CONFORMAL DEFORMATIONS PRESERVING THE GAUSS MAP

ENALDO SILVA VERGASTA

In this work, given a conformal immersion $f\colon M^n\to\mathbb{R}^N$ of a Riemannian manifold M^n into a euclidean space \mathbb{R}^N , we establish conditions for the existence of another conformal immersion $\overline{f}\colon M^n\to\mathbb{R}^N$ with the same Gauss map as f. In particular, for n=2 and N=3, these conditions are described by means of a partial differential equation on the principal curvatures of f.

0. Introduction. Let M^n be a connected n-dimensional Riemannian manifold and let $f: M^n \to \mathbb{R}^N$ be a conformal immersion. We denote by $F: M^n \to G_{n,N}$ the Gauss map of f, which assigns to each point $p \in M^n$ the n-dimensional tangent space $f_*(T_pM)$ in the Grassmannian $G_{n,N}$. We consider the following problem: Under what conditions does there exist another conformal immersion $\overline{f}: M^n \to \mathbb{R}^N$ such that the Gauss map of \overline{f} coincides with the Gauss map of f, up to a congruence in $G_{n,N}$ induced by a congruence in \mathbb{R}^N ? When this occurs we say that \overline{f} is a G-deformation of f. This situation is equivalent to considering conformal immersions f and \overline{f} with parallel tangent spaces $f_*(T_pM)$ and $\overline{f}_*(T_pM)$ in \mathbb{R}^N , which we will always assume. The analogous problem for isometric immersions f and \overline{f} was considered by Dajczer and Gromoll [D&G].

In §1 we characterize our situation by means of a tensor field and a differentiable function satisfying certain conditions (see Proposition 1.5). This result will be used in §2, where we treat the above problem for n = 2.

For surfaces, we also consider the *oriented Gauss map* $F^*: M^2 \to G_{2,N}^*$, where now $f_*(T_pM)$ is seen as an oriented 2-plane in the oriented Grassmannian $G_{2,N}^*$. In regard to the above problem we have two different situations. The first one is when f and \overline{f} have the same oriented Gauss map. In this case, it was shown by Hoffman and Osserman [H&O-2] that either f and \overline{f} are minimal surfaces or \overline{f} coincides with f up to homothety and translation in \mathbb{R}^N . The other situation is when, for any local orientation in M^2 , the oriented Gauss maps of f and \overline{f} differ by the orientation-reversing congruence in $G_{2,N}^*$. In this case we call \overline{f} a G^* -deformation and say that

f is G^* -deformable. If f is not totally umbilic, we show that a G^* -deformation is unique up to homothety and translation (Theorem 2.1). When N=4, we also prove that G^* -deformable immersions must have flat normal bundle. For N=3, Theorem 2.4 characterizes G^* -deformable immersions by means of a condition on their principal curvatures. We apply Theorem 2.4 to obtain \overline{f} when f is a rotation surface, a cyclid of Dupin or a surface with constant mean curvature. A similar result is obtained for constant mean curvature surfaces in the euclidean sphere S^3 .

For hypersurfaces in \mathbb{R}^{n+1} , $n \geq 3$, the problem considered here will be treated in a forthcoming paper. Most of the results contained in these two works were announced in [Ve] and were obtained in my doctoral thesis. I wish to express my deep gratitude to Professor M. Dajczer for valuable advice and constant encouragement. I also thank the referee for many helpful suggestions.

1. Conformal deformation in \mathbb{R}^N preserving the Gauss map. Let us denote by $\langle \cdot \rangle_{\circ}$ the Riemannian metric on M^n and by A_{ξ} the second fundamental form of the conformal immersion $f:M^n \to \mathbb{R}^N$ in the normal direction ξ , defined by

$$(1.1) f_* A_{\xi} X = -(\widetilde{\nabla}_X \xi)^t,$$

where ()^t denotes the tangent projection along f and $\widetilde{\nabla}$ is the Levi-Civita connection of the canonical metric $\langle \ , \ \rangle$ on the euclidean space \mathbb{R}^N . We denote also by $\langle \ , \ \rangle$ the metric on M^n induced by f, defined by $\langle \ , \ \rangle = e^{2\varphi_1} \langle \ , \ \rangle_o$, where $e^{2\varphi_1} \colon M^n \to \mathbb{R}$ is the conformal factor of f.

