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QUADRATIC CENTRAL POLYNOMIALS
WITH DERIVATION AND INVOLUTION

CHARLES LANSKI

The main result of this paper shows that if R is a prime ring with
involution and with derivation D, then if p(x, y) = c\xyD+CιXDy +
c$yxD + c*yDx is central for all (skew-) symmetric elements of R,
then R must embed in Mι(F), with two explicit exceptions. As a
consequence of the special case when x = y, one obtains generaliza-
tions of existing results about (skew-) centralizing derivations of the
(skew-) symmetric elements.

Introduction. The motivation for this paper lies in an attempt to
classify the minimal homogeneous identities with derivation which
hold for the (skew-) symmetric elements in an ideal of a prime ring
R with involution. As a consequence of [11], there are two specific
types of such identities f(xd, yh) of degree two if R does not satisfy
a polynomial identity and chari? Φ 2, and no such identity can be
of the form /(JC, yh). The situation when either chari? = 2 or R
is a PI ring, and about other degree two homogeneous identities not
of these forms, remains to be studied. In this paper we investigate
identities of the form p(x,y) = C\xyD + c2x

Dy + c^yxD + c^yDx, and
more generally show that p(x9y) cannot be a central polynomial for
the (skew-) symmetric elements except in two specific cases, or when
R embeds in M2(F). The results in [11] are not applicable here since
now the same variable appears both with and without a derivation
applied.

Throughout the paper, R will denote a prime ring with center Z ,
extended centroid C, and Martindale quotient ring Q [15]. Hence-
forth, we shall assume that R has an involution, *, and for any ideal
/ of R we set T(I) = {r + r*|r e /}, S(I) = {r e I\r* = r}, and
K(I) = {r - r*\r e 1}. It is easy to to show that * extends to C [16].
We say that * is of the first kind if C = C Π S, and is of the second
kind otherwise. In general, the latter case is easy to deal with. For D
a nonzero derivation of R, it is easy to check that D extends uniquely
to a derivation of Q, so restricts to a derivation of the central closure
RC+C of R (see [8]). We say that D is inner if its extension to Q is
the inner derivation aά(A)(x) = xA - Ax, for AeQ, and otherwise
call D outer.
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Although our main result is for a two variable quadratic expres-
sion p(x, y) as above, we actually obtain a more general theorem for
central quadratic identities in n variables, with a single derivation
applied. Specifically, consider the expression

p{xx ,...9xn)= ] Γ aijxi

 lJXj + bijXiXj lJ

for aij, bfj e C, and Djj a derivation of R for each {/, j]. We
call p(x\, ... 9 xn) a quadratic central {skew-) trace identity for a non-
zero ideal / of R, if p(rx, . . . , rn) e C for every (r\, . . . , rn) G
WX(I) x x Wn(I), where FP (7) = T{I) or ^ ( 7 ) = K(I). Any such
identity decomposes into a sum of similar ones, each homogeneous in
its variables. For example, taking JC, Φ Xj and x^ = 0 for k Φ i, j
yields the central identity atjxfxj + bijXixf + aμx^Xi + bμXjxf on
Wi(I) x **)(/), where D = Dij . Similarly setting Xj = 0 for all j Φ i
gives the central identity auxfxi + bnXiX? on Wi(I). Consequently,
it will suffice to consider these two special cases.

The special case when p(x) = cxxD + zxDx is central generalizes
the notion of centralizing and skew-centralizing derivations. A deriva-
tion D is centralizing when xxD - xDx e C and is skew-centralizing
when xxD + xDx e C. A result of Posner [17] shows that if D is
centralizing for all x e R, then R is commutative, and by [14], if
x is restricted to be (skew-) symmetric, then R satisfies the standard
identity S4 when char R Φ 2. When D is skew-centralizing on R,
then again R is commutative [4], and R satisfies S4 if D is skew-
centralizing for all (skew-) symmetric elements [14], An extension in
the centralizing case was obtained in [10] by restricting x to be a
(skew-) symmetric element in an ideal of R. These will all clearly be
included in our result here as the special case when c2 = z2 in p(x),
and both x and y are (skew-) symmetric.

The proofs of our results will use the theory of generalized ^differen-
tial identities [8] to show that D must be inner, and to reduce to
matrices. The value of this reduction is to make the required com-
putations reasonably straightforward in nature, although they remain
considerable. In addition, we need the noninvolution versions of the
theorems from [12].

Preliminaries. Before getting to our main results, it will be useful
to make a few preliminary remarks concerning rings with involution.
These are implicit in the standard literature, but we state them as lem-
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mas for convenience of reference. Recall that R satisfies the standard
identity S4 exactly when R embeds in M2(F), for F a field.

LEMMA 1. Let A be the additive subgroup of R generated by {t2\t e
T}, and let B be the subgroup generated by {k2\k e K}. If A c Z or
if B c Z , then R satisfies S4. When R is a simple ring, either A or
B generates R as a ring unless either char Rφ2 and dimz R < 4,
or char R = 2 and dimz R < 36.

