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ON THE RANGE OF AN UNBOUNDED
PARTLY ATOMIC VECTOR-VALUED MEASURE

E N R I Q U E A. G O N Z A L E Z - V E L A S C O A N D L E E K. J O N E S

A well-known theorem of Liapunov states that the range of a
hounded, non-atomic, finite-dimensional, vector-valued measure is
closed and convex. In this paper we study the range of an unbounded
finite-dimensional vector-valued measure that is at least partly atomic.
In the one-dimensional case we show that if the range is dense in an
interval [0, a] for some a > 0 then it contains [0, a]. In the gen-
eral case of arbitrary dimension d we shall use the following notation.
If e\, ... , βd are linearly independent vectors in Rd let C° denote
the interior of the convex cone C = {a\e\ Λ 1- α</^ : a\, ... , ad >
0 } . Then, if x = a\ex + + atβd and y = b\β\ + + bdβd
are in C, x < y and x < y shall mean that ak < bk and that
ak < bk, respectively, for k = 1, ... , d. Finally, if a e C° define
(0, a) = {x € C° : 0 < x < a} and (0, a] = {x e C° :0 < x < a} .
Now let μ be a measure such that any bounded subset of its range is
in C, and such that the set of all μ(E) in C such that E contains
no atom is bounded. We show that if Rμ is dense in (0, a] for some
aeC° then it contains (0, a].

A well-known theorem of Liapunov [1] states that the range of a
bounded, non-atomic, finite-dimensional vector measure is closed and
convex. In the case of an unbounded measure the range remains con-
vex but need not be closed. Additional properties of the range in this
case have been studied by C. Olech [2]. When a measure is at least
partly atomic, one cannot hope to extend these results even in the one-
dimensional case. There is, however, an extension when the range of
the measure is dense, and this result appears to be non-trivial for an
unbounded measure. Our proof will include the easy case when the
measure is bounded.

Furthermore, a typical argument in showing that a linear operator
has an inverse is to show first that it has a dense range and then con-
clude, via a closed range theorem, that its range is closed. It is natural
to ask to what extent this type of argument holds for not necessarily
linear but simply additive mappings. A measure is one of the funda-
mental structures in mathematics. It is not linear but it is additive
on disjoint subsets. The results in this paper give conditions under
which we can conclude that if the range of a finite-dimensional vector
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measure is dense then it is closed.
We consider first the one-dimensional case. Let (S, Jί, μ) be a

positive measure, that is, a space S, a σ-algebra J? of subsets of
S and a countably additive function μ: Jί —• [0, oo], and let Rμ

denote its range. Notice that we allow Rμ to contain oo.

THEOREM 1. Let μ be a positive measure. If Rμ is dense in [0, a]
for some a > 0 then it contains [0, a].

Proof. It is enough to prove it for a σ-finite measure. Otherwise,
consider a countable collection of elements of Jί whose measures are
dense in [0, a]. These elements generate a cr-finite measure, and if
its range contains [0, a] so does Rμ .

Now, let RA and RN denote the ranges of the atomic and non-
atomic components of μ, respectively, and for any x e (0, a] define

stfx = {A e J£: A is an atom and μ(A) e (0, x)},

and let XQ e (0, a]. We shall assume that XQ φ. Rμ and arrive at a
contradiction. Consider first the case in which S/XQ is not μ-summable,
which we define to mean that the measures of its elements do not have
a finite sum. Then there is a positive integer p\ and disjoint atoms
A\,..., Aι

Pι+ι e J/Xo with μ(Aι

Pι+1) < < μ(A\) such that

Pi ^i + 1

and

Notice that X\ < μ{Aj) for i = 1, . . . , p\. If ^ is not /ι-summable,
we can restart the process with X\ in place of XQ , and this can be
done again if possible. At the nth stage, n > 1, we have a positive
integer pn, and disjoint atoms A\, . . . , An

p + 1 e ^cπ_! > which are
automatically disjoint from those chosen at any previous stage, such
that

ί=l

7 = 1 ι = l
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and xn < μ(Aj) for / = 1, . . . , pn and j = 1, . . . , n . If this process
can be repeated indefinitely then the xn form an infinite sequence
that, by construction, converges to zero, and then

