HECKE EIGENFORMS AND REPRESENTATION NUMBERS OF ARBITRARY RANK LATTICES

LYNNE H. WALLING

In this paper we develop some of the theory of half-integral weight Hilbert modular forms; we apply the theory of Hecke operators to find arithmetic relations on the representation numbers of totally positive quadratic forms over totally real number fields.

Introduction. Given a totally positive quadratic form Q over a totally real number field **K**, one can obtain a Hilbert modular form by restricting Q to a lattice L and forming the theta series attached to L; the Fourier coefficients of the theta series are the representation numbers of Q on L. The space of Hilbert modular forms generated by all theta series attached to lattices of the same weight, level and character is invariant under a subalgebra of the Hecke algebra; hence one can (in theory) diagonalize this space of modular forms with respect to an appropriate Hecke subalgebra and infer relations on the representation numbers of the lattices. In a previous paper the author found such relations by constructing eigenforms from theta series attached to lattices of even rank which are "nice" at dyadic primes; the purpose of this paper is to extend the previous results to all lattices.

We begin by proving a Lemma (Lemma 1.1) which allows us to remove the restriction regarding dyadic primes. Then using our previous work we find that associated to any even rank lattice L is a family of lattices fam L which is partitioned into nuclear families (which are genera when the ground field is \mathbf{Q}), and the averaged representation numbers of these nuclear families satisfy arithmetic relations (Theorem 1.2).

In §2 we define "Fourier coefficients" attached to integral ideals for a half-integral weight Hilbert modular form. Then in analogy to the case $\mathbf{K} = \mathbf{Q}$, we describe the effect of the Hecke operators on these Fourier coefficients (Theorem 2.5).

In $\S3$ we use theta series attached to odd rank lattices to construct eigenforms for the Hecke operators; the results of $\S2$ then give us arithmetic relations on the representation numbers of the odd rank

lattices. When the ground field is \mathbf{Q} , we may assume $Q(L) \subseteq \mathbf{Z}$ and then these relations may be stated as

$$\mathbf{r}(\operatorname{gen} L, 2p^2 a) = (1 - p^{(m-3)/2} \chi_L(p) (-1|p)^{(m-1)/2} (2a|p) + p^{m-2}) \\ \cdot \mathbf{r}(\operatorname{gen} L, 2a) - p^{m-2} \mathbf{r} \left(\operatorname{gen} L, \frac{2a}{p^2} \right)$$

where $\mathbf{r}(\text{gen } L, 2a)$ is the average number of times the lattices in the genus of L represent 2a, m is the rank of L, p is a prime not dividing the level of L, and χ_L is the character attached to L (Corollary 3.7).

1. Relations on representation numbers of lattices of even rank. Let V be a vector space of even dimension m over \mathbf{K} where \mathbf{K} is a totally real number field of degree n over \mathbf{Q} ; let Q be a totally positive quadratic form on V, L a lattice on V (so $\mathbf{K}L = V$), \mathcal{N} the level of L and $\mathbf{n}L$ the norm of L as defined in [6]. Then the theta series

$$\theta(L, \tau) = \sum_{x \in L} e^{2\pi i \operatorname{Tr}(\mathcal{Q}(x)\tau)}$$

is a Hilbert modular form of weight m/2, level \mathscr{N} and quadratic character χ_L , and for \mathscr{P} a prime ideal such that $\mathscr{P} \nmid \mathscr{N}$, either the Hecke operator $T(\mathscr{P})$ or the operator $T(\mathscr{P}^2)$ maps $\theta(L, \tau)$ to a linear combination of theta series of the same weight, level and character (see [6]; cf. [1]).

We derive relations on the representation numbers of the lattices in the "extended family" of L; essentially, the extended family of L consists of all lattices which arise when we act on the theta series attached to lattices in the genus of L with those Hecke operators known to preserve the space spanned by theta series. We begin now by giving refined definitions of a family and of an extended family; these definitions agree with those given in [8] when the lattice in question is unimodular when localized at dyadic primes.

DEFINITION. A lattice L' is in the family of L, denoted fam L, if L' is a lattice on V^{α} where α is a totally positive element of \mathbf{K}^{\times} which is relatively prime to \mathscr{N} , such that for all primes $\mathscr{P}|\mathscr{N}$ we have $L'_{\mathscr{P}} \simeq L^{\alpha}_{\mathscr{P}}$, and for all primes $\mathscr{P}|\mathscr{N}$ we have $L'_{\mathscr{P}} \simeq L^{u}_{\mathscr{P}}$ for some $u_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$. Here $L_{\mathscr{P}} = \mathscr{O}_{\mathscr{P}}L$, and V^{α} (resp. $L^{\alpha}_{\mathscr{P}}$) denotes the vector space V (resp. the lattice $L_{\mathscr{P}}$) equipped with the "scaled" quadratic form αQ . We say $L' \in \operatorname{fam} L$ is in the nuclear family of L, fam⁺ L, if there exists some totally positive unit u such that $L'_{\mathscr{P}} \simeq L^{u}_{\mathscr{P}}$ for all primes \mathscr{P} , and we say L' is in the extended family of L, xfam L, if L' is connected to L with a prime-sublattice chain as defined in §3 of [8].

For $\xi \gg 0$, we define the representation number $\mathbf{r}(L, \xi)$ and $\mathbf{r}(x \text{fam } L, \xi)$ by

$$\mathbf{r}(L\,,\,\boldsymbol{\xi}) = \#\{x \in L: Q(x) = \boldsymbol{\xi}\}$$

and

$$\mathbf{r}(\operatorname{fam}^+ L, \xi) = \sum_{L'} \frac{1}{o(L')} \mathbf{r}(L', \xi)$$

where o(L') is the order of the orthogonal group of L' (see [4]) and the sum runs over a complete set of representatives of the isometry classes within fam⁺ L. Note that if $u \in \mathcal{U} = \mathscr{O}^{\times}$ then L^{u^2} is in the genus of L; since $\mathcal{U}^+/\mathcal{U}^2$ is finite (where \mathcal{U}^+ denotes the group of totally positive units and \mathcal{U}^2 the subgroup of squares—see §61 of [3]) and each genus has a finite number of isometry classes, it follows that fam⁺ L has a finite number of isometry classes.

We now show

LEMMA 1.1. The number of nuclear families in fam L is 2^r where $r \in \mathbb{Z}$.

Proof. As argued in the proof of Lemma 3.1 of [8], $L_{\mathscr{P}} \simeq L_{\mathscr{P}}^{u_{\mathscr{P}}}$ for any $u_{\mathscr{P}} \in \mathscr{U}_{\mathscr{P}} = \mathscr{O}_{\mathscr{P}}^{\times}$ when \mathscr{P} is a prime not dividing $2\mathscr{N}$. Thus there can only be a finite number of primes \mathscr{Q} such that $L_{\mathscr{Q}} \neq L_{\mathscr{Q}}^{u_{\mathscr{Q}}}$ for all $u_{\mathscr{Q}} \in \mathscr{U}_{\mathscr{Q}}$; let $\mathscr{Q}_{1}, \ldots, \mathscr{Q}_{t}$ denote these "bad" primes for L.

For each $\mathscr{Q} = \mathscr{Q}_i$ $(1 \le i \le t)$, set

$$\operatorname{Stab}_{\mathscr{Q}}(L) = \{ u \in \mathscr{U}_{\mathscr{Q}} : L^{u}_{\mathscr{Q}} \simeq L_{\mathscr{Q}} \}.$$

Clearly $\operatorname{Stab}_{\mathscr{C}}(L)$ is a multiplicative subgroup of $\mathscr{U}_{\mathscr{C}}$, and $\mathscr{U}_{\mathscr{C}}^2 = \{u^2 : u \in \mathscr{U}_{\mathscr{C}}\} \subseteq \operatorname{Stab}_{\mathscr{C}}(L)$. Now, since $[\mathscr{U}_{\mathscr{C}} : \mathscr{U}_{\mathscr{C}}^2]$ is a power of 2 (see 63:9 of [4]) it follows that $[\mathscr{U}_{\mathscr{C}} : \operatorname{Stab}_{\mathscr{C}}(L)]$ is also a power of 2. Thus $\prod_{i=1}^t \mathscr{U}_{\mathscr{C}_i} / \operatorname{Stab}_{\mathscr{C}_i}(L)$ is a group of order 2^s for some $s \in \mathbb{Z}$. We associate each nuclear family $\operatorname{fam}^+ L'$ within $\operatorname{fam} L$ to an element of $\prod_{i=1}^t \mathscr{U}_{\mathscr{C}_i} / \operatorname{Stab}_{\mathscr{C}_i}(L)$ as follows. For $L' \in \operatorname{fam} L$ we know L' is a lattice on V^{α} for some $\alpha \in \mathbb{K}^{\times}$ with $\alpha \in \mathscr{U}_{\mathscr{C}_i}$ and $L'_{\mathscr{C}_i} \simeq L^{\alpha}_{\mathscr{C}_i}$ $(1 \leq i \leq t)$; associate $\operatorname{fam}^+ L'$ with $(\ldots, \alpha \cdot \operatorname{Stab}_{\mathscr{C}_i}(L), \ldots)$. It is easily seen that this map is well-defined and injective. The techniques used to prove Lemma 3.1 of [8] show that the nuclear families within fam L are associated with a multiplicatively closed subset of the product $\prod_{i=1}^t \mathscr{U}_{\mathscr{C}_i} / \operatorname{Stab}_{\mathscr{C}_i}(L)$; since this product is a finite group, it follows

that the nuclear families within fam L are associated with a subgroup of $\prod_{i=1}^{t} \mathscr{U}_{\mathscr{Q}_{i}} / \operatorname{Stab}_{\mathscr{Q}_{i}}(L)$. The order of $\prod_{i=1}^{t} \mathscr{U}_{\mathscr{Q}_{i}} / \operatorname{Stab}_{\mathscr{Q}_{i}}(L)$ is 2^{s} , so there must be 2^{r} nuclear families in fam L where $r \in \mathbb{Z}$. \Box

For a prime $\mathscr{P} \nmid 2\mathscr{N}$, define

$$\varepsilon_L(\mathscr{P}) = \begin{cases} 1 & \text{if } L/\mathscr{P}L \text{ is hyperbolic,} \\ -1 & \text{otherwise;} \end{cases}$$

define

$$\lambda(\mathscr{P}) = N(\mathscr{P})^{k/2} (N(\mathscr{P})^{k-1} + 1) \quad \text{if } \varepsilon_L(\mathscr{P}) = 1, \quad \text{and} \\ \lambda(\mathscr{P}^2) = N(\mathscr{P})^k (N(\mathscr{P})^{k-1} - 1)^2 \quad \text{if } \varepsilon_L(\mathscr{P}) = -1.$$