Proof. If either A or B is central, then i? satisfies Sβ by [1; Theo-
rem 1, p. 63]. Thus RC = RZ~ι = ̂ ( Z a S ) - 1 is a simple ring satisfy-
ing 5$ [5; Theorem 2, p. 57] with its A, or B, still central, so we can
replace R with i?C. Should i? not satisfy S 4 , then i? = M3(Z) or
i? is a division algebra with dim z R = 9. But in the first case, neither
the square of e\2 + e ^ n o r °f 1̂2 — 1̂2 ^s central, and in the second
there are no extension fields of degree two over Z . Consequently, R
must satisfy S4.

Suppose that R is a simple ring. If char R ψ 2, then unless
d im z R < 4, by using results in [2; Chapter 1 and Chapter 2] it follows
that A = T since 4̂ is a Jordan ideal of T, that T c B, and that
!Γ generates R as a ring. When char R = 2, T = K, and lineariz-
ing shows that [Γ, Γ] c ^ . Now unless d im z R < 36, then [Γ, Γ]
generates i? [13; Theorem 25, p. 129].

The next lemma will serve to eliminate the case of involutions of
the second kind. The result is essentially [18; Theorem 7, p. 473], but
since it is easy, crucial in what follows, and is required for ideals, we
provide an argument.

LEMMA 2. Assume that * is of the second kind, and let ρ{x\, . . . , xn)
e Q * C{Xi}, the free product over C of Q and the free algebra over
C, be multilinear and homogeneous. If p{t\, . . . , tn) = 0 for all t\ G
Wi(I), where W^I) = T(I) or W^I) = K{I) for I a nonzero ideal of
R, then there is a nonzero ideal J of R so that p(x\, . . . , xn) is an
identity on J.

Proof. Let c e C satisfy c* Φ c, and let / be a nonzero ideal of
R so that J + cJ + c*J c I [15]. Thus, for y e J, one may write
(c - c*)y = (cy + c*y*) - c*(y + y*), and (c - c*)y = (cy - c*y*) -
c*(y-y*), s o i t fo l lows t h a t / e CT(I)nCK{I). S i n c e p{xx , . . . , x n )
is multilinear and homogeneous, if the substitution of f/ for xt gives
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zero, then so does the substitution of c/ί/ for xim Consequently,
p(x\, . . . , xn) is an identity for / .

As we mentioned, the approach we take will reduce to the situation
where R is a matrix ring over a field. Our next lemma will provide a
useful computation in this case, but before stating it, we recall some
important facts about involutions, and establish some notation. Sup-
pose that R = Mn(C) with involution * of the first kind, so * is the
identity on C. It is well known that * on R is either of transpose type
or is symplectic. In the first case, * is matrix transpose followed by con-
jugation by an invertible diagonal matrix. In particular, (en)* = eή,
and for i Φ j 9 e\j + aeμ e T and ey - aeμ G K for a suitable
choice of a = a(i9 j) E C. When * is symplectic, then n = 2m,
and if B e M2m(C) is written as B = (2?y) for j?y e M2(C), then
B* = (Hij) where /fy = Aάj(Bμ) 9 the classical adjoint. We may
also write B = Σ-δy-Ey > where 2?y is the identity of M2(C) in the
(i> J) position of Mm(M2(C)). The context will make clear whether
Aij refers to the (/, j) entry of A e Mn(C), or to .the (/, j) 2 x 2
block of A = ΣAijEij e M2m(C). In the case of either involution
we will often write ίy = ey + (ey)* and vy = ey — (ey)*.

We come now to our last lemma about involutions.

LEMMA 3. Let R = Mn(C) for n > 2, have an involution * of
the first kind. If W is any of [Γ, T], [T9 K], or [K 9 K], then W
generates R as a ring, and [W, W] also generates R unless char R =
2* is symplectic, and n = 4.

Proof. As above, set ίy = ey + (ey)* and vy = ^y - (^y)*. If
* is of transpose type, then it is easy to see that [T 9 K] = Σ C ί y
for iφ j 9 and that the other sets contain X) Cvy . Thus for any W,
[W, fP] = Σ ^^0 ' a n c * s o clearly generates R. When * is symplectic,
by using ί, , ^ 0 and v// ^ 0, it is easy to see that for {/, j} e G =
{{i ,j}\{i, j} φ{2k-l9 2k}}, all CUj are contained in [T,K], and
that the other sets contain all Cwy. It is straightforward to see that
{Ctjj\{i9 j} e G} and {Cvy|{z, j} e G} each generate 7?, proving
that W does as well. Furthermore, if {/, j}9 {j 9 k} e G for /, 7,
k distinct, then [vy, v^] = [ίy, ί;fc] = vik , and it follows that when
n > 4, [W9W] generates i?. Finally, if n = 4 and chari? ^ 2,
then one checks that in all cases [W, FT] = AT, so generates R.

