HECKE EIGENFORMS AND REPRESENTATION NUMBERS OF ARBITRARY RANK LATTICES

Lynne H. Walling

Abstract

In this paper we develop some of the theory of half-integral weight Hilbert modular forms; we apply the theory of Hecke operators to find arithmetic relations on the representation numbers of totally positive quadratic forms over totally real number fields.

Introduction. Given a totally positive quadratic form Q over a totally real number field \mathbf{K}, one can obtain a Hilbert modular form by restricting Q to a lattice L and forming the theta series attached to L; the Fourier coefficients of the theta series are the representation numbers of Q on L. The space of Hilbert modular forms generated by all theta series attached to lattices of the same weight, level and character is invariant under a subalgebra of the Hecke algebra; hence one can (in theory) diagonalize this space of modular forms with respect to an appropriate Hecke subalgebra and infer relations on the representation numbers of the lattices. In a previous paper the author found such relations by constructing eigenforms from theta series attached to lattices of even rank which are "nice" at dyadic primes; the purpose of this paper is to extend the previous results to all lattices.

We begin by proving a Lemma (Lemma 1.1) which allows us to remove the restriction regarding dyadic primes. Then using our previous work we find that associated to any even rank lattice L is a family of lattices fam L which is partitioned into nuclear families (which are genera when the ground field is \mathbf{Q}), and the averaged representation numbers of these nuclear families satisfy arithmetic relations (Theorem 1.2).
In $\S 2$ we define "Fourier coefficients" attached to integral ideals for a half-integral weight Hilbert modular form. Then in analogy to the case $\mathbf{K}=\mathbf{Q}$, we describe the effect of the Hecke operators on these Fourier coefficients (Theorem 2.5).

In $\S 3$ we use theta series attached to odd rank lattices to construct eigenforms for the Hecke operators; the results of $\S 2$ then give us arithmetic relations on the representation numbers of the odd rank
lattices. When the ground field is \mathbf{Q}, we may assume $Q(L) \subseteq \mathbf{Z}$ and then these relations may be stated as

$$
\begin{aligned}
\mathbf{r}\left(\operatorname{gen} L, 2 p^{2} a\right)= & \left(1-p^{(m-3) / 2} \chi_{L}(p)(-1 \mid p)^{(m-1) / 2}(2 a \mid p)+p^{m-2}\right) \\
& \cdot \mathbf{r}(\operatorname{gen} L, 2 a)-p^{m-2} \mathbf{r}\left(\operatorname{gen} L, \frac{2 a}{p^{2}}\right)
\end{aligned}
$$

where $\mathbf{r}($ gen $L, 2 a)$ is the average number of times the lattices in the genus of L represent $2 a, m$ is the rank of L, p is a prime not dividing the level of L, and χ_{L} is the character attached to L (Corollary 3.7).

1. Relations on representation numbers of lattices of even rank. Let V be a vector space of even dimension m over \mathbf{K} where \mathbf{K} is a totally real number field of degree n over \mathbf{Q}; let Q be a totally positive quadratic form on V, L a lattice on V (so $K L=V$), \mathcal{N} the level of L and $\mathrm{n} L$ the norm of L as defined in [6]. Then the theta series

$$
\theta(L, \tau)=\sum_{x \in L} e^{2 \pi i \operatorname{Tr}(Q(x) \tau)}
$$

is a Hilbert modular form of weight $m / 2$, level \mathscr{N} and quadratic character χ_{L}, and for \mathscr{P} a prime ideal such that $\mathscr{P} \nmid \mathscr{N}$, either the Hecke operator $T(\mathscr{P})$ or the operator $T\left(\mathscr{P}^{2}\right)$ maps $\theta(L, \tau)$ to a linear combination of theta series of the same weight, level and character (see [6]; cf. [1]).

We derive relations on the representation numbers of the lattices in the "extended family" of L; essentially, the extended family of L consists of all lattices which arise when we act on the theta series attached to lattices in the genus of L with those Hecke operators known to preserve the space spanned by theta series. We begin now by giving refined definitions of a family and of an extended family; these definitions agree with those given in [8] when the lattice in question is unimodular when localized at dyadic primes.

Definition. A lattice L^{\prime} is in the family of L, denoted fam L, if L^{\prime} is a lattice on V^{α} where α is a totally positive element of \mathbf{K}^{\times} which is relatively prime to \mathscr{N}, such that for all primes $\mathscr{P} \mid \mathcal{N}$ we have $L_{\mathscr{P}}^{\prime} \simeq L_{\mathscr{Q}}^{\alpha}$, and for all primes $\mathscr{P}+\mathscr{N}$ we have $L_{\mathscr{D}}^{\prime} \simeq L_{\mathscr{A}}^{u_{\mathscr{D}}}$ for some $u_{\mathscr{P}} \in \mathscr{O}_{\mathscr{R}}^{\times}$. Here $L_{\mathscr{P}}=\mathscr{O}_{\mathscr{P}} L$, and V^{α} (resp. $L_{\mathscr{R}}^{\alpha}$) denetes the vector space V (resp. the lattice $L_{\mathscr{R}}$) equipped with the "scaled" quadratic form αQ. We say $L^{\prime} \in \operatorname{fam} L$ is in the nuclear family of $L, \mathrm{fam}^{+} L$, if there exists some totally positive unit u such that $L_{\mathscr{P}}^{\prime} \simeq L_{\mathscr{P}}^{u}$ for all primes \mathscr{P}, and we say L^{\prime} is in the extended family
of $L, \operatorname{xfam} L$, if L^{\prime} is connected to L with a prime-sublattice chain as defined in $\S 3$ of [8].

For $\xi \gg 0$, we define the representation number $\mathbf{r}(L, \xi)$ and $\mathbf{r}(\mathrm{xfam} L, \xi)$ by

$$
\mathbf{r}(L, \xi)=\#\{x \in L: Q(x)=\xi\}
$$

and

$$
\mathbf{r}\left(\mathrm{fam}^{+} L, \xi\right)=\sum_{L^{\prime}} \frac{1}{o\left(L^{\prime}\right)} \mathbf{r}\left(L^{\prime}, \xi\right)
$$

where $o\left(L^{\prime}\right)$ is the order of the orthogonal group of L^{\prime} (see [4]) and the sum runs over a complete set of representatives of the isometry classes within $\mathrm{fam}^{+} L$. Note that if $u \in \mathscr{U}=\mathscr{O}^{\times}$then $L^{u^{2}}$ is in the genus of L; since $\mathscr{U}^{+} / \mathscr{U}^{2}$ is finite (where \mathscr{U}^{+}denotes the group of totally positive units and \mathscr{U}^{2} the subgroup of squares-see $\S 61$ of [3]) and each genus has a finite number of isometry classes, it follows that $\mathrm{fam}^{+} L$ has a finite number of isometry classes.

We now show
Lemma 1.1. The number of nuclear families in fam L is 2^{r} where $r \in \mathbf{Z}$.

Proof. As argued in the proof of Lemma 3.1 of [8], $L_{\mathscr{P}} \simeq L_{\mathscr{D}}^{u_{\mathscr{D}}}$ for any $u_{\mathscr{P}} \in \mathscr{U}_{\mathscr{P}}=\mathscr{O}_{\mathscr{A}}^{\times}$when \mathscr{P} is a prime not dividing $2 \mathscr{N}$. Thus there can only be a finite number of primes \mathscr{Q} such that $L_{\mathscr{Q}} \not \neq L_{\mathscr{Q}}^{u_{\mathscr{Q}}}$ for all $u_{\mathscr{Q}} \in \mathscr{U}_{\mathscr{Q}}$; let $\mathscr{Q}_{1}, \ldots, \mathscr{Q}_{t}$ denote these "bad" primes for L.

For each $\mathscr{Q}=\mathscr{Q}_{i}(1 \leq i \leq t)$, set

$$
\operatorname{Stab}_{\mathscr{Q}}(L)=\left\{u \in \mathscr{U}_{\mathbb{Q}}: L_{\mathscr{Q}}^{u} \simeq L_{\mathbb{Q}}\right\} .
$$

Clearly $\operatorname{Stab}_{\mathscr{Q}}(L)$ is a multiplicative subgroup of $\mathscr{U}_{\mathscr{Q}}$, and $\mathscr{U}_{\mathscr{Q}}^{2}=$ $\left\{u^{2}: u \in \mathscr{U}_{\mathscr{Q}}\right\} \subseteq \operatorname{Stab}_{\mathscr{U}}(L)$. Now, since $\left[\mathscr{U}_{\mathscr{Q}}: \mathscr{U}_{\mathscr{Q}}^{2}\right]$ is a power of 2 (see 63:9 of [4]) it follows that $\left[\mathscr{U}_{\mathscr{Q}}: \operatorname{Stab}_{\mathscr{Q}}(L)\right.$] is also a power of 2. Thus $\prod_{i=1}^{t} \mathscr{U}_{\mathbb{Q}_{i}} / \operatorname{Stab}_{\mathbb{Z}_{i}}(L)$ is a group of order 2^{s} for some $s \in \mathbf{Z}$. We associate each nuclear family $\mathrm{fam}^{+} L^{\prime}$ within fam L to an element of $\prod_{i=1}^{t} \mathscr{U}_{\mathscr{Q}_{i}} / \operatorname{Stab}_{\mathscr{U}_{i}}(L)$ as follows. For $L^{\prime} \in$ fam L we know L^{\prime} is a lattice on V^{α} for some $\alpha \in \mathbf{K}^{\times}$with $\alpha \in \mathscr{U}_{\mathbb{Q}_{i}}$ and $L_{Q_{i}}^{\prime} \simeq L_{\mathscr{Q}_{i}}^{\alpha}$ $(1 \leq i \leq t)$; associate $\mathrm{fam}^{+} L^{\prime}$ with $\left(\ldots, \alpha \cdot \operatorname{Stab}_{\mathfrak{Q}_{i}}(L), \ldots\right)$. It is easily seen that this map is well-defined and injective. The techniques used to prove Lemma 3.1 of [8] show that the nuclear families within fam L are associated with a multiplicatively closed subset of the product $\prod_{i=1}^{t} \mathscr{U}_{\mathscr{C}_{i}} / \operatorname{Stab}_{\mathscr{C}_{i}}(L)$; since this product is a finite group, it follows
that the nuclear families within fam L are associated with a subgroup of $\prod_{i=1}^{t} \mathscr{U}_{\mathscr{Q}_{i}} / \operatorname{Stab}_{\mathscr{U}_{i}}(L)$. The order of $\prod_{i=1}^{t} \mathscr{U}_{\mathbb{Q}_{i}} / \operatorname{Stab}_{\mathcal{U}_{i}}(L)$ is 2^{s}, so there must be 2^{r} nuclear families in fam L where $r \in \mathbf{Z}$.

