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THE EULER CLASS FOR "PIECEWISE" GROUPS

PETER GREENBERG

The Euler class is a semiconjugacy invariant of a discrete group G
of orientation preserving homeomorphisms of the circle. An element
of the second cohomology group of G with integral coefficients, it
is often difficult to calculate, but even its nonvanishing seems related
to dynamical complexity of G. In this note, we consider a family of
discrete groups ΓH,s(p, Q) of homeomorphisms of the circle, whose
definition generalizes that of piecewise linear homeomorphisms. We
define an invariant with which one can verify the vanishing of the
Euler class in a surprising range of cases. On the other hand, the
vanishing of the invariant, together with a simple geometric condition,
assures the nonvanishing of the Euler class.

The invariant has a simple "operational" definition, but can also be
interpreted as an element of the fundamental group of the classifying
space of a certain pseudogroup. We also apply it to the question of
the existence of elements of finite order in the groups THis(p > Q)
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1. Definitions and results.

1.1. The groups. Let H be a group of analytic, orientation preserv-
ing homeomorphisms of the real line R, and let S be an //-invariant
subset of R. Let p < q be elements of S in the same //-orbit. Let
Sp q denote the closed interval [p, q] with p and q identified as the
basepoint. Define ΓHίS(p, q) to be the group of homeomorphisms g
of Sp q such that there exist s, e S, p = So < < sn = q, so that the
restriction of g to [SΪ, S +i] agrees pointwise with an element hi of
//. Thus, ΓHίS(p, o) is "the group of piecewise-// homeomorphisms
of Sp9q, with breakpoints in *S."

1.2. The invariant. Let N = N(S) denote the normal subgroup of
H generated by all elements which fix some point in S. If p, q G S
are in the same //-orbit, the equivalence class in H/N of an element
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h E H such that h{p) = q depends on p and q only. This equiva-
lence class will be called the manifold class h of the circle Spq.

1.3. A flexibility condition. We say that a pair (H, S) is flexible
if the following condition is satisfied: let a,b,c,deS,a<b,
c < d. Suppose there are g, h e H, with g = h in if/N, such that
g(a) = c, h(b) = d. Then there are Si e S, a = SQ < < sn = b,
and ft e H so that ft(α) = c, #„(&) = </, and ft(^) = ft+i(j, ),
1 < / < n - 1. That is, there is a piecewise-Zf homeomorphism from
[a9b] t o [c,d].

We can now state the main results, staying with the notation estab-
lished above. Suppose that G is a group acting on the circle. By the
rational Euler class of G we mean the rational reduction in H2(G Q)
of the (integral) Euler class.

1.4. THEOREM. If no nonzero power of the manifold class of Sx

pq

can be written as a product of commutators in H/N, then the rational
Euler class ofΓHs(p,q) vanishes.

One can restate the hypothesis; it requires that the manifold class
be of infinite order in the abelianization of H/N.

1.5. COROLLARY. If H/N is abelian and the manifold class is of
infinite order, then the rational Euler class ofΓHS(p,q) vanishes.

A partial converse to 1.4 is the following.

1.6. THEOREM. Suppose that (H, S) is flexible, and that the man-
ifold class ofS^q is null. Then the Euler class is nonzero, and not
divisible in H2(ΓH,s(p, q) Z).

Regarding elements of torsion, we have the following result.

1.7. THEOREM. Suppose there is a g G TH,S{P > θ) and s e [p, q]n
S such that the orbit {gk(s)}jcez has m elements, m < oo. Then the
manifold class of S\q is an mth power in H/N.

1.8. COROLLARY. If the manifold class is not divisible in H/N,

ΓH,S(P 9 q) is torsion free.

Before stating results about divisibility of the integral Euler class
and embeddings of surface groups, let us pause to consider two fami-
lies of examples.
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1.9. Piecewise linear examples. Let A be an additive subgroup
of the real numbers, and let U be a multiplicative subgroup of the
positive real numbers, such that for all a e A, u e U, we have
ua e A. Let H be the group of afϊine transformations of the form
h(x) = ux + a, u e U, a e A, and let S be the //-orbit of 0, that
is A. From ([Grl], 1.13) we extract:

1.10. PROPOSITION, (a) (H9S) is flexible.
(b) H/N = A/(u - 1), the quotient of A by the subgroup generated

by all ua - a, u e U, a e A. If h e H, h(x) = wx + a, the
equivalence class of h in H/N is that of a in A/(u- 1).