The reduction to matrices. We discuss in some detail how one uses
the theory from [8] to reduce considerations about identities with



QUADRATIC CENTRAL POLYNOMIALS 115

derivation to matrix rings. The first main step is to show that the
derivation D is inner, and is accomplished by citing [8; Theorem 7,
p. 783]. For the convenience of the reader, we give a very special state-
ment of the result in the form required here. Consider the An non-
commuting indeterminates X\, . . . , xn , x\, . . . , x*, xf, . . . , (x£)D

over C, for D a derivation of R. A nonzero polynomial h{x\, . . . ,xn)
over C in these An indeterminates is called a G* -DI for a nonzero
ideal / of R if h(r{, . . . , rn) = 0 for all r, e l . Call h(x{, . . . , xn)
multilinear, if it is both homogeneous and multilinear in its subscripts,
or equivalently, if each of its monomials contains exactly one of x z,
x*, xf, or (x*)D for each i < n. In this case, each monomial
M of h(x\, . . . , xn) has an exponent sequence (E\, . . . 9 En), where
Ei = D if xf, or (x*)D appears in M and Eι = 1 if xt or x*
appears in M. The sum of all monomials of h(x\, . . . , xn) having
this same exponent sequence, but with all occurrences of D deleted,
is denoted h^E m.,ε ) \ that is> h(El9...,ε ) is the sum of all monomi-
als with exponent sequence (E\, ... , En)9 but with any xf replaced
with xι and any (x*)D replaced with x*. We now state the form of
[8; Theorem 7, p. 783] which we require.

THEOREM A. Let D bean outer derivation of R and h(x\, . . . , xn)
a nonzero multilinear G*-DI for an ideal I of R. If E = (E\, . . . 9En)
is an exponent sequence for any monomial of h{x\, . . . , xn) contain-
ing a maximal number of occurrences of D among all such sequences,
then hβ is a nonzero ^-polynomial identity for R.

Applying Theorem A will tell us that D is inner or that R satisfies
a certain *-PI. Our next lemma shows that the particular *-PI which
will arise, forces R to satisfy S4.

LEMMA 4. If cxy + zyx e C for all (x, y) e Wx x W2, where
c, z eC and each Wf is either T(R) or K(R), then c = z = 0 or
R satisfies S4.

Proof. Assume that c ^ O o r z ^ O , and observe that f(x, y, w) =
[cxy + zyx ,w] is a *-identity for R, so by Amitsur's result [1; The-
orem 1, p. 63], R must satisfy S$. If * is of the second kind, then
Lemma 2 implies that f{x 9y,w) is an identity for any ideal of R.
But R is a prime ring, so the ideal is as well, and is commutative since
f(x, y9w) is of degree three. Thus R is commutative, proving the
lemma. We may now assume that * is of the first kind, and since
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/ ( x , y,w) is multilinear, it remains an identity on the appropriate
subsets of RC = RZ~ι, and of RC ® F = Mn(F) for F a splitting
field of RC. As we have seen, R satisfies 56, so Mn(F) does as
well, forcing n < 3. Consequently, we are finished unless n — 3.

We may now assume that R — M$(C) and * is of the first kind, so
* must be of transpose type because R is of odd degree over C. If
Wχ = T and W2 = K, take x = e\2 + <^2i > 7 = 2̂3 - ^32 > and w =
£33. Then /(JC, y, w) = 0 yields c^π + zabe^γ = 0, contradicting
c ^ 0 or z ^ 0. When Ŵ  = K and ^ 2 = T, interchanging the
choices of x and y gives the same contradiction. Hence, we may
assume that W\ — W2. If c + z Φ 0, then setting x — y yields
[c + z)x 2 G C, so x 2 G C for all x G T, or all x eK, and applying
Lemma 1 contradicts R = M 3 (C). Finally, should c + z = 0 we have
xy-yx eC for all x , y G Γ, or all x , y e l , contradicting Lemma
3. Therefore, either c = z = 0, or R satisfies £4, proving the lemma.

We can now see how to use Theorem A and Lemma 4 to make our
first major reduction: the derivations appearing in a quadratic central
(skew-) trace identity must be inner.

LEMMA 5. For D a derivation of R and c\ G C, let p(x, y) =
C\xyD + c<ιxDy + c^yxD + c$yDx, and if I is a nonzero ideal of R set
Wi = T{I) or Wt = K{I) for each of i = 1,2. Then p(x, y) G C

for all (x, y) e Wx x W2 implies that either D = d(A) for AeQ, R
satisfies S4, or all C{ = 0.

Proof. The expression f(x, y, x3) = [p(x, y), x3] is an identity on
Wί x W2 xR and gives rise to a multilinear G*—DI for / . Specifically,
in / ( # , y, X3), iϊ Wι = T(I) replace x with x\ + x\ and x^ with
xf + (x*)2*, and if Wλ = K(I) replace x with xλ - x* and xD

with xf - ( x p ^ . Make corresponding substitutions for y and yD

using x2 , x2 , xf , and (x^)^ . It is clear that f(xχ, x 2 , X3) is a
multilinear G* — Z)/, and that each of its monomials contains exactly
one indeterminate with exponent D. Assume that D is an outer
derivation and apply Theorem A to the exponent sequences (D, 1, 1)
and (1,2), 1) to obtain the *-PΓs /φ,i, i) and /(i,/),i) for R. One
of these *-PΓs is not zero if some C\ Φ 0. In either case we get a
nonzero identity [cXY+zYX, x3] for (X, Y, x3) e Wι(R)xW2(R)x
R, so cXY + zYX G C on Wx x W2, which forces i? to satisfy 5 4

by Lemma 4.
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In our main results, we apply Lemma 5 to conclude that D is inner,
and so our quadratic central identity will be a *-generalized polynomial
identity on /. This fact will enable us to assume that I = R = Soc(2?)
is a simple ring with eRe = eC for any primitive idempotent e e R.
Our last lemma shows that in this situation it suffices to assume that
R = Mn(C). The proof was suggested by the referee and replaces
arguments originally given in each of our first three theorems to follow.