For $\mathscr{A} \subseteq \mathscr{O}$ such that $\operatorname{ord}_{\mathscr{P}}(\mathscr{A})$ is even whenever $\varepsilon_L(\mathscr{P}) = -1$, set $\varepsilon_L(\mathscr{A}) = \prod_{\mathscr{P} \mid \mathscr{A}} \varepsilon_L(\mathscr{P})^{\operatorname{ord}_{\mathscr{P}}\mathscr{A}}$, and set

$$\lambda(\mathscr{P}^{a})\lambda(\mathscr{P}^{b}) = \sum_{c=0}^{\min\{a,b\}} N(\mathscr{P})^{c(2k-1)}\lambda(\mathscr{P}^{a+b-2c})$$

and $\lambda(\mathscr{A}) = \prod_{\mathscr{P}|\mathscr{A}} \lambda(\mathscr{P}^{\mathrm{ord}_{\mathscr{P}}(\mathscr{A})})$. Now the arguments of [8] can be used to extend Theorem 3.9 of [8] to include any even rank lattice L, giving us

THEOREM 1.2. Let L be any lattice on V where dim V = 2k ($k \in \mathbb{Z}_+$). Take $\xi \in \mathbb{nL}$, $\xi \gg 0$, and write $\xi(\mathbb{nL})^{-1} = \mathcal{MM}'$ where \mathcal{M} and \mathcal{M}' are integral ideals such that ($\mathcal{M}, 2\mathcal{N}$) = 1 and $\operatorname{ord}_{\mathcal{P}}\mathcal{M}$ is even whenever \mathcal{P} is a prime such that $\varepsilon_L(\mathcal{P}) = -1$. Then

$$\mathbf{r}(\operatorname{fam}^{+} L, 2\xi) = \lambda(\mathscr{M}) N_{K/Q}(\mathscr{M})^{-k/2} \mathbf{r}(\operatorname{fam}^{+} L', 2\xi) - \sum_{\substack{\mathscr{A} \supseteq \mathscr{M} + \mathscr{M}' \\ \mathscr{A} \neq \mathscr{O}}} \varepsilon_{L}(\mathscr{A}) N_{K/Q}(\mathscr{A})^{k-1} \mathbf{r}(\operatorname{fam}^{+} \mathscr{A} L, 2\xi)$$

where $\mathbf{n}L' = \mathscr{M} \cdot \mathbf{n}L$ and L' is connected to L by a prime-sublattice chain.

2. Hecke operators on forms of half-integral weight. In this section we develop some of the theory of half-integral weight Hilbert modular forms. To read about the general theory of Hilbert modular forms, see [2].

Let \mathscr{N} be an integral ideal such that $4\mathscr{O} \subseteq \mathscr{N}$, and let \mathscr{S} be a fractional ideal; then as in [8] we define

$$\Gamma_{0}(\mathcal{N}, \mathcal{I}^{2}) = \left\{ A \in \begin{pmatrix} \mathscr{O} & \mathcal{I}^{-2}\partial^{-1} \\ \mathcal{N}\mathcal{I}^{2}\partial & \mathscr{O} \end{pmatrix} : \det A \in \mathcal{U} = \mathscr{O}^{\times}, \ \det A \gg 0 \right\}.$$

We also define

$$\widetilde{\Gamma}_{0}(\mathcal{N}, \mathcal{I}^{2}) = \left\{ \widetilde{A} = \left[A, \frac{\theta(\mathcal{I}, A\tau)}{\theta(\mathcal{I}, \tau)} \right] : A \in \Gamma_{0}(\mathcal{N}, \mathcal{I}^{2}), \ \det A \in \mathcal{U}^{2} \right\}$$

where $\theta(\mathscr{I}, \tau) = \sum_{\alpha \in \mathscr{I}} e(2\alpha^2 \tau)$ with $e(\beta \tau) = e^{\pi i \operatorname{Tr}(\beta \tau)}$, and $\mathscr{U}^2 = \{u^2 : u \in \mathscr{U} = \mathscr{O}^{\times}\}$. As shown in §3 of [6], when $A \in \Gamma_0(\mathscr{N}, \mathscr{I}^2)$ and det A = 1, $\theta(\mathscr{I}, A\tau)/\theta(\mathscr{I}, \tau)$ is a well-defined automorphy factor for A, and it is easily seen that for $u \in \mathscr{U}$, $\theta(\mathscr{I}, u^2\tau) = \theta(\mathscr{I}, \tau)$. Thus we can define a group action of $\widetilde{\Gamma}_0(\mathscr{N}, \mathscr{I}^2)$ on $f: \mathscr{H}^n \to \mathbb{C}$ by

$$f|_{m/2}\widetilde{A}(\tau) = f|\widetilde{A}(\tau) = \left(\frac{\theta(\mathscr{I}, A\tau)}{\theta(\mathscr{I}, \tau)}\right)^{-m} f(A\tau).$$

(Here \mathscr{H} denotes the complex upper half-plane.) For $\chi_{\mathscr{N}}$ a numerical character modulo the ideal \mathscr{N} and m an odd integer, we let $\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{I}^2),\chi_{\mathscr{N}})$ denote the space of Hilbert modular forms f which satisfy

$$f|_{m/2}A(\tau) = \chi_{\mathcal{N}}(a)f(\tau)$$

for all $\widetilde{A} = \begin{pmatrix} \widetilde{a} & b \\ c & d \end{pmatrix} \in \widetilde{\Gamma}_0(\mathcal{N}, \mathcal{I}^2)$. Notice that by definition,

$$f\left| \begin{pmatrix} \widetilde{u^0 \quad 0} \\ 0 \quad u^{-1} \end{pmatrix} (\tau) = f(u^2 \tau) = f \left| \begin{pmatrix} u^2 \quad 0 \\ 0 \quad 1 \end{pmatrix} (\tau) \right|$$

for any $u \in \mathcal{U}$, so $\mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{I}^2), \chi_{\mathcal{N}}) = \{0\}$ unless $\chi_{\mathcal{N}}(u) = 1$ for all $u \in \mathcal{U}$. For \mathcal{P} a prime, $\mathcal{P} \nmid \mathcal{N}$, we define the Hecke operator

$$T(\mathscr{P}^2):\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{I}^2),\chi_{\mathscr{N}})\to\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{P}^2\mathscr{I}^2),\chi_{\mathscr{N}})$$

as follows. Let $\{\widetilde{A}_i\}$ be a complete set of coset representatives for

$$(\widetilde{\Gamma}_{1}(\mathcal{N},\mathcal{I}^{2})\cap\widetilde{\Gamma}_{1}(\mathcal{N},\mathcal{P}^{2}\mathcal{I}^{2}))\setminus\widetilde{\Gamma}_{1}(\mathcal{N},\mathcal{P}^{2}\mathcal{I}^{2})$$

where

$$\widetilde{\Gamma}_{1}(\mathcal{N}, \mathcal{I}^{2}) = \left\{ \begin{pmatrix} \widetilde{a} & b \\ c & d \end{pmatrix} \in \widetilde{\Gamma}_{0}(\mathcal{N}, \mathcal{I}^{2}) : a \equiv 1 \pmod{\mathcal{N}} \right\}.$$

Then for $f \in \mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{J}^2), \chi_{\mathcal{N}})$, define

$$f | T(\mathscr{P}^2) = N(\mathscr{P})^{m/2-2} \sum_j f | \widetilde{A}_j .$$

Clearly $T(\mathscr{P}^2)$ is well-defined and

$$f | T(\mathscr{P}^2) \in \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N}, \mathscr{P}^2\mathscr{I}^2), \chi_{\mathscr{N}}).$$

Similar to the case of integral weight, we also define operators

$$S(\mathscr{P}): \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{I}^2),\chi_{\mathscr{N}}) \to \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{P}^2\mathscr{I}^2),\chi_{\mathscr{N}})$$

by

$$f | S(\mathscr{P}) = f \left| \left[C, N(\mathscr{P})^{-1/2} \frac{\theta(\mathscr{I}, C\tau)}{\theta(\mathscr{P}, \tau)} \right] \right|$$

where

$$C \in \begin{pmatrix} \mathscr{P} & \mathscr{P}^{-1} \mathscr{I}^{-2} \partial^{-1} \\ \mathscr{NP} \mathscr{I}^{2} \partial & \mathscr{O} \end{pmatrix},$$

det C = 1, and $a_C \equiv 1 \pmod{\mathcal{N}}$. The proof of Proposition 6.1 of [6] shows that $N(\mathcal{P})^{-1/2}\theta(\mathcal{F}, C\tau)/\theta(\mathcal{PF}, \tau)$ is a well-defined automorphy factor for C, and it is easy to check that $S(\mathcal{P})$ is welldefined and that $f|S(\mathcal{P}) \in \mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{P}^2\mathcal{F}^2), \chi_{\mathcal{N}})$. (Note that the restrictions on d in Proposition 6.1 of [6] are unnecessary, but one must then use the extended transformation formula from §4 of [7].) In fact, $S(\mathcal{P})$ is an isomorphism, so by setting $S(\mathcal{P}^{-1}) = S(\mathcal{P})^{-1}$ and $S(\mathcal{F}_1)S(\mathcal{F}_2) = S(\mathcal{F}_1\mathcal{F}_2)$, we can inductively define $S(\mathcal{F})$ for any fractional ideal J relatively prime to \mathcal{N} .

LEMMA 2.1. Suppose

$$A \in \begin{pmatrix} \mathscr{P} & \mathscr{P}^{-1} \mathscr{J}^{-2} \partial^{-1} \\ \mathscr{NP} \mathscr{I}^{2} \partial & \mathscr{P}^{-1} \end{pmatrix}$$

such that det A = 1 and $a_A \equiv 1 \pmod{\mathcal{N}}$. Then for

$$\begin{split} f &\in \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N}, \mathscr{I}^2), \chi_{\mathscr{N}}), \\ f &\left| \left[A, N(\mathscr{P})^{-1/2} \frac{\theta(\mathscr{I}, A\tau)}{\theta(\mathscr{P}\mathcal{I}, \tau)} \right] = f \middle| S(\mathscr{P}). \end{split}$$

Proof. Let C be a matrix as in the definition of $S(\mathscr{P})$; so

$$\begin{split} f \left| \begin{bmatrix} A, N(\mathscr{P})^{-1/2} \frac{\theta(\mathscr{I}, A\tau)}{\theta(\mathscr{P}\mathcal{I}, \tau)} \end{bmatrix} \right| S(\mathscr{P})^{-1} \\ &= f \left| \begin{bmatrix} A, N(\mathscr{P})^{-1/2} \frac{\theta(\mathscr{I}, A\tau)}{\theta(\mathscr{P}\mathcal{I}, \tau)} \end{bmatrix} \right| \begin{bmatrix} C^{-1}, N(\mathscr{P})^{1/2} \frac{\theta(\mathscr{P}\mathcal{I}, C^{-1}\tau)}{\theta(\mathscr{I}, \tau)} \end{bmatrix} \\ &= f \left| \begin{bmatrix} AC^{-1}, \frac{\theta(\mathscr{I}, AC^{-1}\tau)}{\theta(\mathscr{I}, \tau)} \end{bmatrix} \right| \\ &= f \end{split}$$

since $[AC^{-1}, \theta(\mathcal{F}, AC^{-1}\tau)/\theta(\mathcal{F}, \tau)] \in \widetilde{\Gamma}_1(\mathcal{N}, \mathcal{F}^2)$. \Box

We now use this lemma to give us a useful description of $T(\mathscr{P}^2)$ when $\mathscr{P} \nmid \mathscr{N}$.

