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LIE ALGEBRAS OF TYPE D4 OVER NUMBER FIELDS

B. N. ALLISON

In this paper we show how to construct all central simple Lie al-
gebras of type D4 over an algebraic number field. The construc-
tion that we use is a special case of a modified version of a con-
struction due to G. B. Seligman. The starting point for the con-
struction is an 8-dimensional nonassociative algebra with involution
C D ( ^ , μ) that is obtained by the Cayley-Dickson doubling process
from a 4-dimensional separable commutative associative algebra 38
and a nonzero scalar μ. The algebra C D ( ^ , μ) is used as the
coefficient algebra for a Lie algebra Jf(CΌ(&, μ), γ) that can be
roughly described as the Lie algebra of 3 x 3-skew hermitian matrices
with entries from CD{β, μ) relative to the involution X —• y~xXιy,
where y is an invertible diagonal matrix with scalar entries. We show
that any Lie algebra of type D4 over a number field can be constructed
as c/fCDfJ' , μ), γ) for some choice of 38 , μ and γ . We also give
isomorphism conditions for two Lie algebras constructed in this way.

As background, we note that the problem of constructing all central
simple Lie algebras of a given type over a field of characteristic 0
has previously been solved for types An (n > 1), Bn (n > 2), Cn

(n > 3), Dn (n > 5), G2 and F4 by W. Landherr, N. Jacobson,
and M. L. Tomber ([J5, Chapter X], [F&F, Section 7]). Over number
fields, this problem has been solved for types E6 , EΊ and E% by J. C.
Ferrar using the 2nd Lie algebra construction of J. Tits and the Galois
cohomological results of M. Kneser, G. Harder and V. I. Cernousov
([Fl], [F2], [F3]).

Our main tool in this paper will be an associative algebra invariant
if (o^7), which we call the Allen invariant, that can be associated to
any Lie algebra 3* of type D4 over a field of characteristic 0. !?(<=$?)
was introduced for special D^s by Jacobson [J2] and in general by
H. P. Allen [AM]. Sections 2-6 of this paper are devoted to the
study of the invariant <£{&). The main result obtained in these
sections is a characterization, using the corestriction of algebras, of the
associative algebras that can arise as Allen invariants of Lie algebras
of type Z>4 over a number field. In §7 (and in an appendix—§12),
we use the cohomological results of Harder and Kneser to prove a
general isomorphism theorem for Lie algebras of type D4 over number
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fields. Section 8 then contains the proof of the main results mentioned
previously regarding the construction Jf(CΌ(^, μ), γ) over number
fields. In §§9 and 10, we apply our results to describe anisotropic and
Jordan Z)4's over number fields. In §9 we also obtain a local global
principle for strongly isotropic D4's. Finally, in §11, we describe how
to use the construction 3£{QX)(βί 9 μ), γ) to obtain all D4's with a
given Allen invariant I? over a number field Φ. There are 2k such
ZVs up to isomorphism, where k is the number of real primes p so
that ^ is a full matrix algebra over its centre.

We wish to thank T. Tamagawa for helpful suggestions regarding
the Allen invariant and A. Weiss for providing a key step in the proof
of Lemma 12.6.

ASSUMPTIONS AND NOTATION. Throughout the paper we assume
that Φ is a field of characteristic zero. With the exception of field
extensions, all algebras will be assumed to be finite dimensional. Also,
with the exception of Lie algebras, all algebras are assumed to be unital
(and hence subalgebra means subalgebra containing 1). If Sf is any
algebra we denote by 8?^ := $? Θ Θ %? the algebra direct sum
of n copies of Sf and by Mn{βf) the algebra of n x n-matrices
with entries from %?. If 3? is an associative algebra over Φ, then
t%> and n$? (or t%>/φ and ftr/φ) will denote respectively the generic
trace and norm on 8? [J3, Chapter VI]. We use the notation Φ for a
fixed algebraic closure of Φ and we let

G := Gal(Φ/Φ)

be the Galois group of Φ/Φ regarded as a topological group using the
usual Krull topology. If s e G and a e Φ, we often writeJa := sa.
Also, if P/Φ is any field extension, we use the notation P (or JP~)
for an algebraic closure of P, and we use Px for the multiplicative
group of P. Finally, if P/Φ is an extension and ^ is an algebra
over Φ, Sfp will denote the P-algebra P <g>φ 3?.

1. The Lie algebra J f ( C D ( ^ , μ), γ). Throughout this section,
we assume that 3S is a 4-dimensional separable commutative as-
sociative algebra over Φ (and so 3§~ = φ( 4)), μ φ 0 e Φ, and
γ = diag(7i, 72 > Ϊ3) is a 3 x 3-diagonal matrix with 7i, 72 ? 73 Φ'
0 E Φ. In this section, we recall the definition of the Lie algebra
J ί C D ^ , μ), γ) constructed from 38, μ and γ. This construc-
tion is a modified version [A3] of a special case of a construction due
to Seligman [Sel2, §7.3].
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We first look at the nonassociative algebra C D ( ^ , μ) which is
constructed from 33 and μ by the Cayley-Dickson process introduced
in [A&F1]. Let t& be the generic trace on 3%. (So if we write 38
as the direct sum of field extensions of Φ, t& is the direct sum
of the corresponding field extension traces.) Define θ: & -> 3S by
bθ := -b + \t&&). Now put

where s§3§ denotes another copy of the vector space 3S, and define
a product and involution on sf by:

Ψι +sob2)(b3 + sob4) = bxb3 + μ(b2b
θ

4)
θ + so(bfb4 + (bθ

2b
θ

3)
θ)

and

b\ + s0b2 = bx-
Then, (J/ , -) is an 8-dimensional algebra with involution which we
denote by C D ( ^ , μ). We call C D ( ^ , μ) the quartic Cayley algebra
determined by 3$ and μ.

We can now construct the Lie algebra Jf(CD(&, μ), γ) from
{sf , -) = C D ( ^ , μ) and y. For x, >; e ^ , define /) x y G End J /
by

ΰ . , ^ := j[[*, y] + [ ,̂ y], 1̂ + [z, y, x] - [z, x, y],
where [x, y] := xy-yx and [x, y, z] := (xy)z-x(yz). Then, DX j > ;

is a derivation of ( J/ , -) for x, y e J / and

Inder(j/ , -) := span{Z)Xjj; X J G J / }

is a 2-dimensional abelian Lie algebra under the commutator product
[ , ] ([A3, Theorem 7.2]). We next put

where Jγ is the involution on M$($/) defined by Jγ(X) = y~xX y

and tr(ΛΓ) = Σ)Li χu f o r x = (χυ) G M^{sf). Finally, we put

3?{CD{β,μ),γ) := Indeψ/ , -) Θ ^ ,

and define a product [ , ] on JΓ(CD(^ , μ),γ) by

(1.1) [ ( Z ) , X ) , ( £ , 7 ) ] : = ( [ Z ) , £ ] + Δ Z 5 r , i ) y - £ Z + [X,7]o).
Here if X = (xu), Y = {y^) e 3d and D e Inder(j/, - ) , we are
using the notation

Δx, y := ^ Σ Dχu -yj.* D X = (Dxv)' a n d

[X, Y]o :=XY-YX-]- tτ(XY - YX)I.
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Then, under the product (1.1), ^ ( C D ( ^ , μ), γ) is a central sim-
ple Lie algebra of type D4 over Φ [A3, Theorem 7.2]. That is,
3£{CE){β, μ), γ)~ is the simple Lie algebra of type D4 over Φ .

Our main goal in this paper is to show that if Φ is a number field
then any Lie algebra of type D4 over Φ is obtained from the con-
struction just described.

2. The Lie algebra 3? and its automorphisms. In preparation for
our investigation of Lie algebras of type D4 over Φ, we need to recall
in this section some facts due to Jacobson about automorphisms of
the simple Lie algebra of type D4 over Φ . We will use the specific
realization S* of that Lie algebra that was introduced by Jacobson in

Let ( ^ , -) be the Cayley algebra over Φ with its canonical involu-

tion. Let h and t be the norm and trace on ^ respectively. Define

a Φ-trilinear form ( , ) on i? by

(x,y,z):=±t(x(yz)).

Then,

(x, y, z) = (z, x, y) = {y, x, z) for x, y, z e # .

Denote by o(h) the orthogonal Lie algebra of h consisting of all skew-

symmetric elements of End-(^) relative to h. Put

^ : = {{Lx, L 2 , L3) G o{h)W : (LιX,y, z) + (x, L2y, z)

+{x, y,L3z) = 0 f o r x , y, z

Then, 3* is a simple Lie algebra of type D4 over Φ, and the projection
mappings {L\, L2, L3) —• L/-, i = 1, 2, 3^/v^ /Λ̂  /Λr^ distinct 8-
dimensional irreducible representations of 3* [L2, Lemmas 1 and 2].

Next put _ _

g7 := (End- #)( 3) = ̂  ® r 2 ® <T3,

where

#! = {(X, 0, 0) : X G End-( f ) } , f2 = {(0, X, 0) : X G E n d $ ( f ) }

and
(^)},

and so ̂  = End^ίf7) = M 8 (Φ), / = 1 , 2 , 3 . We then have ^ c f ,

and in fact ^ is the Φ-associative algebra generated by £?. The
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centre Z of % is

Z = ΦE\ © ΦE2 0 Φi?3 ,

where Ex = (1, 0, 0), £ 2 = (0, 1, 0) and E3 = (0, 0, 1). Let /
be the involution of & defined by J{X\, X2, X3) := (X2*, X2, X3),
where X* denotes the adjoint of X relative to h . Thus,

J(L) = -L

for LeJϊ?. Also, 7 fixes the element^of Z.

The semi-linear automorphisms of S* have the following descrip-
tion which follows easily from Jacobson's description in [J2].

PROPOSITION 2.1. Let φ be an s-semilinear automorphism of i ? ,
where s G G. Then there exists a permutation p G S3 and a triple
U = (Uι, U2, C/3) o/ s-semilinear vector space automorphisms of W
so that

(2 2) h(U'X) = sh(x) for J C G ^ 7 Z = 1 2 3

(2.3)

x, z) *//? Z5 oαα

and

(2.4) φ(LuL2,L3) = (UιLplU-1

for (L\, L 2 , L3) G £f. Moreover, p is uniquely determined and U\,
C/2, t/3 αr^ uniquely determined up to multiplication by three scalars

from {-1, 1} whose product is 1.

Proof. In [J2], Jacobson works with the split Liealgebra of type D4
over a finite Galois extension of Φ rather than 3?. The same argu-
ments work here. By [J2, p. 139] there exists s-semilinear automor-
phisms Tx, T2, Γ3 of f7 so that n(TiX) = μi sn(x), (Txx, Γ 2 j , Γ3z)
= z/ 5 (x, ^ , z), and

where τ = ~, j = 0 or 1 according as p is even or odd, μ / ? z/ G
Φ x , /? is uniquely determined and Γi, Γ 2, Γ3 are determined up to
multiplication by scalars in Φ x . Replacing 7} by a multiple, we can
assume μ, = 1. But by [J2, Lemma 3] and the argument on p. 139
of [J2], it follows that (τTxτ)(xy) = iy~ι(T2x)(T3y) for JC, y G # .
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Taking h of both sides yields v1 — 1. Thus, replacing Γ3 by - Γ 3

if necessary, we can assume v — 1. Finally, put ί// = Γ/τ 7 , / =
1 , 2 , 3 . D

REMARK 2.5. (a) We denote the permutation p in Proposition 2.1
by p(φ) and call it the permutation in S^ determined by φ.