LEMMA 6. Let q(x) = cxxD+zxDx and p(x, y) = c\xyD+c2x
Dy+

D+c^yDx be nonzero polynomials over C. Assume that whenever
q(x) or p(x, y) is a central {skew-) trace identity on Mn(C) with in-
volution of the first kind, n > 4 and D an inner derivation of Mn(C),
then D = 0. Let R = Soc(i?) have involution of the first kind, dime R
infinite, and eRe = Ce for each primitive idempotent e eR. If q{x)
or p(x, y) is a central {skew-) trace identity for R, and if D = ad ̂ 4
for AeQ, then D = 0.

Proof. The assumptions on R imply that any r e R has finite rank,
that fRf = Mn{C) for any idempotent / e R of rank n, and since
* is of the first kind, that for any ri, ... , rk eR there is a symmetric
idempotent e e R of arbitrary large rank satisfying r\, ... , rk e eRe
[6; Theorem 4, p. 89]. Also, it is an easy consequence of the definition
of Q that for e eR an idempotent, eQe = Q(eRe) = eRe.

It will be clear that our argument is the same for q{x) or for
p(x,y), so for simplicity we assume that q(x) is a central identity
for x e W(R), where W = T or W = K. Using D = ad(^), write
q(x) = q{χ 9 A). Let e e R be any symmetric idempotent with rank
e > 4, so that eRe = Mn(C) and n > 4. Now for x e W(eRe),
q(x, eAe) = eq(x, A)e e eCe, so qχ(x) = cxxE + cxEx is central
on W(eRe) where E = &d(eAe). By assumption, E = 0, forcing
eAe = zee for ze e C. Similarly, if / e R is a symmetric idempo-
tent with rank / > 4, then fAf = Zff for Zf eC. As we observed
above, there is a symmetric idempotent g e R with e, / e gRg,
and again gAg = zgg for zg e C. But zge = zgeg = e(zgg)e =
eg Age = eAe = zee, so zg = ze, and similarly zg = Zf showing that
eAe = zAe for z^ € C independent of e e R with rank e > 4. To
see that this implies that A e C, let r G i? and choose a symmetric
idempotent eGi? with rank e > 4 so that r, r4 , 4̂r e eRe. We
note that since D = ad(̂ 4) and R = Soc(i?), it is indeed the case that
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rA, Ar eR [8; p. 766 and Lemma 7, p. 779]. But now,

Ar = eAr = eAer = zAer = zAr = rzA

= reAe = rAe = r 4 .

Therefore, A centralizes R, forcing AeC, and so, D = 0.

Main results. We begin this section by considering a quadratic cen-
tral identity in one variable. It is a *-version of a generalization of
Posner's theorem [17; Theorem, p. 1097], of [14], and of [10; Theorem
3, p. 284]. One must expect the exception in the next theorem that
R can satisfy S4, since counterexamples exist even for centralizing
derivations on T or K [10; p. 283]. Also, our arguments rely on the
noninvolution version of our theorems from [12]. For convenience,
we state next [12; Theorem 3] for ideals in the form we need.

THEOREM B. If I is a nonzero ideal of Ry D is a derivation of R,
and p(x9 y) = c\xyD + cιxDy + c^yxD + c^yDx e C for all x, y e I,
where cieC, then either D = 0, all C[ = 0, or R satisfies £4.

THEOREM 1. Let R be a prime ring, I a nonzero ideal of Rf and D
a nonzero derivation of R. If c, z eC so that p(x) = cxxD + zxDx e
C for all x e T{I),for all x e K(I), then either c = z = 0, or R
satisfies S4.

Proof. Assume throughout that R does not satisfy S4, and that not
both c and z are zero. Since both T{I) and K(I) are additive, we
can linearize p(x) to g(x, y) = c(xyD + yxD) + z(xDy + yDx), and
apply Lemma 5 to see that D = ad(^4) for AeQ.

Observe that f(x,y,w) = [g(x, y), w] is now a nonzero multi-
linear GPI on T(I), or on K(I). If * is of the second kind, then
by Lemma 2, f(x 9y9w) is an identity for a nonzero ideal / of R,
and so g(x, 3;) e C for all x, y e J. Applying Theorem B gives the
contradiction that R satisfies S4. Hence, a = a* for all a e C, so
* naturally extends to RC ® F for any extension field of C. We use
this observation to reduce to matrices over a field.

The existence of f(x,y,w) means that R satisfies a GPI [8;
Theorem 7, p. 783], so by Martindale's theorem [15; Theorem 3, p.
579] H = Soc(RC) φ 0. For each h e H there is a e C with
ah e I [9; Theorem 3, p. 245], so if t = h + A* e T(H), then
at = ah + ah* = ah + (ah)* e T(I). Thus, T(H) c CT(I), and
similarly, K(H) c CK{I). Now T(H ® F) = T(H) ® F, from
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which we may conclude that g(x, y) e F for x, y e T(H ® F)
(or # ( / / ® i7)). Because p(x) is a homogeneous quadratic expres-
sion in x, it is straightforward to see that p{x) € F for x e T(H®F)
(or ΛΓ(// ® i 7 ) ) . Note that D is naturally a derivation of H ® i 7 by
[8; p. 766 and Lemma 7, p. 779], since HA + AH c H. Also, if
we choose i 7 to be an algebraic closure of C, then for any primitive
idempotent e eH<g)F, e(H®F)e = e F . Our argument so far shows
that we may reduce to the case that I = R = Soc(7?) is a simple ring
with eRe = eC for any primitive idempotent e e R, and a = a* for
all a e C. It follows from Lemma 6 that to finish the proof it suffices
to assume that R = Mn(C).

