local field of the characteristic $\neq 2$ and let (θ, V) be the theta representation of $\widetilde{\mathrm{GL}}_{n}$. Let (π, W) be a spherical representation of PGL_{n}. Then there exists a GL_{n} invariant trilinear form on $V \otimes V^{*} \otimes W$ if and only if π is the lift of a representation of $\mathrm{Sp}(2 m)$ if $n=2 m+1$ or π is the lift of a representation of $\mathrm{SO}(2 m)$ if $n=2 m$.

References

[BG] D. Bump and D. Ginzburg, Symmetric square L-functions on GL(r), preprint.
[C] P. Cartier, Representations of p-adic groups, Proceedings of Symposia in Pure Mathematics, XXXIII (1979), 111-156.
[F] Y. Flicker, Explicit realization of a higher metaplectic representation, Indag. Math., Vol. I, (1990), 417-434.
[FKS] Y. Flicker, D. Kazhdan and G. Savin, Explicit realization of a metaplectic representation, J. Analyse Math., 55 (1990), 17-39.
[KP] D. Kazhdan and S. J. Patterson, Metaplectic forms, Publ. Math. IHES, 59 (1984), 35-142.
[PP] S. J. Patterson and I. Piatetski-Shapiro, The symmetric square L-function attached to a cuspid automorphic representation of GL_{3}, Math. Ann., 283 (1989), 551-572.
[P] D. Prasad, Trilinear forms for GL(2) of a local field and ε-factors, Comp. Math., 75 (1990), 1-40.
[W1] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.
[W2] _ Séminaire Bourbaki, No. 312.
Received March 12, 1991. Partially supported by NSF.
Yale University
New Haven, CT 06520