For a prime $\mathscr{P} \nmid 2 \mathscr{N}$, define

$$
\varepsilon_{L}(\mathscr{P})= \begin{cases}1 & \text { if } L / \mathscr{P} L \text { is hyperbolic }, \\ -1 & \text { otherwise }\end{cases}
$$

define

$$
\begin{aligned}
\lambda(\mathscr{P}) & =N(\mathscr{P})^{k / 2}\left(N(\mathscr{P})^{k-1}+1\right) \quad \text { if } \varepsilon_{L}(\mathscr{P})=1, \quad \text { and } \\
\lambda\left(\mathscr{P}^{2}\right) & =N(\mathscr{P})^{k}\left(N(\mathscr{P})^{k-1}-1\right)^{2} \quad \text { if } \varepsilon_{L}(\mathscr{P})=-1 .
\end{aligned}
$$

For $\mathscr{A} \subseteq \mathscr{O}$ such that $\operatorname{ord}_{\mathscr{P}}(\mathscr{A})$ is even whenever $\varepsilon_{L}(\mathscr{P})=-1$, set $\varepsilon_{L}(\mathscr{A})=\prod_{\mathscr{P} \mid \mathscr{A}} \varepsilon_{L}(\mathscr{P})^{\operatorname{ord}_{\mathscr{P}} \mathscr{A}}$, and set

$$
\lambda(\mathscr{P} a) \lambda(\mathscr{P} b)=\sum_{c=0}^{\min \{a, b\}} N(\mathscr{P})^{c(2 k-1)} \lambda\left(\mathscr{P}^{a+b-2 c}\right)
$$

and $\lambda(\mathscr{A})=\Pi_{\mathscr{P} \mid \mathscr{A}} \lambda\left(\mathscr{P o r d}_{\mathscr{P}}^{(\mathscr{A})}\right)$. Now the arguments of [8] can be used to extend Theorem 3.9 of [8] to include any even rank lattice L, giving us

Theorem 1.2. Let L be any lattice on V where $\operatorname{dim} V=2 k \quad(k \in$ $\left.\mathbf{Z}_{+}\right)$. Take $\xi \in \mathbf{n} L, \xi \gg 0$, and write $\xi(\mathbf{n} L)^{-1}=\mathscr{M}^{\prime}{ }^{\prime}$ where \mathscr{M} and \mathscr{M}^{\prime} are integral ideals such that $(\mathscr{M}, 2 \mathscr{N})=1$ and ord $\mathscr{P} \mathscr{M}$ is even whenever \mathscr{P} is a prime such that $\varepsilon_{L}(\mathscr{P})=-1$. Then

$$
\begin{aligned}
\mathbf{r}\left(\mathrm{fam}^{+} L, 2 \xi\right)= & \lambda(\mathscr{M}) N_{K / Q}(\mathscr{M})^{-k / 2} \mathbf{r}\left(\mathrm{fam}^{+} L^{\prime}, 2 \xi\right) \\
& -\sum_{\mathscr{A} \mathscr{M} \mathscr{M}+\mathscr{M}^{\prime}} \varepsilon_{L}(\mathscr{A}) N_{K / Q}(\mathscr{A})^{k-1} \mathbf{r}\left(\mathrm{fam}^{+} \mathscr{A} L, 2 \xi\right)
\end{aligned}
$$

where $\mathbf{n} L^{\prime}=\mathscr{M} \cdot \mathbf{n} L$ and L^{\prime} is connected to L by a prime-sublattice chain.
2. Hecke operators on forms of half-integral weight. In this section we develop some of the theory of half-integral weight Hilbert modular forms. To read about the general theory of Hilbert modular forms, see [2].

Let \mathscr{N} be an integral ideal such that $4 \mathscr{O} \subseteq \mathscr{N}$, and let \mathscr{I} be a fractional ideal; then as in [8] we define

$$
\begin{aligned}
& \Gamma_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right) \\
& \quad=\left\{A \in\left(\begin{array}{cc}
\mathscr{O} & \mathscr{I}^{-2} \partial^{-1} \\
\mathcal{N}^{2} \partial & \mathscr{O}
\end{array}\right): \operatorname{det} A \in \mathscr{U}=\mathscr{O}^{\times}, \operatorname{det} A \gg 0\right\} .
\end{aligned}
$$

We also define

$$
\begin{aligned}
& \widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right) \\
& \quad=\left\{\tilde{A}=\left[A, \frac{\theta(\mathscr{J}, A \tau)}{\theta(\mathscr{I}, \tau)}\right]: A \in \Gamma_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \operatorname{det} A \in \mathscr{U}^{2}\right\}
\end{aligned}
$$

where $\theta(\mathscr{I}, \tau)=\sum_{\alpha \in \mathcal{J}} e\left(2 \alpha^{2} \tau\right)$ with $e(\beta \tau)=e^{\pi i \operatorname{Tr}(\beta \tau)}$, and $\mathscr{U}^{2}=$ $\left\{u^{2}: u \in \mathscr{U}=\mathscr{O}^{\times}\right\}$. As shown in $\S 3$ of [6], when $A \in \Gamma_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right)$ and $\operatorname{det} A=1, \theta(\mathscr{I}, A \tau) / \theta(\mathscr{I}, \tau)$ is a well-defined automorphy factor for A, and it is easily seen that for $u \in \mathscr{U}, \theta\left(\mathscr{I}, u^{2} \tau\right)=\theta(\mathscr{J}, \tau)$. Thus we can define a group action of $\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right)$ on $f: \mathscr{H}^{n} \rightarrow \mathbf{C}$ by

$$
\left.f\right|_{m / 2} \tilde{A}(\tau)=f \left\lvert\, \tilde{A}(\tau)=\left(\frac{\theta(\mathscr{J}, A \tau)}{\theta(\mathcal{I}, \tau)}\right)^{-m} f(A \tau)\right.
$$

(Here \mathscr{H} denotes the complex upper half-plane.) For $\chi_{\mathscr{N}}$ a numerical character modulo the ideal \mathscr{N} and m an odd integer, we let $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)$ denote the space of Hilbert modular forms f which satisfy

$$
\left.f\right|_{m / 2} \tilde{A}(\tau)=\chi_{\mathcal{N}}(a) f(\tau)
$$

for all $\tilde{A}=\left(\begin{array}{l}\widetilde{a b} \\ c \\ c\end{array}\right) \in \widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right)$. Notice that by definition,

$$
f\left|\left(\begin{array}{cc}
u^{0} & 0 \\
0 & u^{-1}
\end{array}\right)(\tau)=f\left(u^{2} \tau\right)=f\right|\left(\begin{array}{cc}
u^{2} & 0 \\
0 & 1
\end{array}\right)(\tau)
$$

for any $u \in \mathscr{U}$, so $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)=\{0\}$ unless $\chi_{\mathscr{N}}(u)=1$ for all $u \in \mathscr{U}$. For \mathscr{P} a prime, $\mathscr{P} \nmid \mathscr{N}$, we define the Hecke operator

$$
T\left(\mathscr{P}^{2}\right): \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right) \rightarrow \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)
$$

as follows. Let $\left\{\tilde{A}_{j}\right\}$ be a complete set of coset representatives for

$$
\left(\widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right) \cap \widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)\right) \backslash \widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)
$$

where

$$
\widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right)=\left\{\left(\widetilde{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right): a \equiv 1(\bmod \mathscr{N})\right\}}\right.\right.
$$

Then for $f \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)$, define

$$
f\left|T\left(\mathscr{P}^{2}\right)=N(\mathscr{P})^{m / 2-2} \sum_{j} f\right| \tilde{A}_{j}
$$

Clearly $T\left(\mathscr{P}^{2}\right)$ is well-defined and

$$
f \mid T\left(\mathscr{P}^{2}\right) \in \mathscr{M}_{m / 2}\left(\tilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)
$$

Similar to the case of integral weight, we also define operators

$$
S(\mathscr{P}): \mathscr{M}_{m / 2}\left(\tilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{I}^{2}\right), \chi_{\mathscr{N}}\right) \rightarrow \mathscr{M}_{m / 2}\left(\tilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)
$$

by

$$
f|S(\mathscr{P})=f|\left[C, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathcal{I}, C \tau)}{\theta(\mathscr{P} \mathscr{I}, \tau)}\right]
$$

where

$$
C \in\left(\begin{array}{cc}
\mathscr{P} & \mathscr{P}^{-1} \mathscr{J}^{-2} \partial^{-1} \\
\mathscr{N P} \mathscr{J}^{2} \partial & \mathscr{O}
\end{array}\right),
$$

$\operatorname{det} C=1$, and $a_{C} \equiv 1(\bmod \mathscr{N})$. The proof of Proposition 6.1 of [6] shows that $N(\mathscr{P})^{-1 / 2} \theta(\mathscr{J}, C \tau) / \theta(\mathscr{P} \mathcal{F}, \tau)$ is a well-defined automorphy factor for C, and it is easy to check that $S(\mathscr{P})$ is welldefined and that $f \mid S(\mathscr{P}) \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)\right.$, $\left.\chi_{\mathcal{N}}\right)$. (Note that the restrictions on d in Proposition 6.1 of [6] are unnecessary, but one must then use the extended transformation formula from $\S 4$ of [7].) In fact, $S(\mathscr{P})$ is an isomorphism, so by setting $S\left(\mathscr{P}^{-1}\right)=S(\mathscr{P})^{-1}$ and $S\left(\mathscr{F}_{1}\right) S\left(\mathscr{L}_{2}\right)=S\left(\mathscr{J}_{1} \mathscr{F}_{2}\right)$, we can inductively define $S(\mathscr{J})$ for any fractional ideal J relatively prime to \mathscr{N}.

Lemma 2.1. Suppose

$$
A \in\left(\begin{array}{cc}
\mathscr{P} & \mathscr{P}^{-1} \mathscr{J}^{-2} \partial^{-1} \\
\mathscr{N P} \mathscr{F}^{2} \partial & \mathscr{P}^{-1}
\end{array}\right)
$$

such that $\operatorname{det} A=1$ and $a_{A} \equiv 1(\bmod \mathscr{N})$. Then for

$$
\begin{gathered}
f \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathcal{N}}\right), \\
f\left|\left[A, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathcal{F}, A \tau)}{\theta(\mathscr{P} \mathcal{I}, \tau)}\right]=f\right| S(\mathscr{P}) .
\end{gathered}
$$

Proof. Let C be a matrix as in the definition of $S(\mathscr{P})$; so

$$
\begin{aligned}
& f\left|\left[A, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathscr{F}, A \tau)}{\theta(\mathscr{P} \mathscr{\mathscr { F }}, \tau)}\right]\right| S(\mathscr{P})^{-1} \\
& \quad=f\left|\left[A, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathscr{F}, A \tau)}{\theta(\mathscr{P} \mathscr{\mathcal { F }}, \tau)}\right]\right|\left[C^{-1}, N(\mathscr{P})^{1 / 2} \frac{\theta\left(\mathscr{P} \mathscr{F}, C^{-1} \tau\right)}{\theta(\mathscr{I}, \tau)}\right] \\
& \quad=f \left\lvert\,\left[A C^{-1}, \frac{\theta\left(\mathscr{F}, A C^{-1} \tau\right)}{\theta(\mathscr{I}, \tau)}\right]\right. \\
& \quad=f
\end{aligned}
$$

since $\left[A C^{-1}, \theta\left(\mathscr{I}, A C^{-1} \tau\right) / \theta(\mathscr{J}, \tau)\right] \in \tilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right)$.
We now use this lemma to give us a useful description of $T\left(\mathscr{P}^{2}\right)$ when $\mathscr{P} \nmid \mathscr{N}$.