LEMMA 2.2. For \mathscr{P} a prime, $\mathscr{P} \nmid \mathscr{N}$, and

$$f \in \mathscr{M}_{m/2}(\Gamma_0(\mathcal{N}, \mathcal{F}^2), \chi_{\mathcal{N}})$$

we have

$$\begin{split} N(\mathscr{P})^{2-m/2} f \left| T(\mathscr{P}^2) &= \sum_b f \left| \begin{bmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{bmatrix}, 1 \end{bmatrix} \right. \\ &+ \sum_\beta f \left| S(\mathscr{P}) \right| \left[\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}, N(\mathscr{P})^{1/2} \left(\sum_{\alpha \in \mathscr{PF}/\mathscr{P}^2\mathscr{F}} e(-2\beta\alpha^2) \right)^{-1} \right] \\ &+ f \left| S(\mathscr{P}^2) \end{split}$$

where b runs over $\mathcal{P}^{-2}\mathcal{J}^{-2}\partial^{-1}/\mathcal{J}^{-2}\partial^{-1}$ and β runs over $(\mathcal{P}^{-3}\mathcal{J}^{-2}\partial^{-1}/\mathcal{P}^{-2}\mathcal{J}^{-2}\partial^{-1})^{\times}$.

Proof. Since for $\alpha \in \mathbf{K}^{\times}$ the mapping $f \mapsto f \mid [\begin{pmatrix} \alpha^{-2} & 0 \\ 0 & 1 \end{pmatrix}, N(\alpha^2)^{1/4}]$ is an isomorphism from the space $\mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{I}^2), \chi_{\mathcal{N}})$ onto $\mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \alpha^2 \mathcal{I}^2), \chi_{\mathcal{N}})$, we may assume $\mathcal{I} \subseteq \mathcal{O}$. Choose $a \in \mathcal{P} - \mathcal{P}^2$ such that $a\mathcal{O}$ is relatively prime to \mathcal{N} and $a \equiv 1 \pmod{\mathcal{N}}$. Let $\{b_k\}$ be a set of coset representatives for

$$(\mathcal{P}^{-2}\mathcal{I}^{-2}\partial^{-1}/\mathcal{P}^{-1}\mathcal{I}^{-2}\partial^{-1})^{\times}$$

such that $b_k \mathscr{P}^2 \mathscr{I}^2 \partial$ is relatively prime to $a\mathscr{O}$; then for each k, use strong approximation to choose $c_k \in \mathscr{NP}^2 \mathscr{I}^2 \partial$ and $d_k \in \mathscr{O}$ such that $ad_k - b_k c_k = 1$. Take $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \Gamma_1(\mathscr{N}, \mathscr{P}^2 \mathscr{I}^2)$ such that $a' \in \mathscr{P}^2$, $\mathscr{P} \nmid d'$, and a'd' - b'c' = 1, and take $\{b''_j\}$ to be a set of representatives for $\mathscr{P}^{-2} \mathscr{I}^{-2} \partial^{-1} / \mathscr{I}^{-2} \partial^{-1}$. Then one easily sees that

$$\left\{ \begin{pmatrix} \widetilde{1} & \widetilde{b_j} \\ 0 & 1 \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} a' & \widetilde{b'} \\ c' & d' \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} a & \widetilde{b_k} \\ c_k & d_k \end{pmatrix} \right\}$$

is a complete set of coset representatives for

$$(\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{P}^{2}\mathscr{I}^{2})\cap\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{I}^{2}))\backslash\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{P}^{2}\mathscr{I}^{2}).$$

Take $f \in \mathcal{M}_{m/2}(\Gamma_0(\mathcal{N}, \mathcal{I}^2), \chi_{\mathcal{N}})$. Then

$$f | \widetilde{A'} = f \left| \left[A', \frac{\theta(\mathscr{PI}, A'\tau)}{\theta(\mathscr{PI}, \tau)} \right] \right|$$

and the transformation formula (2) in §2 of [6] shows that

$$\frac{\theta(\mathscr{PI}, A'\tau)}{\theta(\mathscr{PI}, \tau)} = \left(c' + d'\frac{1}{\tau}\right)^{1/2} \tau^{1/2} (d')^{-1/2} \sum_{\alpha \in \mathscr{PI}/d' \mathscr{PI}} e\left(\frac{b'}{d'} 2\alpha^2\right).$$

(Recall that, as remarked earlier, we need not restrict d as in [6], but we need to then use the extended transformation formula as it appears in [7].) On the other hand,

$$f|S(\mathcal{P}^2) = f \Big| \left[A', N(\mathcal{P})^{-1} \frac{\theta(\mathcal{I}, A'\tau)}{\theta(\mathcal{P}^2\mathcal{I}, \tau)} \right]$$

and following the derivation in the proof of Proposition 6.1 of [6] we find that

$$\begin{aligned} \frac{\theta(\mathcal{F}, A'\tau)}{\theta(\mathcal{P}^2\mathcal{F}, \tau)} &= \left(c' + d'\frac{1}{\tau}\right)^{1/2} \tau^{1/2} (d')^{-1/2} \\ &\cdot \sum_{\alpha \in \mathcal{P}^2\mathcal{F}/d'\mathcal{P}^2\mathcal{F}} e\left(\frac{b'}{d'} 2\alpha^2\right) \sum_{\alpha \in d'\mathcal{F}/\mathcal{P}^2d'\mathcal{F}} e\left(\frac{b'}{d'} 2\alpha^2\right). \end{aligned}$$

By Proposition 3.2 of [6],

$$\sum_{\alpha \in d' \mathscr{F}/d' \mathscr{P}^2 \mathscr{F}} e\left(\frac{b'}{d'} 2\alpha^2\right) = N(\mathscr{P});$$

also, since $\mathscr{P} \nmid d'$,

$$\sum_{\alpha\in \mathcal{P}^2\mathcal{I}/d'\mathcal{P}^2\mathcal{I}} e\left(\frac{b'}{d'}2\alpha^2\right) = \sum_{\alpha\in \mathcal{PI}/d'\mathcal{PI}} e\left(\frac{b'}{d'}2\alpha^2\right)\,.$$

Thus $f|\tilde{A'} = f|S(\mathcal{P}^2)$. Now choose $\nu \in \mathcal{P}^{-1}\mathcal{F}^{-1}\partial^{-1}$ such that $(\nu \mathcal{P}\mathcal{F}\partial, d_k\mathcal{P}) = 1$ for all k. Fix some k; for simplicity write $A_k = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Set $\beta = \beta'\nu^2$ where $\beta' \in \mathcal{P}^{-1}\partial$ is chosen such that $a\beta + b \in \mathcal{P}^{-1}\mathcal{F}^{-2}\partial^{-1}$; we will show that

$$f | \widetilde{A} \left| \left[\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}, 1 \right] = N(\mathscr{P})^{1/2} \left(\sum_{\alpha \in \mathscr{PF} / \mathscr{P}^2 \mathscr{I}} e(2\beta\alpha^2) \right)^{-1} f | S(\mathscr{P}),$$

and then the lemma will follow. Now,

$$f|S(\mathcal{P}) = f \left| \left[A_k \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}, N(\mathcal{P})^{-1/2} \frac{\theta(\mathcal{I}, A_k \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix})}{\theta(\mathcal{PI}, \tau)} \right];$$

again following the proof of Proposition 6.1 of [6] we find that

$$\begin{split} N(\mathscr{P})^{-1/2} &\frac{\theta(\mathscr{I}, A_k \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix})\tau}{\theta(\mathscr{P}\mathscr{I}, \tau)} \\ &= \left(c + (c\beta + d)\frac{1}{\tau}\right)^{1/2} \tau^{1/2} (c\beta + d)^{-1/2} N(\mathscr{P})^{-1/2} \\ &\cdot \sum_{\alpha \in \mathscr{I}(c\beta + d)\mathscr{R}\mathscr{I}} e\left(\frac{a\beta + b}{c\beta + d} 2\alpha^2\right) \\ &\text{ and since } a(c\beta + d) - c(\alpha\beta + b) = 1 \\ &\text{ and } e(a(a\beta + b)2\alpha^2) = 1, \\ &= \left(c + (c\beta + d)\frac{1}{\tau}\right)^{1/2} \tau^{1/2} (c\beta + d)^{-1/2} N(\mathscr{P})^{-1/2} \\ &\cdot \sum_{\alpha \in \mathscr{I}/(c\beta + d)\mathscr{R}\mathscr{I}} e\left(-\frac{c(a\beta + b)^2}{c\beta + d} 2\alpha^2\right) \\ &= \left(c + (c\beta + d)\frac{1}{\tau}\right)^{1/2} \tau^{1/2} (c\beta + d)^{-1/2} N(\mathscr{P})^{-1/2} \\ &\cdot \sum_{\alpha \in \mathscr{P}/(c\beta + d)\mathscr{P}} e\left(-\frac{c\nu^2}{c\beta + d} 2\alpha^2\right) \end{split}$$

(note that $\nu \mathscr{PF} \partial$ is relatively prime to $(c\beta + d)\mathscr{P}$). Now, d is relatively prime to 4 since 4|c; thus by reciprocity of Gauss sums (Theorem 161 of [3]) we have

$$(c\beta+d)^{-1/2}N(\mathscr{P})^{-1/2}\sum_{\alpha\in\mathscr{P}/(c\beta+d)\mathscr{P}}e\left(-\frac{c\nu^2}{c\beta+d}2\alpha^2\right)$$
$$=i^{-n/2}N(c\nu^2\mathscr{P}\partial)^{-1/2}\sum_{\alpha\in\mathscr{P}/c\nu^2\mathscr{P}\partial}e\left(\frac{c\beta+d}{c\nu^2}2\alpha^2\right)$$

and using the techniques of $\S3$ of [6],

$$= i^{-n/2} N(c\nu^2 \mathscr{P} \partial)^{-1/2}$$
$$\cdot \sum_{\alpha \in \mathscr{P}/c\nu^2 \mathscr{P} \partial} e\left(\frac{c\beta + d}{c\nu^2} 2\alpha^2\right) \sum_{\alpha \in c\nu^2 \partial/c\nu^2 \mathscr{P} \partial} e\left(\frac{c\beta + d}{c\nu^2} 2\alpha^2\right).$$

For $\alpha \in \mathcal{P}$,

$$\frac{c\beta+1}{c\nu^2}2\alpha^2 \equiv \frac{d}{c\nu^2}2\alpha^2 \pmod{2\partial^{-1}}$$

