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HECKE EIGENFORMS
AND REPRESENTATION NUMBERS
OF ARBITRARY RANK LATTICES

LYNNE H. WALLING

In this paper we develop some of the theory of half-integral weight
Hilbert modular forms; we apply the theory of Hecke operators to find
arithmetic relations on the representation numbers of totally positive
quadratic forms over totally real number fields.

Introduction. Given a totally positive quadratic form Q over a to-
tally real number field K, one can obtain a Hilbert modular form by
restricting Q to a lattice L and forming the theta series attached to
L ; the Fourier coefficients of the theta series are the representation
numbers of Q on L. The space of Hilbert modular forms generated
by all theta series attached to lattices of the same weight, level and
character is invariant under a subalgebra of the Hecke algebra; hence
one can (in theory) diagonalize this space of modular forms with re-
spect to an appropriate Hecke subalgebra and infer relations on the
representation numbers of the lattices. In a previous paper the author
found such relations by constructing eigenforms from theta series at-
tached to lattices of even rank which are “nice” at dyadic primes; the
purpose of this paper is to extend the previous results to all lattices.

We begin by proving a Lemma (Lemma 1.1) which allows us to re-
move the restriction regarding dyadic primes. Then using our previous
work we find that associated to any even rank lattice L is a family
of lattices fam L which is partitioned into nuclear families (which
are genera when the ground field is Q), and the averaged represen-
tation numbers of these nuclear families satisfy arithmetic relations
(Theorem 1.2).

In §2 we define “Fourier coefficients” attached to integral ideals for
a half-integral weight Hilbert modular form. Then in analogy to the
case K = Q, we describe the effect of the Hecke operators on these
Fourier coefficients (Theorem 2.5).

In §3 we use theta series attached to odd rank lattices to construct
eigenforms for the Hecke operators; the results of §2 then give us
arithmetic relations on the representation numbers of the odd rank
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lattices. When the ground field is Q, we may assume Q(L) C Z and
then these relations may be stated as

r(gen L, 2p’a) = (1 — p(™=32y, (p)(~1|p)™~V72(2alp) + p™~?)
-r(genL, 2a) — p™ ?r (genL, i—?)

where r(gen L, 2a) is the average number of times the lattices in the
genus of L represent 2a, m is the rank of L, p is a prime not divid-
ing the level of L, and yx; is the character attached to L (Corollary
3.7).

1. Relations on representation numbers of lattices of even rank. Let
V be a vector space of even dimension m over K where K is a totally
real number field of degree n over Q; let Q be a totally positive
quadratic form on V', L alatticeon V (so KL =V), ./ the level
of L and nL the norm of L as defined in [6]. Then the theta series

G(L, ‘L’) — Z e27tiTr(Q(x)r)
xeL

is a Hilbert modular form of weight m/2, level .#° and quadratic
character y;, and for & a prime ideal such that Z#t./, either the
Hecke operator T(Z) or the operator T(%?) maps 6(L, 1) to a lin-
ear combination of theta series of the same weight, level and character
(see [6]; cf. [1]).

We derive relations on the representation numbers of the lattices
in the “extended family” of L ; essentially, the extended family of
L consists of all lattices which arise when we act on the theta series
attached to lattices in the genus of L with those Hecke operators
known to preserve the space spanned by theta series. We begin now by
giving refined definitions of a family and of an extended family; these
definitions agree with those given in [8] when the lattice in question
is unimodular when localized at dyadic primes.

DEeFINITION. A lattice L’ is in the family of L, denoted fam L,
if L' is a lattice on V* where o is a totally positive element of K*
which is relatively prime to .7, such that for all primes Z|/ we
have L/, ~ L%, and for all primes #{.#" we have L, ~ L5 for
some up € &5. Here Ly = O»L, and V° (resp. LY) dengtes
the vector space V' (resp. the lattice L») equipped with the “scaled”
quadratic form aQ. We say L' € fam L is in the nuclear family
of L, fam™ L, if there exists some totally positive unit u such that
L, ~ LY, for all primes %, and we say L’ is in the extended family
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of L,xfamL,if L’ is connected to L with a prime-sublattice chain
as defined in §3 of [8].

For £ > 0, we define the representation number r(L, ) and
r(xfam L, &) by

r(L,)=#{xeL:Q(x)=c}

and 1
r(fam* L, &) =) o(L’)r(L/’ <)
T

where o(L’) is the order of the orthogonal group of L' (see [4]) and
the sum runs over a complete set of representatives of the isometry
classes within fam* L. Note that if u € % = & then L¥ is in the
genus of L;since Z*/#%? is finite (where %+ denotes the group of
totally positive units and %2 the subgroup of squares—see §61 of [3])
and each genus has a finite number of isometry classes, it follows that
fam™ L has a finite number of isometry classes.
We now show

LEMMA 1.1. The number of nuclear families in fam L is 2" where
reZ.