(b) Conversely, if p e S3 and U = (ί/i, {72 > E/3) is a triple of s-
semilinear vector space automorphisms of W so that (2.2) and (2.3)
hold, then (2.4) defines an ^-semilinear automorphism of i ? that we
call the semilinear automorphism determined by the pair (p, U).

COROLLARY 2.6. ΓAe connected component of the algebraic group

Aut(i?) w g/vefl δy

^ ) 0 = {φ e J

Proof. Let A be the right-hand side. Then A is the image of an
algebraic group under a morphism of algebraic groups and hence A
is closed in Aut(J?). Also, /?((/>£) = P(OP(Φ) and so 0 —• p(φ)~ι

defines a group homomorphism of Aut(Jϊ?) into S3 with kernel A.
This map is clearly onto and hence A has index 6 in Aut(J?). Thus,
A u t ( ^ ) 0 c A [B, p. 86]. But A u t ( ^ ) 0 has index 6 in Aut( ^ ) [J5,
Remark on p. 281 and Exercise 9 on p. 287] and so we have the desired
equality. D

3. The Allen invariant. In this section, we suppose that 5f is a Lie
algebra of type D4 over Φ. The basic tool used in the study of &
will be its Allen invariant <^(J?). We recall here the definition and
some properties of I?(J?) due to Allen [AM], and then prove that
the corestriction of &(Jϊ?) over its centre is trivial.

We recall first the notion of a Φ-form of an algebra over Φ. If Slf
is an algebra over Φ, a Φ-form of Sf is a Φ-subalgebra 3? of Sf so
that the natural map Sf^ —• Sf is a Φ-algebra isomorphism. In that

case, we usually identify <̂ ~ and Sf. Then, if P/Φ is a subextension

of Φ/Φ, J p isa P-form of 2?. Also Endφ(Jf) naturally identifies

as a Φ-form of End-(i f) .

Now since S? is a Lie algebra of type D4 over Φ, we have <5~ =

Sf . Hence, we can and do identify ^ as a Φ-form of Sf. Then,

We define the Allen invariant (o(<S?) of 5f to be the associative Φ-

algebra generated by & in # . g 7 ^ ) is a Φ-form of # . (See [Alll,
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4

p. 255] or the proof of Proposition 3.3 below.) Thus, %{&) is a 192-
dimensional separable associative algebra over Φ. It follows easily
from Proposition 2.1 (for automorphisms) that the isomorphism class
of %>(&) is independent of our identification of ^ as a Φ-form of

We denote by Z(&) the centre of &{&). Since %{£?) is a
Φ-form of f , Z{&) is a Φ-form of Z. Thus, 3Γ(&) is a 3-
dimensional separable commutative associative algebra.

Let / be the restriction of J to %(3). Then, / is an involution
of %{3) that fixes the elements of Z{&). Thus, each of the simple
summands of £?(&) has exponent 1 or 2 in the Brauer group over its
centre. (In a separable associative algebra, the simple summands are
just the simple ideals.)

To prove the next property of &(Jϊ?), we will need the notion of
A-type [J2].

Let a = {(Xs)seG be the Galois precocycle determined by the Φ-
form 3 of 3 . Thus, by definition, for s e G, as is the unique
s-semilinear automorphism of 3? that fixes the elements of S*. Let
ps := p(as) be the permutation in S3 determined by as. Since asί —
asat, it follows that

(3.1) Pst=PtPs for s,teG.

Thus, {ps: s G G} is a subgroup of S3 , We say that 3 has type D41,
D4ιι, Z>4πi or D4V1 according as this subgroup has order 1, 2, 3 or (K
The Z>4-type of Jz? is independent of our identification of 3 in i ?
(by Proposition 2.1). Put

and Γ :=

where Fix(iί) := {a e Φ : ha = a for all h e H}. Then, H is a
closed normal subgroup of G of index 1, 2, 3 or 6 and Γ/Φ is a Galois
extension of degree 1, 2, 3 or 6 according to Zλrtype. Γ/Φ is called
the canonical D/^-extension of Φ. It is the smallest subextension of
Φ/Φ so that 3γ has type D4ι [AM, p. 256].

Finally, we need the notion of corestriction of associative algebras.
If P/Φ is a finite extension and 8f is a central simple associative
algebra over P , then the corestriction cPjφ(βf) oϊ Sf is a central
simple associative algebra over Φ of dimension (dim/> Jf ) [ i > : φ ] . The
reader is referred to [R] or [Tig] for the definition and main proper-
ties of this construction. The property that we will use in the next
proposition is the following. The assignment 8? —• Cp/φ(8?) induces
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Q

a homomorphism Bv(P) P/Φ> Br(Φ) of Brauer groups so that if we

identify P/Φ in Φ/Φ and set K := Gal(Φ/,P) then the diagram

Br(P) —^—> H2(K,ΦX)

(3.2)

Br(Φ) —^-> / / 2 ( G , Φ X )

commutes. Here the horizontal maps are the usual isomorphisms
[Ser2, p. 159], and COΪQ/K is the corestriction map of group coho-
mology [Serl, p. I—11]. This property is Theorem 11 of [R]. We note
also that if P = Φ, then cP/φ(^) = 2?.

More generally if Sf is a separable algebra over Φ with centre Z,
we may write 8? — %\ © © Sfm and S — K\ © © Am , where ^
is simple over Φ with centre Λz, / = 1, . . . , m. We then define

We call c^jφiβf) the corestriction of Sf over its centre.
The following proposition was proved by Jacobson [J2, Theorem

4] for type Zλu and by Tamagawa [Ta, Theorem 2] for type D 4 Π .
For types D4iπ and Zλm, the result was noticed first by Tamagawa
(unpublished). The proposition is now a consequence of more general
results on representations of algebraic groups due to Tits [T2, Corol-
laire 3.5 and Proposition 5.1]. Since we will need some of the notation
and arguments in the rest of the paper, we present here for the conve-
nience of the reader an elementary proof that generalizes Jacobson's
argument in [J2].

PROPOSITION 3.3. Suppose S* is a Lie algebra of type D4 over Φ
with Allen invariant %{<Sf). Then,

where 3?(£f} is the centre of If (Jz?) and ~ denotes similarity of
central simple algebras.

Proof. For s e G, there exists ps e S3 and a triple U(s) =
(U\(s), U2(s), U$(s)) of 5-semilinear vector space automorphisms of
W so that

(3.4) n(Ui(s)x)=sh(x) f o r x e f , ι = l , 2 , 3 ,
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(3.5) (Uι(s)x,U2(s)y,U3(s)z)
s(x, y, z) if ps is even
s{y,x,z) if/> sisodd

and

(3.6) as(LltL2,L3)

= (Uι(s)Lp lUiis)-1, U2(s)Lp2U2(s)-1, U3(s)L

for (L\, L2, L3) £ Sf. ps is uniquely determined and U\ (s),
U3(s) are uniquely determined up to multiplication by three scalars

from {-1, 1} whose product is 1.

Let ^ be a Φ-form of the algebra ^ . Since Φlf (J?) = I? and

ΦEndφ(^)(3) = W, we may choose a finite Galois extension P/Φ so

that Γ C P C Φ and

(3.7) P^(£?) = EndP(gp) ( 3 ) .

Let K := Gal(Φ/P). Then we can assume that the Uj(s)9s were chosen
so that

(3.8) C/f (l) = l , i = l , 2 , 3 ,

and

(3.9) s9teG9s'ιteK=> Ufa)'1 Ui{t)\% = 1, ι = 1, 2, 3.

Then, enlarging P if necessary, we may assume that

(3.10) Ui(s)%p C ? P ,

for seG, i= 1,2, 3.

Next from the remark made above about the uniqueness of the
Ui(s)% we have

(3.11) Ui(s)UPti(t) = p®tUi(st)9 ι = l , 2 , 3 , w h e r e

/ *> 1 Λ\ (ί) 11 1 Λ "5 A ^ Ĵ (1) Λ ( 2 ) Λ ( 3 ) \

\5ΛL) pς t = ail 9 / = i , z , 3 , a n d ps tps tps t = i

for 5, r G G. But then since Ui{(rs)t) = ί//(r(sί)), we get using (3.1)
and (3.11) that

ΠΠΪ /i^'0//1') - / ι ( / ) / ι ( / ) ι - 1 2 1

for r , J , ί G G. Finally, using (3.8)—(3.13), one can show without

difficulty that p^t is constant on cosets of K in G, and hence
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map (s, t) -+ Pς'j of G x G into Φ x is continuous, i = 1 , 2 , 3 .

(Here as usual Φ x has the discrete topology.)

For seG, define βs: f -> f by

Then, by (3.1) and (3.11), βsL= βsβt, s,t € G. Thus, by (3.8),
(3.9^and [B, AG.14.2], {X e ^ : βsX = X for s e G} is a Φ-form

of ^ . But this Φ-form contains g{&) and <&%{&) = f . Thus,

W{Sf) = {X e^ : βsX = X for seG} and ^ ( ^ ) is a Φ-form of

&. Hence,

(3.14) r ( ^ ) = {(Xj, X2, Xi) e f : t / K ^ ^ Γ 1

= X,̂  for s eG,i= 1, 2, 3}.

We now consider cases. Suppose first that ^f has type D41. So
H = G and Γ = Φ. Then, ps = (1) for 5 e G, and so, by (3.14),

^(^) = g[ φ &2 Θ #3 ,

where g := f ( ^ ) n ^ is a Φ-form of I j , / = 1, 2, 3 . Thus, ^ is a
64-dimensional central simple algebra over Φ , i=l,2,3. Also, by
(3.14), the projection maps for the decomposition ΐ? := §[ Θ §2 ® ̂ 3,
restrict to isomorphisms

Wi^{Xe End^ίf 7 ): Ui(s)XUi(s)-1 = X for s e G}, / = 1, 2, 3.

By (3.13), (ps t)s,teG i s a continuous 2-cocycle in Φ x which there-

fore determines an element pM of H2(G, Φ x ) . Also, for s, t €
G, Ui{s)Ui{t) = p^tUj(st). Hence, [g ] maps to />(') under the
isomorphism BrΦ -H- i / 2 ( G , Φ x ) , / = 1,2, 3. Thus, by (3.12),

^Ί ®φ ι§2 ®Φ ^3 ~ Φ
Suppose next that J ? has type D411. So (G : H) = 2 and Γ is a

quadratic extension of Φ. We may assume that pt = (23) for some
tiSG. Then, by (3.14), we have

where & =β(&) n fj and ^ = «T(^) n (#2 © %) are Φ-forms
of §Ί and ^2 θ ^3 respectively. The projection maps onto the first
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and second factors in the decomposition % := %\ ® %2 © 1% restrict to
isomorphisms

f = { I E End~(lh : UΛsλXUΛsY1 = X for ^ e G} and

^ = { l € End~(#) : C/2(5)XC/2(^)"1 = X for s e H)

respectively. Thus, & is a 64-dimensional central simple algebra over
Φ and & is a 128-dimensional simple algebra over Φ with centre
Γ. As in the previous case, (p^t)s,teG determines an element pW
of H2(G,ΦX) which is the image of \&\ under the isomorphism
Br(Φ) —• H2(G, Φ x ) . Similarly, (ρfj)s,teH determines an element
pW of H2(H, Φ x ) which is the image of [&] under the isomorphism
Br(Γ)-># 2 ( i/ ,Φ x ) .