Jj)eRAcRμ,
7=1 ϊ=l \

contradicting the original assumption.
Now, if s$χ is μ-summable for some n > 0, then the restriction

n

of RA to [0, xn] is a closed set and, since the restriction of Rjγ to
[0, xn] is also closed, it follows that the restriction of Rμ to [0, xn],
which is the sum of the two previous restrictions restricted to [0, xn],
is a closed set. Since it is also dense, there are sets A and E in Jf
such that A is either empty or a union of atoms disjoint from the A\,
E contains no atom, and xn = μ(A) + μ(E). Therefore,

7=1 i=l

n Pj

\JA{
j=\ ι=l

contradicting, again, the original assumption. D

It should be remarked that this theorem does not hold if the measure
is not positive. For if μ is purely atomic and the measures of its atoms
are —1 and all the rational numbers in [1, oo) then its range is dense
in [0, 1] but does not contain [0, 1].

To deal with the general case of arbitrary dimension d we develop
some additional notation and terminology. If β\, . . . , e^ are linearly
independent vectors in R^ consider the convex cone

C = {x = axex + - + aded:aι, ...,ad>0},

let C° denote the interior of C, and if x = a\β\ Λ + aded and
y = b\β\ + + bded are in C, x < y and x < y shall mean that
a>k < bk and that a^ < b^, respectively, for k = 1, . . . , d. If a, b e
C and a < b define

(a,b) = {xeC°:a<x<b}

and

( a , b] = {xeC° :a< x<b}.
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Now, let (S,J?,μ) be a vector-valued measure in C, that is, a
space S, a σ-algebra Jf of subsets of S and a countably additive
function μ defined on ^# and taking values in C or infinity. Infinity
is defined as any linear combination of the ek in which at least one
coefficient is +00. Let Rμ denote the range of μ.

THEOREM 2. Let μ be a vector-valued measure in C such that the
set of all μ(E) G C such that E contains no atom is bounded. If Rμ

is dense in (0, a] for some aeC° then it contains (0, a].

Proof. As in the one-dimensional case, it is enough to prove it for a
σ-finite measure, and again we denote by RA and RN the ranges of
its atomic and non-atomic components. For simplicity we carry out
the proof in the two-dimensional case, and then indicate how it is to
be modified in the general case.

If x = a\e\ +#2^2 *s * n C > * e t ®x denote the segment {tx: 0 < t <
1} and, for k = 1, 2, let xk and Q x denote the vector a^e^ and
the closed triangle with vertices 0, x and xk , respectively. Finally,
define

sfkx = {A e e/#: A is an atom and μ(A) e Q x Π (0, x)}

and define y e C to be a μ-cluster point for srfkx if for every open
disc ΰ c R 2 centered at y there are infinitely many atoms in stfkx

whose measures are in flίlC.
Now, let XQ G (0, a] be arbitrary and assume first that for any

x G Oxo the sets s/\x and s$2x are not μ-summable. Then there is a
positive integer p\ and disjoint atoms A\, . . . , Aι

p such that

and

If for any x G 0x\ the sets s/χx and s^x are not μ-summable, we
can restart the process with x\ in place of XQ , and this can be done
again if possible. At the nth stage, n > 1, we have a positive integer
pn and disjoint atoms A\, . . . , A% , which are disjoint from those
chosen at any previous stage, such that
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and

/=1 7=1 1=1

If this process can be repeated indefinitely then the xn form an infinite
sequence that, by construction, converges to the origin, and then

OO Pj /θθ Pj \

)̂ = Σ Σ ^ ί ) = MU \jAi]eRAcRμ.
7=1 ί=l \7=1 ι=l /

If, on the other hand, there is an n > 0, a point x e 0xn and a value
of k, which we assume to be k = 1, such that s/\x is μ-summable, let
x c denote either xn if J / I X is μ-summable or, otherwise, the closest
point to the origin in 0xn with the property that the closed segment
from xc to xl contains a μ-cluster point for $f\x . In the second case
there is a positive integer q0 and disjoint atoms B^, . . . , B® e S/\XH ,
which are disjoint from those chosen at any previous stage, such that
if

ι = l

then 3;̂  G 0x£ and, in addition, 3;̂  < x] if Λ^ Λ is not μ-summable.
In the first case, when sf\x is μ-summable, define yo = xc = xn and

n

take Bf to be the empty set for each / so that the equation above
remains valid. Then choose x e 0xc such that sf\x is μ-summable
and ^Q E Ox1, and notice that the set Σi of all sums of measures of
elements of s/\x is closed and disjoint from Ox1.