Proof. As argued in the proof of Lemma 3.1 of [8], L ~ Lj;‘” for
any up € Zp = 0, when & is a prime not dividing 2./". Thus
there can only be a finite number of primes & such that Ly # LZ;’
forall ugp e %g;let &, ..., @ denote these “bad” primes for L.

Foreach @ =¢@; (1<i<t),set

Stabg(L) ={ue%s: Ly~ Lg}.

Clearly Stabg(L) is a multiplicative subgroup of %z, and %2 =
{u? : u € g} C Stabg(L). Now, since [#z : %2] is a power of 2
(see 63:9 of [4]) it follows that [%Zs : Stabgs(L)] is also a power of
2. Thus [T., %g [ Stabg (L) is a group of order 2° for some s €Z.
We associate each nuclear family fam* L’ within fam L to an ele-
ment of [[;_, %/ Stabg (L) as follows. For L’ € fam L we know L’
is a lattice on V'* for some a € K* with a € %7 and LI, ~ L%
(1 < i< 1); associate fam™ L’ with (..., a- Stabg (L), ...). Itis
easily seen that this map is well-defined and injective. The techniques
used to prove Lemma 3.1 of [8] show that the nuclear families within
fam L are associated with a multiplicatively closed subset of the prod-
uct [T, ?/g’l / Stabg (L) ; since this product is a finite group, it follows
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that the nuclear families within fam L are associated with a subgroup
of [Ii-) %z /Stabg(L). The order of [];_, #g/Stabg(L) is 25, so
there must be 2" nuclear families in fam L where r€ Z. o
For a prime # {24, define
1 if L/ZL is hyperbolic,
eL(P) = { o
—1 otherwise;

define
MP) = NPYIAN(PK-1+1) ife(P)=1, and
MP?) = NP (NP1 -1)? ifer(P)=-1.
For &/ C & such that ord» (%) is even whenever e7(#) = —1, set
eL() = [y eL(P)%>¥ , and set

min{a, b}
l(@a)l(g@b) — Z N(@)c(2k~1)1(9a+b—26)
¢c=0

and A() = [y A(P>¥)). Now the arguments of [8] can be
used to extend Theorem 3.9 of [8] to include any even rank lattice L,
giving us

THEOREM 1.2. Let L be any lattice on V where dimV =2k (k €
Z,). Take ¢ enL, &> 0, and write E(nL)~! = #M#' where # and
M’ are integral ideals such that (# ,2/9) =1 and orde # is even
whenever P is a prime such that ey (#) = —1. Then

r(fam* L, 2&) = A(# )Ny o(# )~ *r(fam* L', 2¢)

— Y eL()Ngjo( Y r(fam* &/ L, 28)

A2M+M'
o £O

where nL' = # -nL and L' is connected to L by a prime-sublattice
chain.

2. Hecke operators on forms of half-integral weight. In this section
we develop some of the theory of half-integral weight Hilbert modular
forms. To read about the general theory of Hilbert modular forms,
see [2].

Let .#° be an integral ideal such that 4@ C /", and let . he a
fractional ideal; then as in [8] we define

Lo, #?)

ag F 2971 . — X
_{AE(//f2a P ).detAe?/—ﬁ ,detA>>0}.
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We also define
Lo, 72)
_ 1 0(f > AT) . 2 2
_{A_ [A, 070 ] Aely(V, 7%, detde

where 6(F, 1) = 3, » €(2a21) with e(B1) = ™17 and %% =
{u?:ue# =*}. Asshown in §3 of [6], when A € To(/", #?) and
detd =1, 6(F, A1)/0(F, 1) is a well-defined automorphy factor
for A, and it is easily seen that for u € %, 6(7, u?1t) = 0(F, 1).
Thus we can define a group action of l~"0(/1/ ,F%) on f: #"—C by

FnpA0) = 11300 = (542 fae).

(Here # denotes the complex upper half-plane.) For x, a numer-
ical character modulo the ideal .#" and m an odd integer, we let
My (To(N , F 2), x») denote the space of Hilbert modular forms
f which satisfy

f lmp2A(®) = xr (@) f(7)
forall 4= (%) eTly(/, 72). Notice that by definition,

(5 5 @=r00 =7 (% )

forany ue 7, so /Zm/z(f‘o(/lf, F2), xr) = {0} unless x,p(u) =1
forall ue % . For & aprime, {4, we define the Hecke operator

T(P2) : Moyjy(To( N s F2), xp) = M)y LoV, P22, 1)

f

as follows. Let {/Tj} be a complete set of coset representatives for
T, FHNT, PEANLS, #2.57)
where

[, 52 = {(ﬁ) ey, Y a=1 (mod//)} .