Lemma 2.2. For \mathscr{P} a prime, $\mathscr{P} \nmid \mathscr{N}$, and

$$
f \in \mathscr{M}_{m / 2}\left(\tilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)
$$

we have

$$
\begin{aligned}
& N(\mathscr{P})^{2-m / 2} f\left|T\left(\mathscr{P}^{2}\right)=\sum_{b} f\right|\left[\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), 1\right] \\
& \quad+\sum_{\beta} f|S(\mathscr{P})|\left[\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right), N(\mathscr{P})^{1 / 2}\left(\sum_{\alpha \in \mathscr{P} \mathcal{A} / \mathscr{P}^{2} \mathscr{F}} e\left(-2 \beta \alpha^{2}\right)\right)^{-1}\right] \\
& \quad+f \mid S\left(\mathscr{P}^{2}\right)
\end{aligned}
$$

where b runs over $\mathscr{P}^{-2} \mathscr{J}^{-2} \partial^{-1} / \mathscr{J}^{-2} \partial^{-1}$ and β runs over $\left(\mathscr{P}^{-3} \mathscr{J}^{-2} \partial^{-1} / \mathscr{P}^{-2} \mathscr{J}^{-2} \partial^{-1}\right)^{\times}$.

Proof. Since for $\alpha \in \mathbf{K}^{\times}$the mapping $f \mapsto f \left\lvert\,\left[\left(\begin{array}{cc}\alpha_{-2}^{-2} & 0 \\ 0 & 1\end{array}\right), N\left(\alpha^{2}\right)^{1 / 4}\right]\right.$ is an isomorphism from the space $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathcal{N}}\right)$ onto $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathcal{N}, \alpha^{2} \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)$, we may assume $\mathscr{I} \subseteq \mathscr{O}$. Choose $a \in$ $\mathscr{P}-\mathscr{P}^{2}$ such that $a \mathscr{O}$ is relatively prime to \mathscr{N} and $a \equiv 1(\bmod \mathscr{N})$. Let $\left\{b_{k}\right\}$ be a set of coset representatives for

$$
\left(\mathscr{P}^{-2} \mathcal{J}^{-2} \partial^{-1} / \mathscr{P}^{-1} \mathscr{J}^{-2} \partial^{-1}\right)^{\times}
$$

such that $b_{k} \mathscr{P}^{2} \mathscr{J}^{2} \partial$ is relatively prime to $a \mathscr{O}$; then for each k, use strong approximation to choose $c_{k} \in \mathcal{N} \mathscr{P}^{2} \mathscr{J}^{2} \partial$ and $d_{k} \in \mathcal{O}$ such that $a d_{k}-b_{k} c_{k}=1$. Take $A^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \Gamma_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)$ such that $a^{\prime} \in \mathscr{P}^{2}, \mathscr{P} \nmid d^{\prime}$, and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$, and take $\left\{b_{j}^{\prime \prime}\right\}$ to be a set of representatives for $\mathscr{P}^{-2} \mathscr{J}^{-2} \partial^{-1} / \mathscr{F}^{-2} \partial^{-1}$. Then one easily sees that

$$
\left\{\left(\begin{array}{cc}
\widetilde{1} \begin{array}{c}
b_{j} \\
0
\end{array} & 1
\end{array}\right)\right\} \cup\left\{\left(\begin{array}{cc}
\widetilde{a^{\prime}} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right\} \cup\left\{\left(\begin{array}{cc}
\widetilde{a} & b_{k} \\
c_{k} & d_{k}
\end{array}\right)\right\}
$$

is a complete set of coset representatives for

$$
\left(\tilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right) \cap \tilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right)\right) \backslash \tilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right) .
$$

Take $f \in \mathscr{M}_{m / 2}\left(\tilde{\Gamma}_{0}\left(\mathcal{N}, \mathcal{J}^{2}\right), \chi_{\mathcal{N}}\right)$. Then

$$
f\left|\widetilde{A^{\prime}}=f\right|\left[A^{\prime}, \frac{\theta\left(\mathscr{P} \mathscr{F}, A^{\prime} \tau\right)}{\theta(\mathscr{P} \mathcal{F}, \tau)}\right]
$$

and the transformation formula (2) in §2 of [6] shows that

$$
\frac{\theta\left(\mathscr{P} \mathcal{F}, A^{\prime} \tau\right)}{\theta(\mathscr{P} \mathscr{F}, \tau)}=\left(c^{\prime}+d^{\prime} \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2}\left(d^{\prime}\right)^{-1 / 2} \sum_{\alpha \in \mathscr{P} \mathcal{F} / d^{\prime} \mathscr{P} \mathcal{F}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right) .
$$

(Recall that, as remarked earlier, we need not restrict d as in [6], but we need to then use the extended transformation formula as it appears in [7].) On the other hand,

$$
f\left|S\left(\mathscr{P}^{2}\right)=f\right|\left[A^{\prime}, N(\mathscr{P})^{-1} \frac{\theta\left(\mathscr{\mathscr { F }}, A^{\prime} \tau\right)}{\theta\left(\mathscr{P}^{2} \mathscr{I}, \tau\right)}\right]
$$

and following the derivation in the proof of Proposition 6.1 of [6] we find that

$$
\begin{aligned}
\frac{\theta\left(\mathscr{F}, A^{\prime} \tau\right)}{\theta\left(\mathscr{P}^{2} \mathscr{I}, \tau\right)}= & \left(c^{\prime}+d^{\prime} \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2}\left(d^{\prime}\right)^{-1 / 2} \\
& \cdot \sum_{\alpha \in \mathscr{P}^{2} \mathcal{I} / d^{\prime} \mathscr{P}^{2} \mathscr{\mathscr { I }}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right) \sum_{\alpha \in d^{\prime} \mathscr{F} / \mathscr{P}^{2} d^{\prime} \mathscr{\mathscr { F }}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right) .
\end{aligned}
$$

By Proposition 3.2 of [6],

$$
\sum_{\alpha \in d^{\prime} \mathscr{F} \mid d^{\prime} \mathscr{P}^{2} \mathscr{S}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right)=N(\mathscr{P}) ;
$$

also, since $\mathscr{P} \nmid d^{\prime}$,

$$
\sum_{\alpha \in \mathscr{P}^{2} \mathscr{F} / d^{\prime} \mathscr{P}^{2} \mathscr{F}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right)=\sum_{\alpha \in \mathscr{P} \mathcal{F} / d^{\prime} \mathscr{P} \mathscr{\mathcal { F }}} e\left(\frac{b^{\prime}}{d^{\prime}} 2 \alpha^{2}\right) .
$$

Thus $f\left|\widetilde{A^{\prime}}=f\right| S\left(\mathscr{P}^{2}\right)$.
Now choose $\nu \in \mathscr{P}^{-1} \mathscr{S}^{-1} \partial^{-1}$ such that $\left(\nu \mathscr{P} \mathscr{F} \partial, d_{k} \mathscr{P}\right)=1$ for all k. Fix some k; for simplicity write $A_{k}=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Set $\beta=\beta^{\prime} \nu^{2}$ where $\beta^{\prime} \in \mathscr{P}^{-1} \partial$ is chosen such that $a \beta+b \in \mathscr{P}^{-1} \mathcal{J}^{-2} \partial^{-1}$; we will show that

$$
\left.f|\tilde{A}|\left[\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right), 1\right]=N(\mathscr{P})^{1 / 2}\left(\sum_{\alpha \in \mathscr{P} \mathcal{F} \mid \mathscr{P}^{2} \mathscr{F}} e\left(2 \beta \alpha^{2}\right)\right)^{-1} f \right\rvert\, S(\mathscr{P}),
$$

and then the lemma will follow. Now,

$$
f|S(\mathscr{P})=f|\left[A_{k}\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right), N(\mathscr{P})^{-1 / 2} \frac{\theta\left(\mathscr{\mathcal { F }}, A_{k}\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right) \tau\right)}{\theta(\mathscr{P} \mathcal{J}, \tau)}\right] ;
$$

again following the proof of Proposition 6.1 of [6] we find that
(note that $\nu \mathscr{P} \mathscr{J} \partial$ is relatively prime to $(c \beta+d) \mathscr{P})$. Now, d is relatively prime to 4 since $4 \mid c$; thus by reciprocity of Gauss sums (Theorem 161 of [3]) we have

$$
\begin{aligned}
& (c \beta+d)^{-1 / 2} N(\mathscr{P})^{-1 / 2} \sum_{\alpha \in \mathscr{O} /(c \beta+d) \mathscr{P}} e\left(-\frac{c \nu^{2}}{c \beta+d} 2 \alpha^{2}\right) \\
& =i^{-n / 2} N\left(c \nu^{2} \mathscr{P} \partial\right)^{-1 / 2} \sum_{\alpha \in \mathscr{O} / c \nu^{2} \mathscr{P} \partial} e\left(\frac{c \beta+d}{c \nu^{2}} 2 \alpha^{2}\right)
\end{aligned}
$$

and using the techniques of $\S 3$ of [6],

$$
=i^{-n / 2} N\left(c \nu^{2} \mathscr{P} \partial\right)^{-1 / 2}
$$

$$
\sum_{\alpha \in \mathscr{P} / c \nu^{2} \mathscr{P} \partial} e\left(\frac{c \beta+d}{c \nu^{2}} 2 \alpha^{2}\right) \sum_{\alpha \in c \nu^{2} \partial / c \nu^{2} \mathscr{P} \partial} e\left(\frac{c \beta+d}{c \nu^{2}} 2 \alpha^{2}\right)
$$

For $\alpha \in \mathscr{P}$,

$$
\frac{c \beta+1}{c \nu^{2}} 2 \alpha^{2} \equiv \frac{d}{c \nu^{2}} 2 \alpha^{2} \quad\left(\bmod 2 \partial^{-1}\right)
$$

$$
\begin{aligned}
& N(\mathscr{P})^{-1 / 2} \frac{\theta\left(\mathscr{I}, A_{k}\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\right) \tau}{\theta(\mathscr{P} \mathcal{I}, \tau)} \\
& =\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2}(c \beta+d)^{-1 / 2} N(\mathscr{P})^{-1 / 2} \\
& \sum_{\alpha \in \mathscr{F}(c \beta+d) \mathscr{P} \mathscr{F}} e\left(\frac{a \beta+b}{c \beta+d} 2 \alpha^{2}\right) \\
& \text { and since } a(c \beta+d)-c(\alpha \beta+b)=1 \\
& \text { and } e\left(a(a \beta+b) 2 \alpha^{2}\right)=1 \text {, } \\
& =\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2}(c \beta+d)^{-1 / 2} N(\mathscr{P})^{-1 / 2} \\
& \text { - } \sum_{\alpha \in \mathcal{I} /(c \beta+d) \mathscr{P} \mathscr{F}} e\left(-\frac{c(a \beta+b)^{2}}{c \beta+d} 2 \alpha^{2}\right) \\
& =\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2}(c \beta+d)^{-1 / 2} N(\mathscr{P})^{-1 / 2} \\
& \sum_{\alpha \in \mathscr{O} /(c \beta+d) \mathscr{P}} e\left(-\frac{c \nu^{2}}{c \beta+d} 2 \alpha^{2}\right)
\end{aligned}
$$

(since $\beta=\nu^{2} \beta^{\prime}$ with $\beta^{\prime} \in \mathscr{P}^{-1} \partial$) so

$$
\begin{aligned}
\sum_{\alpha \in \mathscr{P} / c \nu^{2} \mathscr{P} \partial} e\left(\frac{c \beta+1}{c \nu^{2}} 2 \alpha^{2}\right) & =\sum_{\alpha \in \mathscr{P} / c \nu^{2} \mathscr{P} \partial} e\left(\frac{d}{c \nu^{2}} 2 \alpha^{2}\right) \\
& =\sum_{\alpha \in \mathscr{O} / c \nu^{2} \partial} e\left(\frac{d}{c \nu^{2}} 2 \alpha^{2}\right)
\end{aligned}
$$