For example, take Γ G R , r > 1, and let A = Q[r, r~ι] be the
ring of finite rational Laurent series in r. Let U = {rn, n eZ}. Let
p = 0, # = 1, and consider ΓH ?^(0, 1). The manifold class of SQ {

is the equivalence class of h(x) = x + 1 in ^4/(rn - 1). This class is
0 if r is algebraic and of infinite order if r is transcendental, and the
Euler class of Γ# ^(0, 1) is nonzero or zero accordingly.

Note that the Euler class of Γ# ,^(0, r - 1) is always nonzero.

1.11. Piecewise projective examples. We begin with a slight modifi-
cation of the original construction. Let G be a group of orientation
preserving analytic homeomorphisms of the circle Sx .Let H = G be
the group of homeomorphisms of the universal cover Sι which cover
elements of G. Recall that H is a central extension Z -> ΛΓ -• G,
where the^Z = π ^ 1 is identified as the group of covering transforma-
tions of Sι over S 1 . L e t T denote the positive generator of π ^ 1

(that is Tx>x, xeS1).

Let S be a G-invariant subset of Sι, and S c Sι its inverse image.

The manifold class of S* τ , p e 5 , is simply Γ E ///TV we consider

the group Γ^ -(/?, Γ p ).

In particular we will consider subgroups G of PSL2 R, acting as
usual on Sι = R U {00} by linear fractional transformations. For
example, take G = PSL2 F, F a subfield of R, and let S = F u {00} .
The results of [Gr2] imply:

1.12. PROPOSITION, (a) PSL 2(/Γ,S) is flexible.
(b) PSL2 F/N is the group with one element.

As a consequence, the Euler class of Γ^ -(/?, Tp) is nonvanishing.
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Now set G = PSL 2 Z, and S = Q u {00} the G-orbit of 0. The
group Γ^ ~(p, Tp) can be shown (following a remark of Thurston) to
be isomorphic to the "remarkable group" studied by Etienne Ghys and
Vlad Sergiescu in [GhS]. It turns out ([GhS]) that H, S is flexible,
and that Γ^ ~(p, Tp) has a nonzero Euler class.

The situation changes when we pass to congruence subgroups of
PSL2 Z . Consider G = Γ(Af), the set of matrices congruent to ±7
modulo M e Z , M > 1. It is known (see [Sh], Chap. 1) that T(M)
is a free group. More precisely, a model for K(Γ(M), 1) is a cer-
tain Riemann surface with punctures; Qu{oo} breaks up into a finite
number of Γ(M)-orbits, corresponding to the punctures. A small cir-
cle about a puncture is the conjugacy class in Γ(Af) of an element
fixing a point in the corresponding orbit. If the surface has nonzero
genus, the group is not generated by these stabilizers.

Let S be the union of one or more of these orbits. Since any central
extension of a free group is trivial, H = G x Z, and T corresponds
to (e, 1) further, H/N = G/N x Z, where N denotes the subgroup
of G generated by stabilizers of points in S. Thus if the genus of
G is nonzero, the Euler class of Γ^ ~(p, Tp) is 0. Or, if the genus
of G is zero, but S does not contain at least two of the orbits which
comprise Q U {00}, the Euler class of Γ^ ~(p, Tp) vanishes.

1.13. Divisibility and surface groups. The following rather techni-
cal result will be combined with the Milnor-Wood inequality ([Mi],
[W]) to obtain a result (1.15) on embedding surface groups in the

1.14. PROPOSITION. Suppose that H/N isabelian, that the manifold
class of Si q is nonzero, and that the rational Euler class ofΓHfS(p,<l)
is nonzero. Then the manifold class of S],q is torsion, and its order in
H/N divides the integral Euler class.

Let πg = {aι?, b\, / = 1, . . . , g\n\aι, b{\ = 1) be the fundamental
group of a compact surface of genus g. Etienne Ghys has asked
([Gh3]) for conditions under which πg may be embedded into certain
subgroups of homeomorphisms of the circle.

1.15. COROLLARY. Suppose that H/N isabelian, that the manifold
class of S\q is nonzero, and that there is a homeomorphism f:πg-+
ΓH,S(P > Q) such that the pullback to H2(πg Z) of the Euler class is
nonzero.
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Then the manifold class is torsion, and its order divides a natural
number less than 2g - 1.