Then for f € My (To(H , F2), xr), define

[fIT(P?) = N(PY"22%" fl4;.
J

Clearly T(£?) is well-defined and
FIT(P?) € M)y To( N, P2FY), a).
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Similar to the case of integral weight, we also define operators
S(P) : M) yTo(N 3 F2), xp) = Mmpy(To( N PEF), 1)
» 7, C1)
6 T
_ -1/2 >
718@) = f||c. v g Y]
where

NRF2H 4
detC =1, and ac =1 (mod.”). The proof of Proposition 6.1
of [6] shows that N(£)~1/20(.7, C1)/6(£F, 1) is a well-defined
automorphy factor for C, and it is easy to check that S(&) is well-
defined and that f|S(P) € 4, ,(To(W , P2F72), xr). (Note that
the restrictions on d in Proposition 6.1 of [6] are unnecessary, but one
must then use the extended transformation formula from §4 of [7].)
In fact, S(<) is an isomorphism, so by setting S(#~!) = S(P)"!
and S(A)S(A) = S(A%), we can inductively define S(#) for any
fractional ideal J relatively prime to /.

-1 g-24-1
Ce( P g’f@),

LEMMA 2.1. Suppose
de P P-17-2p-1
NPF2H Pl
such that detA=1 and a, =1 (mod./"). Then for

f €My (Lo, T2, 2n),

/] [A, N(,@)—l/zg_((;%}_‘.f%] = f]S(&).
Proof. Let C be a matrix as in the definition of S(#); so
12 0(F, A1) _
Al mer g S s
B 1 0(F, A7) _ 6(£7, C~'1)
’f|[A’N(‘@) l/ze(yf,f)“ [C LN P
3 _, 0(F, AC17)
- || ST
=f
since [AC~!, 8(F, AC11)/0(F , 1)l e (/' , F2). o

We now use this lemma to give us a useful description of 7T'(%2)
when ZtA°.
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LEMMA 2.2. For & a prime, PN, and
= 2
fetp oW, 7%, 2r)

we have

NPT = 3 ] (6 1)1

-1
+2/15@) (}) /f),N(%‘/Z( > e(—2/3a2))
B

aEPF | P F
+/18(7?)

where b runs over P2.7-29-1/ 77201 and B runs over
(P37 -29-1 | P2 F-29-1)x

Proof. Since for a € K* the mapping f — f|[(°'(;2 9), N(a?)1/4] is
an isomorphism from the space .#, /2(f’0(ﬁ/ ,72%), xy) onto
Mo 2T, 02 F?), yr), we may assume ¥ C &. Choose a €
P —P? such that a@ is relatively prime to ./ and a=1 (mod./).
Let {b;} be a set of coset representatives for

(@—2}—28—1/93—1j—26—1)x

such that b, #2729 is relatively prime to a¢ ; then for each k, use
strong approximation to choose ¢, € A#P2.729 and d;, € @ such
that ady — by, = 1. Take 4' = (4 31) e|(/, P272) such that
a e P2, #td’', and a'd' — b'c’ = 1, and take {b/} to be a set of
representatives for 2.7 -29-1/_#-29-1 Then one easily sees that

1 b, v 3
(6 D)AE DAC D)
is a complete set of coset representatives for
O, PN, FON(, P,
Take f € MLV, F2), xr). Then

-/ 25

and the transformation formula (2) in §2 of [6] shows that

(A7, At .1\ 2 _ b
——é(gaf’ r)) = (c +d ;) 2@ Y e <7202) .
«ERF |d' PF
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(Recall that, as remarked earlier, we need not restrict d as in [6], but
we need to then use the extended transformation formula as it appears
in [7].) On the other hand,

L 0(F, A7)

8@ = f| [, N g2

and following the derivation in the proof of Proposition 6.1 of [6] we
find that

6(F, A't 1\/2 _
0((972} 1)) _ (c’+d’;) A2y 112
’ b b
Z e (EZC@) Z e (EZaz) .
a€P S |d' P 5 acd F|Pd'F
By Proposition 3.2 of [6],
b, ,
>ooe (Eza ) = N(P);
a€d' 7 |d' P*F7
also, since #+td’,

> e (g;2a2) = Y e (g,—/,Zaz) :

aeP 7 |d' P F a€ERF |d' RF

Thus f|4' = f|S(#?).

Now choose v € #~1.#-19-1 such that (v.#F9, dP) =1 for
all k. Fix some k; for simplicity write 4, = (25). Set g = p'v?
where B’ € 19 is chosen such that af +b € #~1.772971; we
will show that

-1
4 Ml[(}, /f)’l]=N<9?’>‘/2 (QWZ/W"(WZ)) £18),

and then the lemma will follow. Now,

1 B 120 4 (8]
Ak(o 1)’N(‘9a) @ |

F18&) = 1|
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again following the proof of Proposition 6.1 of [6] we find that

(7, Ak((l)'f))r
0(F7, 1

N(ga)—-l/Z

)
1/2
= (c+@aral) s s ayiNy

aﬂ +b 2

e 2a

aef(c%;d)g"f (cﬂ +d )
and since a(cf +d) —c(af +b) =1
and e(a(af + b)2a*) =1,

I

1\ 12
(c +(cB + d)?) t2(cp +d)~V2N(P)" 12

Y o)

a€ S [(cp+d)ASF

1\ 1/2
= (c+(cﬂ+d);) V2(cp +d)~V2N(P)"1/?