Now let B := Mg(Φx) in the notation of [Serl, p. 1-12]. Thus,
by definition, B is the G-module consisting of all continuous maps
a*: G -* Φ x so that tf*(/*s) = Λβ*(.s) for Λ G i ί , ^ e G. The en-
action on .δ is given by (sa*)(t) = a*(ts). If (a, )5) e Φx x Φ x , then
there is a unique element a* of 5 so that α*(l) = α and a*(t\) = β .
Everŷ  element of 5 is of this form and so we have an identification
5 = φ x x φ x . If a, β = ±1 and h e H, the G-action on B satisfies

(3.15) h(a, β) = (α, 0) and Ί(α, β) = (β, a).

Now by [Serl, p. 1-12 to 1-13], the projection map 5 —• Φ x onto

the first factor induces an isomorphism H2(G, B) —U H2(H, Φ x ) ,

while the map 5 —• Φ x defined by {a, β) —> α( r i jS) induces a

homomorphism H2(G,B) -^-> H2{G,ΦX). Then, by definition,

Define π M := (/?J^, />$) G 5 f o r 5 , ί E ( ? . Then, it follows
from (3.13) and (3.15) that (πsj)sjeG is a continuous 2-cocycle in
5 which therefore determines an element π of H2{G,B). But,
^ ( π ) = p(2) and so corG/H(pW) — φ2(π) is represented by the 2-

cocycle (pψtpψt)sΛ^G. Hence, by (3.2) and (3.12), ^ ® φ c Γ / φ ( ^ ) -
Φ .

Finally, suppose Ji? has type Z>4Πi or Z)4 Vi. Choose SQEG so that
/?yo = (123). If £? has type Z>4vi, choose t\ e G so that /^ = (23).
Put F — H in type Z>4m and F = (H, t\) in type Z>4vi. Then, F
is a subgroup of G of index 3 with coset representatives 1, So, s$ .
Put Λ = Fix(.F). Then, [Λ : Φ] = 3. In fact Λ = Γ in the case
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of type i?4iii, while Λ is one of the cubic subfields of Γ in the case
of type Z>4vi. Next the first projection map for the decomposition
g7 := |fj © <§2 θ i% restricts to an isomorphism

= {X e Endφ(f) : C/1(5)XC/i(5)-1 = X for 5 € F}.

Thus, ^ ( i ? ) is a 192-dimensional simple algebra with centre Λ.
Moreover, (pi\\)s,teF determines an element pW of H2(F,ΦX)
which is the image of [^{^f)] under the isomorphism Br(Λ) —>
H2(F,ΦX).

Let 5 := Mfϊ(Φx). Then, for ( α J j ) G Φ x x Φ x x Φ x , there
is a unique element a* of 5 so that a*(I) = α, α*($o) = j8 and
α*(^o) = 7 This gives an identification ί = φ x x φ x x Φ x , If
a, β, γ = ±1 and / G F , the action of G on ΰ satisfies

' ( a , £ , y) = (a, j8, y), 5 o( a ? ^ ? y ) = (^5 γ9 a)

and, intypeZ) 4 Vi ? ^(α, β, y) = (α, 7, β ) .

Again the projection map B —> Φ x onto the first factor induces

an isomorphism //2(C7, 5) -̂ -> H2(F, Φ x ) , while the map 5 -+

Φ x defined by (α, /?, y) —• α(s° jff)(5o y) induces a homomorphism

772(G, 5) - ^ / / 2 ( σ ? φx) B y definition, corG / / ί = 0 2 o c^"1. But

then πsj := (pl]\, pfj, pf^t)> s> t e G, defines a continuous 2-
cocycle which determines an element π£H2(G, B) such that φ\(n) =
p(χK Thus, corG/F(p({>>) = φι{n) is represented by the 2-cocycle

ί ! W > ? ! . Hence, by (3.2) and (3.12), cA,φ{Z{&))~Φ. Ώ

REMARK 3.16. For convenient later reference, we summarize the
case-by-case information observed so far. (See also [J2], [AM] and
[Ta].) If & has type D4i, then

where ^ , <§2 ? and ^3 are 64-dimensional central simple,

(3.17) [Sχ][g2][S3\ = 1 and [%Ί]2 = [^2]
2 = [^3]

2 = 1 in Br(Φ).

If S> has type D 4 π, then
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where & is 64-dimensional central simple, 9 is 128-dimensional
simple with centre Γ of degree 2 over Φ,

(3.18) [&*][cr/φ{&)] = 1 in Br(Φ), [ i η 2 = 1 in Br(Φ) and
2 = 1 in Br(Γ).

If J ? has type D4m or Awi, then l?( ^ ) is 192-dimensional simple
with centre Λ of degree 3 over Φ,

(3.19) [cA/φ(&(&))] = 1 in Br(Φ) and [^(^f)]2 = 1 in Br(A).

Here A = Γ in the case of type A M I > while A is one of the (isomor-
phic) cubic subfields of Γ in the case of type JD 4 VI .

REMARK 3.20. Suppose & is a Lie algebra of type D4 over Φ.
We call S* orthogonal if 3> is isomorphic to the orthogonal Lie
algebra o(q) of an 8-dimensional nondegenerate quadratic form q.
The following characterization of orthogonal D4's holds:

(3.21) S? is orthogonal <* W{&) has a simple summand

isomorphic to Afg(Φ).

Indeed the implication "=>" follows from the fact that the projec-
tion mappings [L\, L2, L3) —• Lt give all 3-distinct 8-dimensional
irreducible modules for J5?. Conversely, if W{£?) has a simple sum-
mand y that is isomorphic to Af8(Φ), then y = J% n£?(J?) for
some i G {1, 2, 3}, and so the /th projection map ί? —• ^ restricts
to an isomoφhism of & onto ^ ( | ^ , / y ) := {X e J^ : /|/X = - X } ,
where /|< = / | | / . But then S? is orthogonal [Jl, §§6 and 7].

4. The Allen invariant of 3?{CD{β, μ) 9 γ). Suppose in this sec-
tion that 3S, μ, γ are as in §1 and X := X{CD{β, μ),γ). In
this section we recall the results from [A2] and [A3] that we will need
regarding the Allen invariant of 3P and its use in the description of
isotropic IVs.

Quaternion algebras will play a fundamental role in our discussion
here and in the rest of the paper. If Z is a separable commutative
associative algebra over Φ, an algebra 31 over Φ is called a quater-
nion algebra over Z if 31 has centre Z and 3! = (α, β/Z) as
«2"-algebras for some units α, β of Z. Here, as is usual, (α, β/Z)
or ( ^ ) denotes the associative ^-algebra Z\@Z\@Z\@Z\\ that
is the free ^-module with JΓ-basis 1, i, j , ij satisfying the relations
i2 = α l , j 2 = βί, ij = -j i . If we write ^ = Λi θ Θ Λw , where
A/ is a field, then the quaternion algebras over Z are precisely the
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algebras of the form 3f\ @ ®3fm , where 3fi is a quaternion algebra
over Λ/ (in the usual sense), / = 1, . . . , m .

Let /\2& be the second exterior power of 38 . For b G 38, define

iV Λ 2 ^ ^ Λ 2 ^ by Fb(cΛd) = (be) Λd + c A(bd). Let £f be the
associative subalgebra of M 2 ( E n d / \ 2 ^ ) generated by the matrices

[F

o

b F ]9 be^,and [ ° ^ ] . The centre of £ is {[*<>] : i ? e ^ } ,

where 31 := span{F^Fc : 6, c € ^b} and ^ 0 := { ^ ^ : ί#(ft) = 0}
[A3, Proposition 6.7]. We identify 3% with the centre of df by the map
R -> [Q $] ^ *s a 3-dimensional separable commutative associative
algebra and (§ is a quaternion algebra over ^ (see Proposition 4.4
below). ^ is called the cubic resolvent algebra of 3§ , and & is called
the quaternion algebra determined by 33 and μ. These algebras are
important for our purposes because of the following result which is
Theorem 8.10 of [A3]:

P R O P O S I T I O N 4 . 1 . If X = J f ( C D ( ^ ,μ),γ) then %{&) = M4{
and J£{3£) = &, where & is the quaternion algebra determined by
32 and 3? is the cubic resolvent algebra of 3§.

We next describe generators and relations for & and 31. To do
this, we select a generator b$ for 38 with minimum polynomial f(x)
of the form

(4.2)

where βt e Φ and βλφ0. (Such a choice is always possible.) Let

(4.3) h{x) := x 3 + 2β2x
2 + {β\ - 4βo)x - β\ .

(The polynomial —h[—x) is classically called the cubic resolvent of
f(x).) If f(x) has roots λ\, A2, A3, A4 in Φ, then /z(x) has roots
(Ai + A4)

2, (A2 + A4)
2, (A3 + A4)

2 in Φ. In both cases the roots
are necessarily distinct. With this notation, we have the following
description of £ and 3Z which is part of Propositions 6.2 and 6.7 of
[A3].

PROPOSITION 4.4. 31 has a generator v with minimum polynomial
h(x) so that @ =

In the following corollary of Propositions 4.1 and 4.4, we compute
the Z>4-tyρe of X and determine when 3£ is orthogonal (see Remark
3.20). This last determination will be useful later in the description
of anisotropic ZVs over number fields. \ϊ K is a group, we use the
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term K-cubίc (resp. K-quartic) to refer to a degree 3 (resp. degree
4) extension of Φ whose minimum Galois splitting field has Galois
group isomorphic to K.

COROLLARY 4.5. Let JΓ = J f ( C D ( ^ , μ), γ). Then, the follow-
ing table gives the D4-type of 3? and indicates whether or not 3? is
orthogonal for each possible choice of ^ (up to isomorphism):

2>4-type orthogonal

Φ ( 4 ) or E{2) with

E/Φ quadratic

a Z/(2) Θ Z/(2) quartic

Φ ( 2 ) Θ £ with E/Φ

quadratic

Eι Θ £ 2 with EJΦ and £ 2 / Φ

nonisomorphic quadratics

a Z/(4)-quartic or a

dihedral quartic
D

4U

with E/Φ a Z/(3)-cubic

an ^-quartic or Φ Θ E

with E/Φ an S3-cubic

D 4lll

Yes

Yes iff μ is a norm for one of

the quadratic subextensions of &/Φ

Yes

Yes

Yes iff μ is a norm for

the quadratic subextension o:

No

No

Proof. Let P^/Φ and P^/Φ denote respectively the minimum

Galois splitting field of 3§ and t% in Φ/Φ. Then, by Proposition

4.4, since Σ t i * / = °>

(A3 + A4)(A! + λ2))

. Identifying G^ as

Λ,2 j A3, λ4) a n d

+ Λ, 4 ) (Λ2 + A3) , (Λ2

Put G^ := Gal(P^/Φ) and G^
a subgroup of S4, we have

(4.6) G^ = G Π

where V4 = {(1), (14)(23), (24)(13), (34)(12)}. But since 31 =
Z{X), it follows from Remark 3.16 that 3£ has type D 4 I , D 4 I I ,
Z)4πi or 2)4vi according as G^ has order 1, 2, 3 or 6.