Proof. By the assumptions and 1.14, the manifold class is torsion,
and its order divides the Euler class of THis(p, θ) 9 and hence its
order divides the pullback of E in H2(πg;Z). But the Milnor-Wood
inequality asserts that this pullback is at most ±(2g - 2) times the
generator of H2(πg;Z). Consequently, the order of the manifold
class divides some natural number less than 2g - 1.

1.16. EXAMPLE. Consider the piecewise linear example (1.10)
with A = Z [ i ] , neZ, n > 1, and U = {nk}keZ. Then H/N =

Z/n - 1, and the manifold class of SQ X generates. Consequently, for
a homomorphism πt —• TH9S(SQ {) to pull back a nonzero Euler class,
it is necessary that n - 1 divide one of 2, ... , 2g - 2. In particular,
n<2g.

1.17. Organization. In the next section we give proofs of the results
above, save 1.6. In §3 we interpret the manifold class as an element
of the fundamental group of a certain pseudogroup, and prove 1.6.

2. The homomorphism C. After introducing some notation, we
enunciate a Lemma 2.1 and use it to prove various results. Then the
lemma is proved. We continue with the notation already established,
and consider an H, S and p, q eS, p <q.

Let Sι denote the universal cover of S^q9 and let T denote the
positive generator of the group of covering transformations of Slq .
Let fHiS(p,q) denote the group of lifts of elements of THίS(p, Q)
to homeomorphisms of Sι. Choose a lift p of p. Let S denote the
set of lifts of points in S to Sι.

2.1. LEMMA. There is a homomorphism C:fHS-+ H/N such that

(i) C{T) is the manifold class of Sx

pq.

(ii) C ( Λ ) = C(g2) if gι(s) = g2{s), seS.

Proof of I A. Suppose that the rational Euler class of ΓHίS(p, θ) is
nonzero. Then there are at, b\ G ΓHfs(p, Q), i — 1 , . . . , £ , such
that, choosing lifts at ,bieTHfS(p,q), we have Πf=i[«i > bi\ = τm >
mφQ. Applying the homomorphism C of 2.1, we see that the rath
power of the manifold class is a product of commutators.
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Proof of 1.7. Suppose that g eΓHjS(P 9 θ), and that for s e S n
[P>Q]> {gk(s)}kez has cardinality m < oo. Possibly replacing g
with a power of # , there is a lift £ e ΓH,S(P > θ) > and a lift ί e 5 ,
such that j^C?) = Ts. Applying 2.1 (ii), C(g)m is the manifold class

Proof of 1.14. Since the rational Euler class is nonzero, the inte-
gral Euler class is nonzero, and further, not torsion. Consequently,
there is some least m φ 0 such that the rath power of the manifold
class is a product of commutators in H/N. The latter being abelian,
this rath power is zero. Thus, viewed as a homomorphism from
H2(ΓH,S(P , ? ) ; Z ) to Z, the image of the Euler class is contained in
raZ. Thus, the Euler class is divisible by ra. •

We now construct the homomorphism C, and prove Lemma 2.1.
As it happens, the natural domain of C is a certain collection of home-
omorphisms between open subsets of the line. Namely, let g: U —• V
be a homeomorphism between open subsets of the line. Then g e
Γ//)As, and we say g is piecewise-H with breakpoints in S if there
exists a subset X of U Π S, X discrete in U, such that for any
connected component K of U — X, the restriction of g to K agrees
pointwise with an element h,κ of H. We call X the set of breakpoints
of g. The set of homeomorphisms THS is a pseudogroup ([Ha]); it
is closed under restriction to open subsets, taking inverses, and (where
defined) composition.

2.2. LEMMA. Let gEΓHiS with connected domain U. Let X be
the set of breakpoints of g, and let hκ e H denote the restriction of
g to a component K ofU-X. Then the equivalence class of hx in
H/N is independent of the component K.

Proof, We must show that if K, K! are two components of U — X,
then hjt = hκ> in H/N. Since X is discrete in U, we can assume that
K and Kf are adjacent, that is KnΈ1 = seS. Then hκ(s) = hκ<(s),
since g is continuous. Thus hκh~} (s) = s, so that hκh~} e N.