2 Caa)

a€l [(cf+d)P

(note that v #F70 is relatively prime to (cf + d)#). Now, d is
relatively prime to 4 since 4|c; thus by reciprocity of Gauss sums
(Theorem 161 of [3]) we have

cv?
(cB+d) VPN N e (— 2a2)
a€l[(cp+d)P Cﬂ +d

_ i—n/2 2 pay-1/2 cp+d, ,
= iT"2N(cv?P0)"12 Y e( — Za)
€l eV’ Pd
and using the techniques of §3 of [6],
= i""2N(cv2Po)/?

Z e (ci;d2a2> z e (ci;d2a2) .

a€EP [cV PO a€cv?d /e’ Po
For a e &£,
Brlr=9 252 (mod20-1)
cv? cv?
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(since B =v2p’ with g’ € #-19) so

Z e <C€I; 12012)

a€P [cv Po

I

d
'_2
aeP /cuzg"é)

iyt

A€l [cv?d

(note that ordg cv20 = 0). Also,

cp+d., 5 a2 _1
Cl/2 20 = 2ﬁ (-I;) (mod28 )
for a € cv?d, so

Y e ("’Z;dzaz> - Y e (Z[f (g)z)

accv’d /e’ Po accr’d /e’ Pa

= Y e(2pd?).

aEPSF | P F

On the other hand, formula (1) of [6] and the techniques used above
show that

O(FRF , A (L)1)
677, (1))
1/2
c+(cﬂ+d)%) 2712 Y e(—iz—zza)

aERF |dRF

)1/2 1/2d-1/2 Z e(_%iza>

a€ld [dO
and by reciprocity of Gauss sums,

) D22 N (v 20)~ /2

Q|-

c-ll'--

= (c +(cp+4d)

(c +(cp+4d)

X Z e (6720 ) . O
a€d[cv?o

Our goal in this section is to determine the effect of the Hecke

operators on the Fourier coefficients of a half-integral weight form.
When K = Q, we know that for

(1) =" a(n)e2nt) € M, (To(N), %),

n>0
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we have f(7)|T(p?) = 3,50 b(n)e(2nt) where

b(n) = a(p*n) + x(p)p"~3/2(~1|p)™=Y/2(n|p)a(n)
+ 2(0*)p™2a(n/p?).

By defining “Fourier coefficients” attached to integral ideals, we ex-
pect to get a similar description of the effect of the Hecke operators
on any half-integral weight Hilbert modular form. This, in fact, is one
of the things Shimura does for integral weight forms in [5]; so mim-
icking Shimura, we decompose a space of half-integral weight Hilbert
modular forms as described below.

Whenever ¥ and £ are fractional ideals in the same (nonstrict)
ideal class, the mapping

N GHEE

is an isomorphism from the space .#,, /z(f‘o(/lf ,F2), xv) onto
/fm/z(l:o(./lf , Z2), xy) where a is any element of K* such that
af = _Z (notice that this isomorphism is independent of the choice
of ). Hence we can consider 7T(%2) and S(Z) as operators on the
space

h’ ~

MmN Xr) = [[ ATl s 52, 2w)

i=1
where .7, ..., % represent all the distinct (nonstrict) ideal classes.
Note that by the Global Square Theorem (65:15 of [4]), 72, ..., A}
represent distinct strict ideal classes. Just as in the case where m is
even (see Lemma 1.1 and Proposition 1.2 of [7]), we have

Moo N s Xr) = P Mo (N, 1)
2

where the sum is over all Hecke characters y extending y, with
Xoo = 1 s

M2 (N 5 X) =AF € Mo (N, x) 1 FIS(F) = x*(F)F
for all fractional ideals .# , ([, /") = 1},

and x* is the ideal character induced by y. (For _# a fractional
ideal relatively prime to /", x*(/¥) = x(a) where & is an idele of K
such that d» = 1 for all primes #|.# 0, and a&g = # . Also note
that there are Hecke characters y extending y , with y., = 1 since
xyu)=1 forall ue?.)
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When defining “Fourier coefficients” attached to integral ideals for
an integral weight form F, Shimura uses the fact that for u € Z+

s )=

In the case of half-integral weight forms, we have no analogous equa-
tion. However, we can decompose .4, /»(/", x.») as follows.
Let Kt={acK:a>0} and K2 = {a?:a € K, a # 0}; set
= K*/K? and H = #*K?/K? (~ #*/%?). For each character
pE @ = the character group of G, define

M 2N A s @)
{Feﬁmﬂ(/l/ xr) F’[(u 0), 1] = ¢(u)F for allue?/*}.
Then we have

LeEMMA 2.3. With the above definitions,
Mo )N, X)) = D M2 N X s 9)
9

where the sum runs over a complete set of representatives ¢ for G JH*
with H- = {p € G : ¢|lu = 1}. Each space My (N, Xy, @) IS
invariant under all the Hecke operators T(F?) where P is a prime
ideal not dividing »" .