(note that $\operatorname{ord}_{\mathscr{P}} c \nu^{2} \partial=0$). Also,

$$
\frac{c \beta+d}{c \nu^{2}} 2 \alpha^{2} \equiv 2 \beta\left(\frac{\alpha}{\nu}\right)^{2} \quad\left(\bmod 2 \partial^{-1}\right)
$$

for $\alpha \in c \nu^{2} \partial$, so

$$
\begin{aligned}
\sum_{\alpha \in c \nu^{2} \partial / c \nu^{2} \mathscr{P} \partial} e\left(\frac{c \beta+d}{c \nu^{2}} 2 \alpha^{2}\right) & =\sum_{\alpha \in c \nu^{2} \partial / c \nu^{2} \mathscr{P} \partial} e\left(2 \beta\left(\frac{\alpha}{\nu}\right)^{2}\right) \\
& =\sum_{\alpha \in \mathscr{P} \mathscr{F} / \mathscr{P}^{2} \mathscr{I}} e\left(2 \beta \alpha^{2}\right)
\end{aligned}
$$

On the other hand, formula (1) of [6] and the techniques used above show that

$$
\begin{aligned}
&\left.\frac{\theta(\mathscr{P} \mathscr{J},}{}, A_{k}\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right) \tau\right) \\
& \theta\left(\mathscr{P} \mathscr{J},\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right) \tau\right) \\
&=\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2} d^{-1 / 2} \sum_{\alpha \in \mathscr{P} \mathcal{F} / d \mathscr{P} \mathcal{F}} e\left(-\frac{c b^{2}}{d} 2 \alpha^{2}\right) \\
&=\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2} d^{-1 / 2} \sum_{\alpha \in \mathscr{O} / d \mathscr{O}} e\left(-\frac{c \nu^{2}}{d} 2 \alpha^{2}\right) \\
&=\left(c+(c \beta+d) \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2} i^{-n / 2} N\left(c \nu^{2} \partial\right)^{-1 / 2} \\
& \quad \times \sum_{\alpha \in \mathscr{O} / c \nu^{2} \partial} e\left(\frac{d}{c \nu^{2}} 2 \alpha^{2}\right)
\end{aligned}
$$

Our goal in this section is to determine the effect of the Hecke operators on the Fourier coefficients of a half-integral weight form. When $\mathbf{K}=\mathbf{Q}$, we know that for

$$
f(\tau)=\sum_{n \geq 0} a(n) e(2 n \tau) \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}(N), \chi\right)
$$

we have $f(\tau) \mid T\left(p^{2}\right)=\sum_{n \geq 0} b(n) e(2 n \tau)$ where

$$
\begin{aligned}
b(n)= & a\left(p^{2} n\right)+\chi(p) p^{(m-3) / 2}(-1 \mid p)^{(m-1) / 2}(n \mid p) a(n) \\
& +\chi\left(p^{2}\right) p^{m-2} a\left(n / p^{2}\right)
\end{aligned}
$$

By defining "Fourier coefficients" attached to integral ideals, we expect to get a similar description of the effect of the Hecke operators on any half-integral weight Hilbert modular form. This, in fact, is one of the things Shimura does for integral weight forms in [5]; so mimicking Shimura, we decompose a space of half-integral weight Hilbert modular forms as described below.

Whenever \mathscr{I} and \mathscr{J} are fractional ideals in the same (nonstrict) ideal class, the mapping

$$
f \rightarrow f \left\lvert\,\left[\left(\begin{array}{cc}
\alpha^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\alpha^{2}\right)^{1 / 4}\right]\right.
$$

is an isomorphism from the space $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathcal{J}^{2}\right), \chi_{\mathscr{N}}\right)$ onto $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)$ where α is any element of \mathbf{K}^{\times}such that $\alpha \mathscr{F}=\mathscr{J}$ (notice that this isomorphism is independent of the choice of α). Hence we can consider $T\left(\mathscr{P}^{2}\right)$ and $S(\mathscr{P})$ as operators on the space

$$
\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}\right)=\prod_{\lambda=1}^{h^{\prime}} \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}_{\lambda}^{2}\right), \chi_{\mathscr{N}}\right)
$$

where $\mathscr{I}_{1}, \ldots, \mathscr{J}_{h^{\prime}}$ represent all the distinct (nonstrict) ideal classes. Note that by the Global Square Theorem (65:15 of [4]), $\mathscr{J}_{1}^{2}, \ldots, \mathscr{I}_{h^{\prime}}^{2}$ represent distinct strict ideal classes. Just as in the case where m is even (see Lemma 1.1 and Proposition 1.2 of [7]), we have

$$
\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}\right)=\bigoplus_{\chi} \mathscr{M}_{m / 2}(\mathscr{N}, \chi)
$$

where the sum is over all Hecke characters χ extending $\chi_{\mathcal{N}}$ with $\chi_{\infty}=1$,

$$
\mathscr{M}_{m / 2}(\mathscr{N}, \chi)=\left\{F \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}\right): F \mid S(\mathscr{J})=\chi^{*}(\mathscr{J}) F\right.
$$

for all fractional ideals $\mathscr{J},(\mathscr{J}, \mathscr{N})=1\}$,
and χ^{*} is the ideal character induced by χ. (For \mathscr{J} a fractional ideal relatively prime to $\mathscr{N}, \chi^{*}(\mathscr{J})=\chi(\tilde{a})$ where \tilde{a} is an idele of \mathbf{K} such that $\tilde{a}_{\mathscr{P}}=1$ for all primes $\mathscr{P} \mid \mathscr{N} \infty$, and $\tilde{a} \mathscr{O}=\mathscr{J}$. Also note that there are Hecke characters χ extending $\chi_{\mathcal{N}}$ with $\chi_{\infty}=1$ since $\chi_{\mathcal{N}}(u)=1$ for all $u \in \mathscr{U}$.)

When defining "Fourier coefficients" attached to integral ideals for an integral weight form F, Shimura uses the fact that for $u \in \mathscr{U}^{+}$

$$
F \left\lvert\,\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)=F .\right.
$$

In the case of half-integral weight forms, we have no analogous equation. However, we can decompose $\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}\right)$ as follows.
Let $\mathbf{K}^{+}=\{a \in \mathbf{K}: a \gg 0\}$ and $\dot{K}^{2}=\left\{a^{2}: a \in \mathbf{K}, a \neq 0\right\}$; set $G=\mathbf{K}^{+} / \dot{\mathbf{K}}^{2}$ and $H=\mathscr{U}^{+} \dot{\mathbf{K}}^{2} / \dot{\mathbf{K}}^{2} \quad\left(\approx \mathscr{U}^{+} / \mathscr{U}^{2}\right)$. For each character $\varphi \in \widehat{G}=$ the character group of G, define

$$
\begin{aligned}
& \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right) \\
& =\left\{F \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}\right): F \left\lvert\,\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right]=\varphi(u) F\right. \text { for all } u \in \mathscr{U}^{+}\right\} .
\end{aligned}
$$

Then we have
Lemma 2.3. With the above definitions,

$$
\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}\right)=\bigoplus_{\varphi} \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}, \varphi\right)
$$

where the sum runs over a complete set of representatives φ for $\widetilde{G} / H^{\perp}$ with $H^{\perp}=\left\{\varphi \in \tilde{G}:\left.\varphi\right|_{H}=1\right\}$. Each space $\mathscr{M}_{m / 2}\left(\mathcal{N}, \chi_{\mathcal{N}}, \varphi\right)$ is invariant under all the Hecke operators $T\left(\mathscr{P}^{2}\right)$ where \mathscr{P} is a prime ideal not dividing \mathscr{N}.

Remark. The restriction map defines an isomorphism from \widehat{G} / H^{\perp} onto $\widehat{H} \approx \widehat{U}^{\dagger} \mathscr{U}^{2}$, but there is no canonical way to extend an element of $\widehat{\mathscr{U}^{\dagger} / \mathscr{U}}{ }^{2}$ to an element of \widehat{G} / H^{\perp}.

Proof. Given $F \in \mathscr{M}_{m / 2}(\mathcal{N}, \chi)$, set

$$
\left.F_{\varphi}=\frac{1}{\left[\mathscr{U ^ { + }}: \mathscr{U}^{2}\right]} \sum_{u \in \mathscr{U}^{+} \mid \mathscr{U}^{2}} \bar{\varphi}(u) F \right\rvert\,\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right] .
$$

One easily verifies that $F \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}, \varphi\right)$. Also,

$$
\left.\sum_{\varphi \in \widehat{G} / H^{\perp}} F_{\varphi}=\frac{1}{\left[\mathscr{U}^{+}: \mathscr{U}^{2}\right]} \sum_{u \in \mathscr{U}^{+}+\mathscr{U}^{2}}\left(\sum_{\varphi} \bar{\varphi}(u)\right) F \right\rvert\,\left[\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right), 1\right]=\vec{F}
$$

since duality shows that $\sum_{\varphi} \bar{\varphi}(u)$ is only nonzero when $u=1$. Furthermore, for $\varphi_{1}, \varphi_{2} \in \widehat{G}, \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}, \varphi_{1}\right)$ and $\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}, \varphi_{2}\right)$
either are equal or have trivial intersection, depending on whether $\varphi_{1} \bar{\varphi}_{2} \in H^{\perp}$. Thus $\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathcal{N}}\right)=\bigoplus_{\varphi} \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right)$ as claimed.

Now, given $u \in \mathscr{U}^{+}, \mathscr{P}$ a prime ideal not dividing \mathscr{N}, and $\left\{\tilde{A}_{j}\right\}$ a set of coset representatives for

$$
\left(\widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right) \cap \widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)\right) \backslash \widetilde{\Gamma}_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)
$$

we see that $\left\{\left(\begin{array}{cc}u^{-1} & 0 \\ 0 & 1\end{array}\right) A_{j}\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right)\right\}$ is a set of coset representatives for

$$
\left(\Gamma_{1}\left(\mathscr{N}, \mathscr{J}^{2}\right) \cap \Gamma_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)\right) \backslash \Gamma_{1}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right)
$$

Standard techniques for evaluating Gauss sums show that

$$
\frac{\theta\left(\mathscr{I}, A_{j} u \tau\right)}{\theta(\mathscr{I}, u \tau)}=\left(u \mid d_{j}\right) \frac{\theta\left(\mathscr{I}, A_{j}^{u} \tau\right)}{\theta(\mathscr{I}, \tau)}
$$

where

$$
A_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & d_{j}
\end{array}\right) \quad \text { and } \quad A_{j}^{u}=\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & 1
\end{array}\right) A_{j}\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right)
$$