(since $\beta = \nu^2 \beta'$ with $\beta' \in \mathcal{P}^{-1}\partial$) so

$$\sum_{\alpha \in \mathscr{P}/c\nu^{2}\mathscr{P}\partial} e\left(\frac{c\beta+1}{c\nu^{2}}2\alpha^{2}\right) = \sum_{\alpha \in \mathscr{P}/c\nu^{2}\mathscr{P}\partial} e\left(\frac{d}{c\nu^{2}}2\alpha^{2}\right)$$
$$= \sum_{\alpha \in \mathscr{P}/c\nu^{2}\partial} e\left(\frac{d}{c\nu^{2}}2\alpha^{2}\right)$$

(note that $\operatorname{ord}_{\mathscr{P}} c\nu^2 \partial = 0$). Also,

$$\frac{c\beta+d}{c\nu^2}2\alpha^2 \equiv 2\beta \left(\frac{\alpha}{\nu}\right)^2 \pmod{2\partial^{-1}}$$

for $\alpha \in c\nu^2 \partial$, so

$$\sum_{\alpha \in c\nu^2 \partial / c\nu^2 \mathscr{P} \partial} e\left(\frac{c\beta + d}{c\nu^2} 2\alpha^2\right) = \sum_{\alpha \in c\nu^2 \partial / c\nu^2 \mathscr{P} \partial} e\left(2\beta \left(\frac{\alpha}{\nu}\right)^2\right)$$
$$= \sum_{\alpha \in \mathscr{PF} / \mathscr{P}^2 \mathscr{F}} e(2\beta \alpha^2).$$

On the other hand, formula (1) of [6] and the techniques used above show that

$$\begin{aligned} \frac{\theta(\mathscr{PF}, A_k \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \tau)}{\theta(\mathscr{PF}, \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \tau)} \\ &= \left(c + (c\beta + d) \frac{1}{\tau} \right)^{1/2} \tau^{1/2} d^{-1/2} \sum_{\alpha \in \mathscr{PF}/d\mathscr{PF}} e\left(-\frac{cb^2}{d} 2\alpha^2 \right) \\ &= \left(c + (c\beta + d) \frac{1}{\tau} \right)^{1/2} \tau^{1/2} d^{-1/2} \sum_{\alpha \in \mathscr{P}/d\mathscr{P}} e\left(-\frac{c\nu^2}{d} 2\alpha^2 \right) \end{aligned}$$

and by reciprocity of Gauss sums,

$$= \left(c + (c\beta + d)\frac{1}{\tau}\right)^{1/2} \tau^{1/2} i^{-n/2} N(c\nu^2 \partial)^{-1/2}$$
$$\times \sum_{\alpha \in \mathscr{O}/c\nu^2 \partial} e\left(\frac{d}{c\nu^2} 2\alpha^2\right).$$

Our goal in this section is to determine the effect of the Hecke operators on the Fourier coefficients of a half-integral weight form. When $\mathbf{K} = \mathbf{Q}$, we know that for

$$f(\tau) = \sum_{n \ge 0} a(n) e(2n\tau) \in \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(N), \chi),$$

we have $f(\tau)|T(p^2) = \sum_{n\geq 0} b(n)e(2n\tau)$ where

$$b(n) = a(p^2n) + \chi(p)p^{(m-3)/2}(-1|p)^{(m-1)/2}(n|p)a(n) + \chi(p^2)p^{m-2}a(n/p^2).$$

By defining "Fourier coefficients" attached to integral ideals, we expect to get a similar description of the effect of the Hecke operators on any half-integral weight Hilbert modular form. This, in fact, is one of the things Shimura does for integral weight forms in [5]; so mimicking Shimura, we decompose a space of half-integral weight Hilbert modular forms as described below.

Whenever \mathcal{I} and \mathcal{J} are fractional ideals in the same (nonstrict) ideal class, the mapping

$$f \to f \left| \left[\begin{pmatrix} \alpha^{-2} & 0 \\ 0 & 1 \end{pmatrix}, N(\alpha^2)^{1/4} \right] \right|$$

is an isomorphism from the space $\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{I}^2),\chi_{\mathscr{N}})$ onto $\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{I}^2),\chi_{\mathscr{N}})$ where α is any element of \mathbf{K}^{\times} such that $\alpha \mathscr{I} = \mathscr{J}$ (notice that this isomorphism is independent of the choice of α). Hence we can consider $T(\mathscr{P}^2)$ and $S(\mathscr{P})$ as operators on the space

$$\mathscr{M}_{m/2}(\mathscr{N},\,\chi_{\mathscr{N}})=\prod_{\lambda=1}^{h'}\mathscr{M}_{m/2}(\widetilde{\Gamma}_{0}(\mathscr{N},\,\mathscr{I}_{\lambda}^{\,2})\,,\,\chi_{\mathscr{N}})$$

where $\mathscr{I}_1, \ldots, \mathscr{I}_{h'}$ represent all the distinct (nonstrict) ideal classes. Note that by the Global Square Theorem (65:15 of [4]), $\mathscr{I}_1^2, \ldots, \mathscr{I}_{h'}^2$ represent distinct strict ideal classes. Just as in the case where *m* is even (see Lemma 1.1 and Proposition 1.2 of [7]), we have

$$\mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}) = \bigoplus_{\chi} \mathscr{M}_{m/2}(\mathscr{N}, \chi)$$

where the sum is over all Hecke characters χ extending χ_N with $\chi_\infty = 1$,

$$\mathcal{M}_{m/2}(\mathcal{N}, \chi) = \{ F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}) : F | S(\mathcal{J}) = \chi^*(\mathcal{J})F$$
for all fractional ideals $\mathcal{J}, (\mathcal{J}, \mathcal{N}) = 1 \},$

and χ^* is the ideal character induced by χ . (For \mathscr{J} a fractional ideal relatively prime to \mathscr{N} , $\chi^*(\mathscr{J}) = \chi(\tilde{a})$ where \tilde{a} is an idele of **K** such that $\tilde{a}_{\mathscr{P}} = 1$ for all primes $\mathscr{P}|\mathscr{N}\infty$, and $\tilde{a}\mathscr{O} = \mathscr{J}$. Also note that there are Hecke characters χ extending $\chi_{\mathscr{N}}$ with $\chi_{\infty} = 1$ since $\chi_{\mathscr{N}}(u) = 1$ for all $u \in \mathscr{U}$.)

When defining "Fourier coefficients" attached to integral ideals for an integral weight form F, Shimura uses the fact that for $u \in \mathcal{U}^+$

$$F\Big|\begin{pmatrix}u&0\\0&1\end{pmatrix}=F$$

In the case of half-integral weight forms, we have no analogous equation. However, we can decompose $\mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}})$ as follows.

Let $\mathbf{K}^+ = \{a \in \mathbf{K} : a \gg 0\}$ and $\dot{K}^2 = \{a^2 : a \in \mathbf{K}, a \neq 0\}$; set $G = \mathbf{K}^+/\dot{\mathbf{K}}^2$ and $H = \mathscr{U}^+\dot{\mathbf{K}}^2/\dot{\mathbf{K}}^2 \ (\approx \mathscr{U}^+/\mathscr{U}^2)$. For each character $\varphi \in \hat{G}$ = the character group of G, define

$$\mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}, \varphi) = \left\{ F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}) : F \Big| \begin{bmatrix} u & 0 \\ 0 & 1 \end{bmatrix}, 1 \end{bmatrix} = \varphi(u)F \text{ for all } u \in \mathcal{U}^+ \right\}.$$

Then we have

LEMMA 2.3. With the above definitions,

$$\mathscr{M}_{m/2}(\mathscr{N},\,\chi_{\mathscr{N}}) = \bigoplus_{\varphi} \mathscr{M}_{m/2}(\mathscr{N},\,\chi_{\mathscr{N}},\,\varphi)$$

where the sum runs over a complete set of representatives φ for \widetilde{G}/H^{\perp} with $H^{\perp} = \{\varphi \in \widetilde{G} : \varphi|_{H} = 1\}$. Each space $\mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}, \varphi)$ is invariant under all the Hecke operators $T(\mathcal{P}^{2})$ where \mathcal{P} is a prime ideal not dividing \mathcal{N} .

REMARK. The restriction map defines an isomorphism from \widehat{G}/H^{\perp} onto $\widehat{H} \approx \mathscr{U}^+/\mathscr{U}^2$, but there is no canonical way to extend an element of $\mathscr{U}^+/\mathscr{U}^2$ to an element of \widehat{G}/H^{\perp} .

Proof. Given $F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi)$, set

$$F_{\varphi} = \frac{1}{[\mathscr{U}^{+}:\mathscr{U}^{2}]} \sum_{u \in \mathscr{U}^{+}/\mathscr{U}^{2}} \overline{\varphi}(u) F \Big| \Big[\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}, 1 \Big].$$

One easily verifies that $F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}, \varphi)$. Also,

$$\sum_{\varphi \in \widehat{G}/H^{\perp}} F_{\varphi} = \frac{1}{[\mathscr{U}^{+}:\mathscr{U}^{2}]} \sum_{u \in \mathscr{U}^{+}/\mathscr{U}^{2}} \left(\sum_{\varphi} \overline{\varphi}(u)\right) F \left| \begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}, 1 \end{bmatrix} = F^{\neg}$$

since duality shows that $\sum_{\varphi} \overline{\varphi}(u)$ is only nonzero when u = 1. Furthermore, for $\varphi_1, \varphi_2 \in \widehat{G}, \mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}, \varphi_1)$ and $\mathcal{M}_{m/2}(\mathcal{N}, \chi_{\mathcal{N}}, \varphi_2)$

either are equal or have trivial intersection, depending on whether $\varphi_1 \overline{\varphi}_2 \in H^{\perp}$. Thus $\mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}) = \bigoplus_{\varphi} \mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}, \varphi)$ as claimed. Now, given $u \in \mathscr{U}^+$, \mathscr{P} a prime ideal not dividing \mathscr{N} , and $\{\widetilde{A}_j\}$ a set of coset representatives for

$$(\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{I}^{2})\cap\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{P}^{2}\mathscr{I}^{2}))\backslash\widetilde{\Gamma}_{1}(\mathscr{N},\mathscr{P}^{2}\mathscr{I}^{2}),$$

we see that $\{\begin{pmatrix} u^{-1} & 0 \\ 0 & 1 \end{pmatrix} A_j \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}\}$ is a set of coset representatives for

$$(\Gamma_1(\mathcal{N}, \mathcal{F}^2) \cap \Gamma_1(\mathcal{N}, \mathcal{P}^2\mathcal{F}^2)) \setminus \Gamma_1(\mathcal{N}, \mathcal{P}^2\mathcal{F}^2).$$

Standard techniques for evaluating Gauss sums show that

$$\frac{\theta(\mathcal{I}, A_j u \tau)}{\theta(\mathcal{I}, u \tau)} = (u | d_j) \frac{\theta(\mathcal{I}, A_j^u \tau)}{\theta(\mathcal{I}, \tau)}$$

where

$$A_j = \begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix}$$
 and $A_j^u = \begin{pmatrix} u^{-1} & 0 \\ 0 & 1 \end{pmatrix} A_j \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}$