The rest of the argument is a case-by-case check. We consider the
most complicated case and leave the others to the reader. Suppose 38
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is a dihedral quartic. We may identify 33 = Φ[λχ] and relabel λ2,
λ3 , λ* if necessary so that 33 is the fixed field of (34) in P& . In that
case, G& = ((1324), (34)). Hence, by (4.6), G^ has order 2 and
so X has type Z>π Also, v3 := (λ3 + λ 4 ) 2 is a root of A(x) in Φ.
Thus, there is a homomorphism of 3ί onto Φ so that v —> z/3 , which
induces a homomorphism of £f onto (z/3 , μ/Φ). Since ^ has type
Z>4Π and ^ ( ^ ) = M${β), (ι/3, μ/Φ) is the unique 4-dimensional
simple summand of S. Hence, by Remark 3.20, 2? is orthogonal iff
(1/3, μ/Φ) splits, which holds iff μ is a norm for Φ[Λ,3 + Λ4] [Lam,
Theorem 2.7, p. 58]. Q

Recall next that a Lie algebra J2? of type D 4 over Φ is said to be
isotropic if J? has a nonzero element X so that ad(X) is diagonal-
izable over Φ. Otherwise, «£* is said to be anisotropic. We say that
J? is strongly isotropic if J ? is isotropic and ^ is not isomorphic to
the orthogonal Lie algebra o(q) of an 8-dimensional nondegenerate
quadratic form of Witt index 1. We now see using results from [A2]
and [A3] that the /Vs that are strongly isotropic all come from the
construction in §1, and that they are determined up to isomorphism
by their Allen invariants.

PROPOSITION 4.7. Let γo := diag(l , - 1 , 1 ) . If 3? is a Lie al-
gebra of type D4 over Φ, then S? is strongly isotropic if and only
if S? = X{CD{3B9μ), γ0) for some 33, μ as in §1. Moreover, if

, μ), γQ) and <Sff = J Γ ( C D ( ^ ' , μ'), y0) * then

where & (resp. &) is the quaternion algebra determined by 33, μ
[resp. 38', μ!).

Proof. We use the fact that 3?{CD{β, μ), y0) = ^ ( C D ( ^ , μ)),
where 3?(CD(&, μ)) is the Lie algebra constructed from C D ( ^ , μ)
using I. L. Kantor's Lie algebra construction [A3, Theorem 2.2]. With
that fact in mind, the present proposition is part of Theorems 5.1 and
8.1of[A2]. D

REMARK 4.8. Theorem 5.1 of [A2] (used above) is proved using the
description of finite dimensional central simple structurable algebras*
given in [Al]. Recently O. N. Smirnov [Sm] has pointed out that there
is a missing class of 35-dimensional algebras in that description and
has corrected its proof. The proof of Theorem 5.1 of [A2] then goes
through without any changes. (See [A&F2, §5] for details.)
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5. Real and p-adic D4's. The classification of real and p-adic Lie
algebras of type D4 is well known ([Ve], [J2, §7], [AM, §4]). It is
important though for our purposes to understand those Lie algebras
in terms of the construction ^ ( C D ( ^ , μ), γ).

\ϊ 3? is a Lie algebra of type D4 over R, we denote the signature
of the Killing form of Sf by sig(-^) and call it the signature of 2?.

The first proposition computes the Allen invariant and signature of
the Lie algebra 3£{CD{βt, μ), γ) in the case when Φ is the real field
R. In the table, C and H denote respectively the complex field and
the real quaternion division algebra. The top row lists the possibilities
for £%, and the first column lists the possibilities for μ and γ. "y,
same sign" covers the cases when γ\, γ2, Jι are all positive or all
negative, while "y, diff. sign" covers the remaining cases.

PROPOSITION 5.1. Let Φ = R and let 3£ = 3?(CD(β, μ),γ),

where 3§, μ, γ are as in §1. Then, the Allen invariant <o(3ί) and the

signature of 3? are given in the following table:

μ > 0

diff. sign

same sign

R(2) Θ C

(R)ΘM8(C)

(R) Θ Aί8(C)

R)ΦM 8(C),

, 2

, 2

-14

C ( 2 )

M%(R)(3),

M 8(R)ΘM 4(H)

M 8(R)ΦM 4(H)

4

( 2 ) ,

P),

- 4

- 4

R ( 4 )

M 8 ( R ) ( 3 )

M 8 ( R ) ( 3 )

Λ/ 8 (R) ( 3 ) ,

,4

, 4

-28

Proof. We use the notation of §4. Also, let B be the Killing form

of Jf and let qm 9 n denote the symmetric bilinear form with matrix

[7o -/ ] * n Î 3> Theorem 7.2], we calculated the following formula

for B:

(5.2) 3

where δ

B = {-δ\t<%)

1 (<53μί

1 := Y27T1, ί

-L \β\μta) •

a-)-L(/ίίi,o

•2 := 737Γ1'

l(-«5 2

) -L (Λ*J

( 5 3 : =

± (-

Suppose first that 3S = R(2) θ C. Let b0 = (0, - 2 , 1 + i), where
/2 = - 1 in C. Then, /(*) has roots 0, - 2 , 1 + /, 1 - / and so h(x)
has roots - 2 / , 2/, 4. By Proposition 4.4, there exists v e 3$ with
minimum polynomial A(Λ ) SO that 3Z = Φ[u] = C θ R and
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Since %?{3F) = M${&), we have the Allen invariants in the first col-
umn. Also, tgg = q?> 91 and ί$? = #2,1 If μ > 0, we then get
B — ίi5,i3 (by (5.2)) and so B has signature 2. So suppose μ < 0.
If the yι have different signs, then exactly two of the δ{% are negative
and we get B = # 1 5 ? 1 3 again. Finally, if the y, 's have the same sign,
then the δfs are all positive and so B = #7 21.

If ^ = C(2) or ^ = R<4), we may choose bo = (l + i, - 1 + 2 / ) or
( 1 , 2 , - 3 , 0 ) respectively. The rest of the calculations are similar to
the ones just described and so we omit them. D

It follows from Propositions 4.7 and 5.1 that there are exactly 3 real
Lie algebras of type D4 that are strongly isotropic and these have the
distinct signatures 4, 2, - 4 . But there is a unique anisotropic (=com-
pact [Sell, p. 292]) real D4 and it has signature -28 . Also, there is a
unique 8-dimensional real nondegenerate quadartic form of Witt in-
dex 1. The corresponding orthogonal Lie algebra must have signature
— 14 (since —14 occurs in Proposition 5.1). Thus, we recover the very
well known fact that there are exactly 5 real D4 's up to isomorphism
and these are distinguished by their signatures. We also obtain:

COROLLARY 5.3. Any Lie algebra of type D4 over R is isomorphic
to J^{CD{^, μ), γ) for some 3$, μ, γ.

We now look at p-adic D^s. By a p-adic field we mean a completion
of a number field at a finite prime. If Φ is a p-adic field, then by a
theorem of Kneser (see [Knl, Satz 3] or [B&T, Proposition 6]) any
Lie algebra of type D4 over Φ is isotropic. Moreover, there are no
nondegenerate 8-dimensional quadratic forms of Witt index 1 over a
p-adic field [Lam, p. 156]. Thus, every Lie algebra of type D4 over a
p-adic field is strongly isotropic. Hence, by Proposition 4.7, we have
the following:

PROPOSITION 5.4. Suppose Φ is a p-adic field and let γo :=
diag( 1, — 1, 1). Then, any Lie algebra S? of type D4 over Φ is
isomorphic to Jί{CD{^, μ), γ$) for some 3S , μ. Moreover, if 3?
and 3?1 are Lie algebras of type D4 over Φ, then

(5.5) &^3"<* &{&) = %{3").

6. The Allen invariant over a number field. In this section, we char-
acterize the associative algebras that can occur as Allen invariants over
a number field Φ.
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We recall some number theoretic notation that we will use here
and frequently in the rest of the paper. If Φ is a number field we
denote by S(Φ) the set of all primes of Φ (finite or infinite) and
by 5 R ( Φ ) the set of all real primes of Φ . If p G S(Φ), Φp will
denote the completion of Φ at p and, if Sf is an algebra over Φ,
we write Sfp := β?φp := Φp (g>φ %?. If p G S R ( Φ ) , we denote by σp an
embedding of Φ into R which induces the prime p. Its extension
to an isomorphism Φp —• R of valued fields will also be denoted by
σp. If p G S R ( Φ ) and a G Φ p , we say that α is positive at p (resp.
negative at p) if σp(a) > 0 (resp. if σp(a) < 0). This is written as
α > p 0 (resp. a <p 0).

PROPOSITION 6.1. Let Φ be a number field. Suppose 2J is a quater-
nion algebra over a ^-dimensional separable algebra Z over Φ. Then,
the following statements are equivalent

(i) cZjφ{β)^Φ9

(ii) 2 = {y, μjZ) for some generator v of Z so that n&{y) G
Φ x 2 and some μ e Φ x .

Moreover, in that case μ can be chosen to be totally negative (i.e.
μ <p 0 for all peSR(Φ)).

Proof Write

2f =3f\®'"®3fm and Z = Λi Θ Θ Am ,

where 3Sχ is a quaternion algebra over its centre Λ/, and Λ, is a field,
/ = 1, . . . , m.

"(i) => (ii)" For each /, 3>ι ΘΛ Λz φ = M2(Λ/φ) as Λ/φ-algebras for
all but a finite number of primes <p of Λz [P, p. 358]. Here, Λ/φ
denotes the completion of Λ; at φ . Thus, we may choose a finite
nonempty set {pi, . . . , p/} of finite primes of Φ so that

(6.2) 3ft ®Λ Λ/φ = Λf2(Λ/φ) as Λz φ -algebras

for / = 1, . . . , m and all finite primes φ of Λ, such that φ n Φ έ̂
{pi, . . . , p/} . Now for fixed j G {1, . . . ,/}, we have

ί=l φ

where the inner sum runs over all finite primes <p of Λ/ so that ψ Π
Φ = p 7 . Thus, at most one term [Λ/<p : Φp ] in the double sum equals
2. Since Φ p has more than one quadratic extension [Lam, Theorem
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2.22, p. 161], we may choose a quadratic extension Φp (v//f/)/Φp so
that, as extensions of Φ p ,

(6.3) Φ p (Λ/jΰ]) is not isomorphic to Λ/φ,

for / = 1, . . . , m and all primes φ of Λ/ such that φ n Φ = p7-.
By the strong approximation theorem [C, p. 67] and the local square

theorem [Lam, Theorem 2.19, p. 160], we may choose / i / O e Φ so
that

(6.4) μμj e Φp 2 , 7 = 1 , . . . , / , and μ <p 0 for all p e 5 R ( Φ ) .