2.3. DEFINITION. Let g e Γ//^-, with connected domain. We de-
note by σ(g) the common value of the hx in H/N.

2.4. LEMMA. Let gi'.Ui -+ Vif i = 1,2, &• e Γ//^, w/ίA Ut

connected. If Vx c f72,

. Left to the reader.
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2.5. LEMMA. Let g\, g2 £ ^H,S with connected domains whose
intersection contains a point s e S. If g\(s) = g2(s), then σ(g\) =

Proof. Restricting to subsets if necessary, we can assume that gι
and g2 have a common range V which contains g\(s) = gι{s). Thus
g\Xg2 is well-defined, and g^ιg2(s) = s. Consequently, the restric-
tion of g^ιg2 to a small interval to the right of s agrees with an
element of N, and so σ(g\) = σ ( ^ )

Proof of 2.1. P ick heH so t h a t h(p) = q. Let U = \JneZh
n[p, q].

Then £/ is a connected open subset of R on which the infinite cyclic
group {A^lkez acts, properly discontinuously.

Choose a lift L: [p, #] —> S 1 , that is, a continuous map such that
the diagram

commutes, and such that L(p) = p. There is a unique homeomor-
phism f:Sx-+U such that fL(x) = x, X E [ P , Ϊ ] 5 and such that
/ o Γ = h o f. Indeed, every X G S 1 can be written uniquely as
TkL(y), for some y e[p, q)j we define f(x) = hk(y).

It now follows that if g e ΓHS(p, q) then fgf~ι eΓHiS. Define
C(s) = σ(fgf-χ). Then C(Γ) = σ{fjf-χ) = h, and 2.5 implies
that C(g) depends only on g(s), s eS.

3. Haefliger structures on the circle. In this section we describe a
general context for the results of this paper. We use the language
of pseudogroups and their classifying spaces as developed by Andre
Haefliger ([Ha]). A result of Dusa McDuff, ([McD]) as presented by
Etienne Ghys and Vlad Sergiescu ([GhS]) is applied to prove 1.6.

Let Γ be a pseudogroup of orientation preserving homeomorphisms
between open subsets of the line. We shall assume:

3.1. Assumption. Every germ in Γ admits an extension to a home-
omorphism of the real line which is in Γ.

We can think of Γ as its space of germs, with the sheaf topology.
Then 3.1 implies that πoΓ inherits the structure of a group from Γ.
The construction of the homomorphism C in §2 proves:
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3.2. PROPOSITION. π0THyS = H/N. Indeed, the function σ of 2.3
gives the isomorphism.

Associated to a pseudogroup Γ is its classifying space BΓ, and
it follows from Assumption 3.1 that π\BT = π 0 Γ . Now, πiBΓ is
identified in the theory of Haefliger ([Ha]) with the set of homotopy
classes of Γ-structures on Sι with a distinguished basepoint. Indeed,
given h e π 0 Γ represented by heΓ, such that for some p eR, q =
h{p)> p, we can construct a Γ-structure on Sι corresponding to h e
TΓQΓ = πiBΓ by "gluing p to q using h " as described below. Hence,
what we defined in 1.2 as the manifold class of Sj, q corresponds, via
3.2, to the element of %\BY which S\ q, with basepoint p ~ q and
its Γ# ̂ -structure, represents.

We now make precise the "gluing" construction referred to above.
Pick a global extension of h in Γ, to a homeomorphism of R which
we will also denote h e Γ (using 3.1). Let U = \JneZh

n[p, q\. This
is a connected open interval in R, on which the infinite cyclic group
Cn = {hk}kez a c t s properly discontinuously. We define Si as U
modulo the action of Q . Then 5^, with basepoint p, is a circle
with Γ-structure corresponding to Λ G πoΓ.

Let T\u denote the pseudogroup Γ restricted to U. The group Q
acts on the space Γ\u on the left and the right, by composition, and
the quotient, denoted Γh , is the sheaf of locally- Γ homeomorphisms
between open subsets of S^ .

Let Γ(5^) be the group of global sections of Γh over S^, such
that composition with the target map gives a homeomorphism of S^ .
Then Γ ( ^ ) is the group of locally-Γ homeomorphisms of S^ . When
Γ = THS, Γ(5^) is precisely the group THS(p, q). We generalize
1.4 as follows.