Since * is the identity on C, as we indicated before, * on R is either
of transpose type or is symplectic. Assume the former and recall that
for / Φ j , βjj + aβji is in either T or K for a suitable choice of
a e C. Now D = ad(^4), so we have

(1) p(x) = ex2A + (z - c)xAx - z^4x2.

The off-diagonal entries of each evaluation of p(x) must be zero, so
for /, j , and A: distinct, the (/, k) and (fc, /) entries of/>(ey + αe/, )
are zero. These are c ^ and z ^ z , and c Φ 0 or z ^ 0, so ^ = 0
whenever / Φ k. If c = z, then ^ " ^ ( x ) = x2A - Ax2, so letting
x = ey + aeμ + eik + beki, and computing the (k, j) entry of c~ιp(x)
yields ^477 = ^4^, since A^j = 0. This shows that A e C and gives
the contradiction D = 0. If c ^ z , then using the fact that A is
diagonal shows that pfaj + aeμ) = a(c - z)(Au - Ajj)(ea - βjj) e C.
But n > 2, so it follows again that An = Ajj, and D = 0 results.

Next, we may assume that * is symplectic. Then n = 2m, and
each B e M2m(C) may be written in 2 x 2 block form. We proceed
much as in the case of transpose type, assuming that p(x) e C for
x G T. The case x e K has an argument which is virtually the
same, only requiring some changes from " + " to " - " . Begin by setting
x = En = e2i-ui-\ +e2i2i, and use p{x)Ekk = Ekkp(x) = 0 for
k > 2 to see that in block form, A has nonzero entries only in its
2 x 2 diagonal blocks.

Suppose first that c = z, so that p(x) = x2A - Ax2. The off-
diagonal blocks of p(x) are zero, so considering the (3,1) entry
of p{e\\ + eγi + e\4 - e^) shows A2\ = 0, since we know that A^\
= 0, where the subscripts refer to the entries of A and not its
2 x 2 blocks. We also get Aγ2 = 0 by looking at the (3, 2) entry of
p(e\\ + e22 + e24 + en). Interchanging 1 with 3 and 2 with 4 in
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these computations shows that A43 = ^34 = 0, and similar com-
putation when n > 4 will prove that A is a diagonal matrix. But
now, since p{x) is commutation of x2 with a diagonal matrix, if x2

has a nonzero entry in the (/, j) position, then An = Ajj. Using
x = t + t* for t = en + e 1 3 + e 1 4 + 2̂3 gives An = A12 = A33 = A44,
and if n > 4 we can similarly show that A is scalar, so D = 0.

We may now assume that cφ z. Note that if x 2 = 0, then /?(.*) =
(z - c)xAx e C . For x = 1̂3 + £42, one obtains ^34 = A2\ = 0,
and for x = e24 + £31 we get ^12 = ^43 = 0. Thus, in its first two
2 x 2 blocks, A is diagonal. Now x = β\3 + £14 + £42 — £32 > yields
^33 = ^44, and p(^3i+^32+^24-^14) Ξ C gives ^ n = ^22 Next, take
x = ^11+^22+^13 + ̂ 42 and use p(x) as given in (1). Since p(x) e C,
its (1, 3) entry is zero, resulting in cAn = cA^, and considering the
(3, 1) entry of p(β\ 1+^22 + ̂ 31 +^24) shows that zAn =zA33. Since
not both c and z are zero, we have An = A33, and A is scalar in
its first two 2 x 2 blocks. When n > 4, the computations above with
all subscripts increased by two, repeated as necessary, will show that
A is scalar, finishing the proof with the contradiction that D — 0.

Our next result considers the two variable identity p(x,y) = C\xyD+
c>ιxDy + c3yxD + c$yDx. It is a linearized version of Theorem 1, and
shows that such a p(x, y) can be central for all x9 y e T(I), or
in K(I), only in certain special cases. It turns out that this result
is needed to handle the mixed case when one variable is replaced
by an element of T(I), and the other by an element of K(I). As
expected from Theorem 1, if R satisfies 54, then p(x9y) can be
central. Interestingly, there are two other exceptions in the linear case
which we now indicate.

EXAMPLE 1. Let C be a field with char C = 2, and let R = M4(C)
have symplectic involution. Then [[Γ, T],[T,T]] c C, so for
x, y e T and D = ad(Λ) for A e [T, Γ] , [x, y]D = xyD + xDy +
yxD + yDx e C.

EXAMPLE 2. Let C be a field with char C = 3, and let R =
M$(C) with transpose as involution. If A e R is a symmetric matrix
whose trace is zero, then by a tedious but straightfoward computation,
xyD - yxD - xDy + yDx = 0 for all x, y e K.