Then, μ is totally negative.
Put Ki = Λi(y/μ), / = 1, . . . , m. We next claim that for / =

1, . . . , m

(6.5) 3ι ®A | Ki ^ M2(Ki) as Kr algebras.

To see this it suffices, by the Albert-Hasse-Brauer-Noether theorem [P,
p. 354], to show that

(6.6) 2i ®Λ KiQ = M2(Ki£ί) as Λ^-algebras

for all primes £} of Ki. If £3 is infinite, this is clear, since μ is
totally negative. So suppose 0 is finite and put φ = 0 n Λ, . Then,

(6.7) 31 i ®A. KΪQ = {βi ®Λ/ Λ/φ) ®Λj KiQ as ^-a lgebras .

Thus, by (6.2), we may assume that φ π Φ = ρ ; for some j e
{1, . . . , / } . But then ^ = A/cpίvT?) = A^iy/pJ) (by (6.4)) and
hence, by (6.3), K^ is a quadratic extension of Λ/φ. But any qua-
dratic extension splits a quaternion algebra over a p-adic field [Lam,
Lemma 2.14, p. 517]. Thus, by (6.7), we have (6.6) and hence (6.5).

Since Ki = Λ/(//) it follows from (6.5) that we may write

A/

for some α/ / 0 e Λ/ [P, Corollary on p. 241], / = 1, . . . , m. Then,
by the projection formula [Tig, Theorem 3.2], we have CΛ/ΦC®/) ~
(/2I(C*I) , μ/Φ) , where rii := nA , i = 1, . . . , m. Hence, c&/φ(3f) ~
( ί , μ/Φ), where 5 = Π/^i Λi(α/) Thus, by our hypothesis thai
c&iφ{3ί)~Φ, we have (δ, ///Φ) ~ Φ . Hence, for each /, [(δ, ///Λ/)]
= 1 in Br(Λ/) and so
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which implies that 91 ι = {μiδ, μ/Λ, ) over Λ, . Since Σί=i[Λ/: Φ] =
3, we may choose βx Φ 0 e Λ; so that z/z := α/<J/?? generates Λz over
Φ, i = I, ... , m, and, if m = 3, i/i, v2, ^3 are distinct. Then,

'" i "
Thus, putting v = Y^Jίλ Vi £ 91, we have 9ί = (1/, μ/<SΓ), ^ gener-
ates «SΓ, and

m

7=1

= Π K ^ ) ^ : φ ])Φx 2 = £ 4 Φ X 2 = I Φ X 2 .
7=1

"(ii) => (i)" Suppose ^ = (i/, ///^) as in (ii). Write v = vx + - +
vm , where i/, € Λ/, z = 1, . . . , m. Then, Π/=i ^/(^i) = n&{v) = η2

for some η e Φ x . Also, ϋ?; = (i/, , ///Λ, ), and so, by the pro-
jection formula, CΛ/ΦC^/) ~ (ni(ui), f*/Φ) > i = 1, . . . , m. Thus,

^ Φ. D

The following lemma follows immediately from Propositions 4.1
and 4.4, and it is valid over any field of characteristic 0.

LEMMA 6.8 (&-construction lemma). Suppose Z is a ̂ -dimensional
separable commutative associative algebra and 2 = (v, μ/3?), where
v is a generator of Z such that n%{v) e Φ x 2 and μ € Φ x . Let

h(x) = x 3 + OLiX1 + αiΛ: - η2

be the minimal polynomial of v over Φ, where ^ ^ ^ Φ , η e Φ x

χ 4 + - α 2 x 2 + A/x + — (α^ - 4αi) and & = Φ[bo]9

where bo has minimum polynomial f(x) over Φ. Then, 2 is iso-
morphίc to the quaternion algebra determined by 3$ and μ. Hence, for
any γ = dmg(γ{, γ2, 73) > where y\, γ2, 73 € Φ x , ^ " ( C D ( ^ , //), 7)
/zα̂  4̂/fen invariant isomorphic to Λf4(«Sr).

THEOREM 6.9. Lei Φ be a number field. Suppose % is an associa-
tive algebra over Φ. Then the following statements are equivalent:

(i) % is isomorphic to the Allen invariant of a Lie algebra of type
D4 over Φ.
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(ii) <g~ = M 8 (Φ) ( 3 ) , the simple summands of I? have exponent 1
or 2 in the Brauer groups over their centres, and c&/φ(%?) ~ Φ, where
Z is the centre of %.

(iii) % = M^{3f), where 2 is a quaternion algebra over a 3-dimen-
sional separable algebra Z over Φ and c^/φ{3f) ~ Φ.

Proof, (i) =^ (ii) follows from §3 (in particular Proposition 3.3).
"(ii) => (iii)" Z is 3-dimensional separable and we have If = %\ Θ

• • 0 4 and JE* = Λi θ θ Λm , where ^ is simple with centre
Λ/ and dimΛ ^• — 64, / = 1 , . . . , m . Since index equals exponent
in the Brauer group over a number field [P, p. 359], <§/ =
where 31 i is a quaternion algebra over Λ,. Then, % = Λ
where S^ = ^ © © 3ίm , in which case c&/φ(3f) ~ c^/φ{^) ~ Φ.

(iii) => (i) follows from Proposition 6.1 ((i) => (ii)) and the ^
construction lemma. D

REMARKS 6.10. (a) The equivalence of (i) and (ii) in the theorem
answers, in the number field case, a question raised by T. Tamagawa
after a lecture on an earlier version of this work.

(b) Theorem 6.2 is also true if Φ = R or a p-adic field. Indeed,
since index equals exponent in the Brauer group over those fields [P,
p. 339], the proofs of "(i) => (ii)" and "(ii) => (iii)" are the same as
above. If Φ = R, "(iii) => (i)" follows from Proposition 5.1. Finally,
if Φ is a p-adic field, then the implication "(i) => (ii)" in Proposition
6.1 follows from the "local part" of the argument given in the number
field case. Hence, the proof of "(iii) => (i)" in the Theorem is also
valid in the p-adic case.

(c) Suppose Φ is a p-adic field. Then, it is an easy matter to list
the possible algebras 3! such that 3! is a quaternion algebra over a
3-dimensional separable algebra 3Z and c^jφiβ) ~ 1. Indeed, let
Ό(E) denote the unique quaternion division algebra over E for each
finite extension E/Φ. I f J Γ ^ Φ θ Φ Θ Φ , then we must have 3! =
M 2 (Φ) ( 3 ) or M2(Φ) ΘD(Φ) ( 2 ) . Suppose next that J = Φ θ Γ , where
Γ/Φ is a quadratic extension. Then 31 = M2(Φ) θ M2(Γ) or 31 =
3fγ θD(Γ), where 3fχ - cΓ / φ(D(Γ)). But D(Γ) cannot be obtained by
base field extension from a quaternion algebra over Φ (since Γ splits
any quaternion algebra over Φ). Hence, by the Albert-Riehm theorerή
[Sch, Chapter 8, Theorems 9.5 and 11.2(ii)], cΓ/φ(D(Γ)) is not similar
to Φ. Thus, 3f = M2(Φ) © M2(Γ) or 31 = D(Φ) φ D(Γ). Finally,
suppose that Z = Λ, a cubic extension of Φ. Then 31 = M2(A) or
D(Λ). But D(Φ)Λ is a division algebra and so D)(Λ) = D(Φ)Λ . Thus,
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[Tig, Theorem 2.5], cΛ/φ(D(Λ)) = D(Φ)(8)φB(Φ)®φlD)(Φ) which is not
similar to Φ and so 31 = M2(A) . Thus, the list of quaternion algebras
3! over 3-dimensional separable algebras Z so that c&/φ{3f) ~ Φ
is:

(6.11) M 2 (Φ) ( 3 ) and ¥ 2 ( Φ ) θ D ( Φ ) ( 2 ) ,

M2{Φ) ® M2(Γ) and D(Φ) φ D(Γ) for [Γ : Φ] = 2, and

M2(A) for[A:Φ] = 3.

By remark (b) and (5.5), the Allen invariant induces a bijection from
the set of isomorphism classes of D4s over Φ onto the set of algebras
M4{β), where 31 runs through the list (6.11). (Compare [J2, §7] and
[AM, §4].)

7. Isomorphism of D4

9s over number fields. Now that the possible
Allen invariants of Lie algebras of type D4 over number fields have
been identified, it is natural to ask how close the invariants come to de-
termining the Lie algebras. In this section, we prove an isomorphism
theorem that answers that question. We begin with some preliminary
results^ _ _

If Jf is a semisimple Lie algebra over Φ, an automorphism^of </#
is said to be inner if it lies^in the connected component A u t ( ^ ) 0 of
the algebraic group Aut(Λf). Otherwise, the automorphism is said
to be outer. \ϊ 3? is a Lie algebra of type D4 over Φ, an automor-
phism of J? is called inner or outer according as its extension to an
automorphism of <5^ is inner or outer.

LEMMA 7.1. Suppose that Φ = R, C or a p-adic field, and 2 is a
Lie algebra of type D4\, ζ$\\ or D4m over Φ. Then, 2 has an outer
automorphism.

Proof. Suppose first that ^[2") has a simple summand that is iso-
morphic to Afg(Φ). Hence, by Remark 3.20, & = o(q) for some
8-dimensional quadratic form q. Regarding this isomorphism as an
identification, we may take φ to be the automorphism of 2 defined
by φ(X) = RXR~ι, where R is an orthogonal reflection (relative
to q) in a hyperplane. It follows from [J4, §4] that φ (extended to
<S~) lies outside a proper closed subgroup of finite index in Aut(=S^).
Hence φ is outer.

This, by Proposition 5.1 and Corollary 5.3, completes the proof if
Φ = R or C. Suppose then that Φ is a p-adic field. In that case
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Br(Φ) has exactly two elements of exponent 1 or 2, namely [Φ] and
[D], where D is the unique quaternion division algebra over Φ [Lam,
Theorem 2.10, p. 154].