Let $\overline{f}: M^n \to \mathbb{R}^N$ be a *G*-deformation of f with conformal factor $e^{2\varphi_2}$. We define an orthogonal tensor field $T: TM \to TM$ by

$$(1.2) T = e^{-\varphi} f_*^{-1} \circ P \circ \overline{f}_*,$$

where $\varphi = \varphi_2 - \varphi_1$ and, for each $q \in M^n$,

$$(1.3) P_q: T_{\overline{f}(q)} \mathbb{R}^N \to T_{f(q)} \mathbb{R}^N$$

denotes the parallel transport in \mathbb{R}^N . For any vector field V along \overline{f} we have

$$(1.4) \widetilde{\nabla}_X PV = P \widetilde{\nabla}_X V,$$

where X is any tangent field on M^n . We denote by ∇ the Levi-Civita connection on M^n relative to the metric \langle , \rangle and by $\nabla \varphi$ the gradient of φ with respect to this metric. The following result gives

necessary and sufficient conditions on T and φ for the existence (at least locally) of a G-deformation of f.

PROPOSITION 1.5. Let $f: M^n \to \mathbb{R}^N$ be a conformal immersion.

(i) If \overline{f} is a G-deformation of f, then

(1.6)
$$\nabla_X T = T \circ (X \wedge \nabla \varphi)$$

and

$$(1.7) A_{\varepsilon} \circ T = T^{-1} \circ A_{\varepsilon}$$

for any tangent field X and normal field ξ . Moreover the second fundamental form \overline{A} of \overline{f} is given by

$$(1.8) \overline{A}_{\xi} = e^{-\varphi} T^{-1} \circ A_{P\xi}.$$

(ii) If M^n is simply connected and there exist an orthogonal tensor field T and a differentiable function φ satisfying (1.6) and (1.7), then for any $q_0 \in M^n$,

$$\overline{f}(q) = \int_{q_0}^q e^{\varphi} f_* T$$

defines a G-deformation of f.

Proof. We will make use of the Gauss formula

(1.9)
$$\widetilde{\nabla}_X f_* Y = f_* \nabla_X Y + \alpha(X, Y),$$

where X, $Y \in TM$ and $\alpha(X, Y)$ denotes the normal component of $\widetilde{\nabla}_X f_* Y$. Recall the relationship between α and A_{ξ} , given by

$$\langle \alpha(X, Y), \xi \rangle = \langle A_{\xi}X, Y \rangle.$$

The Levi-Civita connection $\overline{\nabla}$ of the metric on M^n induced by \overline{f} (see [Ku], p. 316) is given by

$$\overline{\nabla}_X Y = \nabla_X Y + X(\varphi) Y + Y(\varphi) X - \langle X, Y \rangle \nabla \varphi.$$

Thus we can write

$$(1.10) \qquad (\widetilde{\nabla}_X \overline{f}_* Y)^t = \overline{f}_* (\nabla_X Y + X(\varphi) Y + Y(\varphi) X - \langle X, Y \rangle \nabla \varphi).$$

From (1.4), (1.9) and (1.10) we obtain

$$\begin{split} f_*\nabla_X TY &= f_*(-X(\varphi)e^{-\varphi}f_*^{-1}P\overline{f}_*Y + e^{-\varphi}\nabla_X f_*^{-1}P\overline{f}_*Y) \\ &= -X(\varphi)e^{-\varphi}P\overline{f}_*Y + e^{-\varphi}(\widetilde{\nabla}_X P\overline{f}_*Y)^t \\ &= -X(\varphi)e^{-\varphi}P\overline{f}_*Y \\ &+ e^{-\varphi}P\overline{f}_*(\nabla_X Y + X(\varphi)Y + Y(\varphi)X - \langle X, Y \rangle \nabla \varphi) \\ &= f_*(T\nabla_X Y + Y(\varphi)TX - \langle X, Y \rangle T\nabla \varphi) \,, \end{split}$$

and this proves (1.6).