3.3. PROPOSITION. If no nonzero power of hi is a commutator in
πoΓ, then the rational Euler class of Γ(*S )̂ vanishes.

Proof {Sketch). As in §2, we must define a homomorphism C: T(S\)

—• 7ΓQΓ, where Γ(S^) is the group of homeomorphisms of S^ which

cover elements of Γ ( ^ ) . Having constructed S^ as a quotient of

U = Sι, we see that f (S£) is the subgroup of the group Γ(U) of Γ-
homeomorphisms of U, consisting of elements which commute with
h. Then C is just the composition f (S^) -* Γ(U) -• π 0 Γ. The rest
of the proof is as in §2.
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In order to prove 1.6, we will invoke a theorem of Dusa McDuff
[McD] to provide a homological model of the Eilenberg-Mac Lane
spaces BΓHs(p, θ), when (H, S) is flexible. We begin by recalling
some properties of the free loop space.

3.4. REMARKS ON LX. Suppose that X is a connected and simply
connected space. Let AX denote the space of maps from 5 1 to J ,
without regard to basepoint. The group Homeo+ Sι of orientation
preserving homeomorphisms of Sι acts on AX on the left (compo-
sition with the inverse) and we denote by LX the homotopy quotient
(EHomeo+S 1) XHomeo+s1 ( Λ x ) τ h e n L X i s factorial in X. The
evident map X -• * induces a map LX -> L* = B Homeo+ Sι, and
thus we can pull the Euler class of B Homeo+ Sι back to an element
of H2(LX Z), which we call the Euler class of LX.

3.5. LEMMA. If X is connected and simply connected, the Euler
class of LX is nonzero and not divisible.

Proof. Apply the construction L to the inclusion and retraction of a
point in X. We obtain B Homeo+ Sι -> LX —• B Homeo+ Sι whose
composition is homotopic to the identity, whence the lemma.

3.6. Germ-connectedness and flexibility. In [McD] Dusa McDuff
proved that there is a map / : BΌif^S1 -+ LBT°°, where Diff*" Sι

is the discrete group of orientation preserving diffeomorphisms of the
circle and Γ°° is the pseudogroup of orientation preserving diffeomor-
phisms between open subsets of R, such that / induces an isomor-
phism in homology, and further, such that the pullback by / of the
Euler class of LBT°° is the Euler class of Diff̂  Sι. (The latter from
the construction of / as a quotient of the map between certain circle
bundles). It turns out, following the careful exposition in [GhS], that
her result holds for a wider class of pseudogroups.

3.7. DEFINITION ([Gr 1]). Let Γ be a pseudogroup of orientation
preserving homeomorphisms between open subsets of R. We say
that Γ is germ-connected to the identity if, given germs in Γ, g: a —>
c, h: b -> d with a < b, c < d, there is an s € Γ, whose connected
domain contains both a and b, such that s\a = g, s\b = h.

3.8. REMARK. Evidently, ΓHS is germ-connected to the identity
if and only if H = N and (//, S) is flexible.

Let Γ be a pseudogroup of orientation preserving homeomorphisms
on R. A T-circle is a manifold homeomorphic to Sι, but with charts
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and gluing data from Γ the Γ-structures S^ constructed above are
examples. Not every Γ-structure, in general, is homotopic to a Γ-
circle. However, if Γ is germ-connected to the identity, then any
two Γ-circles are Γ-homeomorphic (in the obvious sense). Thus, the
group Γ(Sι) of Γ-homeomorphisms of a Γ-circle is well defined. The
careful argument in ([GhS], §2) proves:

3.9. PROPOSITION ([GhS], 2.11). Suppose that Γ is a pseudogroup
of homeomorphisms between open subsets of R, and that Γ is germ-
connected to the identity. There is a map BT(SX) —• LBT inducing
isomorphism on homology, and pulling the Euler class of LBT back
to that of the group T(Sι).

We conclude with the proof of 1.6.

Proof of 1.6. Since the manifold class of Sx

q is null, the group
ΓH,S(P> Q) exists and is a subgroup oϊ TJJ,S{P > Q) - It suffices to
show that the Euler class of TNj$(P > Q) *S nonzero and not divisible.
Since (H, S) is flexible, TNys is germ connected to the identity by
3.8 and we are done, by 3.9.
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