If & has type D4l, then ^ = Af8(Φ) for some / (by (3.17)) and
so we're done by the above. Suppose next that 3* has type Z>4II.
With the notation of Remark 3.16, 9" = M8(Φ) or M 4(B). Thus,
we may assume that 9" = Af4(D). But then, as in Remark 3.20,
3 ^ ^ % ^ , J^). Hence, by [Jl, §§6 and 7], 3 = ^(Af 4 (D), Js),
where Js(X) — SX S~ι and S is an invertible 4 x 4-diagonal matrix
over D that is skew-hermitian with respect to the canonical involution
- on D. Identify 3 = ^ ( M 4 ( B ) , Js). Let δΦx2 be the discrimi-
nant of S, i.e. δΦx2 is the square class in φ x / Φ x 2 represented by
the reduced norm (^generic norm) of S in Af4(D). The reduced
norm /% on D is universal [Lam, Corollary 2.12, p. 156] and so we
may write δ = n®(x) for some X / 0 G D . Then, x = s\Sι for
some s\, 52 φ 0 e c5^(D, ~ ) . Hence, S has the same discriminant
as S' = diag(5i, s\, s{, 52) and hence (Af4(D), / 5 ) = (M4(D), Z^)
[Jl, Theorem 9]. Thus, we may assume that S = diag(^i, s\,s\, S2).
But since 3 has type Z)4π, δ is not a square. (See [Tl, p. 57], or
use base field extension and argue using [J2, top of p. 145].) Hence,
" D O * I ) Φ X 2 Φ nD(s2)Φx2. Thus, putting />• := Φfo ], z = 1,2, Λ
and P2 are not isomorphic. Thus, the norm groups nP /φ(Pf) and
/?P/Φ(P 2

X ) are distinct [Ser2, Chapter 14, §6]. But these norm groups
are subgroups of Φ x of index 2 [Ser2, Proposition 9, p. 196]. Thus,
nPjφ{Pΐ)nPiiφ{Pϊ) = Φ x . Hence, nB(P*)nn(P*) = Φ x . Now fix
SQ Φ 0 e P2 (i- with respect to «p). Thus, we may choose g\ e P\
and go Ξ ^2 so that ^ ( g O M g o ) = -^(^0) Put #2 = ^ o ^ 1 Then,
gitPi, git P2 a n d nv(g\) = -nΌ{g2). Thus,

g\S\ = Ji^i, ^2^2 = -^2^2 and

Put i? = diag(gi, gχ9 gΪ9 g2). Then, (JSR)R = otl, where α =
« D ( ^ I ) - Thus, the map ^ : M4(D) -> M4(D) defined by ^/(X) =
RXR~ι is an automorphism of (Af4(D), /^) which therefore restricts
to an automorphism φ of J ? . But i? has reduced norm - α 4 and
{JsR)R = Cxi. Thus, using [J4, §4] it follows that φ (extended to 3~)
lies outside a proper closed subgroup of finite index in Aut(<5~). So
φ is outer.

Suppose finally that 3? has type £>4ϊπ. Then, by [AM, p. 264
and Theorem 5], 3 = Der(^/Γ) , where f is the (split) excep-
tional simple Jordan algebra, Γ is a 3-dimensional subalgebra of </
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which is a Galois cubic extension of Φ, and D e r ^ / Γ ) := {D G
Der f : D\Γ = 0}. Identify £? = Der(^/Γ). Let η be a generator
of Gal(Γ/Φ). Then, as in the proof of [AM, Corollary on p. 261], η
can be extended to an automorphism R of ^ . Define φ: 3? —• Jz?
by </>(X) = ΛXR-1. Then, since 2?|Γ ^ 1, it follows from [AM, proof
of Theorem 7 and the Note on p. 253] that φ (extended to J2~) lies
outside a proper closed subgroup of finite index in Aut(J2~). Thus,
φ is outer. D

If S> and J ? ' are Φ-forms of J ? , we say that S* are S" are inner
isomorphic, written £f = 0 &

1, if there is an inner automorphism φ
of & so that 0 ^ = Ξ". We say that the Allen invariants IT(J^) and
%{&') are //iwβr isomorphic, writtenjf ( ^ ) = 0 i

7 ^ 7 ) , if there is an
automorphism ^ of & so that ^ | ^ = / and
It follows from Corollary 2.6 that

& =0 3" =» ̂  = ̂  and g 7 ( ^ )

We now see that the converse holds over R, C and p-adic fields.

PROPOSITION ΊJλ. Suppose Φ = R, C or a p-adic field and <$?,

are Φ-forms of 3?. Then,

& =0 £?' & & = 2" and

Proof. Suppose t h a t ^ = 2" and g 7 ^ ) = 0 g 7 ^ ) . Thus,

there exist <̂  G Aut(^) so that φ£? = 2" and ^ G Aut(^) so

that ψ\Z = I and ψg(&) = %{5?f). Then, φ is determined

by some pair (p, U) (see Remark 2.5) where p = /?(</>) G AS*3 and

(7 = (UιLU2, U3) satisfy (2.2)-(2.4) with 5 = 1 . We now define

ω G Aut(^) by

ω(Xx, X2,
 l 1 ι

Then, ω\J? = φ and hence ω{%{&)) = g 7 ^ ' ) . Moreover,

(7.3) ω(^) = ζ - i / , i = l , 2 , 3 .

Also since ψ(Ei) = JF/, we have

(7.4) ψΦϊ) = %u / = 1 , 2 , 3 .

Now it suffices to find an automorphism η G Aut(^) so that (de-

noting the extension of η to S? by η as well) the permutation p(η)

in ^3 determined by η is p. Indeed, in that case we would have
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= &' and φη~ι e Aut(iF)0 by Corollary 2.6. Thus, we
certainly may assume that p Φ (1). We now consider cases and use
the notation of Remark 3.16 for 3? and 3" (with primes in the lat-
ter case). We note that since %{&) = ^{<S?'), & and &' have the
same Z>4-type (by Remark 3.16).

Suppose first that & has type Zλu. Then, by (7.3) and (7.4),

(7.5) ω(g/) = g^-,. and gj = g?, i = 1, 2, 3.

Since /? ^ (1), (7.5) forces two distinct g/'s to be isomorphic, say
<§2 = gβ . Thus, by (3.17), gj ~ Φ. Suppose now that g*> ~ Φ Then,
gϊ = g2 £ gβ ~ Φ. Thus, by [J2, Theorem 7], S? isomorphic to
o(n), where « is the norm form of a Cayley algebra W over Φ. We
may identify W as a Φ-form of ίP. Then, o(n) is isomorphic to the
following Φ-form of &:

&» := {(L!, L 2 , L3) G o(«)(3) : (Lxx, y, z)

+ (x,L2y, z) + {x,y, L3z) = 0 for x, y, z € ^ }

[J2, Lemma 2]. Hence, J ? " is isomorphic to Jz?. It is clear from
Remark 2.5(b) that &" has automorphisms which determine all 6
permutations in S3. Hence, the same is true of £? and we're done
in the case when <§2 ~ Φ So suppose that <§2 is not similar to
Φ . Then, by (7.5), p = (23). But by Lemma 7.1, J? has an outer
automorphism η. Extending η to an automorphism v of % (just as
we extended φ at the beginning of the proof), we see that z/gj = g ^ . ,
ι = l , 2 , 3 , where q = /?(*/). Hence, p(η) = (23).

Suppose next that J ? has type D411. Then, by (7.4), we may assume
that gT(^) = &®% and ^ ( ^ ) = ^ θ ^ , where J f = ^
9 = (f2ef3)nr(^), ^ = ging7^) and ^ = (ĝ φg
By (7.3), /? = (23). But £f has an outer automorphism η, and again
extending η to ^ , we see that p(η) = (23).

Suppose finally that i ? has type Z>4in or £>4vi. Since ψ\Z = /,
^ ( o ^ ) = ^ ( ^ O . Thus, by (7.3), ω restricts to a nontrivial automor-
phism of ^(Jz?) whose order is the order of p. Hence, J ? has type
Z>4Πi and p = (123) or (132). But <S? has an outer automorphism
η and extending η to ^ we see that /?(//) = (123) or (132). Thus?.
p(η)=p or p{η2)=p. U

If 4̂ is an algebraic group defined over Φ (in the sense of [B])
and P/Φ is an extension, we denote by Hι(P, A) the cohomology
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set H^GdλiP/P), A(P)) whenever the latter makes sense. Here P is
an algebraic closure of P and A(P) is the group of P-points of A.
Then, H*(P9 A) is functorial in P [Serl, p. Π-3].

THEOREM 7.6 (Injectivity theorem). Suppose A is an almost simple
adjoint algebraic group of type D4 defined over a number field Φ.
Then, the map

Hι(Φ,A)-+ Yl Hι(Φp,A)
peS(Φ)

is injective.

The injectivity theorem will be proved using the corresponding re-
sult for simply connected groups due to Harder [Ha]. This involves
a short excursion into Galois cohomology that is independent of the
rest of the paper. We therefore postpone the proof until an appendix
(§12). For the terminology used in the statement of the theorem see
for example [Tl].

We now use the injectivity theorem and Proposition 7.2 to prove
the following result:

THEOREM 7.7 (D ̂ isomorphism theorem). Suppose that Jzf and <S?'
are Lie algebras of type D4 over a number field Φ. Then,

5f^Sf'& %>(<£?) Ξ &{&') and 5?p=3% for all real primes p.

Proof. We need only prove "<=".
Choose an algebraically closed extension Ω/Φ of high enough tran-

scendency degree to contain copies of Φ p /Φ for all p e S(Φ). We
identify Φ p /Φ in Ω/Φ for all p G S(Φ), and we take Φ (resp. Φ£)
to be the algebraic closure of Φ (resp. Φp) in Ω.

We identify §*, &, §* and Z as well as Φ^ (g>~ I?, Φ^ ®~ J ? ,

% and ΦZ®^Z a

and Ω ®~ Z respectively. We note that Φ^ ®- &, Φ^ (g>~ # and

Φ^ Θφ<^ can be regarded as the algebras constructed from Φ^ ®~ i?

exactly as £?, % and 3ϊ were constructed from^i? in §2.
Now identify & and &' as Φ-forms of &. Since

we have an isomorphism, ψ: % -* g so that
Then, ψ(Ei) = Eqi, i = U 2, 3, for some qeS3. But then

letting φ be any element of Aut(J?) so that p(φ) = q and extending
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φ to an automorphism ω of §? (as in the proof of Proposition 7.2),
we see that ωψ\^ = I. Thus, replacing 3 by φ3? and ψ by

ωψ, we may assume that ί/zere exists an isomorphism ψ: & -± § so
that ψ{%{<S?)) = &{&') and ψ\~ = / . That is &{&) =0 %{&').
Hence, since with our identifications we have If(-Sp) = §?(3)p) and
i7(5%) = ^ ( ^ ) p , it follows that

(7.8) %{&>) =o &{£%) for p G

Next let v4 = Aut(Ω®^^)° . It is well known that A is an almost
simple adjoint algebraic group of type Z>4. We give A the structure
of an algebraic group defined over Φ using the Φ-form Jϊf of S*.
Then, A(Φ) = Aut(JF)0 and A(Φ£) = Aut(Φ^®φ^)° for p G S(Φ).

Now let ( α 5 ) 5 € ^ and {a's)seG ^ e the Galois precocycles determined
by & and S?1 respectively. Then, as in proof of Proposition 3.3,
as (resp. af

s) extends to an s-linear automorphism βs (resp. β's) of
I? which maps E\ to E ,γ\i (resp. E ^yx^) and fixes the elements

of Z{&) (resp.^ί^oΓ But ^ ( ^ ) =!2'(^7/) since ^(-^(-S*)) =
Z(&') and ^ | ^ = 7. Thus, βf

s(βs)~ι is a linear automorphism^
^ which fixes the elements of 3?(<S?) and hence the elements of J2Γ.
Hence, p(as) = p(a's). Thus, putting ζs = a'sajι, we have p(ζs) = (1)
and hence

(7.9) ζseA(Φ)

for s E G. Therefore, (ζs)seG is a continuous 1-cocycle with values
in A(Φ) which therefore represents an element ζ G Hι(Φ, A). (This
is the standard assignment of a cohomology class to a Φ-form relative
to 3*. Under this assignment 2" —• £ and i ? -• 1. (7.9) says that
3" is an inner twist of J? . ) But then C = 1 if and only if 3 = 0 ^ r .
Thus, the injectivity theorem tells us that

(7.10) ^ =o ̂  for all p G 5(Φ) =» 3 =0 &1.