If ξ is a vector field normal to f, by (1.1) and (1.4) we have

$$\overline{f}_*\overline{A}_\xi X = -(\widetilde{\nabla}_X\xi)^t = -(P^{-1}\widetilde{\nabla}_X P\xi)^t = P^{-1}f_*A_{P\xi}X.$$

Thus $\overline{A}_{\xi} = e^{-\varphi} T^{-1} A_{P\xi}$. Now (1.7) follows from the fact that \overline{A}_{ξ} and $A_{P\xi}$ are self-adjoint.

In order to prove (ii), we compute the exterior differential of the 1-form $e^{\varphi} f_* T$ defined on M^n with values in \mathbb{R}^N :

$$\begin{split} d(e^{\varphi}f_*T)(X\,,\,Y) &= \widetilde{\nabla}_X e^{\varphi}f_*TY - \widetilde{\nabla}_Y e^{\varphi}f_*TX - e^{\varphi}f_*T([X\,,\,Y]) \\ &= X(\varphi)e^{\varphi}f_*TY + e^{\varphi}\widetilde{\nabla}_X f_*TY - Y(\varphi)e^{\varphi}f_*TX \\ &- e^{\varphi}\widetilde{\nabla}_Y f_*TX - e^{\varphi}f_*T(\nabla_X Y - \nabla_Y X). \end{split}$$

Now we use (1.9) to get

$$\begin{split} d(e^{\varphi}f_*T)(X\,,\,Y) &= e^{\varphi}(\alpha(X\,,\,TY) - \alpha(Y\,,\,TX)) \\ &\quad + e^{\varphi}f_*(\nabla_XTY - T\nabla_XY - \nabla_YTX + T\nabla_YX \\ &\quad + X(\varphi)TY - Y(\varphi)TX). \end{split}$$

By (1.6) the above equality becomes

$$d(e^{\varphi}f_*T)(X, Y) = e^{\varphi}(\alpha(X, TY) - \alpha(Y, TX)).$$

But, for each vector ξ normal to f we have

$$\langle \alpha(X, TY) - \alpha(Y, TX), \xi \rangle$$

$$= \langle A_{\xi}X, TY \rangle - \langle A_{\xi}TX, Y \rangle = \langle (T^{-1}A_{\xi} - A_{\xi}T)X, Y \rangle$$

and this vanishes by (1.7). Thus $e^{\varphi}f_*T$ is a closed 1-form on M^n . Since M^n is simply connected, we can define $\overline{f}:M^n\to\mathbb{R}^N$ by

$$\overline{f}(q) = \int_{q_0}^q e^{\varphi} f_* T.$$

Then $\overline{f}_*=e^{\varphi}f_*T$ and $\langle \overline{f}_*X\,,\,\overline{f}_*Y\rangle=e^{2\varphi}\langle X\,,\,Y\rangle$. So \overline{f} is a G-deformation of f.

REMARK 1.11. As an immediate consequence of (1.6), we see that φ is constant along M^n if and only if T is a parallel tensor field with respect to the metric $\langle \ , \ \rangle$. When this occurs, f and \overline{f} induce the same metric on M^n , up to a constant factor. Thus, in this case the problem considered here is equivalent to considering isometric immersions f and \overline{f} with the same Gauss map. This was done by Dajczer and Gromoll in $[\mathbf{D\&G}]$, where the orthogonal tensor field (1.2) becomes $T = f_*^{-1}P\overline{f}_*$, is parallel and satisfies (1.7).

2. Conformal deformations of surfaces preserving the Gauss map. In this section we study conformal surfaces in \mathbb{R}^N that are G^* -deformable. In this case, the above tensor field T must satisfy the additional condition $\det T = -1$ on M^2 . We also obtain a result for surfaces with constant mean curvature in the euclidean sphere S^3 . We begin with a uniqueness result.

THEOREM 2.1. Let $f: M^2 \to \mathbb{R}^N$ be a conformal immersion which is not totally umbilic. If there exists a G^* -deformation \overline{f} , then \overline{f} is unique up to homothety and translation in \mathbb{R}^N .