Since $d_{j} \equiv a_{j} d_{j} \equiv v^{2}(\bmod \mathscr{N})$ for some $v \in \mathscr{U}$, the Law of Quadratic Reciprocity (Theorem 165 of [3]) shows that $\left(u \mid d_{j}\right)=1$; hence

$$
\left[\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & 1
\end{array}\right), 1\right] \widetilde{A}_{j}\left[\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right), 1\right]=\widetilde{A_{j}^{u}}
$$

and thus $T\left(\mathscr{P}^{2}\right)$ acts invariantly on the space $\mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right)$.
Unfortunately, we also have
Lemma 2.4. Given $\varphi \in \widehat{G}$ and \mathscr{P} a prime ideal not dividing \mathscr{N}, we have

$$
S(\mathscr{P}): \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right) \rightarrow \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi \psi_{\mathscr{P}}\right)
$$

where $\psi_{\mathscr{P}}$ is an element of \widehat{G} such that $\psi_{\mathscr{P}}(u)=(u \mid \mathscr{P})$ for all $u \in$ \mathscr{U}^{+}. Consequently, given any Hecke character χ extending $\chi_{\mathscr{N}}$ (with $\chi_{\infty}=1$),

$$
\mathscr{M}_{m / 2}(\mathscr{N}, \chi) \cap \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right)=\{0\}
$$

unless $\mathscr{U}^{+}=\mathscr{U}^{2}$.
Proof. Let $C=\binom{* *}{* d}$ be a matrix as in the definition of $S(\mathscr{P})$; so $\operatorname{det} C=1$, and

$$
F|S(\mathscr{P})=f|\left[C, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathscr{I}, C \tau)}{\theta(\mathscr{P} \mathscr{I}, \tau)}\right]
$$

for $f \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{\mathscr{N}}\right)$. Then for $u \in \mathscr{U}^{+}$, the techniques used to prove Proposition 6.1 of [6] show that

$$
\begin{aligned}
& {\left[\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & 1
\end{array}\right), 1\right]\left[C, N(\mathscr{P})^{-1 / 2} \frac{\theta(\mathscr{I}, C \tau)}{\theta(\mathscr{P} \mathscr{I}, \tau)}\right]\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right]} \\
& \quad=\left[C^{u},(u \mid d)(u \mid \mathscr{P}) N(\mathscr{P})^{-1 / 2} \frac{\theta\left(\mathscr{J}, C^{u} \tau\right)}{\theta(\mathscr{P} \mathscr{J}, \tau)}\right]
\end{aligned}
$$

where $C^{u}=\left(\begin{array}{cc}u^{-1} & 0 \\ 0 & 1\end{array}\right) C\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right)$. Since $d \equiv 1(\bmod \mathscr{N})$ (recall the definition of $\mathscr{S}(\mathscr{P})$) we see again by the Law of Quadratic Reciprocity that $(u \mid d)=1$. Hence for $F \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi\right)$,

$$
\begin{aligned}
& F|S(\mathscr{P})|\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right] \\
& \left.\quad=(u \mid \mathscr{P}) F\left|\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right]\right| S(\mathscr{P})=\varphi(u)(u \mid \mathscr{P}) F \right\rvert\, S(\mathscr{P}),
\end{aligned}
$$

showing that $F \mid S(\mathscr{P}) \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}, \varphi \psi_{\mathscr{P}}\right)$.
Now, to finish proving the lemma, we simply observe that there are an infinite number of primes \mathscr{P} such that $(u \mid \mathscr{P})=-1$ if $u \in \mathscr{U}^{+}-\mathscr{U}^{2}$ (see 65:19 of [4]).

The preceding two lemmas compel us to define "Fourier coefficients" attached to integral ideals as follows.

Given

$$
F=\left(\ldots, f_{\lambda}, \ldots\right) \in \mathscr{M}_{m / 2}\left(\mathscr{N}, \chi_{\mathscr{N}}\right)
$$

where $f_{\lambda}(\tau)=\sum_{\zeta} a_{\lambda}(\zeta) e(2 \zeta \tau), \varphi \in \widehat{G}$ and $\mathscr{M} \neq 0$ an integral ideal, we define the \mathscr{M}, φ-Fourier coefficient of F by:
(i)

$$
\mathbf{a}(\mathscr{M}, \varphi)=\frac{1}{\left[\mathscr{U}^{+}: \mathscr{U}^{2}\right]} \sum_{u \in \mathscr{U}^{+} / \mathscr{U}^{2}} \bar{\varphi}(\xi u) a_{\lambda}(\xi u) N\left(\mathscr{I}_{\lambda}\right)^{-m / 2}
$$

if $\mathscr{M}=\xi \mathscr{J}_{\lambda}^{-2}$ for some λ and some $\xi \gg 0$;
(ii) $\mathbf{a}(\mathscr{M}, \varphi)=0$ if \mathscr{M} cannot be written as $\xi \mathscr{I}_{\lambda}{ }^{-2}$ with $\xi \gg 0$;
(iii) $\mathbf{a}(0, \varphi)=a_{\lambda}(0) N\left(\mathscr{J}_{\lambda}\right)^{-m / 2}$ if $a_{\lambda}(0) N\left(\mathscr{I}_{\lambda}\right)^{-m / 2}=a_{\mu}(0) N\left(\mathscr{J}_{\mu}\right)^{-m / 2}$ for all λ, μ.

Thus for $\mathscr{M}=\xi \mathscr{J}_{\lambda}{ }^{-2}, \xi \gg 0, \mathbf{a}(\mathscr{M}, \varphi)$ is $N\left(\mathscr{I}_{\lambda}\right)^{-m / 2}$ times the ξ-Fourier coefficient of the λ-component of F_{φ}. Since $F=\sum_{\varphi} F_{\varphi \in}$, the collection of all the M, φ-Fourier coefficients $\left(\varphi \in \widehat{G} / H^{\perp}\right)$ characterize any form F whose $0, \varphi$-Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier coefficients.

Theorem 2.5. Let $F=\left(\ldots, f_{\lambda}, \ldots\right) \in \mathscr{M}_{m / 2}(\mathscr{N}, \chi)$ where χ is a Hecke character extending $\chi_{\mathscr{N}}$ with $\chi_{\infty}=1$. Take \mathscr{P} to be a prime ideal not dividing \mathscr{N}, and take $\psi_{\mathscr{P}} \in\left(\widehat{\mathbf{K}^{+} / \dot{\mathbf{K}}^{2}}\right)$ such that $\psi_{\mathscr{P}}(\xi)=(\xi \mid \mathscr{P})$ for all $\xi \in \mathbf{K}^{+}$with $\operatorname{ord}_{\mathscr{P}} \xi=0$. Let $\mathbf{a}(\mathscr{M}, *)$ and $\mathbf{b}(\mathscr{M}, *)$ denote the $\mathscr{M}, *$-Fourier coefficients of F and of $F \mid T\left(\mathscr{P}^{2}\right)$ (respectively). Then for any $\varphi \in\left(\mathbf{K}^{+} / \dot{\mathbf{K}}^{2}\right)$, we have

$$
\begin{aligned}
& \mathbf{b}(\mathscr{M}, \varphi) \\
& \quad=\left\{\begin{array}{l}
\mathbf{a}\left(\mathscr{P}^{2} \mathscr{M}, \varphi\right)+\chi^{*}(\mathscr{P}) N(\mathscr{P})^{(m-3) / 2}(-1 \mid \mathscr{P})^{(m-1) / 2} \mathbf{a}\left(\mathscr{M}, \varphi \psi_{\mathscr{P}}\right) \\
+\chi^{*}\left(\mathscr{P}^{2}\right) N(\mathscr{P})^{m-2} \mathbf{a}\left(\mathscr{M} \mathscr{P}^{-2}, \varphi\right) \quad \text { if } \mathscr{P} \nmid \mathscr{M}, \\
\mathbf{a}\left(\mathscr{P}^{2} \mathscr{M}, \varphi\right)+\chi^{*}\left(\mathscr{P}^{2}\right) N(\mathscr{P})^{m-2} \mathbf{a}\left(\mathscr{M} \mathscr{P}^{-2}, \varphi\right) \text { if } \mathscr{P} \mid \mathscr{M} .
\end{array}\right.
\end{aligned}
$$

Proof. Take $\rho, \gamma \in \mathbf{K}^{\times}$such that $\mathscr{J}_{\lambda}^{2} \mathscr{P}^{2}=\rho^{2} \mathscr{F}_{\mu}^{2}$ and $\mathscr{J}_{\lambda}^{2} \mathscr{P}^{4}=$ $\gamma^{2} \mathscr{I}_{\eta}^{2}$. Then by Lemma 2.2 the μ-component of $F \mid T\left(\mathscr{P}^{2}\right)$ is

$$
\begin{aligned}
& N(\mathscr{P})^{m / 2-2}\left(f_{\lambda} \left\lvert\, \sum_{b}\left[\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right), 1\right]\right.\right. \\
& +\chi^{*}(\mathscr{P}) f_{\mu}\left|\left[\left(\begin{array}{cc}
\rho^{2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{-1 / 4}\right]\right| \sum_{\beta}\left[\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right), \frac{N(\mathscr{P})}{\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)}\right] \\
& \left.+\chi^{*}\left(\mathscr{P}^{2}\right) f_{\eta} \left\lvert\,\left[\left(\begin{array}{cc}
\gamma^{2} & 0 \\
0 & 1
\end{array}\right), N\left(\gamma^{2}\right)^{-1 / 4}\right]\right.\right) \left\lvert\,\left[\left(\begin{array}{cc}
\rho^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{1 / 4}\right]\right.
\end{aligned}
$$

where b runs over

$$
\mathscr{P}^{-2} \mathscr{J}_{\lambda}^{-2} \partial^{-1} / \mathscr{I}_{\lambda}^{-2} \partial^{-1}
$$

β runs over

$$
\left(\mathscr{P}^{-3} \mathscr{I}_{\lambda}^{-2} \partial^{-1} / \mathscr{P}^{-2} \mathscr{J}_{\lambda}^{-2} \partial^{-1}\right)^{\times}
$$

and α runs over

$$
\mathscr{I}_{\lambda} \mathscr{P} / \mathscr{I}_{\lambda} \mathscr{P}^{2}
$$

(Recall that $F \in \mathscr{M}_{m / 2}(\mathscr{N}, \chi)$ so

$$
f_{\lambda}|S(\mathscr{I})|\left[\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & 1
\end{array}\right), N\left(\omega^{2}\right)^{-1 / 4}\right]=\chi^{*}(\mathscr{F}) f_{\sigma}
$$

where $\omega \mathscr{J}^{2} \mathscr{J}_{\lambda}^{2}=\mathscr{J}_{\sigma}^{2}$.) It is easily seen that

$$
\begin{aligned}
& f_{\lambda}\left|\sum_{b}\left[\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right), 1\right]\right|\left[\left(\begin{array}{cc}
\rho^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{-1 / 4}\right](\tau) \\
& \quad=N\left(\mathscr{I}_{\lambda} \mathscr{P}_{\mu}^{-1}\right)^{-m / 2} N\left(\mathscr{P}^{2}\right) \sum_{\xi \in \mathscr{P}^{2} \mathscr{I}_{\lambda}^{2}} a_{\lambda}(\xi) e\left(2 \xi \rho^{-2} \tau\right) \\
& \quad=N\left(\mathscr{I}_{\lambda} \mathscr{P}_{\mu}^{-1}\right)^{-m / 2} N\left(\mathscr{P}^{2}\right) \sum_{\xi \in \mathscr{J}_{\mu}^{2}} a_{\lambda}\left(\rho^{2} \xi\right) e(2 \xi \tau)
\end{aligned}
$$

and that

$$
\begin{aligned}
f_{\eta} \mid[& \left.\left(\begin{array}{cc}
\gamma^{2} & 0 \\
0 & 1
\end{array}\right), N\left(\gamma^{2}\right)^{-1 / 4}\right] \left\lvert\,\left[\left(\begin{array}{cc}
\rho^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{1 / 4}\right](\tau)\right. \\
& =N\left(\mathscr{P}_{\mu} \mathscr{I}_{\eta}^{-1}\right)^{m / 2} \sum_{\xi \in \mathscr{P}^{2} \mathscr{I}_{\eta}^{2}} a_{\eta}\left(\xi \rho^{2} \gamma^{-2}\right) e(2 \xi \tau)
\end{aligned}
$$