REMARK. The restriction map defines an isomorphism from G JH*
onto H~ %+ /?%/?, but there is no canonical way to extend an element
of Z+/%? to an element of G/H".

Proof. Given F € My (N, x), set

fgrm, 2, 70r(61) 1]

ue¥t |%*?
One easily verifies that F € 4,,/2(7", X, ). Also,

2. Fo= [?/+ T (%:W“))F‘[(g (1))’1]=F—J

0eG/H* ue¥* %’
since duality shows that }°, 9(u) is only nonzero when u = 1. Fur-
thermore, for ¢, p2€G, My (N, xw > ©1) and My )2 (N, Xr s 92)
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either are equal or have trivial intersection, depending on whether
919, € HL. Thus A, (A, A ) =By Mmp2 (N s Xws ) as claimed.

Now, given u € Z*, & a prime ideal not dividing .#", and {,Zlvj}
a set of coset representatives for
T, FHNL, PRI, P27,
we see that {(¥'9)4,(42)} is a set of coset representatives for
T, FHNT(S, PRI (S, P2F?).
Standard techniques for evaluating Gauss sums show that

0(F, djut) _ 0(F, 4j7)
0 - e

0(~, 1)
(4 bj u_ ul 0 (U 0
A]_(Cj dj) and Af_(O 1 Aj 01"
Since d; = ajd; = v? (mod./) for some v € #, the Law of
Quadratic Reciprocity (Theorem 165 of [3]) shows that (u|d;) = 1;

hence _— 0
u- ~ u -~
(o )6 1) ]=7

and thus T(%?) acts invariantly on the space .#Z,, A xr,0). O
Unfortunately, we also have

LEMMA 2.4. Given ¢ € G and P a prime ideal not dividing /",
we have

S(P): Mo N s X s 9) = M2 N Xw > QW)

where W is an element of G such that v (u) = (u|P) forall ue
%+ . Consequently, given any Hecke character y extending y , (with
Xoo =1),

unless %+ =%2.

Proof. Let C = () be a matrix as in the definition of S(Z); so
detC =1, and
20, CT)}
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for f € //Zm/z(f“o(/lf, F2), xy). Then for u € ™, the techniques
used to prove Proposition 6.1 of [6] show that

(% 9) ] leveraz 3]G 1)

_120(F, CH1)
— u 1/2 >
e, PN T
where C* = (4'9)C(49). Since d =1 (mod.#) (recall the defi-
nition of .#(Z)) we see again by the Law of Quadratic Reciprocity
that (u|d) = 1. Hence for F € 4, /23(N", x> @)

(3 2)

~wF||(§ 1) 1]ls@ = prrwrs@).

showing that F|S(£) € M) )(N, x> QW) -

Now, to finish proving the lemma, we simply observe that there are
an infinite number of primes & such that (u|P?) = -1 if u € #*—-#%?
(see 65:19 of [4]). O

The preceding two lemmas compel us to define “Fourier coeffi-
cients” attached to integral ideals as follows.
Given
F=(..,f, ..l) Eﬁm/z(/f/, Xr)

where f;(7) = Y, ai()e(27), ¢ € G and .# # 0 an integral ideal,
we define the ./Z, p-Fourier coefficient of F by:
(i)
1 _ _
Al , 9)= Y PEwaEu)N(FH)
%+ : %2
et |%?

if # =¢E77% for some A and some &> 0;

(ii) a(#, ¢) =0 if .#Z cannot be written as égji‘z with £ > 0;

(i) a(0,9)=a(0)N(H)"/? if ;N (S) "> =au(0)N(F)~™/?
forall A, u.

Thus for & =E77%, €0, a(# , ) is N(H)™™/? times the
¢-Fourier coefficient of the A-component of F,. Since F = Z(p B,
the collection of all the M, ¢-Fourier coefficients (¢ € G/H L) char-
acterize any form F whose 0, p-Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier
coefficients.
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THEOREM 2.5. Let F = (..., fi,...) € Myp(NV', x) where x
is a Hecke character extending x y with oo = 1. Take P to be

a prime ideal not dividing V', and take y» € (K:/\Kz) such that
wap (&) = (E|P) for all & € Kt with ordw& = 0. Let a(# , x) and
b(A# , x) denote the # ,x-Fourier cggﬁicients of F and of F|T(%#?)