Proof. Let \overline{M}^2 denote M^2 with the opposite orientation. Denote the Gauss maps of $f: M^2 \to \mathbb{R}^N$ and $\overline{f}: \overline{M}^2 \to \mathbb{R}^N$ by F and \overline{F} , respectively. Then $F = \overline{F}$ as maps of M^2 (without orientation) into $G_{2,N}^*$. Now apply Theorem 1.1 of [H&O-1] and the basic uniqueness result in [H&O-2].

Using some results of [We-1] and [We-2] we prove the following two theorems.

THEOREM 2.2. Let $f: M^2 \to \mathbb{R}^4$ be a G^* -deformable conformal immersion. Then the normal bundle of f is flat.

Proof. We may assume the Gauss map $F: M^2 \to G_{2,4}^*$ is an immersion since the curvature of the normal bundle is zero anywhere F fails to be regular. Then as in the proof of the previous theorem $F: M^2 \to G_{2,4}^*$ and $\overline{F}: \overline{M}^2 \to G_{2,4}^*$ are equal. Using Corollary 3 on p. 464 of [We-2], and the notation there, the existence of $f: M^2 \to \mathbb{R}^4$ implies

$$\varepsilon_1(g) + \rho_1(g) = \varepsilon_2(g) + \rho_2(g);$$

from the existence of $\overline{f}: \overline{M}^2 \to \mathbb{R}^4$, it follows that

$$\varepsilon_1(g) - \rho_1(g) = \varepsilon_2(g) - \rho_2(g)$$
,

where g is the metric induced on M^2 by f. Thus $\varepsilon_1(g) = \varepsilon_2(g)$ and by Corollary 2 on p. 464 of [We-2] it follows that the normal bundle is flat.

THEOREM 2.3. Let $f: M^2 \to \mathbb{R}^N$ with $N \ge 5$ be a conformal immersion. If there exists a point of M^2 which is not an inflection point of f, then f is not G^* -deformable.

Proof. This follows immediately from Proposition 5 of [We-1] and the observation that if \overline{f} existed then as above $f: M^2 \to \mathbb{R}^N$ and $\overline{f}: \overline{M}^2 \to \mathbb{R}^N$ would have the same Gauss map.

The main result of this section is the following.

Theorem 2.4. Let $f: M^2 \to \mathbb{R}^3$ be a conformal immersion without umbilic points and let ω and ω be unit principal vector fields of f, with eigenvalues λ and μ respectively.

(i) If f is G^* -deformable, then

$$(2.5) \qquad (\lambda - \mu)(\nu(\omega(\lambda)) + \omega(\nu(\mu))) + \nu(\mu)\omega(\mu) - \nu(\lambda)\omega(\lambda) = 0.$$

(ii) If M^2 is simply connected and (2.5) is satisfied, then f is G^* -deformable.

Proof. Let p be any point M^2 and ξ be a unit normal field defined on a neighborhood of p. Since f has no umbilic points, there exist differentiable functions λ and μ , and orthonormal tangent fields ω and ω , defined on a neighborhood of p, such that

$$(2.6) A_{\xi \nu} = \lambda_{\nu}, A_{\xi w} = \mu_{w}.$$

From Codazzi equation

$$\nabla_{\nu}(\mu\omega) - A_{\xi}\nabla_{\nu}\omega = \nabla_{\omega}(\lambda\nu) - A_{\xi}\nabla_{\omega}\omega$$

we get

(2.7)
$$\nu(\mu) = (\lambda - \mu) \langle \nabla_{\omega} \nu, \omega \rangle, \quad \omega(\lambda) = (\mu - \lambda) \langle \nabla_{\nu} \omega, \nu \rangle.$$