Since $d_j \equiv a_j d_j \equiv v^2 \pmod{\mathcal{N}}$ for some $v \in \mathcal{U}$, the Law of Quadratic Reciprocity (Theorem 165 of [3]) shows that $(u|d_j) = 1$; hence

$$\begin{bmatrix} \begin{pmatrix} u^{-1} & 0 \\ 0 & 1 \end{pmatrix}, 1 \end{bmatrix} \widetilde{A}_j \begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}, 1 \end{bmatrix} = \widetilde{A}_j^u$$

and thus $T(\mathscr{P}^2)$ acts invariantly on the space $\mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}, \varphi)$. \Box

Unfortunately, we also have

LEMMA 2.4. Given $\varphi \in \widehat{G}$ and \mathscr{P} a prime ideal not dividing \mathscr{N} , we have

$$S(\mathscr{P}):\mathscr{M}_{m/2}(\mathscr{N},\,\chi_{\mathscr{N}},\,\varphi)\to\mathscr{M}_{m/2}(\mathscr{N},\,\chi_{\mathscr{N}},\,\varphi\psi_{\mathscr{P}})$$

where $\psi_{\mathscr{P}}$ is an element of \widehat{G} such that $\psi_{\mathscr{P}}(u) = (u|\mathscr{P})$ for all $u \in \mathcal{U}^+$. Consequently, given any Hecke character χ extending $\chi_{\mathscr{N}}$ (with $\chi_{\infty} = 1$),

$$\mathscr{M}_{m/2}(\mathscr{N}, \chi) \cap \mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}, \varphi) = \{0\}$$

unless $\mathscr{U}^+ = \mathscr{U}^2$.

Proof. Let $C = \begin{pmatrix} * & * \\ * & d \end{pmatrix}$ be a matrix as in the definition of $S(\mathscr{P})$; so det C = 1, and

$$F|S(\mathscr{P}) = f\left|\left[C, N(\mathscr{P})^{-1/2} \frac{\theta(\mathscr{I}, C\tau)}{\theta(\mathscr{P}, \tau)}\right]\right|$$

for $f \in \mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{F}^2), \chi_{\mathcal{N}})$. Then for $u \in \mathcal{U}^+$, the techniques used to prove Proposition 6.1 of [6] show that

$$\begin{bmatrix} \begin{pmatrix} u^{-1} & 0 \\ 0 & 1 \end{pmatrix}, 1 \end{bmatrix} \begin{bmatrix} C, N(\mathcal{P})^{-1/2} \frac{\theta(\mathcal{I}, C\tau)}{\theta(\mathcal{PI}, \tau)} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}, 1 \end{bmatrix}$$
$$= \begin{bmatrix} C^{u}, (u|d)(u|\mathcal{P})N(\mathcal{P})^{-1/2} \frac{\theta(\mathcal{I}, C^{u}\tau)}{\theta(\mathcal{PI}, \tau)} \end{bmatrix}$$

where $C^u = \begin{pmatrix} u^{-1} & 0 \\ 0 & 1 \end{pmatrix} C \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}$. Since $d \equiv 1 \pmod{\mathcal{N}}$ (recall the definition of $\mathscr{S}(\mathscr{P})$) we see again by the Law of Quadratic Reciprocity that (u|d) = 1. Hence for $F \in \mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}, \varphi)$,

$$F|S(\mathscr{P})|\left[\begin{pmatrix} u & 0\\ 0 & 1 \end{pmatrix}, 1\right]$$

= $(u|\mathscr{P})F|\left[\begin{pmatrix} u & 0\\ 0 & 1 \end{pmatrix}, 1\right]|S(\mathscr{P}) = \varphi(u)(u|\mathscr{P})F|S(\mathscr{P}),$

showing that $F|S(\mathscr{P}) \in \mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}}, \varphi \psi_{\mathscr{P}})$.

Now, to finish proving the lemma, we simply observe that there are an infinite number of primes \mathscr{P} such that $(u|\mathscr{P}) = -1$ if $u \in \mathscr{U}^+ - \mathscr{U}^2$ (see 65:19 of [4]).

The preceding two lemmas compel us to define "Fourier coefficients" attached to integral ideals as follows.

Given

$$F = (\ldots, f_{\lambda}, \ldots) \in \mathscr{M}_{m/2}(\mathscr{N}, \chi_{\mathscr{N}})$$

where $f_{\lambda}(\tau) = \sum_{\zeta} a_{\lambda}(\zeta) e(2\zeta\tau)$, $\varphi \in \widehat{G}$ and $\mathcal{M} \neq 0$ an integral ideal, we define the \mathcal{M}, φ -Fourier coefficient of F by:

(i)

$$\mathbf{a}(\mathscr{M}, \varphi) = \frac{1}{[\mathscr{U}^+ : \mathscr{U}^2]} \sum_{u \in \mathscr{U}^+ / \mathscr{U}^2} \overline{\varphi}(\xi u) a_{\lambda}(\xi u) N(\mathscr{F}_{\lambda})^{-m/2}$$

if $\mathcal{M} = \xi \mathcal{J}_{\lambda}^{-2}$ for some λ and some $\xi \gg 0$;

(ii) $\mathbf{a}(\mathcal{M}, \varphi) = 0$ if \mathcal{M} cannot be written as $\xi \mathcal{I}_{\lambda}^{-2}$ with $\xi \gg 0$; (iii) $\mathbf{a}(0, \varphi) = a_{\lambda}(0)N(\mathcal{I}_{\lambda})^{-m/2}$ if $a_{\lambda}(0)N(\mathcal{I}_{\lambda})^{-m/2} = a_{\mu}(0)N(\mathcal{I}_{\mu})^{-m/2}$

for all λ , μ .

Thus for $\mathscr{M} = \xi \mathscr{F}_{\lambda}^{-2}$, $\xi \gg 0$, $\mathbf{a}(\mathscr{M}, \varphi)$ is $N(\mathscr{F}_{\lambda})^{-m/2}$ times the ξ -Fourier coefficient of the λ -component of F_{φ} . Since $F = \sum_{\varphi} F_{\overline{\varphi}}$, the collection of all the \mathcal{M}, φ -Fourier coefficients ($\varphi \in \widehat{G}/H^{\perp}$) characterize any form F whose 0, φ -Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier coefficients.

THEOREM 2.5. Let $F = (\ldots, f_{\lambda}, \ldots) \in \mathcal{M}_{m/2}(\mathcal{N}, \chi)$ where χ is a Hecke character extending $\chi_{\mathcal{N}}$ with $\chi_{\infty} = 1$. Take \mathcal{P} to be a prime ideal not dividing \mathcal{N} , and take $\psi_{\mathcal{P}} \in (\mathbf{K}^+/\mathbf{K}^2)$ such that $\psi_{\mathcal{P}}(\xi) = (\xi|\mathcal{P})$ for all $\xi \in \mathbf{K}^+$ with $\operatorname{ord}_{\mathcal{P}} \xi = 0$. Let $\mathbf{a}(\mathcal{M}, *)$ and $\mathbf{b}(\mathcal{M}, *)$ denote the $\mathcal{M}, *$ -Fourier coefficients of F and of $F|T(\mathcal{P}^2)$ (respectively). Then for any $\varphi \in (\mathbf{K}^+/\mathbf{K}^2)$, we have

$$\begin{split} \mathbf{b}(\mathscr{M}, \varphi) \\ &= \begin{cases} \mathbf{a}(\mathscr{P}^2 \mathscr{M}, \varphi) + \chi^*(\mathscr{P}) N(\mathscr{P})^{(m-3)/2} (-1|\mathscr{P})^{(m-1)/2} \mathbf{a}(\mathscr{M}, \varphi \psi_{\mathscr{P}}) \\ &+ \chi^*(\mathscr{P}^2) N(\mathscr{P})^{m-2} \mathbf{a}(\mathscr{M} \mathscr{P}^{-2}, \varphi) \quad if \, \mathscr{P} \nmid \mathscr{M}, \\ \mathbf{a}(\mathscr{P}^2 \mathscr{M}, \varphi) + \chi^*(\mathscr{P}^2) N(\mathscr{P})^{m-2} \mathbf{a}(\mathscr{M} \mathscr{P}^{-2}, \varphi) \quad if \, \mathscr{P} \mid \mathscr{M}. \end{cases}$$

Proof. Take $\rho, \gamma \in \mathbf{K}^{\times}$ such that $\mathscr{I}_{\lambda}^{2}\mathscr{P}^{2} = \rho^{2}\mathscr{I}_{\mu}^{2}$ and $\mathscr{I}_{\lambda}^{2}\mathscr{P}^{4} = \gamma^{2}\mathscr{I}_{\eta}^{2}$. Then by Lemma 2.2 the μ -component of $F|T(\mathscr{P}^{2})$ is

$$\begin{split} N(\mathscr{P})^{m/2-2} \left(f_{\lambda} \left| \sum_{b} \left[\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, 1 \right] \right. \\ \left. + \chi^{*}(\mathscr{P}) f_{\mu} \right| \left[\begin{pmatrix} \rho^{2} & 0 \\ 0 & 1 \end{pmatrix}, N(\rho^{2})^{-1/4} \right] \left| \sum_{\beta} \left[\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}, \frac{N(\mathscr{P})}{\sum_{\alpha} e(-2\beta\alpha^{2})} \right] \\ \left. + \chi^{*}(\mathscr{P}^{2}) f_{\eta} \right| \left[\begin{pmatrix} \gamma^{2} & 0 \\ 0 & 1 \end{pmatrix}, N(\gamma^{2})^{-1/4} \right] \right) \left| \left[\begin{pmatrix} \rho^{-2} & 0 \\ 0 & 1 \end{pmatrix}, N(\rho^{2})^{1/4} \right] \end{split}$$

where b runs over

$$\mathcal{P}^{-2}\mathcal{J}_{\lambda}^{-2}\partial^{-1}/\mathcal{J}_{\lambda}^{-2}\partial^{-1},$$

 β runs over

$$(\mathscr{P}^{-3}\mathcal{J}_{\lambda}^{-2}\partial^{-1}/\mathscr{P}^{-2}\mathcal{J}_{\lambda}^{-2}\partial^{-1})^{\times},$$

and α runs over

$$\mathcal{I}_{\lambda}\mathcal{P}/\mathcal{I}_{\lambda}\mathcal{P}^{2}$$
.