Now we work a little:

$$
\begin{aligned}
f_{\mu} \mid & {\left[\left(\begin{array}{cc}
\rho^{2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{-1 / 4}\right]\left|\sum_{\beta}\left[\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right), \frac{N(\mathscr{P})^{1 / 2}}{\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)}\right]\right|\left[\left(\begin{array}{cc}
\rho^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\rho^{2}\right)^{1 / 4}\right] } \\
& =N(\mathscr{P})^{-m / 2} \sum_{\beta}\left(\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)\right)^{m} \sum_{\xi \in \mathcal{J}_{\mu}^{2}} a_{\mu}(\xi) e\left(2 \xi \beta \rho^{2}\right) e(2 \xi \tau) .
\end{aligned}
$$

Taking $\beta_{0} \in \mathscr{P}^{-3} \mathscr{J}_{\lambda}^{-2} \partial^{-1}-\mathscr{P}^{-2} \mathscr{J}_{\lambda}^{-2} \partial^{-1}$, standard techniques for evaluating Gauss sums show us that

$$
\begin{aligned}
\sum_{\beta}(& \left.\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)\right)^{m} e\left(2 \xi \beta \rho^{2}\right) \\
& =\sum_{\beta^{\prime} \in \mathscr{O} \mid \mathscr{P}}\left(-\beta^{\prime} \mid \mathscr{P}\right)^{m}\left(\sum_{\alpha} e\left(2 \beta_{0} \alpha^{2}\right)\right)^{m} e\left(2 \xi \beta_{0} \beta^{\prime} \rho^{2}\right)
\end{aligned}
$$

and $\left(\sum_{\alpha} e\left(2 \beta_{0} \alpha^{2}\right)\right)^{2}=N(\mathscr{P})(-1 \mid \mathscr{P})$. So

$$
\begin{aligned}
\sum_{\beta} & \left(\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)\right)^{m} e\left(2 \xi \beta \rho^{2}\right) \\
= & N(\mathscr{P})^{(m-1) / 2}(-1 \mid \mathscr{P})^{(m+1) / 2} \\
& \cdot\left(\sum_{\beta^{\prime} \in \mathscr{O} / \mathscr{P}}\left(\beta^{\prime} \mid \mathscr{P}\right) e\left(2 \beta^{\prime} \beta_{0} \xi \rho^{2}\right)\right)\left(\sum_{\alpha} e\left(2 \beta_{0} \alpha^{2}\right)\right)
\end{aligned}
$$

which is equal to 0 when $\xi \in \mathscr{P} \mathscr{J}_{\mu}^{2}$. When $\xi \neq \mathscr{P} \mathscr{F}_{\mu}^{2}$ and $\nu \in$ $\mathscr{J}_{\mu}^{-1}-\mathscr{P} \mathscr{J}_{\mu}^{-1}, \beta^{\prime} \xi \nu^{2}$ runs over $\mathscr{O} / \mathscr{P}$ as β^{\prime} does; in this case

$$
\begin{aligned}
\sum_{\beta^{\prime} \in \mathscr{O} \mid \mathscr{P}}\left(\beta^{\prime} \mid \mathscr{P}\right) e\left(2 \beta^{\prime} \beta_{0} \xi \rho^{2}\right) & =\sum_{\beta^{\prime}}\left(\beta^{\prime} \xi \nu^{2} \mid \mathscr{P}\right) e\left(2 \beta^{\prime} \beta_{0} \xi^{2} \nu^{2} \rho^{2}\right) \\
& =\left(\xi \nu^{2} \mid \mathscr{P}\right) \sum_{\alpha \in \mathscr{P} \mathscr{F}_{\lambda} / \mathscr{P}^{2} \mathscr{F}_{\lambda}} e\left(2 \beta_{0} \alpha^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
f_{\mu} \mid & \sum_{\beta}\left[\left(\begin{array}{cc}
1 & \rho^{2} \beta \\
0 & 1
\end{array}\right), N(\mathscr{P})^{1 / 2}\left(\sum_{\alpha} e\left(-2 \beta \alpha^{2}\right)\right)^{-1}\right](\tau) \\
& =N(\mathscr{P})^{1 / 2}(-1 \mid \mathscr{P})^{(m-1) / 2} \sum_{\xi \in \mathcal{J}_{\mu}^{2}}\left(\xi \nu^{2} \mid \mathscr{P}\right) a_{\mu}(\xi) e(2 \xi \tau)
\end{aligned}
$$

This means that for $\mathscr{M}=\xi \mathscr{F}_{\mu}^{-2}, \xi \gg 0$,

$$
\begin{aligned}
& \mathbf{b}(\mathscr{M}, \varphi)= \frac{N\left(\mathscr{F}_{\mu}\right)^{-m / 2}}{\left[\mathscr{U}+: \mathscr{U}^{2}\right]} N(\mathscr{P})^{m / 2-2} \\
& \cdot\left(N(\mathscr{P})^{2-m / 2} N\left(\mathscr{F}_{\mu}\right)^{m / 2} N\left(\mathscr{I}_{\lambda}\right)^{-m / 2} \sum_{u \in \mathscr{U}^{+} / \mathscr{U}^{2}} \bar{\varphi}(\xi u) a_{\lambda}\left(u \xi \rho^{2}\right)\right. \\
& \quad+\chi^{*}(\mathscr{P}) N(\mathscr{P})^{1 / 2}(-1 \mid \mathscr{P})^{(m-1) / 2} \\
& \quad \cdot \sum_{u \in \mathscr{U}^{+} / \mathscr{U}^{2}} \bar{\varphi}(\xi u)\left(u \xi \nu^{2} \mid \mathscr{P}\right) a_{\mu}(u \xi) \\
&+\chi^{*}\left(\mathscr{P}^{2}\right) N(\mathscr{P})^{m / 2} N\left(\mathscr{I}_{\mu}\right)^{m / 2} N\left(\mathscr{I}_{\eta}\right)^{-m / 2} \\
&\left.\cdot \sum_{u \in \mathscr{U}^{+} / \mathscr{U}^{2}} \bar{\varphi}(\xi u) a_{\eta}\left(u \xi \rho^{2} \gamma^{-2}\right)\right)
\end{aligned}
$$

Noting that $\left(u \xi \nu^{2} \mid \mathscr{P}\right)=0$ when $\mathscr{P} \mid \mathscr{M}$, the theorem now follows from the definition of the M, φ-Fourier coefficients of F.

Corollary 2.6. If $F \in \mathscr{M}_{m / 2}(\mathscr{N}, \chi)$ is an eigenform for all $T\left(\mathscr{P}^{2}\right)$ $(\mathscr{P} \nmid \mathscr{N})$ whose 0 , *-Fourier coefficients can be defined and are nonzero, then

$$
F \mid T\left(\mathscr{P}^{2}\right)=\left(1+\chi^{*}\left(\mathscr{P}^{2}\right) N(\mathscr{P})^{m-2}\right) F .
$$

3. Relations on representation numbers of odd rank lattices. Let L be a lattice of rank m over \mathscr{O} when m is odd; since lattices
of rank 1 are already well understood, we restrict our attention here to the case where $m \geq 3$. Then, as shown in Theorem 3.7 of [6], $\theta(L, \tau)=\sum_{x \in L} e(Q(x) \tau)$ is a Hilbert modular form of weight $m / 2$, level \mathscr{N} and character χ_{L} for the group $\left\{\tilde{A} \in \widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right): \operatorname{det} A=\right.$ 1\} where \mathscr{F} is the smallest fractional ideal such that $\mathbf{n} L \subseteq \mathscr{J}^{2}$ (so for every prime \mathscr{P}, ord $\mathscr{P}^{\mathbf{n}} L \cdot \mathscr{J}^{-2}$ is minimal), $\mathscr{N}=\left(\mathbf{n} L^{\#}\right)^{-1} \mathscr{J}^{-2}$, and χ_{L} is a quadratic character modulo \mathscr{N}. (Here $L^{\#}$ denotes the dual lattice of L, and $n L$ is the fractional ideal generated by $\left\{\frac{1}{2} Q(x): x \in L\right\}$; note that Proposition 3.4 of [6] shows that $4 \mathscr{O} \mid \mathscr{N}$.) Since $\theta\left(L, u^{2} \tau\right)=\theta(L, \tau)$ for any $u \in \mathscr{U}$, we have $\theta(L, \tau) \in$ $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}^{2}\right), \chi_{L}\right)$.

Lemma 3.1. Let \mathscr{P} be a prime ideal not dividing \mathscr{N}. Then setting $L_{\mathscr{P}}=\mathscr{\sigma}_{\mathscr{P}} L$, we have

$$
L_{\mathscr{P}} \simeq \pi^{2}\left\langle 1, \ldots, 1, \varepsilon_{\mathscr{P}}\right\rangle
$$

for some $\pi \in \mathbf{K}_{\mathscr{P}}$ and $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$.
Proof. Since $4 \mathscr{O} \mid \mathscr{N}$, \mathscr{P} must be nondyadic. Then from the remarks immediately preceding 92:1 of [4], we see that $L_{\mathscr{P}} \simeq\left\langle\alpha_{1}, \ldots\right.$, $\left.\alpha_{m}\right\rangle$ where $\alpha_{1}, \ldots, \alpha_{m} \in \mathbf{K}_{\mathscr{P}}$. Since $\mathscr{P} \nmid \mathscr{N}$ and $\left(\mathbf{n} L^{\#}\right)^{-1}(\mathbf{n} L)^{-1} \mid \mathscr{N}$, we know that $\mathscr{P} \nmid\left(\mathbf{n} L^{\#}\right)^{-1}(\mathbf{n} L)^{-1}$ and hence $L_{\mathscr{P}}$ is modular; thus by 92:1 of [4], $L_{\mathscr{P}} \simeq \rho\left\langle 1, \ldots, 1, \varepsilon_{\mathscr{P}}\right\rangle$ for some $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}}^{\times}$and $\rho \in \mathbf{K}_{\mathscr{P}}$ such that $\rho \mathscr{O}_{\mathscr{P}}=\mathbf{n} L_{\mathscr{P}}$. Furthermore, since $\mathscr{N}=\left(\mathbf{n} L^{\#}\right)^{-1} \mathscr{J}^{-2}$ and $\mathscr{P} \nmid \mathscr{N}$, the fractional ideal $\mathbf{n} L^{\#}$ and hence $\mathbf{n} L$ must have even order at \mathscr{P}, so we may choose $\rho=\pi^{2}$ with $\pi \in \mathbf{K}_{\mathscr{P}}$.

Notice that in the preceding lemma the square class of $\varepsilon_{\mathscr{P}}$ is independent of the choice of π; thus we can make the following

Definition. With \mathscr{P} a prime, $\mathscr{P} \nmid \mathscr{N}$, let $\varepsilon_{\mathscr{P}} \in \mathscr{O}_{\mathscr{P}} \times$ be as in Lemma 3.1 ; set $\varepsilon_{L}(\mathscr{P})=\left(2 \varepsilon_{\mathscr{P}} \mid \mathscr{P}\right)$ where $(* \mid *)$ is the quadratic residue symbol. For an integral ideal \mathscr{A} relatively prime to \mathscr{N}, set

$$
\varepsilon_{L}(\mathscr{A})=\prod_{\mathscr{P} \mid \mathscr{A}} \varepsilon_{L}(\mathscr{P})^{\operatorname{ord}_{\mathscr{P}}(\mathscr{A})}
$$

A straightforward computation analogous to that used to prove Lemma 3.8 of [8] proves

Lemma 3.2. For $a \in \mathbf{K}^{\times}$with a relatively prime to $\mathscr{N}, \chi_{L}(a)=$ $\varepsilon_{L}(a \mathscr{O})$.