THEOREM 2. Let R be a prime ring, I a nonzero ideal of R, and
D a nonzero derivation of R. If p{x, y) = C\xyD + c2x

Dy + c$yxD +
c4y

Dx e C for all x, y e T(I), or all x, y e K(I), where a e C,
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then if F is the algebraic closure of C, one of the following holds:

(i) all a = 0;
(ii) R satisfies S4;

(iii) char i? = 2, R embeds in M$(F) with symplectic involution,
and D = ad(Λ) for A e [T(RQ, T(RQ] or

(iv) char R = 3, C\ = —C2 = —C3 = C4, i? embeds in M$(F),

p(χ,y) = 0 /or all x, y e K(M3(F)), and on M3(F), D = aά(A)
^or 4 α symmetric matrix with zero trace.

Proof. Assume throughout that (i) and (ii) fail to hold. Apply
Lemma 5 to conclude that D = &d(A) for A e Q. Next special-
izing to x = y results in (c\ + c-$)xxD + (C2 + c^)xDx € C, so by
Theorem 1 we must conclude that c\ + c$ = cι + C4 = 0. Thus
p(x 9 y) = c(xyD - yxD) + z{xDy - yDx). Should * be of the sec-
ond kind, then by Lemma 2 there is a nonzero ideal / of R so that
p(x, y) G C for all x, y e J. It follows directly from Theorem B
that all c\ = 0 or R satisfies S4. This shows that we may henceforth
assume that a* = a for all aeC.

Our immediate goal is to handle the special case when c = z, and
as above there is no loss of generality in assuming that p(x,y) =
xyD-yxD + xDy-yDx = [x,y]D. Let W be either [T(I)9 T(I)] or
[K(I)9K(I)] as appropriate, so that WD c C and [W9 W]D = 0.
Now [W, W] c K and is invariant under commutation by K, so if
R does not satisfy a polynomial identity then the subring generated by
[W 9 W] contains a nonzero ideal of R by [7; Theorem A, p. 1756]
when char R φ 2, and by [13, Corollary 32, p. 132] when char R = 2.
This would result in D = 0, so R must satisfy a polynomial identity.
But now RC = RZ~ι is a simple ring satisfying the same identity
[5; Theorem 2, p. 57], as is RC ® F = Mn(F). Furthermore, since *
is of the first kind, p{x, y) e F holds for all x, y e T(Mn(F)), or
in K(Mn(F)), so as above [W\ W]D = 0, but we may now assume
that R is a matrix ring. Applying Lemma 3 gives D = 0, unless
char R = 2, n = 4, and * is symplectic. In this latter case, it is
straightforward to calculate from p(x9y) = [x, y]D G F, that A e
[T(RC), T(RC)]. Therefore, either D = 0 or condition (iii) of the
theorem holds, finishing the proof when c = z .

We may henceforth assume that c Φ z, and since Z> = ad(^4) we
may write

(2) p(x, y) = c[x, y μ + (z - c)(xAy - Mx) - z^[x, y].
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Also, recall that C = CπS. Because p(x, y) is a multilinear expres-
sion and α* = a for all a e C, as in the proof of Theorem 1, we
can extend our hypothesis to Γ(Soc RC ® F) = T{H), or to K(H),
where F is an algebraic closure of C. Thus, we can assume that
/ = R = Soc(i?) is a simple ring and eRe = eC for e any primitive
idempotent in R. Note also that as in Theorem 1, D is a derivation
of H, and so of R as just described.

Using Lemma 6, we may assume that R = Mn{C), n > 2, and
C = Cf)S. As in Theorem 1, the involution is either of transpose type
or is symplectic. Our calculations at this point will go through several
cases depending on the type of involution, the characteristic of R, and
whether the theorem holds for T or for K. We begin with the case
that the theorem holds for T. If either * is symplectic, or char R Φ 2
and * is of transpose type, then the identity matrix /„ e Γ, and from
(2), p(In, y) = (z—c)[A, y]. Consequently, [A, T] c C, from which
it follows that [A, [Γ, T]] = 0, so Lemma 3 forces A e C and so
D = 0. Now T = K when char R = 2, so to complete the proof it
suffices to assume that the theorem holds for K and that either * is
symplectic and char R φ 2, or that * is of transpose type.

Next we consider the case that the theorem holds for K and that
char R Φ 2, with * symplectic, Write A = ΣAijEij in 2 x 2 block
form, set U = en -e22 £ M2(C), and note that UEu G K. Now from
(2), p(UEii9 UEjj) = (z - c^UAijUEij - UAjiUEji) e C implies
that Aij = 0 for iφ j , and then considering the coefficient of Etj in
p(UEu, YEij - Y*Eji) forces

(3) cUYAjj + (z - c)UAuY - ZAHUY = 0 for all Y e M2(C).

If Y = β\\, then the (1,2) entry of equation (3) is c(Ajj)\2 = 0,
and the (1,1) entry is c((Ajj)n - (Λ/)n) = 0. If Y = e22, then
looking at the (2,1) and (2, 2) entries show c(Ajj)2χ = 0, and
c({Aa)22 - (Ajj)22) = 0. One can replace c with z in these four
relations by first considering the coefficient of Eμ instead of E^ in
p{UEu, YEij - Y*Eμ), and then looking at the (1,1) and (2,1)
entries when Y* — en , and the (2, 2) and (1,2) entries when Y* =
e22. Since not both c and z are zero, we may conclude that Ajj is
a diagonal matrix which is the diagonal of An . Hence, interchanging
/ and j everywhere in the argument just given shows that An — Ajj
is a diagonal matrix. It follows that U commutes with An, so (3)
reduces to cU(YAn—AaY) = 0, and so An is scalar if c Φ 0. Finally,
if c = 0, then the coefficient of Eμ in p{UEii9 YEij - Y*Eμ) is
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zero, and so z(Y*Au - AaY*)U = 0, and again An is scalar. Since
An = Ajj, we obtain the contradiction AeC, and D = 0.