(Recall that $F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi)$ so

$$f_{\lambda}|S(\mathcal{I})| \left[\begin{pmatrix} \omega^2 & 0\\ 0 & 1 \end{pmatrix}, N(\omega^2)^{-1/4} \right] = \chi^*(\mathcal{I})f_{\sigma}$$

where $\omega \mathscr{I}^2 \mathscr{J}^2_{\lambda} = \mathscr{J}^2_{\sigma}$.) It is easily seen that

$$\begin{split} f_{\lambda} \Big| \sum_{b} \left[\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, 1 \right] \Big| \left[\begin{pmatrix} \rho^{-2} & 0 \\ 0 & 1 \end{pmatrix}, N(\rho^{2})^{-1/4} \right](\tau) \\ &= N(\mathcal{I}_{\lambda} \mathcal{P} \mathcal{I}_{\mu}^{-1})^{-m/2} N(\mathcal{P}^{2}) \sum_{\xi \in \mathcal{P}^{2} \mathcal{I}_{\lambda}^{2}} a_{\lambda}(\xi) e(2\xi \rho^{-2} \tau) \\ &= N(\mathcal{I}_{\lambda} \mathcal{P} \mathcal{I}_{\mu}^{-1})^{-m/2} N(\mathcal{P}^{2}) \sum_{\xi \in \mathcal{I}_{\mu}^{2}} a_{\lambda}(\rho^{2} \xi) e(2\xi \tau) \,, \end{split}$$

and that

$$\begin{split} f_{\eta} \bigg| \bigg[\begin{array}{c} \begin{pmatrix} \gamma^2 & 0 \\ 0 & 1 \end{pmatrix}, N(\gamma^2)^{-1/4} \bigg] \bigg| \bigg[\begin{pmatrix} \rho^{-2} & 0 \\ 0 & 1 \end{pmatrix}, N(\rho^2)^{1/4} \bigg] (\tau) \\ &= N(\mathscr{P}_{\mu}\mathscr{I}_{\eta}^{-1})^{m/2} \sum_{\xi \in \mathscr{P}^2 \mathscr{I}_{\eta}^2} a_{\eta}(\xi \rho^2 \gamma^{-2}) e(2\xi \tau) \,. \end{split}$$

Now we work a little:

$$\begin{split} f_{\mu} & \left[\begin{pmatrix} \rho^2 & 0\\ 0 & 1 \end{pmatrix}, \, N(\rho^2)^{-1/4} \right] |\sum_{\beta} \left[\begin{pmatrix} 1 & \beta\\ 0 & 1 \end{pmatrix}, \, \frac{N(\mathscr{P})^{1/2}}{\sum_{\alpha} e(-2\beta\alpha^2)} \right] | \left[\begin{pmatrix} \rho^{-2} & 0\\ 0 & 1 \end{pmatrix}, \, N(\rho^2)^{1/4} \right] \\ &= N(\mathscr{P})^{-m/2} \sum_{\beta} \left(\sum_{\alpha} e(-2\beta\alpha^2) \right)^m \sum_{\xi \in \mathscr{I}_{\mu}^2} a_{\mu}(\xi) e(2\xi\beta\rho^2) e(2\xi\tau) \,. \end{split}$$

Taking $\beta_0 \in \mathscr{P}^{-3}\mathscr{I}_{\lambda}^{-2}\partial^{-1} - \mathscr{P}^{-2}\mathscr{I}_{\lambda}^{-2}\partial^{-1}$, standard techniques for evaluating Gauss sums show us that

$$\sum_{\beta} \left(\sum_{\alpha} e(-2\beta\alpha^2) \right)^m e(2\xi\beta\rho^2)$$
$$= \sum_{\beta' \in \mathscr{T}/\mathscr{P}} (-\beta'|\mathscr{P})^m \left(\sum_{\alpha} e(2\beta_0\alpha^2) \right)^m e(2\xi\beta_0\beta'\rho^2)$$

and $(\sum_{\alpha} e(2\beta_0 \alpha^2))^2 = N(\mathscr{P})(-1|\mathscr{P})$. So

$$\sum_{\beta} \left(\sum_{\alpha} e(-2\beta\alpha^{2}) \right)^{m} e(2\xi\beta\rho^{2})$$

= $N(\mathscr{P})^{(m-1)/2} (-1|\mathscr{P})^{(m+1)/2}$
 $\cdot \left(\sum_{\beta' \in \mathscr{O}/\mathscr{P}} (\beta'|\mathscr{P}) e(2\beta'\beta_{0}\xi\rho^{2}) \right) \left(\sum_{\alpha} e(2\beta_{0}\alpha^{2}) \right)$

which is equal to 0 when $\xi \in \mathscr{P}\mathcal{I}_{\mu}^{2}$. When $\xi \neq \mathscr{P}\mathcal{I}_{\mu}^{2}$ and $\nu \in \mathcal{I}_{\mu}^{-1} - \mathscr{P}\mathcal{I}_{\mu}^{-1}$, $\beta'\xi\nu^{2}$ runs over \mathscr{O}/\mathscr{P} as β' does; in this case $\sum_{\beta'\in\mathscr{O}/\mathscr{P}} (\beta'|\mathscr{P})e(2\beta'\beta_{0}\xi\rho^{2}) = \sum_{\beta'} (\beta'\xi\nu^{2}|\mathscr{P})e(2\beta'\beta_{0}\xi^{2}\nu^{2}\rho^{2})$ $= (\xi\nu^{2}|\mathscr{P})\sum_{\alpha\in\mathscr{P}\mathcal{I}_{\mu}/\mathscr{P}^{2}\mathcal{I}_{\mu}} e(2\beta_{0}\alpha^{2}).$

Thus

$$f_{\mu} \left| \sum_{\beta} \left[\begin{pmatrix} 1 & \rho^{2} \beta \\ 0 & 1 \end{pmatrix}, N(\mathscr{P})^{1/2} \left(\sum_{\alpha} e(-2\beta\alpha^{2}) \right)^{-1} \right] (\tau) \right.$$
$$= N(\mathscr{P})^{1/2} (-1|\mathscr{P})^{(m-1)/2} \sum_{\xi \in \mathscr{J}_{\mu}^{2}} (\xi \nu^{2}|\mathscr{P}) a_{\mu}(\xi) e(2\xi\tau) \,.$$

This means that for $\mathscr{M} = \xi \mathscr{J}_{\mu}^{-2}, \ \xi \gg 0$,

$$\begin{split} \mathbf{b}(\mathscr{M}, \varphi) &= \frac{N(\mathscr{I}_{\mu})^{-m/2}}{[\mathscr{U}^{+}:\mathscr{U}^{2}]} N(\mathscr{P})^{m/2-2} \\ &\cdot \left(N(\mathscr{P})^{2-m/2} N(\mathscr{I}_{\mu})^{m/2} N(\mathscr{I}_{\lambda})^{-m/2} \sum_{u \in \mathscr{U}^{+}/\mathscr{U}^{2}} \overline{\varphi}(\xi u) a_{\lambda}(u\xi\rho^{2}) \right. \\ &+ \chi^{*}(\mathscr{P}) N(\mathscr{P})^{1/2} (-1|\mathscr{P})^{(m-1)/2} \\ &\cdot \sum_{u \in \mathscr{U}^{+}/\mathscr{U}^{2}} \overline{\varphi}(\xi u) (u\xi\nu^{2}|\mathscr{P}) a_{\mu}(u\xi) \\ &+ \chi^{*}(\mathscr{P}^{2}) N(\mathscr{P})^{m/2} N(\mathscr{I}_{\mu})^{m/2} N(\mathscr{I}_{\eta})^{-m/2} \\ &\cdot \sum_{u \in \mathscr{U}^{+}/\mathscr{U}^{2}} \overline{\varphi}(\xi u) a_{\eta}(u\xi\rho^{2}\gamma^{-2}) \right). \end{split}$$

Noting that $(u\xi\nu^2|\mathscr{P}) = 0$ when $\mathscr{P}|\mathscr{M}$, the theorem now follows from the definition of the M, φ -Fourier coefficients of F. \Box

COROLLARY 2.6. If $F \in \mathcal{M}_{m/2}(\mathcal{N}, \chi)$ is an eigenform for all $T(\mathcal{P}^2)$ $(\mathcal{P} \nmid \mathcal{N})$ whose 0, *-Fourier coefficients can be defined and are nonzero, then

$$F|T(\mathscr{P}^2) = (1 + \chi^*(\mathscr{P}^2)N(\mathscr{P})^{m-2})F$$

3. Relations on representation numbers of odd rank lattices. Let L be a lattice of rank m over \mathcal{O} when m is odd; since lattices

of rank 1 are already well understood, we restrict our attention here to the case where $m \ge 3$. Then, as shown in Theorem 3.7 of [6], $\theta(L, \tau) = \sum_{x \in L} e(Q(x)\tau)$ is a Hilbert modular form of weight m/2, level \mathcal{N} and character χ_L for the group $\{\widetilde{A} \in \widetilde{\Gamma}_0(\mathcal{N}, \mathcal{F}^2) : \det A = 1\}$ where \mathcal{F} is the smallest fractional ideal such that $\mathbf{n}L \subseteq \mathcal{F}^2$ (so for every prime \mathcal{P} , $\operatorname{ord}_{\mathcal{P}} \mathbf{n}L \cdot \mathcal{F}^{-2}$ is minimal), $\mathcal{N} = (\mathbf{n}L^{\#})^{-1}\mathcal{F}^{-2}$, and χ_L is a quadratic character modulo \mathcal{N} . (Here $L^{\#}$ denotes the dual lattice of L, and $\mathbf{n}L$ is the fractional ideal generated by $\{\frac{1}{2}Q(x): x \in L\}$; note that Proposition 3.4 of [6] shows that $4\mathcal{O}|\mathcal{N}$.) Since $\theta(L, u^2\tau) = \theta(L, \tau)$ for any $u \in \mathcal{U}$, we have $\theta(L, \tau) \in \mathcal{M}_{m/2}(\widetilde{\Gamma}_0(\mathcal{N}, \mathcal{F}^2), \chi_L)$.

LEMMA 3.1. Let \mathscr{P} be a prime ideal not dividing \mathscr{N} . Then setting $L_{\mathscr{P}} = \mathscr{O}_{\mathscr{P}}L$, we have

$$L_{\mathscr{P}}\simeq\pi^2\langle 1\,,\,\ldots\,,\,1\,,\,arepsilon_{\mathscr{P}}
angle$$

for some $\pi \in \mathbf{K}_{\mathscr{P}}$ and $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$.

Proof. Since $4\mathscr{O}|\mathscr{N}$, \mathscr{P} must be nondyadic. Then from the remarks immediately preceding 92:1 of [4], we see that $L_{\mathscr{P}} \simeq \langle \alpha_1, \ldots, \alpha_m \rangle$ where $\alpha_1, \ldots, \alpha_m \in \mathbf{K}_{\mathscr{P}}$. Since $\mathscr{P} \nmid \mathscr{N}$ and $(\mathbf{n}L^{\#})^{-1}(\mathbf{n}L)^{-1}|\mathscr{N}$, we know that $\mathscr{P} \nmid (\mathbf{n}L^{\#})^{-1}(\mathbf{n}L)^{-1}$ and hence $L_{\mathscr{P}}$ is modular; thus by 92:1 of [4], $L_{\mathscr{P}} \simeq \rho \langle 1, \ldots, 1, \varepsilon_{\mathscr{P}} \rangle$ for some $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$ and $\rho \in \mathbf{K}_{\mathscr{P}}$ such that $\rho \mathscr{O}_{\mathscr{P}} = \mathbf{n}L_{\mathscr{P}}$. Furthermore, since $\mathscr{N} = (\mathbf{n}L^{\#})^{-1}\mathscr{I}^{-2}$ and $\mathscr{P} \nmid \mathscr{N}$, the fractional ideal $\mathbf{n}L^{\#}$ and hence $\mathbf{n}L$ must have even order at \mathscr{P} , so we may choose $\rho = \pi^2$ with $\pi \in \mathbf{K}_{\mathscr{P}}$.