So it suffices to verify that J?p =0 J?p' for all p G S{Φ). But then by
(7.8) and Proposition 7.2, it is enough to show that «5p = ^ ; for all
p G *S(Φ). If p is real this is being assumed, if p is complex it i§
trivial, and if p is finite it follows from (5.5) and (7.8). •

8. Construction of 2)4's over number fields. This section contains the
main results of the paper. If Φ is a number field, we show that the
construction in § 1 is complete in the sense that it yields all Lie algebras
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of type D4 over Φ. We also give necessary and sufficient conditions
for isomorphism of the Lie algebras obtained from the construction.

If Φ is a number field and p e SR(Φ) , we may identify Φ p and R
by means of σp. If <S? is a Lie algebra of type D4 and p e SR(Φ) ,
we may then refer to the signature sig(-2p) of Jδp.

LEMMA 8.1. Suppose £f is a Lie algebra of type D4 over a number
field Φ. Suppose £% is as in §1 and μ is a totally negative scalar
from Φ x so that If (J?) = M4{β), where (§ is the quaternion algebra
determined by 38 and μ. Then, there exists y2 e Φ x so that Jϊ? =

, μ), y), where γ = diag(l, γ2, 1).

Proof By Proposition 4.1, we have %(&) = %(3?{CD(β, μ), γ))
for all choices of γ as in §1. Thus, by the D4-isomorphism theo-
rem, it suffices to show that we can choose γ2 £ Φ x so that Sp =
JT(CΌ(^, μ), γ)p for all p e SR(Φ), where γ = diag(l, γ2, 1). So
let

S:={peSR(Φ): sig(^p) = - 1 4 o r - 2 8 } .

Choose, by the approximation theorem, γ2 e Φ x so that

(8.2) γ2 >p 0 for all p e S, and

γ2<p0 f o r a l l p G ^ R C Φ ) - ^ .

P u t γ = d i a g ( l , γ2, 1) a n d Jf = 5?{CD(β , μ ) 9 γ ) .
Now let p G SR(Φ). We want to show that s ig(^) = sig(-Sp). As

noted in the proof of the Z>4-isomorρhism theorem, we have ^(-2p) =
Thus, g 7 ^ ) = g'ί-SJ). Hence, if s ig(^) = - 4 , we have
g r ^ ) ^ I 8 ( l ) θ M 4 ( i ) ( 2 ) and hence s ig(^) = - 4 , us-

ing Proposition 5.1. Suppose next that sig(-Sp) = 2 or - 1 4 . Then,
arguing as above using Proposition 5.1, we see that s ig(^) = 2
or - 1 4 . But in that case, sig(-2p) = -14 o p e S <̂  γ2 >p 0
(by (8.2)) o s ig(^) = -14 (since μ <p 0). The argument when
sig(o2p) = 4 or -28 is the same as for 2 or - 1 4 . D

THEOREM 8.3 (Completeness theorem for the construction). Let Φ
be a number field and suppose S* is a Lie algebra of type D4 over Φ.
Then, there exist 38, μy γ as in §1 so that

Moreover, μ and γ can be chosen with the additional properties that

μ is totally negative and y = diag( 1, y2, 1), where y2 Φ 0 e Φ.
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Proof. By Theorem 6.9, if (.2*) = MA{3), where 3 is a quater-
nion algebra over a 3-dimensional separable algebra JΓ over Φ and
c&IΦ(β) ~ φ Then, by Proposition 6.1 3 = (i/, μjZ) for some
generator v of Z so that n&(v) e Φ x 2 and some totally negative
μ G Φ x . By the ^-construction lemma, we may choose 38 so that
3 is isomorphic to the quaternion algebra $ determined by 38 and
μ. Thus, ^ ( J ? ) = MA{β) and the theorem follows from Lemma
8.1. D

If 38 is as in §1, we say that 38 has a 1 -dimensional summand
if 38 has a 1-dimensional simple ideal. We say that 38 is split if
gg ^ φ(4) β

If Sf is a Φ-form of Mn{Φ)^ for some m, «, we say that ^ is
â w// matrix algebra over its centre if %? = Mn(JZ), where JB* is the
centre of Jf7. Clearly, ^ is a full matrix algebra over its centre if and
only if each of the simple summands of Sf are full matrix algebras
over their centres. We say that 8? is split if 8? = Mn(Φ){m).

The following lemma follows immediately from Proposition 5.1:

LEMMA 8.4. Suppose Φ is a number field, 33, μ, γ are as in §1,
and μ is totally negative. Let 3? = ̂ {QΏ{β,μ),γ).Ifpe S R ( Φ ) ,
then

(8.5) &p has a I-dimensional summand & s ig(^) ψ - 4

is a full matrix algebra over its centre

Also,

(8.6) &p is split o s ig(^) = 4 or - 28 <* < § ^ ) p is split.

THEOREM 8.7 (Isomorphism theorem for the construction). Let Φ
be a number field and 38, μ, γ and 381, μ', γf are as in §1. Sup-
pose further that μ, μ! are totally negative and yi = diag(l, 72 > 1)>
/ = diag(l 9γ'2,l) where y2, y'2 φ 0 e Φ. Let & (resp. &') be the
quaternion algebra determined by 38 and μ {resp. £%' and μ'). Then,
jr(CD(&,μ), γ) = J f ( C D ( ^ ' , μ')9 / ) if and only if the followkψ
conditions both hold:

(a) &**&'.
(b) For each p e 5 R ( Φ ) such that 38p has a l-dimensional sum-

mand, we have y2y
ι

2 >p 0.
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Proof. Observe that if we assume (a), then the real primes p for
which £&p has a 1-dimensional summand are the same as those for
which £%p has a 1-dimensional summand (by (8.5)).

Now put JΓ = 3£{CD{β ,μ),γ) and 3T = J f ( C D ( ^ ' , μf), / ) .
By Proposition 4.1, we may assume that (a) holds. Thus, if p e
5 R ( Φ ) is such that &p has no 1-dimensional summand, then 3ί^ = Xp
automatically (by (8.5)). Thus, by the ^-isomorphism theorem, it
suffices to show that for p e 5 R ( Φ ) such that &p has a 1-dimensional
summand, we have

Since 3§p also has a 1-dimensional summand and %>{3ίp) =
and μ, μ! are negative at p, this follows from Proposition 5.1. D

9. Anisotropic Z>4's over number fields. In this section, we identify
the anisotropic D4 's over a number field Φ. The first lemma holds
over any field Φ of characteristic zero.

LEMMA 9.1. Suppose 3S, μ, γ are as in §1. Let

Then,

X is strongly isotropic &J?= X(CD{β, μ), γ0).

Proof. "<=" follows from Proposition 4.7. For "=>", suppose Jf
is strongly isotropic. By Proposition 4.7, 3£ = 3t{QD{βf, μ'), γo)
for some 3S1', μ!. But then by Proposition 4.1, we have @ = kf;,
where @ (resp. €') is the quaternion algebra determined by 3S,
μ (resp. &', μ1). Thus, by Proposition 4.7, J Γ ( C D ( ^ ' , //'), y0) =

μ), γ0) and so ^ = ^ ( C D ( ^ 9μ)9γ0). •

THEOREM 9.2. L^ί Φ be a number field. Suppose

where ^ , μ, γ are as in §1, μ is totally negative and y = diag(l, 72,1)
mίΛ 72 € Φ x .

(a) ^ w strongly isotropic if and only if for each p e SR(Φ) such
that 38p has a I-dimensional summand we have 72 <p 0.

(b) If 3? is orthogonal, then 3? is isotropic if and only if for each
p G 5 R ( Φ ) SO that £%p is split we have γ2 <p 0.
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(c) If X is not orthogonal, then 3? is isotropic if and only if for
each p G 5 R ( Φ ) SO that &p has a I-dimensional summand we have

Proof, (a) follows from Lemma 9.1 and the isomorphism theorem
for the construction, and (c) follows from (a). For (b), suppose 3? =
o(q) for some 8-dimensional nondegenerate quadratic form q. Now
it is well known that o{q) is isotropic if and only if q is isotropic
(over any Φ). (See for example [Tl, 2.4].) Thus, by the local global
principle for isotropic quadratic forms [Lam, Corollary 3.5. p. 169],
3? is isotropic if and only if 3fp is isotropic for all p G S R ( Φ ) . But
if p G *SR(Φ) , «̂ p is isotropic if and only if ^ p is not split or γι <p 0
(by Proposition 5.1). α

REMARK 9.3. The completeness theorem together with Theorem
9.2 (b) and (c) describes all anisotropic Lie algebras of type D4 over
a number field Φ . Given 3S, μ, γ as in Theorem 9.2, one can use
Corollary 4.5 to determine which part of Theorem 9.2 ((b) or (c)) to
apply to test for anisotropicity.

As a consequence of Theorem 9.2, we obtain the following local
global principles:

COROLLARY 9.4. Suppose 3 is a Lie algebra of type D4 over a
number field Φ.

(a) 3 is strongly isotropic if and only if 3P is strongly isotropic for
all (real) primes p of Φ.

(b) If 3? is orthogonal or has type D41 for D 4 I I I , then 3 is isotropic
if and only if 3P is isotropic for all (real) primes p of Φ.

Proof. By the completeness theorem, we may assume that 3 =
X = 3?(CΌ(& ,μ),γ), with 3S, μ, γ as in Theorem 9.2.

(a) If p G S(Φ), then «5p is strongly isotropic if and only if p is
finite, p is complex or p is real and -2p has signature - 4 , 2 or 4 (see
§5). Thus, (a) follows From Theorem 9.2 (a) and Proposition 5.1.

(b) If S* is orthogonal, the claim follows from the argument in the
proof of Theorem 9.2(b). Suppose 3 is not orthogonal and 3 had
type £>4i or Ami. Then, 3 is isotropic iff 3 is strongly isotropicS
Also, 3Γ{&) = Φ Θ Φ Θ Φ or Z(3) is a Z/(3)-cubic. Thus, if
p G 5 R ( Φ ) , %(3\ = Φp Θ Φp Θ Φp . Hence, by Proposition 5.1, ^
is isotropic if and only if =2p is strongly isotropic. Thus, our claim
follows from (a). D
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REMARK 9.5. Kneser's local global principle for isotropic quater-
nion skew-hermitian forms [Sch, Theorem 4.1, p. 366] in the rank 4
case is closely related to Proposition 9.3 in the case when Sf has type

or

REMARK 9.6. Part (b) of Corollary 9.4 is false for nonorthogo-
nal iλm's and for Z>4Vi's. Indeed, Example 11.8 will describe an
anisotropic Lie algebra 3? of type iλm over the field Q of rational
numbers so that -SR is isotropic. An example of type Zλm is obtained
by taking & = X(QΏ(β, - 3 ) , /) over Q, where & = Φ[b0] and
bo has minimal polynomial x4 - 2. (See also Remark 9.5.)