Let us suppose that f is G^* -deformable. Then there exist a differentiable function $\varphi \colon M^2 \to \mathbb{R}$ and an orthogonal tensor field T with det T=-1, satisfying (1.6) and (1.7). Let ω_1 and ω_1 be orthonormal tangent fields on a neighborhood of p such that $T\omega_1=\omega_1$ and $T\omega_1=-\omega_1$. Then by (1.7) we have

$$A_{\varepsilon} \sigma_1 = A_{\varepsilon} T^{-1} \sigma_1 = T A_{\varepsilon} \sigma_1.$$

Thus $A_{\xi} \omega_1$ is parallel to ω_1 . So ω_1 and ω_1 are principal directions, and this determines T up to signal. From now on we will suppose that $T\omega = \omega$ and $T\omega = -\omega$. Now (1.6) is equivalent to

(2.8)
$$\omega(\varphi) = -2\langle \nabla_{\omega}\omega, \omega \rangle, \quad \omega(\varphi) = -2\langle \nabla_{\omega}\omega, \omega \rangle.$$

From (2.7) and (2.8) we have

(2.9)
$$\omega(\varphi) = -\frac{2\omega(\mu)}{\lambda - \mu}, \quad \omega(\varphi) = \frac{2\omega(\lambda)}{\lambda - \mu}.$$

By (2.8) we get

$$[\nu, \omega](\varphi) = (\nabla_{\nu}\omega)(\varphi) - (\nabla_{\omega}\nu)(\varphi)$$
$$= \langle \nabla_{\nu}\omega, \nu \rangle \nu(\varphi) - \langle \nabla_{\omega}\nu, \omega \rangle \omega(\varphi)$$
$$= 0.$$

Thus we must have

$$\omega(\omega(\varphi)) - \omega(\omega(\varphi)) = 0$$

or, using (2.9),

(2.10)
$$\omega\left(\frac{\omega(\lambda)}{\lambda-\mu}\right) + \omega\left(\frac{\omega(\mu)}{\lambda-\mu}\right) = 0,$$

which is equivalent to (2.5). Note that equation (2.5) is invariant by change of sign of the vector fields ξ , α and ω . Thus it is valid everywhere on M^2 .

Suppose now that (2.5) is satisfied on M^2 . We define the tangent vector field

$$\delta = -2\langle \nabla_{\omega} v, \omega \rangle v - 2\langle \nabla_{\nu} \omega, \nu \rangle \omega$$

and observe that δ does not depend on the unit vector fields ξ , α and α satisfying (2.6). Now we define in M^2 the 1-form γ given by

$$(2.11) \gamma(X) = \langle \delta, X \rangle.$$

Using (2.7) we compute

$$\begin{split} d\gamma(\nu, \, \omega) &= \nu(\gamma(\omega)) - \omega(\gamma(\nu)) - \gamma(\nabla_{\nu}\omega - \nabla_{\omega}\nu) \\ &= \frac{2}{\lambda - \mu}(\nu(\omega(\lambda)) + \omega(\nu(\mu))) \\ &+ \frac{2}{(\lambda - \mu)^2}(\nu(\mu)\omega(\mu) - \nu(\lambda)\omega(\lambda)). \end{split}$$

By (2.5) the 1-form γ is closed. Since M^2 is simply connected, there exists $\varphi: M^2 \to \mathbb{R}$ such that $\nabla \varphi = \delta$, that is,

(2.12)
$$\nu(\varphi) = -2\langle \nabla_{\omega} \nu, \omega \rangle, \quad \omega(\varphi) = -2\langle \nabla_{\nu} \omega, \nu \rangle.$$

We define the tensor field T by $T_{\omega} = \omega$ and $T_{\omega} = -\omega$. Then T is orthogonal, $\det T = -1$ and (1.7) is satisfied. From (2.12) it is easy to show that (1.6) is satisfied. By Proposition 1.5, f is G^* -deformable.

The next result is needed for the proof of some of the corollaries to Theorem 2.4.