Notice that in the preceding lemma the square class of $\varepsilon_{\mathscr{P}}$ is independent of the choice of π ; thus we can make the following

DEFINITION. With \mathscr{P} a prime, $\mathscr{P} \nmid \mathscr{N}$, let $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$ be as in Lemma 3.1; set $\varepsilon_L(\mathscr{P}) = (2\varepsilon_{\mathscr{P}}|\mathscr{P})$ where (*|*) is the quadratic residue symbol. For an integral ideal \mathscr{A} relatively prime to \mathscr{N} , set

$$\varepsilon_L(\mathscr{A}) = \prod_{\mathscr{P}|\mathscr{A}} \varepsilon_L(\mathscr{P})^{\operatorname{ord}_{\mathscr{P}}(\mathscr{A})}.$$

A straightforward computation analogous to that used to prove Lemma 3.8 of [8] proves

LEMMA 3.2. For $a \in \mathbf{K}^{\times}$ with a relatively prime to \mathcal{N} , $\chi_L(a) = \varepsilon_L(a\mathcal{O})$.

Next we have

PROPOSITION 3.3. Let \mathscr{P} be a prime, $\mathscr{P} \nmid \mathscr{N}$. Then

$$\begin{split} \theta(L,\,\tau)|S(\mathscr{P}) &= N(\mathscr{P})^{m/2}\varepsilon_L(\mathscr{P})\theta(\mathscr{P}L,\,\tau) \quad and \ so\\ \theta(L,\,\tau)|S(\mathscr{P}^2) &= N(\mathscr{P})^m\theta(\mathscr{P}^2L,\,\tau) \,. \end{split}$$

Proof. Following the proof of Proposition 6.1 of [6] and using the extended transformation formula from §4 of [7], we find that for

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \begin{pmatrix} \mathscr{P} & \mathscr{P}^{-1}\mathscr{I}^{-2}\partial^{-1} \\ \mathscr{NP}\mathscr{I}^{2}\partial & \mathscr{O} \end{pmatrix}$$

with det A = 1 and $d \equiv 1 \pmod{\mathcal{N}}$,

$$\begin{aligned} \theta(L, A\tau) &= c \left(c + d \frac{1}{\tau} \right)^{m/2} \tau^{m/2} d^{-m/2} \\ &\cdot \sum_{x \in \mathcal{P}L/d\mathcal{P}L} e \left(\frac{b}{d} Q(x) \right) \sum_{x \in dL/d\mathcal{P}L} e \left(\frac{b}{d} Q(x) \right) \cdot \theta(\mathcal{P}L, \tau), \end{aligned}$$

and

$$\begin{split} \theta(\mathcal{I}, A\tau) &= \left(c + d\frac{1}{\tau}\right)^{1/2} \tau^{1/2} d^{-1/2} \\ &\cdot \sum_{\alpha \in \mathcal{RF}/d\mathcal{RF}} e\left(\frac{b}{d} 2\alpha^2\right) \sum_{\alpha \in d\mathcal{F}/d\mathcal{RF}} e\left(\frac{b}{d} 2\alpha^2\right) \cdot \theta(\mathcal{RF}, \tau) \,. \end{split}$$

Thus

$$\begin{split} \theta(L,\tau)|S(\mathcal{P}) \\ &= N(\mathcal{P})^{m/2} \sum_{x \in \mathcal{P}L/d\mathcal{P}L} e\left(\frac{b}{d}Q(x)\right) \left(\sum_{\alpha \in \mathcal{PF}/d\mathcal{PF}} e\left(\frac{b}{d}2\alpha^2\right)\right)^{-m} \\ &\cdot \sum_{x \in dL/d\mathcal{PF}} e\left(\frac{b}{d}Q(x)\right) \\ &\cdot \left(\sum_{\alpha \in d\mathcal{F}/d\mathcal{PF}} e\left(\frac{b}{d}2\alpha^2\right)\right)^{-m} \theta(\mathcal{P}L,\tau) \,. \end{split}$$

We know from Lemma 3.1 that $L_{\mathscr{P}} \simeq \pi^2 \langle 1, \ldots, 1, \varepsilon_{\mathscr{P}} \rangle$ where $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$; thus Propositions 3.1-3.3 and the arguments used to prove Theorem 3.7 of [6] show that

$$\sum_{x \in dL/d\mathcal{P}_L} e\left(\frac{b}{d}Q(x)\right) \left(\sum_{\alpha \in d\mathcal{F}/d\mathcal{P}\mathcal{F}} e\left(\frac{b}{d}2\alpha^2\right)\right)^{-m} = (2\varepsilon_{\mathcal{P}}|\mathcal{P}) = \varepsilon_L(\mathcal{P})$$

and that

$$\sum_{x \in \mathscr{P}L/d\mathscr{P}L} e\left(\frac{b}{d}Q(x)\right) \left(\sum_{\alpha \in \mathscr{P}\mathcal{F}/d\mathscr{P}\mathcal{F}} e\left(\frac{b}{d}2\alpha^2\right)\right)^{-m} = \chi_L(d) = 1$$

(since $d \equiv 1 \pmod{\mathcal{N}}$ and χ_L is a character modulo \mathcal{N}). \Box

With this we prove

PROPOSITION 3.4. Let the notation be as above. Then

$$\theta(L, \tau)|T(\mathscr{P}^2) = \varepsilon_L(\mathscr{P})N(\mathscr{P})^{m/2}\kappa^{-1}\sum_K \theta(K, \tau) \\ + \varepsilon_L(\mathscr{P})N(\mathscr{P})^{m/2}(1 - N(\mathscr{P})^{(m-3)/2})\theta(\mathscr{P}L, \tau)$$

where

$$\kappa = \begin{cases} 1 & \text{if } m = 3, \\ N(\mathcal{P})^{(m-5)/2} \cdots N(\mathcal{P})^0 (N(\mathcal{P})^{(m-3)/2} + 1) \cdots (N(\mathcal{P}) + 1) \\ & \text{if } m > 3. \end{cases}$$

Here the sum runs over all \mathscr{P}^2 -sublattices K of L (i.e. over all sublattices K of L such that $\mathbf{n}K = \mathscr{P}^2 \cdot \mathbf{n}L$ and the invariant factors

 $\{L: K\} = (\mathscr{O}, \ldots, \mathscr{O}, \mathscr{P}, \mathscr{P}^2, \ldots, \mathscr{P}^2)$

with \mathscr{O} and \mathscr{P}^2 each appearing $\frac{m-1}{2}$ times). Furthermore, each \mathscr{P}^2 -sublattice K of L lies in the genus of $\mathscr{P}L$, and hence $\theta(\mathscr{P}L, \tau)$, $\theta(K, \tau) \in \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N}, \mathscr{P}^2\mathscr{I}^2), \chi_L)$.

Proof. An easy check shows that the Hecke operator $T(\mathscr{P}^2)$ defined in [6] is, in the notation of this paper, $T(\mathscr{P}^2)S(\mathscr{P}^{-2})$. Thus Theorem 7.4 of [6] together with the preceding proposition shows that $\theta(L, \tau)|T(\mathscr{P}^2)$ is as claimed. (N.B.: Part 2 of Theorem 7.4 has the wrong constants; for m = 2k + 1 with m odd the theorem should read

$$\begin{split} \theta(L,\,\tau)|T(\mathcal{P}^2) &= N(\mathcal{P})^{-m/2}\kappa^{-1}\sum_{K}\theta(\mathcal{P}^{-2}K\,,\,\tau) \\ &+ N(\mathcal{P})^{-m/2}(1-N(\mathcal{P})^{(m-3)/2})\theta(\mathcal{P}^{-1}L\,,\,\tau) \end{split}$$

where the sum runs over all \mathscr{P}^2 -sublattices K of L and κ is as above.)

Now let K be a \mathscr{P}^2 -sublattice of L. Since $\mathbf{n}K = \mathbf{n}\mathscr{P}L$, disc $K = \text{disc}\mathscr{P}L$ and $\mathscr{P}L_{\mathscr{P}}$ is modular, it follows that $\mathbf{K}_{\mathscr{P}}$ is modular as

well, and that $\mathbf{K}_{\mathscr{P}} \simeq \mathscr{P}L_{\mathscr{P}}$. Clearly we have $K_{\mathscr{Q}} = L_{\mathscr{Q}} = \mathscr{P}L_{\mathscr{Q}}$ where \mathscr{Q} is any prime other than \mathscr{P} ; thus $K \in \text{gen} \mathscr{P}L$, the genus of $\mathscr{P}L$. Finally, Theorem 7.4 of [6] shows that $\theta(\mathscr{P}^{-2}K, \tau)$ and $\theta(\mathscr{P}^{-1}L, \tau)$ lie in $\mathscr{M}_{m/2}(\widetilde{\Gamma}_0, (\mathscr{N}, \mathscr{P}^{-2}\mathcal{I}^2), \chi_L)$, so

$$\theta(K,\,\tau) = N(\mathcal{P})^{-m}\theta(\mathcal{P}^{-2}K,\,\tau)|S(\mathcal{P}^{2})$$

and

$$\theta(\mathscr{P}L, \tau) = N(\mathscr{P})^{-m} \theta(\mathscr{P}^{-1}L, \tau) | S(\mathscr{P}^2)$$

lie in $\mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N},\mathscr{P}^2\mathscr{I}^2),\chi_L)$ as claimed.