The last case we need consider is when * is of transpose type on R
and the theorem holds for K. First assume that R = Mn(C) with
n > 3, and recall that vy = ey - αe,-,- e AT, for a suitable aeC. For
distinct subscripts, p(vy, υuw) = (z - c)(VijAvuw - υuwAυij) e C,
and it follows that ^47W = 0, so A is diagonal. The (u, w) entry of
p(v/iι, Viw) yields cAww + (z - c)i4, , - z^MM = 0. Replacing / with j
in this last computation, and comparing the two equations results in
(z - c)(An - Ajj) = 0. Consequently, A is scalar, and again D = 0.

Finally, we may assume that R = M${C). Let a C-basis of K be
t>i2 = *i2 - 0*2i > ̂ 13 = *i3 - **3i > and ^ 3 = 2̂3 - bcrιeyι> note
that [^i2, ^23] = ^13 5 and set p(v\2, ^23) = ^ G C. The diagonal
entries of Y must be equal, and these are Y\\ = cA^\ + zbA\$, Y22 =
(z - c)(bA\3 - ^3 ! ) , and Y33 = —cbA\-$ - zA^\, so that Yπ - Γ33 =
(c + z)(^3i + 6^13) = 0 . I f c + z ^ 0 , then ^431 = -bA^, and using
this shows that Y22 = 2Yn = 2Yn. Hence, Y22 = Y\ι = 0 forces
^413 = 0 since c - z φ 0, and now ^31 = 0 follows. Using Yy = 0
for / Φ j , one computes YΊ3 + b~ιY$\ = (c + z)(τ433 - ^4π) = 0.
Thus A\\ = ^33 under our assumption that c + z / 0. Repeating
these computations with other subscripts shows that AeC, and so,
Z> = 0. Specifically, from p(v\2, vι$) e C w e get ^23 = ^32 = 0 and
^22 = ^33, and p(vn, v23) e C yields An = ^ 2 1 = 0.

We may now assume that c + z = 0, so in particular c Φ 0 and
replacing p(x, y) with c~ιp(x, y) enables us to take

p(x ,y) = [x, y]A - 2(xAy - yAx) + A[x, y].

As above, for p(v\2, v2?) = Y G C, Y\\ = Y22 yields ^31 = 6^13,
and similar computations with subscripts permuted show that ^32 =
ba~ιA23, and A2ι = aA\2. Now 3̂ 3 = ^33 - 2^22 + An = 0, so
if char R = 3, A must be a symmetric matrix of trace zero and (iv)
holds, proving the theorem. If char R Φ 3, then combining the last
relation with j?(^i3, ^12)32 = ^(-^33 - ^22 + 2A\\) = 0, shows that
-411 = ^22? and so 7 1 3 = 0 gives ^22 = ^33 as well. To finish the
proof, it suffices to show that A\j = 0 for i Φ j . For example, we
just indicated that ^32 = ba~ιA23y so together with Y\2 = ^432 +
2ba~ιA2i = 0 one obtains ^23 = 0? and then Yλ2 = ^32 = 0. In a
similar way, using suitable permutations of subscripts, one sees that
Aij = 0 and that A is scalar, completing the proof.

Our last major result uses Theorem 2 to complete consideration of
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degree two identities with one derivation by examining the mixed case
when evaluations in p(x, y) are made from both T(I) and K(I). In
this case, unlike in Theorem 2, the only possibilities arise when R
satisfies S 4 , assuming that char R Φ 2. When char R = 2, T(I) =
K(I), and the situation is covered by Theorem 2. If char R φ 2
and R = M2(C) with symplectic involution, then T is central, so
cxDy + zyxD = 0 for D inner and any x G T and y eK, or xDy -
yxD = 0 for any derivation D. When R has transpose involution,
K is commutative so cxyD + zyDx = 0 for x G Γ, y e K and

for A e K.

THEOREM 3. Let R be a prime ring with char Rφ2f I a nonzero
ideal of R, and D a nonzero derivation of R. If p(x,y) = cχxyD +
c2x

Dy + c3yxDc4y
Dx e C for all x e T(I) and all y e K(I) (or

x e K(I) and y e T(I)), then either all Ci = 0 or R satisfies S4.

Proof. The proof follows the outline of Theorem 2. Assume through-
out that some c\ Φ 0 and that R does not satisfy S4. Also, we assume
without loss of generality that x e T(I) and y e K(I), since it will
be clear that the other case follows by a completely parallel argument.
By Lemma 5, D = ad(A) for AeQ.