Next we have

Proposition 3.3. Let \mathscr{P} be a prime, $\mathscr{P} \nmid \mathscr{N}$. Then

$$
\begin{aligned}
& \theta(L, \tau) \mid S(\mathscr{P})=N(\mathscr{P})^{m / 2} \varepsilon_{L}(\mathscr{P}) \theta(\mathscr{P} L, \tau) \text { and so } \\
& \theta(L, \tau) \mid S(\mathscr{P} 2)=N(\mathscr{P})^{m} \theta\left(\mathscr{P}^{2} L, \tau\right) .
\end{aligned}
$$

Proof. Following the proof of Proposition 6.1 of [6] and using the extended transformation formula from $\S 4$ of [7], we find that for

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in\left(\begin{array}{cc}
\mathscr{P} & \mathscr{P}^{-1} \mathscr{J}-2 \partial^{-1} \\
\mathscr{N} \mathscr{J}^{2} \partial & \mathscr{O}
\end{array}\right)
$$

with $\operatorname{det} A=1$ and $d \equiv 1(\bmod \mathscr{N})$,

$$
\begin{aligned}
\theta(L, A \tau)= & c\left(c+d \frac{1}{\tau}\right)^{m / 2} \tau^{m / 2} d^{-m / 2} \\
& \cdot \sum_{x \in \mathscr{P}_{L / d} L} e\left(\frac{b}{d} Q(x)\right) \sum_{x \in d L / d \mathscr{P}_{L}} e\left(\frac{b}{d} Q(x)\right) \cdot \theta\left(\mathscr{P}_{L}, \tau\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\theta(\mathscr{F}, A \tau)= & \left(c+d \frac{1}{\tau}\right)^{1 / 2} \tau^{1 / 2} d^{-1 / 2} \\
& \cdot \sum_{\alpha \in \mathscr{P} \mathcal{Y} / d \mathscr{P} \mathscr{\mathscr { F }}} e\left(\frac{b}{d} 2 \alpha^{2}\right) \sum_{\alpha \in d \mathscr{F} / d \mathscr{P} \mathscr{\mathcal { F }}} e\left(\frac{b}{d} 2 \alpha^{2}\right) \cdot \theta(\mathscr{P} \mathscr{F}, \tau) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \theta(L, \tau) \mid S(\mathscr{P}) \\
&= N(\mathscr{P})^{m / 2} \sum_{x \in \mathscr{P} L / d \mathscr{P} L} e\left(\frac{b}{d} Q(x)\right)\left(\sum_{\alpha \in \mathscr{P} \mathcal{Y} / d \mathscr{P} \mathscr{F}} e\left(\frac{b}{d} 2 \alpha^{2}\right)\right)^{-m} \\
& \cdot \sum_{x \in d L / d \mathscr{P} \mathscr{L}} e\left(\frac{b}{d} Q(x)\right) \\
& \cdot\left(\sum_{\alpha \in d \mathscr{F} / d \mathscr{P} \mathscr{\mathscr { F }}} e\left(\frac{b}{d} 2 \alpha^{2}\right)\right)^{-m} \theta\left(\mathscr{P}_{L}, \tau\right) .
\end{aligned}
$$

We know from Lemma 3.1 that $L_{\mathscr{P}} \simeq \pi^{2}\left\langle 1, \ldots, 1, \varepsilon_{\mathscr{P}}\right\rangle$ where $\varepsilon_{\mathscr{P}} \in$ $\mathscr{O}_{\mathscr{D}}^{\times}$; thus Propositions 3.1-3.3 and the arguments used to prove Theorem 3.7 of [6] show that

$$
\sum_{x \in d L / d \mathscr{\mathscr { P }} L} e\left(\frac{b}{d} Q(x)\right)\left(\sum_{\alpha \in d \mathscr{F} / d \mathscr{F} \mathscr{F}} e\left(\frac{b}{d} 2 \alpha^{2}\right)\right)^{-m}=\left(2 \varepsilon_{\mathscr{P}} \mid \mathscr{P}\right)=\varepsilon_{L}(\mathscr{P})
$$

and that

$$
\sum_{x \in \mathscr{P} L / d \mathscr{P} L} e\left(\frac{b}{d} Q(x)\right)\left(\sum_{\alpha \in \mathscr{P} \mathscr{F} / d \mathscr{P} \mathscr{F}} e\left(\frac{b}{d} 2 \alpha^{2}\right)\right)^{-m}=\chi_{L}(d)=1
$$

(since $d \equiv 1(\bmod \mathscr{N})$ and χ_{L} is a character modulo $\left.\mathscr{N}\right)$.
With this we prove
Proposition 3.4. Let the notation be as above. Then

$$
\begin{aligned}
\theta(L, \tau) \mid T\left(\mathscr{P}^{2}\right)= & \varepsilon_{L}(\mathscr{P}) N(\mathscr{P})^{m / 2} \kappa^{-1} \sum_{K} \theta(K, \tau) \\
& +\varepsilon_{L}(\mathscr{P}) N(\mathscr{P})^{m / 2}\left(1-N(\mathscr{P})^{(m-3) / 2}\right) \theta(\mathscr{P} L, \tau)
\end{aligned}
$$

where

$$
\kappa=\left\{\begin{array}{l}
1 \quad \text { if } m=3, \\
N(\mathscr{P})^{(m-5) / 2} \cdots N(\mathscr{P})^{0}\left(N(\mathscr{P})^{(m-3) / 2}+1\right) \cdots(N(\mathscr{P})+1) \\
\text { if } m>3 .
\end{array}\right.
$$

Here the sum runs over all \mathscr{P}^{2}-sublattices K of L (i.e. over all sublattices K of L such that $\mathbf{n} K=\mathscr{P}^{2} \cdot \mathbf{n} L$ and the invariant factors

$$
\{L: K\}=\left(\mathscr{O}, \ldots, \mathscr{O}, \mathscr{P}, \mathscr{P}^{2}, \ldots, \mathscr{P}^{2}\right)
$$

with \mathscr{O} and \mathscr{P}^{2} each appearing $\frac{m-1}{2}$ times). Furthermore, each \mathscr{P}^{2} sublattice K of L lies in the genus of $\mathscr{P} L$, and hence $\theta(\mathscr{P} L, \tau)$, $\theta(K, \tau) \in \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right), \chi_{L}\right)$.

Proof. An easy check shows that the Hecke operator $T\left(\mathscr{P}^{2}\right)$ defined in [6] is, in the notation of this paper, $T\left(\mathscr{P}^{2}\right) S\left(\mathscr{P}^{-2}\right)$. Thus Theorem 7.4 of [6] together with the preceding proposition shows that $\theta(L, \tau) \mid T\left(\mathscr{P}^{2}\right)$ is as claimed. (N.B.: Part 2 of Theorem 7.4 has the wrong constants; for $m=2 k+1$ with m odd the theorem should read

$$
\begin{aligned}
\theta(L, \tau) \mid T\left(\mathscr{P}^{2}\right)= & N(\mathscr{P})^{-m / 2} \kappa^{-1} \sum_{K} \theta\left(\mathscr{P}^{-2} K, \tau\right) \\
& +N(\mathscr{P})^{-m / 2}\left(1-N(\mathscr{P})^{(m-3) / 2}\right) \theta\left(\mathscr{P}^{-1} L, \tau\right),
\end{aligned}
$$

where the sum runs over all \mathscr{P}^{2}-sublattices K of L and κ is as above.)

Now let K be a \mathscr{P}^{2}-sublattice of L. Since $\mathbf{n} K=\mathbf{n} \mathscr{P} L$, $\operatorname{disc} K=$ $\operatorname{disc} \mathscr{P}_{L}$ and $\mathscr{P}_{L_{\mathscr{P}}}$ is modular, it follows that $\mathbf{K}_{\mathscr{P}}$ is modular as
well, and that $K_{\mathscr{P}} \simeq \mathscr{P} L_{\mathscr{P}}$. Clearly we have $K_{\mathscr{Q}}=L_{\mathscr{Q}}=\mathscr{P} L_{\mathscr{Q}}$ where \mathscr{Q} is any prime other than \mathscr{P}; thus $K \in$ gen $\mathscr{P} L$, the genus of $\mathscr{P} L$. Finally, Theorem 7.4 of [6] shows that $\theta(\mathscr{P}-2 K, \tau)$ and $\theta\left(\mathscr{P}^{-1} L, \tau\right)$ lie in $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0},\left(\mathscr{N}, \mathscr{P}^{-2} \mathscr{J}^{2}\right), \chi_{L}\right)$, so

$$
\theta(K, \tau)=N(\mathscr{P})^{-m} \theta\left(\mathscr{P}^{-2} K, \tau\right) \mid S\left(\mathscr{P}^{2}\right)
$$

and

$$
\theta(\mathscr{P} L, \tau)=N(\mathscr{P})^{-m} \theta\left(\mathscr{P}^{-1} L, \tau\right) \mid S\left(\mathscr{P}^{2}\right)
$$

lie in $\mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{P}^{2} \mathscr{J}^{2}\right), \chi_{L}\right)$ as claimed.
Completely analogous to Lemma 3.2 of [8], we have
Lemma 3.5. Let $o\left(L^{\prime}\right)$ denote the order of $O\left(L^{\prime}\right)$, the orthogonal group of the lattice L^{\prime}, and define

$$
\theta(\operatorname{gen} L, \tau)=\sum_{L^{\prime}} \frac{1}{o\left(L^{\prime}\right)} \theta\left(L^{\prime}, \tau\right)
$$

where the sum runs over a complete set of representatives L^{\prime} for the distinct isometry classes in gen L, the genus of L. Then for a prime $\mathscr{P} \nmid \mathscr{N}$,

$$
\theta(\operatorname{gen} L, \tau) \mid T\left(\mathscr{P}^{2}\right)=N(\mathscr{P})^{m / 2} \varepsilon_{L}(\mathscr{P})\left(1+N(\mathscr{P})^{m-2}\right) \theta(\operatorname{gen} \mathscr{P} L, \tau)
$$

As in $\S 2$, choose fractional ideals $\mathscr{I}_{1}, \ldots, \mathscr{J}_{h^{\prime}}$ representing the distinct (nonstrict) ideal classes (and so $\mathscr{F}_{1}^{2}, \ldots, \mathscr{F}_{h^{\prime}}^{2}$ are in distinct strict ideal classes); for convenience, we assume that $\mathscr{I}_{1}=\mathscr{O}$ and that each \mathscr{I}_{λ} is relatively prime to \mathscr{N}. Define the extended genus of L, xgen L, to be the union of all genera gen $\mathscr{I} L$ where \mathscr{J} is a fractional ideal; set

$$
\Theta(\operatorname{xgen} L, \tau)=\left(\ldots, N\left(\mathscr{I}_{\lambda} \mathscr{I}\right)^{m / 2} \theta\left(\operatorname{gen} \mathscr{J}_{\lambda} L, \tau\right), \ldots\right)
$$