PROPOSITION 2.13. If (x, y) are principal coordinates on an open set $U \subset M^2$, then on U (2.5) is equivalent to

(2.14)
$$\left(\frac{(\lambda + \mu)_x}{\lambda - \mu}\right)_v + \left(\frac{(\lambda + \mu)_y}{\lambda - \mu}\right)_x = 0.$$

Proof. Let E and G be positive functions such that

(2.15)
$$\frac{\partial}{\partial x} = E \omega \quad \text{and} \quad \frac{\partial}{\partial x} = G \omega.$$

Since $\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right] = 0$ we obtain

$$E_{\nu}(G) - EG\langle \nabla_{\omega} \nu, \omega \rangle = 0,$$

$$-G_{\omega}(E) + EG\langle \nabla_{\omega} \omega, \nu \rangle = 0,$$

and then by (2.7) we have

(2.16)
$$G_x = \frac{G\mu_x}{\lambda - \mu}, \quad E_y = -\frac{E\lambda_y}{\lambda - \mu}.$$

From (2.15) and (2.16) it follows that

$$\omega(\omega(\mu)) = \frac{\mu_{xy}}{EG} + \frac{\mu_x \lambda_y}{(\lambda - \mu)EG},$$

$$\omega(\omega(\lambda)) = \frac{\lambda_{xy}}{EG} - \frac{\mu_x \lambda_y}{(\lambda - \mu)EG},$$

and then (2.5) and (2.14) are equivalent.

In the next two corollaries, we will consider f as the inclusion map of an open subset of M^2 in \mathbb{R}^3 .

COROLLARY 2.17. Let M^2 be a rotation surface which does not meet its axis of symmetry. Then f is G^* -deformable. If M^2 is not totally umbilic then \overline{f} is unique up to homothety and translation; also, $\overline{f}(M)$ is again a rotation surface. If M^2 is part of a sphere and $\overline{f}(M)$ is a rotation surface, then $\overline{f}(M)$ is part of a catenoid.

Proof. We take on $f(M^2)$ the parametrization $\phi:(0, 2\pi)\times I\to\mathbb{R}^3$ given by

$$\phi(x, y) = (\alpha(y)\cos x, \alpha(y)\sin x, \beta(y)),$$

where $(\alpha(y), \beta(y))$ is a plane curve defined on an open interval $I \subset \mathbb{R}$ and satisfying $\alpha(y) \neq 0$ for any $y \in I$.

Now define $\varphi: M^2 \to \mathbb{R}$ by $e^{\varphi} = 1/\alpha^2(y)$. One can immediately verify that

(2.18)
$$\overline{\phi}(x, y) = \left(\frac{1}{\alpha(y)}\cos x, \frac{1}{\alpha(y)}\sin x, \overline{\beta}(y)\right),$$

where

$$\overline{\beta}(y) = \int_{y_0}^{y} \frac{\beta'(t)}{\alpha^2(y)} dt,$$

satisfy $\overline{\phi}_x = e^{\varphi}\phi_x$ and $\overline{\phi}_y = -e^{\varphi(y)}\phi_y$. Thus \overline{f} defined by $\overline{f}(\phi(x,y)) = \overline{\phi}(x,y)$ is a G^* -deformation. Now, if M^2 is part of a sphere, then up to homothety and translation f is the normal Gauss map of f into the unit sphere S^2 . So $\overline{f}(M^2)$ must be a minimal surface, hence it is part of a catenoid.

A surface in \mathbb{R}^3 that is the envelope of a family of spheres tangent to three fixed spheres in \mathbb{R}^3 is called a cyclid of Dupin. These surfaces can be characterized by the fact that they are the surfaces without umbilic points whose principal curvatures are constant along the respective curvature lines (see [C&R], pp. 151-166).

COROLLARY 2.19. Let M^2 be a cyclid of Dupin and U an open simply connected subset of M^2 . Then f restricted to U is G^* -deformable.

Proof. If (x, y) are principal coordinates, then the respective principal curvatures λ and μ satisfy $\lambda_x = \mu_y = 0$. Thus (2.14) is verified and we can apply Theorem 2.4.

REMARK 2.20. In the preceding corollary, we have by (2.9),

$$\varphi = \log(c(\lambda - \mu)^2)$$

for some positive constant $c \in \mathbb{R}$. By (1.8), the principal curvatures of \overline{f} are

$$\overline{\lambda} = \frac{c\lambda}{(\lambda - \mu)^2}, \quad \overline{\mu} = \frac{-c\mu}{(\lambda - \mu)^2}.$$

Thus, in general, the new surface $\overline{f}(U)$ is not a cyclid of Dupin.