(respectively). Then for any ¢ € (K+/K2), we have

b(A , )
a(PM , 9) + x(P)N(P) M-I (—1|P)m=V2a( A , pyp)
= + 1(PHONP)"a(MP2, 9) if PHA,
a( P, ) + x (PYN(P)"2a(MP2, 9) if P|A .

Proof. Take p,y € K* such that #2%? = p2.#?2 and 2P =
y2%? . Then by Lemma 2.2 the u-component of F|T(?) is

N2 (ﬂ;[(é 1)
+X*(<9?’)fu’ [(%2 (1)) ,N(pz)"m]'%: K(l) /f) ’ _Za_i\i(:%_&z_)]

+X*(9?’2)fn| [(Jg (1)) ’N(yz)—1/4D l [(p(;2 (1)> aN(p2)1/4J

where b runs over
9{7—2};-23*1/53“284 ’
S runs over
(33—3(}2—26—1/52;—2ji~26—1)x’
and a runs over
AP [P

(Recall that F € A, 5(A, x) so

s [[(9 ) v ] =g
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where w7252 = _%2.) It is easily seen that

AT I3 8) I 3)mr]

= NARST)T NP Y i@)e(26p~*0)
é€g242

= N(APITH) NP Y au(p*)e(20),
¢es}

and that

Al (5 0)owver | [(%7 7)) v

= NPRAITYE N agEp*yr)e(27).
66@2‘7”2

Now we work a little:

w5 3 o IS ) S [ ) ]
=Ny (Ze(—Zﬂaz)) " > a,@e2e8p")e(20).

4 tes?

Taking By € #~3.77201 - #~2.%729~!, standard techniques for
evaluating Gauss sums show us that

Z( Ze(—zﬂaz)) e(2¢pp?)

ﬂ a
= ¥ (-8l (Ze(Zﬂoaz)) e(22foB'p?)
B'ed|P a
and (Y, e(2B9a?))? = N(2P)(-1|£). So
5 (Ze(—Zﬂa2)> e2ep )

B [+
= N(@)(m—l)/Z(_llg)(m+l)/2

( ) (ﬂ'|9)e(2ﬂ'ﬂoép2)) (Ze(moaz))

p'ec|F
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which is equal to 0 when & € 272, When ¢ # £F7? and v €
SV =277, BEv? runs over @) as B’ does; in this case

> (B'1P)e(2B' Boép?) = Z(ﬁ Ev2P)e(2B' Bo&* v p?)

Bl |P
=(éu2|9") Y. e2Boe?).
aEPF | P S,
Thus

-1
fu 2 {(1 os ). N (za:e(—Zﬂaz)) } (%)

= N(P) (=1 P) D12 N7 (v?|P)ay(&)e(2%7).
¢es}

This means that for # =¢&.772, £ 0,

N(S)~""?

b(A , p) = W

N(gz)m/Z 2

'(N(g?’)2'"'/21\’(J‘L)"’/21\’(Jﬁ)—"'/2 > BEua(uép?)
uew T |?
L (PN 21|V
S ) (| P)a )

ue* |%*

+ X*(ﬁz)N(@)m/zN(ﬁ)m/zN(J’ﬂ)-m/2

C Y BEwan(uép®y ‘2)) :

146‘?/*/?/2

Noting that (uév?%) = 0 when P|# , the theorem now follows
from the definition of the M, g-Fourier coefficients of F . O

COROLLARY 2.6. If F € My, 5(N, X) is an eigenform for all T(F?)
(P 1N") whose 0, x-Fourier coefficients can be defined and are nonzero,
then

FIT(P?) = (1 4+ x*(P*)N(P)")F .

3. Relations on representation numbers of odd rank lattices. Let
L be a lattice of rank m over @ when m 1is odd; since lattices
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of rank 1 are already well understood, we restrict our attention here
to the case where m > 3. Then, as shown in Theorem 3.7 of [6],
(L, 1)=3 ,cre(Q(x)r) is a Hilbert modular form of weight m/2,
level .#" and character x; for the group {/T € f‘o(/lf ,F2) detd =
1} where ¥ is the smallest fractional ideal such that nL C .#2 (so
for every prime £, ordgnL-_# % is minimal), .#" = (nL*)~1.7 -2,
and y; is a quadratic character modulo .#". (Here L* denotes
the dual lattice of L, and nL is the fractional ideal generated by
{%Q(x) : x € L}; note that Proposition 3.4 of [6] shows that 47|.7".)
Since 6(L,u*t) = 6(L, 1) for any u € #, we have 0(L, 1) €
M2 (Lo s F2), 1)

LEMMA 3.1. Let & be a prime ideal not dividing V" . Then setting
Ly =CO»L, we have

Lp~n*(l,...,1,¢es)

X
Jor some n €Kz and ez € 0.