Now g(x9y9w) is an identity to which we may apply Lemma 2
if * is of the second kind. In this case, for some nonzero ideal / of
R, p(x, y) G C for all x, y e / , and Theorem B forces either all
d = 0, or R to satisfy S4. Therefore, we may henceforth assume
that * is of the first kind. As in our previous results, we can extend
the hypothesis to hold in the ring Soc(RC ® F), and so assume that
I = R = SOC(JR) , and that eRe = Ce for any primitive idempotent
e e R. It suffices to assume that R = Mn(C) by Lemma 6.

We may now assume that R = Mn(C), for n > 2 and since D =
ad(A) for A G R, we re-write p(x,y) to get the expression

(4) (axy + Ciyx)A + (c2 - C\)xAy + (c4 - ci)yAx - A(c2xy + c4yx).

Since char R Φ 2, regardless of the type of *, the identity matrix
/« G Γ, so we may consider p(In, y) = (c\ + C4)[y, A] G C, using
(4). If C1+C4 φ 0, then [K, A] c C, so [[K, K],A] = 0, and
it follows from Lemma 3 that A G C, a contradiction to D Φ 0.
Hence C\ + C4 = 0. At this point we want to prove that C\ Φ 0. If
C\ = 0 = c 4 , then

(5) p(x, y) = c2x
Dy + c3yxD.
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If in addition, c2 = 0> then KTD c C, since some cx Φ 0. But
K is additively generated by its elements of rank two and n > 2, so
in fact KTD = 0. Using Lemma 3 again shows that TD = 0, and
then that D = 0. The same contradiction results from assuming that
C3 = 0, so if C\ = 0, then c2c$ 7̂  0.

Evaluating (5) with xy = yx = 0 yields p(x, y) = C2JC^-C3^^4x G
C . In particular, when * is of transpose type and we take x = en and
y = ejk - bekj for /, 7, A: distinct, then since the (i9k) entry of
p(x,y) is zero, it follows that Atj = 0, and so A is diagonal. Use
(5) to compute

p(eij + aeji, ejk-bekj)

- bekj) + zc3(ejk - bekj)(eij - aeμ) e C,

where z = Ajj-Au . This reduces to zcιeik + zcτ,abeki e C, so shows
that ZC2 = 0, which forces z = 0, and proves that A is scalar. This
contradiction means that when C\ = 0, * must be symplectic.

Set A = ΣPijEij with Pu e M2(C), as in Theorem 2, let x =
En, y = UEjj for JJ = e\\ - 2̂2 € Λf^ίC), and observe that as
in the case above, using (5) gives ciPijUEij - c^UPjiEjj e C, and
so, forces Ptj = 0 when / Φ j . Now computing the (/,./) entry
of p(BEij + B*Ejt, UEu), where 5 e M2(C) is arbitrary, shows
that c^U{BPjj - PaB) = 0. Since c3 ^ 0, and C/ is invertible,
we must have BPjj = PuB, and this forces Pa = Pjj to be scalar.
Consequently, A is scalar and D — 0. We have shown that Ci = 0 is
impossible.

To complete the proof we need to consider two more possibilities,
the first of which is that c2 - C\ = C4 - C3 = 0. In this case, since C\ =
- c 4 ^ 0 , (cιΓ

ιp(x,y) = [[x,y],A]. Thus [[Γ, K]9 A] c C , so Λ

commutes with [[Γ, AT], [Γ, AT]], which generates R by Lemma 3.
This gives the contradiction D = 0, and shows that either c2 - C\ φθ
or c4-c3 = -(cι+c3)φθ.

Using the expression for p(x, y) in (4), suppose that * is of trans-
pose type, let x = en and y = ejk - bekj for /, j , k distinct,
and observe that since the {i9k) and (j, /) entries are zero, one has
(c2 - C\)Aij = {c\ + c3)Aki = 0. The assumption on the c, forces
either A\j = 0 or Aki = 0, and appropriate permutations of the sub-
scripts show that A is a diagonal matrix. But now {eu)D = 0, so
p[en, y) = C\enyD + c^yDen e C. Choosing y = etj - ae^ and com-
puting the (i, j) entry yields ci(Λϊ - ^jj) = 0, so A must be scalar
and D = 0.
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Finally, we may assume that * is symplectic, and as above set A =
ΣPijEij for Pij E Mι{C). Once again, use (4) with x = En and
y — UEjj for / Φ j , and U = e\\ - en £ Af2(C), together with one
of C2 - C\ Φ 0 or Q - c3 ^ 0 to see that Py = 0. It is clear that now
CE//)̂  = 0, so p(Eii9y) = C i E ^ + G L ^ / I . Computing the (z, 7)
2 x 2 block when y = 5 £ / 7 - B*EjΊ, for 5 e M2(C), shows that
2?P/; = p^ jj ? so as we have seen before, Pa = P/7 is a scalar matrix.
Therefore, A is scalar, so D = 0, and this contradiction completes
the proof of the theorem.

Our introductory comments showed that the investigation of a gen-
eral quadratic central (skew-) trace identity reduces to those identities
considered in our three theorems. We end this paper with a general
statement putting those results together.

THEOREM 4. // p(χι ,...,xn) = Σ " 7 = i fly*/ iJxj + bijXiXj lJ is a
nonzero quadratic central {skew-) trace identity for a nonzero ideal I
of R, then either all Dtj = 0, R satisfies S4, char R = 2 and R
embeds in M4(F) with symplectic involution, or char R = 3 and R
embeds in
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