COROLLARY 2.21. Let $f: M^2 \to \mathbb{R}^3$ be an oriented minimal surface without umbilic points and let $N: M^2 \to S^2 \subset \mathbb{R}^3$ be the normal Gauss map. Then f is G^* -deformable and $\overline{f} = N$ up to homothety and translation.

Proof. Taking principal coordinates (x, y), we have

$$N_x = -\lambda \frac{\partial}{\partial x}, \quad N_y = \lambda \frac{\partial}{\partial y}.$$

Thus the corollary is a consequence of Theorem 2.1.

COROLLARY 2.22. Let $f: M^2 \to \mathbb{R}^3$ be an oriented surface free of umbilic points, with constant mean curvature $H \neq 0$, and let $N: M^2 \to S^2 \subset \mathbb{R}^3$ be the normal Gauss map. Then f is G^* -deformable and \overline{f} is the parallel surface $g = f + \frac{1}{H}N$, up to homothety and translation.

Proof. Taking principal coordinates (x, y), we have

$$g_x = f_x + \frac{1}{H}N_x = \left(1 - \frac{\lambda}{H}\right)f_x = \left(\frac{\mu - \lambda}{\lambda + \mu}\right)f_x$$

and

$$g_y = \left(\frac{\lambda - \mu}{\lambda + \mu}\right) f_y.$$

Thus g is a G^* -deformation of f. We observe that, since

$$N_x = -\lambda f_x = \lambda \left(\frac{\lambda + \mu}{\lambda - \mu}\right) \overline{f}_x$$

and

$$N_y = -\mu f_y = -\mu \left(\frac{\lambda + \mu}{\lambda - \mu}\right) \overline{f}_y$$

one sees that the mean curvature of \overline{f} is also H.

We conclude this work with a result analogous to the preceding corollary, for a constant mean curvature surface in S^3 .

PROPOSITION 2.23. Let $f: M^2 \to S^3$ be an oriented surface free of umbilic points, with constant mean curvature H, and let $N: M^2 \to S^3$ be a vector field normal to f. Then f (seen as a surface in \mathbb{R}^4) is G^* -deformable and \overline{f} is the parallel surface

$$\overline{f} = \frac{1}{(H^2 + 1)^{1/2}} (N + Hf) : M^2 \to S^3,$$

up to homothety and translation.

Proof. It is analogous to the preceding proof.

REMARK 2.24. One can easily check that the above immersion \overline{f} has constant mean curvature in S^3 . When H=0, $-\overline{f}$ is the polar map of the minimal immersion f, as defined by Lawson [La].

REFERENCES

- [C&R] T. E. Cecil, and P. J. Ryan, *Tight and taut immersions of manifolds*, Research Notes in Math., Pitman Adv. Pub. Prog., 1985.
- [D&G] M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Differential Geom., 22 (1985), 13-28.
- [H&O-1] D. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., no. 236, (1980).
- [H&O-2] ____, The Gauss map of surfaces in \mathbb{R}^n , J. Differential Geom., 19 (1982), 733-754.
- [Ku] R. S. Kulkarni, Curvature and metric, Ann. of Math., 91 (1970), 311-333.
- [La] H. B. Lawson, Jr., Complete minimal surfaces in S^3 , Ann. of Math., 92 (1970), 335-374.
- [Ve] E. S. Vergasta, Conformal immersions with the same Gauss map, An. Acad. Brasil Ci., 59 (1987), 145-147.
- [We-1] J. L. Weiner, The Gauss map for surfaces: Part 1-The affine case, Trans. Amer. Math. Soc., 293 (1986), 431-446.
- [We-2] _____, The Gauss map for surfaces: Part 2-The Euclidean case, Trans. Amer. Math. Soc., 293 (1986), 447-466.

Received May 2, 1988 and in revised form August 25, 1991.

Universidade Federal da Bahia CEP 40210, Salvador, Ba, Brazil