Completely analogous to Lemma 3.2 of [8], we have

LEMMA 3.5. Let o(L') denote the order of O(L'), the orthogonal group of the lattice L', and define

$$\theta(\operatorname{gen} L, \tau) = \sum_{L'} \frac{1}{o(L')} \theta(L', \tau)$$

where the sum runs over a complete set of representatives L' for the distinct isometry classes in gen L, the genus of L. Then for a prime $\mathcal{P} \nmid \mathcal{N}$,

$$\theta(\operatorname{gen} L, \tau)|T(\mathscr{P}^2) = N(\mathscr{P})^{m/2} \varepsilon_L(\mathscr{P})(1+N(\mathscr{P})^{m-2})\theta(\operatorname{gen} \mathscr{P}L, \tau).$$

As in §2, choose fractional ideals $\mathscr{I}_1, \ldots, \mathscr{I}_{h'}$ representing the distinct (nonstrict) ideal classes (and so $\mathscr{I}_1^2, \ldots, \mathscr{I}_{h'}^2$ are in distinct strict ideal classes); for convenience, we assume that $\mathscr{I}_1 = \mathscr{O}$ and that each \mathscr{I}_{λ} is relatively prime to \mathscr{N} . Define the extended genus of L, xgen L, to be the union of all genera gen $\mathscr{I}L$ where \mathscr{I} is a fractional ideal; set

$$\Theta(\operatorname{xgen} L, \tau) = (\ldots, N(\mathscr{I}_{\lambda}\mathscr{I})^{m/2} \theta(\operatorname{gen} \mathscr{I}_{\lambda}L, \tau), \ldots).$$

Then we have

THEOREM 3.6. Let χ be the Hecke character extending χ_L such that $\chi_{\infty} = 1$ and $\chi^*(\mathscr{A}) = \varepsilon_L(\mathscr{A})$ for any fractional ideal \mathscr{A} which is relatively prime to \mathscr{N} . Then

$$\Theta(\operatorname{xgen} L, \tau) \in \mathscr{M}_{m/2}(\mathscr{N}, \chi) \subseteq \prod_{\lambda} \mathscr{M}_{m/2}(\widetilde{\Gamma}_0(\mathscr{N}, \mathscr{I}_{\lambda}^2 \mathscr{I}^2), \chi_L)$$

and for every prime $\mathscr{P} \nmid \mathscr{N}$,

$$\Theta(\operatorname{xgen} L, \tau)|T(\mathscr{P}^2) = \varepsilon_L(\mathscr{P})(1 + N(\mathscr{P})^{m-2})\Theta(\operatorname{xgen} L, \tau).$$

Proof. Take \mathcal{J} to be a fractional ideal relatively prime to \mathcal{N} . Then for each λ we have $\mathcal{J}\mathcal{J}_{\lambda} = \alpha \mathcal{J}_{\mu}$ for some μ and some $\alpha \in \mathbf{K}^{\times}$. By Proposition 3.1 we have

$$\begin{split} N(\mathcal{I}_{\lambda})^{m/2}\theta(\operatorname{gen}\mathcal{I}_{\lambda}L,\,\tau)|S(\mathcal{J}) & \left| \left[\begin{pmatrix} \alpha^{-2} & 0\\ 0 & 1 \end{pmatrix},\,N(\alpha^{2})^{1/4} \right] \\ &= \varepsilon_{L}(\mathcal{J})N(\alpha^{-1}\mathcal{I}\mathcal{I}_{\lambda})^{m/2}\theta(\operatorname{gen}(\alpha^{-1}\mathcal{I}\mathcal{I}_{\lambda}L),\,\tau) \\ &= \varepsilon_{L}(\mathcal{J})N(\mathcal{I}_{\mu})^{m/2}\theta(\operatorname{gen}\mathcal{I}_{\mu}L,\,\tau); \end{split} \end{split}$$

since we have chosen χ such that

$$\chi^*(\mathscr{J}) = \varepsilon_L(\mathscr{J}),$$

we have $\Theta(\operatorname{xgen} L, \tau) \in \mathcal{M}_{m/2}(\mathcal{N}, \chi)$.

Now take \mathscr{P} to be a prime, $\mathscr{P} \nmid \mathscr{N}$, and take $\alpha \in \mathbf{K}^{\times}$ such that $\mathscr{P}\mathscr{F}_{\lambda} = \alpha \mathscr{F}_{\mu}$. Then by Lemma 3.5,

$$\begin{split} N(\mathscr{I}_{\lambda})^{m/2}\theta(&\operatorname{gen}\mathscr{I}_{\lambda}L\,,\,\tau)|T(\mathscr{P}^{2}) \left| \left[\begin{pmatrix} \alpha^{-2} & 0\\ 0 & 1 \end{pmatrix},\,N(\alpha^{2})^{1/4} \right] \right. \\ &= \varepsilon_{L}(\mathscr{P})(1+N(\mathscr{P})^{m-2})N(\alpha^{-1}\mathscr{I}_{\lambda}\mathscr{P})^{m/2}\theta(&\operatorname{gen}(\alpha^{-1}\mathscr{P}\mathscr{I}_{\lambda}L)\,,\,\tau) \\ &= \varepsilon_{L}(\mathscr{P})(1+N(\mathscr{P})^{m-2})N(\mathscr{I}_{\mu})^{m/2}\theta(&\operatorname{gen}\mathscr{I}_{\mu}L\,,\,\tau)\,. \end{split}$$

This theorem allows us to infer relations on averaged representation numbers which we define as follows.

Set

$$\mathbf{r}(L', \xi) = \#\{x \in L' : Q(x) = \xi\}, \text{ and } \\ \mathbf{r}(\text{gen } L, \xi) = \sum_{L'} \frac{1}{o(L')} \mathbf{r}(L', \xi)$$

where the sum runs over a complete set of representatives L' for the isometry classes within gen L. For $\varphi \in (\mathbf{K}^+/\mathbf{\dot{K}}^2)$, set

$$\mathbf{r}(\operatorname{gen} L, \xi, \varphi) = \frac{1}{[\mathscr{U}^+ : \mathscr{U}^2]} \sum_{u \in \mathscr{U}^+ / \mathscr{U}^2} \overline{\varphi}(u\xi) \mathbf{r}(\operatorname{gen} L, u\xi).$$

Then with the notation of §2, the \mathcal{M}, φ -Fourier coefficient of $\Theta(\operatorname{xgen} L, \tau)$ is $\mathbf{r}(\operatorname{gen} \mathcal{F}_{\lambda}L, 2\xi, \varphi)$ where $\mathcal{M} = \xi \mathcal{F}_{\lambda}^{-2}, \xi \gg 0$. Note that for any fractional ideal \mathcal{J} , we can find some $\alpha \in \mathbf{K}$ and some λ such that $\mathcal{J} = \alpha \mathcal{F}_{\lambda}$; then for $\xi \in \mathbf{n}L, \xi \gg 0$, and $\mathcal{M} = \xi \mathcal{F}_{\lambda}^{-2} \mathcal{J}^{-2}$, the \mathcal{J}, φ -Fourier coefficient of $\Theta(\operatorname{xgen} L, \tau)$ is

$$\mathbf{r}(\operatorname{gen} \mathscr{I}_{\lambda}L, 2\alpha^{-2}\xi, \varphi) = \mathbf{r}(\operatorname{gen} \alpha \mathscr{I}_{\lambda}L, 2\xi, \varphi) = \mathbf{r}(\operatorname{gen} \mathscr{I}L, 2\xi, \varphi).$$

Also, $\mathbf{r}(\text{gen } L, 0) = \mathbf{r}(\text{gen } \mathcal{J}L, 0)$, so the $0, \varphi$ -Fourier coefficients of $\Theta(\text{xgen } L, \tau)$ are defined to be $\mathbf{r}(\text{gen } L, 0)$. Now Theorems 2.5 and 3.6 together with Corollary 3.7 give us

COROLLARY 3.7. Let $\xi \in \mathbf{nL}$, $\xi \gg 0$. Set $\mathcal{M} = \xi \mathcal{J}^{-2}$ (where \mathcal{J} is the smallest fractional ideal such that $\mathbf{nL} \subseteq \mathcal{J}^2$). Let \mathcal{P} be a prime ideal not dividing \mathcal{N} , and let φ be any element of $(\mathbf{K}^+/\mathbf{K}^2)$. If $\mathcal{P} \nmid \mathcal{M}$, then

$$(1 + N(\mathscr{P})^{m-2})\mathbf{r}(\operatorname{gen} L, 2\xi, \varphi)$$

= $\mathbf{r}(\operatorname{gen} \mathscr{P}^{-1}L, 2\xi, \varphi)$
+ $\varepsilon_L(\mathscr{P})N(\mathscr{P})^{(m-3)/2}(-1|\mathscr{P})^{(m-1)/2}\mathbf{r}(\operatorname{gen} L, 2\xi, \varphi\psi_{\mathscr{P}})$
+ $N(\mathscr{P})^{m-2}\mathbf{r}(\operatorname{gen} \mathscr{P}L, 2\xi, \varphi).$

Here $\psi_{\mathscr{P}}$ is an element of $(\mathbf{K}^+/\dot{\mathbf{K}}^2)$ such that $\psi_{\mathscr{P}}(\zeta) = (\zeta|\mathscr{P})$ for any $\zeta \in \mathbf{K}^+$ with $\operatorname{ord}_{\mathscr{P}} \zeta = 0$. If $\mathscr{P}|\mathscr{M}$, then

$$(1 + N(\mathscr{P})^{m-2})\mathbf{r}(\operatorname{gen} L, 2\xi, \varphi)$$

= $\mathbf{r}(\operatorname{gen} \mathscr{P}^{-1}L, 2\xi, \varphi) + N(\mathscr{P})^{m-2}\mathbf{r}(\operatorname{gen} \mathscr{P}L, 2\xi, \varphi).$

In the case that $\mathbf{K} = \mathbf{Q}$, we have

$$\mathbf{r}(\operatorname{gen} L, 2p^2 a) = (1 - p^{(m-3)/2} \chi_L(p) (-1|p)^{(m-1)/2} (2a|p) + p^{m-2})$$
$$\cdot \mathbf{r}(\operatorname{gen} L, 2a) - p^{m-2} \mathbf{r} \left(\operatorname{gen} L, \frac{2a}{p^2} \right)$$

for any $a \in \mathbb{Z}_+$; note that $\chi_L(p) = (2 \operatorname{disc} L|p)$.

REMARK. If $\mathscr{P} \nmid (\mathbf{n}L^{\#})^{-1}(\mathbf{n}L)^{-1}$ but $\mathscr{P} \mid \mathscr{N}$, then the preceding corollary can be used to give us relations on the averaged representation numbers of $\operatorname{xfam} L^{\alpha}$ where $\alpha \gg 0$ with $\operatorname{ord}_{\mathscr{P}} \alpha$ odd. Since $\mathbf{r}(\operatorname{fam}^{+}\mathscr{I}_{\mu}L^{\alpha}, \alpha\xi) = \mathbf{r}(\operatorname{fam}^{+}\mathscr{I}_{\mu}L, \xi)$, the above corollary can be extended to include all primes $\mathscr{P} \nmid (\mathbf{n}L^{\#})^{-1}(\mathbf{n}L)^{-1}$.

References

- [1] M. Eichler, On theta functions of real algebraic number fields, Acta Arith., 33 (1977).
- [2] P. B. Garrett, *Holomorphic Hilbert Modular Forms*, Wadsworth & Brooks/Cole, California, 1990.
- [3] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag, New York, 1981.
- [4] O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1973.
- [5] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-649.
- [6] L. H. Walling, *Hecke operators on theta series attached to lattices of arbitrary rank*, Acta Arith., **54** (1990), 213–240.

LYNNE H. WALLING

- [7] ____, On lifting Hecke eigenforms, Trans. Amer. Math. Soc., 328 (1991), 881– 896.
- [8] ____, Hecke eigenforms and representation numbers of quadratic forms, Pacific J. Math., 151 (1991), 179-200.

Received January 11, 1991.

University of Colorado Boulder, CO 80309-0426