Now, if ^2y0 is not μ-summable, then there is a positive integer q\

and disjoint atoms B\, . . . , B\ e s/2y0, which are disjoint from those

chosen at any previous stage, such that

and y\ < y^/l. This process can now be repeated as many times as
possible. At the mth stage, m > 1, we have a positive integer qm and
disjoint atoms BΨ, . . . , B™ e s^v > which are disjoint from those
chosen at any previous stage, such that

i = l
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and yli < y^_ 1/2. If this process can be repeated indefinitely then
the ym form a sequence that, by construction, converges to some
point s\ e {0} U Ox1. Next we claim that the restriction of Rμ to
Ox1 is dense in Ox1. In fact, every point s e Ox1 is the limit of a
sequence {s^} in (0, a] where each s^ is the sum of four elements:
sk\ £ {0} U Σ i , Ski € Ciχ, ^ 3 G RM and 5^4, which is either 0
or is in the restriction of R^ to Ox1. But fyi —• 0 and ^ 2 —• 0 as
fc -* ex), and, by considering a subsequence if necessary, 5̂ 3 converges
to some Sx e i?#, since this last set is closed by Liapunov's theorem.
Notice that SN G {0} U Ox1, and then s^ + s^ is arbitrarily close to
s for k large enough. This proves the claim and then, by Theorem
1, the restriction of Rμ to Ox1 contains Ox1. It follows that S\ =
μ{E\) where E\ e Jt is disjoint from any of the atoms chosen above.
Therefore,

If the process described above cannot be repeated indefinitely, then
there is an m > 0 such that, ^iym is //-summable. Then the set Σ 2 of
all sums of elements of srfιv is closed, and an argument like the one
above applied to y^ and y^ shows that ym = μ(Eχ) + μ{E2), where
Eι and £"2 are disjoint from each other and from any previously
chosen atoms. In this case

n Pi

m <lm

7 = 1 ι = l

= μ

7=1 i = l

UlMi
^ = 1 i=l

This completes the proof in the two-dimensional case.
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The same proof is valid in the general case with the following
changes. Let Hkx denote the hyperplane of codimension one con-
sisting of all points of the form xk + Σ 7 ^

 aJeJ > aJ'^ ^ > a n c * ^ e t ^kx
denote now the closed convex hull of {0} U (H^ n (0, x]). Then the
segment from xc to JCJ above is replaced with the set of all points in
H\x that are in the closure of C\x . With these changes the previous
proof is valid until the definition of yo. The ym are also defined as
above, if sfky is not μ-summable for each k > 2, but the Bψ are

chosen from |jf=2^ky _ a n ( i s o that yj^ < y%ι_ι/2 for k > 2. If the
ym form an infinite sequence that converges to a point s\ e {OjuOx1,
the previous proof is still valid. Otherwise, one or more of the $fky

become μ-summable along the way. It should be clear how the com-
ponents of ym that do not become zero are in Rμ and how this can
be done using sets disjoint from all others. D

It is not possible to assert that Rμ contains [0, a], for if μ is purely
atomic and the measures of its atoms are the points with positive
rational coordinates in (0, 1) then Rμ does not contain any point on
the coordinate axes except the origin.

REFERENCES

[1] A. A. Liapunov, Sur les fonctions-vecteurs completement additives, Izv. Akad.
Nauk SSSR, Ser. Mat., 8 (1940), 465-478.

[2] C. Olech, On the range of an unbounded vector-valued measure, Math. Systems
Theory, 2(1968), 251-256.

Received December 3, 1990 and in revised form March 12, 1991.

UNIVERSITY OF MASSACHUSETTS

LOWELL, MA 01854