Then we have
Theorem 3.6. Let χ be the Hecke character extending χ_{L} such that $\chi_{\infty}=1$ and $\chi^{*}(\mathscr{A})=\varepsilon_{L}(\mathscr{A})$ for any fractional ideal \mathscr{A} which is relatively prime to \mathscr{N}. Then

$$
\Theta(\operatorname{xgen} L, \tau) \in \mathscr{M}_{m / 2}(\mathscr{N}, \chi) \subseteq \prod_{\lambda} \mathscr{M}_{m / 2}\left(\widetilde{\Gamma}_{0}\left(\mathscr{N}, \mathscr{J}_{\lambda}^{2} \mathscr{J}^{2}\right), \chi_{L}\right)
$$

and for every prime $\mathscr{P} \nmid \mathscr{N}$,

$$
\Theta(\text { xgen } L, \tau) \mid T\left(\mathscr{P}^{2}\right)=\varepsilon_{L}(\mathscr{P})\left(1+N(\mathscr{P})^{m-2}\right) \Theta(\operatorname{xgen} L, \tau)
$$

Proof. Take \mathscr{J} to be a fractional ideal relatively prime to \mathscr{N}. Then for each λ we have $\mathscr{\mathscr { J }} \mathscr{I}_{\lambda}=\alpha \mathscr{I}_{\mu}$ for some μ and some $\alpha \in \mathbf{K}^{\times}$. By Proposition 3.1 we have

$$
\begin{aligned}
& N\left(\mathscr{J}_{\lambda}\right)^{m / 2} \theta\left(\operatorname{gen} \mathscr{J}_{\lambda} L, \tau\right)|S(\mathscr{J})|\left[\left(\begin{array}{cc}
\alpha^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\alpha^{2}\right)^{1 / 4}\right] \\
& \quad=\varepsilon_{L}(\mathscr{J}) N\left(\alpha^{-1} \mathscr{J} \mathscr{J}_{\lambda}\right)^{m / 2} \theta\left(\operatorname{gen}\left(\alpha^{-1} \mathscr{J} \mathscr{J}_{\lambda} L\right), \tau\right) \\
& \quad=\varepsilon_{L}(\mathscr{J}) N\left(\mathscr{J}_{\mu}\right)^{m / 2} \theta\left(\operatorname{gen} \mathscr{J}_{\mu} L, \tau\right) ;
\end{aligned}
$$

since we have chosen χ such that

$$
\chi^{*}(\mathscr{J})=\varepsilon_{L}(\mathscr{J}),
$$

we have $\Theta(\operatorname{xgen} L, \tau) \in \mathscr{M}_{m / 2}(\mathcal{N}, \chi)$.
Now take \mathscr{P} to be a prime, $\mathscr{P} \nmid \mathscr{N}$, and take $\alpha \in \mathbf{K}^{\times}$such that $\mathscr{P} \mathscr{I}_{\lambda}=\alpha \mathcal{J}_{\mu}$. Then by Lemma 3.5,

$$
\begin{aligned}
& N\left(\mathscr{F}_{\lambda}\right)^{m / 2} \theta\left(\operatorname{gen} \mathscr{I}_{\lambda} L, \tau\right)\left|T\left(\mathscr{P}^{2}\right)\right|\left[\left(\begin{array}{cc}
\alpha^{-2} & 0 \\
0 & 1
\end{array}\right), N\left(\alpha^{2}\right)^{1 / 4}\right] \\
& \quad=\varepsilon_{L}(\mathscr{P})\left(1+N(\mathscr{P})^{m-2}\right) N\left(\alpha^{-1} \mathscr{J}_{\lambda} \mathscr{P}\right)^{m / 2} \theta\left(\operatorname{gen}\left(\alpha^{-1} \mathscr{P} \mathscr{S}_{\lambda} L\right), \tau\right) \\
& \quad=\varepsilon_{L}(\mathscr{P})\left(1+N(\mathscr{P})^{m-2}\right) N\left(\mathscr{J}_{\mu}\right)^{m / 2} \theta\left(\operatorname{gen} \mathscr{J}_{\mu} L, \tau\right) .
\end{aligned}
$$

This theorem allows us to infer relations on averaged representation numbers which we define as follows.

Set

$$
\begin{gathered}
\mathbf{r}\left(L^{\prime}, \xi\right)=\#\left\{x \in L^{\prime}: Q(x)=\xi\right\}, \quad \text { and } \\
\mathbf{r}(\operatorname{gen} L, \xi)=\sum_{L^{\prime}} \frac{1}{o\left(L^{\prime}\right)} \mathbf{r}\left(L^{\prime}, \xi\right)
\end{gathered}
$$

where the sum runs over a complete set of representatives L^{\prime} for the isometry classes within gen L. For $\varphi \in\left(\widehat{\mathbf{K}^{+} / \mathbf{K}^{2}}\right)$, set

$$
\mathbf{r}(\operatorname{gen} L, \xi, \varphi)=\frac{1}{\left[\mathscr{U}^{+}: \mathscr{U}^{2}\right]} \sum_{u \in \mathscr{U}^{+} \mid \mathscr{U}^{2}} \bar{\varphi}(u \xi) \mathbf{r}(\operatorname{gen} L, u \xi) .
$$

Then with the notation of $\S 2$, the \mathscr{M}, φ-Fourier coefficient of $\Theta(\operatorname{xgen} L, \tau)$ is $\mathbf{r}\left(\operatorname{gen} \mathscr{I}_{\lambda} L, 2 \xi, \varphi\right)$ where $\mathscr{M}=\xi \mathscr{J}_{\lambda}^{-2}, \xi \gg 0$. Note that for any fractional ideal \mathscr{J}, we can find some $\alpha \in \mathbf{K}$ and some λ such that $\mathscr{J}=\alpha \mathscr{I}_{\lambda} ;$ then for $\xi \in \mathbf{n} L, \xi \gg 0$, and $\mathscr{M}=\xi \mathscr{J}_{\lambda}^{-2} \mathscr{J}^{-2}$, the \mathcal{J}, φ-Fourier coefficient of Θ (xgen $L, \tau)$ is

$$
\mathbf{r}\left(\operatorname{gen} \mathscr{J}_{\lambda} L, 2 \alpha^{-2} \xi, \varphi\right)=\mathbf{r}\left(\operatorname{gen} \alpha \mathscr{J}_{\lambda} L, 2 \xi, \varphi\right)=\mathbf{r}(\operatorname{gen} \mathscr{J} L, 2 \xi, \varphi) .
$$

Also, $\mathbf{r}($ gen $L, 0)=\mathbf{r}(\operatorname{gen} \mathscr{J} L, 0)$, so the $0, \varphi$-Fourier coefficients of $\Theta(\operatorname{xgen} L, \tau)$ are defined to be $\mathbf{r}(\operatorname{gen} L, 0)$. Now Theorems 2.5 and 3.6 together with Corollary 3.7 give us

Corollary 3.7. Let $\xi \in \mathbf{n} L, \xi \gg 0$. Set $\mathscr{M}=\xi \mathscr{J}^{-2}$ (where \mathscr{J} is the smallest fractional ideal such that $\left.\mathbf{n} L \subseteq \mathscr{J}^{2}\right)$. Let \mathscr{P} be a prime ideal not dividing \mathscr{N}, and let φ be any element of $\left(\widehat{\mathbf{K}^{+} / \dot{\mathbf{K}}^{2}}\right)$. If $\mathscr{P} \nmid \mathscr{M}$, then

$$
\begin{aligned}
(1+ & \left.N(\mathscr{P})^{m-2}\right) \mathbf{r}(\operatorname{gen} L, 2 \xi, \varphi) \\
= & \mathbf{r}\left(\operatorname{gen} \mathscr{P}^{-1} L, 2 \xi, \varphi\right) \\
& +\varepsilon_{L}(\mathscr{P}) N(\mathscr{P})^{(m-3) / 2}(-1 \mid \mathscr{P})^{(m-1) / 2} \mathbf{r}\left(\operatorname{gen} L, 2 \xi, \varphi \psi_{\mathscr{P}}\right) \\
& +N(\mathscr{P})^{m-2} \mathbf{r}(\operatorname{gen} \mathscr{P} L, 2 \xi, \varphi)
\end{aligned}
$$

Here $\psi_{\mathscr{P}}$ is an element of $\left(\widehat{\mathbf{K}}^{+} / \dot{\mathbf{K}}^{2}\right)$ such that $\psi_{\mathscr{P}}(\zeta)=(\zeta \mid \mathscr{P})$ for any $\zeta \in \mathbf{K}^{+}$with $\operatorname{ord}_{\mathscr{P}} \zeta=0$. If $\mathscr{P} \mid \mathscr{M}$, then

$$
\begin{aligned}
& \left(1+N(\mathscr{P})^{m-2}\right) \mathbf{r}(\operatorname{gen} L, 2 \xi, \varphi) \\
& \quad=\mathbf{r}\left(\operatorname{gen} \mathscr{P}^{-1} L, 2 \xi, \varphi\right)+N(\mathscr{P})^{m-2} \mathbf{r}(\operatorname{gen} \mathscr{P} L, 2 \xi, \varphi)
\end{aligned}
$$

In the case that $\mathbf{K}=\mathbf{Q}$, we have

$$
\begin{aligned}
\mathbf{r}\left(\operatorname{gen} L, 2 p^{2} a\right)= & \left(1-p^{(m-3) / 2} \chi_{L}(p)(-1 \mid p)^{(m-1) / 2}(2 a \mid p)+p^{m-2}\right) \\
& \cdot \mathbf{r}(\operatorname{gen} L, 2 a)-p^{m-2} \mathbf{r}\left(\operatorname{gen} L, \frac{2 a}{p^{2}}\right)
\end{aligned}
$$

for any $a \in \mathbf{Z}_{+} ;$note that $\chi_{L}(p)=(2 \operatorname{disc} L \mid p)$.
REMARK. If $\mathscr{P} \nmid\left(\mathbf{n} L^{\#}\right)^{-1}(\mathbf{n} L)^{-1}$ but $\mathscr{P} \mid \mathscr{N}$, then the preceding corollary can be used to give us relations on the averaged representation numbers of $\mathrm{xfam} L^{\alpha}$ where $\alpha \gg 0$ with $\operatorname{ord}_{\mathscr{P}} \alpha$ odd. Since $\mathbf{r}\left(\right.$ fam $\left.^{+} \mathscr{J}_{\mu} L^{\alpha}, \alpha \xi\right)=\mathbf{r}\left(\right.$ fam $\left.^{+} \mathscr{J}_{\mu} L, \xi\right)$, the above corollary can be extended to include all primes $\mathscr{P} \nmid\left(\mathbf{n} L^{\#}\right)^{-1}(\mathbf{n} L)^{-1}$.

References

[1] M. Eichler, On theta functions of real algebraic number fields, Acta Arith., 33 (1977).
[2] P. B. Garrett, Holomorphic Hilbert Modular Forms, Wadsworth \& Brooks/Cole, California, 1990.
[3] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag, New York, 1981.
[4] O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1973.
[5] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-649.
[6] L. H. Walling, Hecke operators on theta series attached to lattices of arbitrary rank, Acta Arith., 54 (1990), 213-240.
[7] \quad, On lifting Hecke eigenforms, Trans. Amer. Math. Soc., 328 (1991), 881896.
[8] ,Hecke eigenforms and representation numbers of quadratic forms, Pacific J. Math., 151 (1991), 179-200.

Received January 11, 1991.

University of Colorado
Boulder, CO 80309-0426