Proof. Since 4@|7", & must be nondyadic. Then from the re-
marks immediately preceding 92:1 of [4], we see that Ly ~ (o, ...,
am) where ay, ..., am € Kz. Since £t and (nL*)~!(nL)~!|7",
we know that Zt(nL*)~!(nL)~! and hence Ls is modular; thus by
92:1 of [4], Ly ~ p(1, ..., 1, &) for some ¢z € F; and p € K»
such that p@s = nLy . Furthermore, since .#" = (nL*)~1.#~2 and
P LN, the fractional ideal nL* and hence nL must have even order
at &, so we may choose p = n2 with 1 € K. i

Notice that in the preceding lemma the square class of ¢4 is inde-
pendent of the choice of 7 ; thus we can make the following

DEFINITION. With & a prime, #{./, let e € &, be as in
Lemma 3.1; set e7(#) = (2ex|%) where (x|x) is the quadratic
residue symbol. For an integral ideal &/ relatively prime to ./, set

en(of) = ] en(@)tel),
P\t

A straightforward computation analogous to that used to prove Lemma
3.8 of [8] proves

LEmMMA 3.2. For a € K* with a relatively prime to /", xL(d) =
er(al?).

Next we have
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PrROPOSITION 3.3. Let % be a prime, 4" . Then
O(L, 1)|S(PL) = N(P)™ 21 (P)O(PL, 1) and so
6(L, 1)|S(#?*) = N(P)"9(P’L, 1).

Proof. Following the proof of Proposition 6.1 of [6] and using the
extended transformation formula from §4 of [7], we find that for

qo(a D\ ( 2 Pl
“\c d) S \mr2e &

with det4A=1 and d=1 (mod./),

1 m/2
O(L, At) =c (c + d;) m/2d—m/2

> e(fo) ¥ e(Fom)-o@L. 0,

XEPL|AdPL x€dL/dPL
and

1\ /2
0(F , Ar) = <c+d;) 12172

d>.oe 22(12) > e(22a2)-0(.97’f,1).
d d
a€d S |dPF

a€ERF |dPF
Thus
6(L, 1)|S(£)
-m
b b
_ 2 2
=yt 8 e(qew) ( >, (@ ))
X€PLIdPL 0ERT |dPT
b
Z e <3Q(x))
xedL/dPF
-m
. ( > e (32012)) 6(LL,1).
a€d 7 |dRF

We know from Lemma 3.1 that Ly ~ n2(1, ..., 1, £») where e¢5 €

@ ; thus Propositions 3.1-3.3 and the arguments used to prove The-
orem 3.7 of [6] show that

> e(%Q(x))( > e(§-2az))—m=(zsga|%=a(@>

x€dL/dPL acd % |[dPF
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and that
—-m
b b, ,
Z e <2Q(x)> ( Z e (EZa )) =yxr(d)=1
x€PLIAPL a€ERSF [dPF
(since d =1 (mod.”") and y; is a character modulo /). O

With this we prove

PROPOSITION 3.4. Let the notation be as above. Then

(L, O)|T(P?) = er(P)N(P)" k' 3 0(K , 1)

K
+ e (P)N(P)™*(1 — N(P)m=31)9(PL, 1)

where
1 ifm=3,
k = N(P)m=I2. . . N(P)UN(P) D2 L 1)...(N(P)+ 1)
if m> 3.

Here the sum runs over all P2-sublattices K of L (i.e. over all sub-
lattices K of L such that nK = %2 .nL and the invariant factors

(L:KY=@,...,O0,P, P, ..., P?

with @ and P? each appearing ™51 times). Furthermore, each 52-
sublattice K of L lies in the genus of L, and hence 0(Z#L, 1),
0K, 1) € My (Lo, PLF?), x1).

Proof. An easy check shows that the Hecke operator T(%2) de-
fined in [6] is, in the notation of this paper, T(%?2)S(%#~%). Thus
Theorem 7.4 of [6] together with the preceding proposition shows that
O(L, 7)|T(%?) is as claimed. (N.B.: Part 2 of Theorem 7.4 has the
wrong constants; for m = 2k + 1 with m odd the theorem should
read

O(L, 7)|T(F?) = N(P)™/? -120 PK, 1)

+ N(P)~ m/2(1— N(p)m= 3/2)0(9?"1L,f)3:

where the sum runs over all Z2-sublattices K of L and x is as
above.)

Now let K be a “2-sublattice of L. Since nK = n#L, discK =
discZL and #Lg is modular, it follows that Ks is modular as
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well, and that K» ~ #L4. Clearly we have Ky = Ly = PLg
where & is any prime other than % ; thus K € gen L, the genus
of L. Finally, Theorem 7.4 of [6] shows that 6(%~2K, 7) and
0(F~'L, 1) lie in My, (Lo, (W, P7252), x1), 50

6(K, 1) = N(P) (P K, 1)|S(F?)
and

0(PL, 1) = NP)""m9(P 'L, 1)|S(F?)
lie in M, (To(V, P252), x1) as claimed. O

Completely analogous to Lemma 3.2 of [8], we have

LEMMA 3.5. Let o(L') denote the order of O(L'), the orthogonal
group of the lattice L', and define

f(genL, 1) = Zg(—lLT)B(L" 7)
.

where the sum runs over a complete set of representatives L' for the

distinct isometry classes in gen L, the genus of L. Then for a prime

PN,

6(gen L, 7)|T(F?) = N(P)" 21 (P)(1 + N(P)"2)0(gen PL, 7).

As in §2, choose fractional ideals .7, ..., % representing the dis-

tinct (nonstrict) ideal classes (and so %2, ..., #? are in distinct

strict ideal classes); for convenience, we assume that ./, = & and

that each .# is relatively prime to .#". Define the extended genus

of L, xgenL, to be the union of all genera genf L where .7 is a
fractlonal ideal; set

O(xgenL, 1) = (..., N(AF)™?*0(gen AL, 1), ...).

Then we have

THEOREM 3.6. Let x be the Hecke character extending yy such
that xoo = 1 and x*(¥) = e (&) for any fractional ideal &/ which
is relatively prime to V. Then

O(xgen L, 1) € Myy2(N , %) C [[Monjp LoV, 252, 11)
A

and for every prime Pt
O(xgen L, 7)|T(P?) = e (P)(1 + N(P)" 2)O(xgen L, 1).
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Proof. Take _# to be a fractional ideal relatively prime to .#". Then
for each 4 we have 27 = o, for some x and some o € K*. By
Proposition 3.1 we have

N(A)"6(gen AL, 7)|S(F) | [( 0 ?) WW)”“J

=& (F)N(a™ ' ZA)"*0(gen(a” ' £FL), 1)
= e (F)N(A)"*0(gen AL, 1);
since we have chosen y such that
1(F)=elf),
we have ©(xgen L, 1) € 4, 2(N", X).
Now take & to be a prime, #t./", and take a € K* such that
P =af, . Then by Lemma 3.5,

N(A)"6(gen AL, DT | Ka(;z (1)) » N (a2>‘/4}

=& (P)(1 + N(P)")N(a™ ' AP)"?0(gen(a™ ' RAAL), 1)
=¢e1(P)(1 + N(P)"2)N(F)™?6(gen AL, 7). O

This theorem allows us to infer relations on averaged representation
numbers which we define as follows.
Set

r(L', & =#{xel :Q(x)=¢&}, and
r(genL, &) = Z 0(2,)1-([/, &)

LI
where the sum runs over a complete set of representatives L’ for the

isometry classes within gen L. For ¢ € (K+/K2), set

eenL, ¢, 9)= oo Y PgenL, ).

ue?* |%?
Then with the notation of §2, the .#, p-Fourier coefficient of
O(xgen L, 1) is r(gen AL, 2¢, ) where # = éj‘:l“z, &> 0. Note
that for any fractional ideal _# , we can find some a € K and some 4
such that £ = a.%;; then for £€nL, ¢ 0, and £ =&£572772,
the #, p-Fourier coefficient of ©(xgen L, 7) is

r(gen AL, 207%¢, ¢) =r(genaf L, 28, p) =x(gen FL, 28, co)
Also, r(genL, 0) = r(gen £ L, 0), so the 0, ¢-Fourier coefficients of

O(xgen L, 1) are defined to be r(gen L, 0). Now Theorems 2.5 and
3.6 together with Corollary 3.7 give us
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COROLLARY 3.7. Let ¢ e nL, ¢ > 0. Set # = EF~2 (where
F is the smallest fractional ideal such that nL C #2). Let P bea

prime ideal not dividing /¥, and let ¢ be any element of (K+/K2). If
P M, then

(1 4+ N(P)" Dr(genL, 2¢, 9)
=r(genP L, 2, 9)
+ e (P)N(P) =2 (—1|P) "D i2x(gen L, 2¢, pyp)
+ N(P)" 2r(gen PL, 2£, ¢).

Here yo is an element of (K:/\KZ) such that y»({) = ($|) for any
(€Kt with ords { =0. If P|H# , then

(1+N(P)" )x(genL, 2¢, 9)
=r(genP 'L, 2, )+ N(P)" *r(gen PL, 2, 9).

In the case that K = Q, we have
r(gen L, 2p%a) = (1 — p"™ =32y, (p)(—1|p)™=1/12(2a|p) + p™~?)
-r(genL, 2a) — p™ *r (genL, ;—?)

for any a € Z, ; note that xr(p) = (2disc L|p).

REMARK. If Z{(nL*)~1(nL)~! but Z|#", then the preceding
corollary can be used to give us relations on the averaged represen-
tation numbers of xfam L* where a > 0 with orde a odd. Since
r(fam* FLe, af) = r(fam* F L, &), the above corollary can be ex-
tended to include all primes % {(nL*)~1(nL)~!.
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