10. Jordan Z>4's over number fields. Recall that a Lie algebra J ? of
type D4 over Φ is called a Jordan D4 if & = Der(</' jZ) := {D e
Der^Γ : DZ = {0}} for some 27-dimensional exceptional central
simple Jordan algebra ^ and some 3-dimensional separable associa-
tive subalgebra Z. Allen has shown that

(10.1) J ? is Jordan «=> If (J?) is a full matrix algebra over its centre

[AM, Theorem I]. As an application of our results and (10.1), we can
give a simple description of the Jordan Z>4's over a number field. We
first need a lemma that holds over any field of characteristic 0.

LEMMA 10.2. Suppose J = Φ θ J , where Z is a ^dimensional
separable associative commutative algebra over Φ, and μ e Φ x . Then,
the quaternion algebra & determined by 3§ and μ is isomorphic to
M2(Z). Hence, for any γ as in §1, X(CD(β 9μ)9γ) is a Jordan D4

with Allen invariant isomorphic to M

Proof. We argue as in [A3, Corollary 6.6]. Let ζ be an invert-
ible generator of Z of trace 0 and let (x - λ\)(x - λι){x - A3)
be its minimum polynomial over Φ, where ^1,^2,^3 £ Φ. Put
b0 = (0, ζ) G 38. Then, bo is a generator of 3S with minimum poly-
nomial f{x) = (x - λ\){x - λ2){x - λτ)x. So the polynomial h(x)
defined by (4.3) is (x—λ\){x -λ\){x -λ\). This is the minimum poly-
nomial of ζ2 over Φ and ζ2 is therefore a generator of Z. Thus,
by Proposition 4.4, β = (ζ2, μ/Z) = M2(Z). α

REMARK 10.3. If 3S = Φ®Z and μ are as in Lemma 10.2 and
γ0 = diag(l , - 1 , 1 ) , then ^ ( C D ( ^ , μ), γ0) is the quasi-split (or
Steinberg) Z>4 with Allen invariant M%{3?). (See [A2, Proposition
9.1].)
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THEOREM 10.4. Suppose Φ is a number field. If<2f is a Jordan
Z>4 over Φ, then there exists a 3-dimensional separable commu-
tative associative algebra Z and γ2 φ 0 e Φ so that & =
3P{CD{&f9-\)9y), where 38 = Φ Θ Z and γ = diag(l, γ2, 1).
Moreover, if 3S = Φ®2?, J ^ Φ θ Γ , γ = diag(l, y2, 1)
/ = diag(l,y£, 1), then

-1), y) = J f (CD(^ ' , -1), /)

>P 0 /or *// p e 5R(Φ) .

Proo/. By (10.1), ^ ( ^ ) ^ M 8 ( ^ ) , where Z = ̂ ( ^ ) . Let
Φ θ J and μ = - 1 . By Lemma 10.2, β ^ M2(Z) and so
Mi{<§). Thus, by Lemma 8.1, we have the first statement. The final
statement follows from Lemma 10.2 and the isomorphism theorem
for the construction. D

REMARK 10.5. Although we haven't checked this, a related descrip-
tion of the Jordan Z)4's over a number field can likely also be obtained
using the work of Allen in [Alll] and the Albert-Jacobson classification
of 27-dimensional exceptional central simple Jordan algebras over a
number field [A&J].

REMARK 10.6. Suppose Z is a 3-dimensional separable associative
commutative algebra over a number field Φ. By the approximation
theorem and Theorem 10.4, there are exactly 2n Jordan ZVs (up to
isomorphism) with Allen invariant isomorphic to M%(Z), where n
is the number of real primes of Φ. By Theorem 9.2, if Z is a field or
Z = ΦφΦθΦ, then exactly one of these Jordan i^'s is isotropic (the
quasi-split one with γ = y0). If Z = ΦθΓ, where Γ/Φ is a quadratic
extension, then exactly 2n~ι of these Jordan D^s are isotropic, where
/ is the number of real primes p so that Γp is split. We will see a
more general result of this type in the next section.

11. The classification problem for £>4

9s over a number field. Suppose

in this section that Φ is a number field. We show how to construct the
distinct (isomorphism classes) of D^s over Φ with a specified Allen
invariant If. We begin by describing the construction.

Construction 11.1. Suppose I? = M^{β), where 2 is a quaternion
algebra over a 3-dimensional separable algebra Z over Φ so that
C3r/φ(2) ~ Φ. (This is a necessary assumption by Theorem 6.12.)
Choose a generator v of Z and μ e Φ x so that

(11.2) &= ( ^ ) ' n^{v)eΦxl and μ is totally negative.
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(See Proposition 6.1.) Let

h(χ) = χ3 + OL2X1 + a\X - η2

be the minimum polynomial of v over Φ, where α i , α2 E Φ, η eΦ
and η2 = n&(y). Put

f{χ) = χ 4 + - α 2 x 2 + ηx + γτ(^2 ~ 4aι) a n d ^

where &o has minimum polynomial f(x) over Φ. Let p\9 ... 9pk
be the distinct real primes of Φ such that

(11.3) 3fp is a full matrix algebra over its centre, i = 1, . . . , k.

Choose γ£\ . . . , γf ^ e Φ x (by the approximation theorem) so that

(11.4) every sign configuration at the real primes

pi, . . . , pk is achieved by some γ^ .

Put y « : = d i a g ( l , ^ ° , 1) and

, μ), y ^ ) , / = 1, . . . , 2k .

THEOREM 11.5. Suppose Φ is a number field and % =
where 2 is a quaternion algebra over a 3-dimensional separable alge-
bra Z over Φ so that c&/φ{βf) ~ Φ. Let k be the number of real
primes p so that &p is a full matrix algebra over its centre. Then,
the Lie algebras 3?^, i = 1, . . . , 2k, described in Construction 11.1
are the distinct Lie algebras of type D 4 up to isomorphism whose Allen
invariants are isomorphic to &.

Proof. By the ^-construction lemma <T(^W) = %, i = 1, . . . , 2k .
Also 3?^ is not isomorphic to JfW for / Φ j 9 by the isomor-
phism theorem for the construction and (8.5). Suppose finally that
& is a Lie algebra of type D4 so that %(£?) = &. By the 3B-
construction lemma and Lemma 8.1, there exists γi € Φ x so that
& = 5?(CD{β,μ),γ), w h e r e γ = d i a g ( l 9 γ l 9 \ ) . B u t γ2yψ >Pj 0

for j = 1, . . . , k and some / e {1, . . . , 2k}, by (11.4). Thus, by the
isomorphism theorem for the construction, (11.3) and (8.5), we have

D

COROLLARY 11.6. Assume the hypotheses of Theorem 11.5.
(a) If 2 has a simple summand isomorphic to Af2(Φ), then the

Lie algebras SfW, i = 1, . . . , 2k, are orthogonal and exactly 2k~ι of
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these Lie algebras are isotropic, where I is the number of real primes
p so that &p is split.

(b) If 2 has no simple summand isomorphic to Af2(Φ), then the
Lie algebras JΓ^, i = 1, . . . , 2k, are not orthogonal and exactly one
of these algebras is isotropic.

Proof. The statements about orthogonality follow from Remark
3.20. We need to prove the statements about the number of isotropic
JfW's. If 3 has a simple summand isomorphic to Af2(Φ), we may
number the p/s so that 3P is split if and only if j < I, in which

case 3£W is isotropic if and only if γ^ <p 0 for j = 1, . . . , / (by

Theorem 9.2(b) and (8.6)). If 3 has no simple summand isomor-

phic to Λf2(Φ), then 3?^ is isotropic if and only if γ^ <Pj 0 for

j = 1, . . . , k (by Theorem 9.2(c) and (8.5)). ' D

REMARK 11.7. Theorem 11.5 reduces the classification problem for
Lie algebras of type Z>4 over a given number field Φ to two associative
problems:

(1) Classifying all associative algebras 3 up to isomorphism so that
3 is a quaternion algebra over a 3-dimensional separable algebra Z
over Φ and c&/φ(3) ~ Φ.

(2) Given 3 as in (1), expressing 3 in the form (11.2)
The remaining parts of Construction 11.1 are the comparatively
straightforward. In particular, choosing the real primes pi, . . . , p^
so that (11.3) holds is equivalent to determining the real primes p so
that the polynomial h{x) does not have a negative root in Φ p .

EXAMPLE 11.8. Suppose Φ = Q and 3 = {v, —3/Λ), where Λ =
Φ(v) and v has minimum polynomial h(x) = x^ + lx-9 over Φ . Λ
is an 53-cubic extension of Φ and, by Proposition 6.1, Cχ/φ{3) ~ Φ.
If we reduce mod 3, h(x) factors as x(x - ί)(x + 1). Thus, h(x)
has a root v§ in the 3-adic integers so that the image of vo in Z/(3)
under the residue class map is a nonsquare. Hence, (u0, —3/Φ(3)) is a
division algebra [Lam, Theorem 2.2, p. 149] and so 3^ is not a full
matrix algebra over its centre. Therefore, 3 is a division algebra.
Finally, h(x) has one positive real root and two conjugate nonreal
roots. Thus, «3fe = M2(R) Θ M2(C). We now carry out Construction^
11.1 starting with 3 . Let 3S — Φ[#o]> where bo has minimum
polynomial f(x) = x4 + 3x - \ . Let γ^ = diag(l , - 1 , 1 ) and
/ 2 ) = diag(l , 1 , 1 ) . Then, J Γ « := ̂ ( C D ( ^ , - 3 ) , y«) , i = 1, 2,
are the Lie algebras of type D4 with Allen invariant isomorphic to
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These are non-Jordan Lie algebras of type ΛΓVΊ- -^ ( 1 ) is
isotropic and Jf^ is anisotropic.

EXAMPLE 11.9. Suppose Φ = <Q> and 31 — {y, -1/Λ), where Λ =
Φ(v) and v has minimum polynomial h(x) = x 3 - 3 x - l . Then, Λ is
a Z/(3)-cubic and cA/φ(S&) ~ Φ. h(x) has 3 real roots exactly one of
which is positive. Thus, 3fo = H Θ H Θ M 2 ( K ) . Hence, 3f is a division
algebra. Applying Construction 11.1, we let 3S = Φ[&o] > where 6Q has
minimum polynomial f(x) = x4 + x - | , and jA1) = diag(l, - 1 , 1).
Then, JfW := J f ( C D ( ^ , - 1 ) , yW) is the unique Lie algebra of
type Z>4 with Allen invariant isomorphic to 3f. 3?^ is an isotropic
non-Jordan Lie algebra of type

12. Appendix: Proof of the injectivity theorem. In this appendix, we
give the proof, postponed from §7, of the injectivity theorem (The-
orem 7.6). We assume throughout the section that A is an almost
simple adjoint algebraic group of type D4 over a number field Φ.
Let B be the simply connected covering group defined over Φ of A
[Tl, §2.6] and let C be the centre of A.

We wish to prove that the map

(12.1) Hι(Φ,A)-+
peS(Φ)

Now, by a theorem of Kneser, we have Hι (Φp, B) = {1} for all finite
primes p of Φ (see [Knl, Satz 1] or [B&T, Proposition 7]). Also, by
a theorem of Harder [Ha], the map Hι(Φ, B) -+ ΠPeS(Φ) Hl(Φp, B)
is injective. Using these two facts, a standard argument involving a
twist of the Galois action and a diagram chase (see for example [Kn2,
§5.1] or [Fl, §2]) shows that, for the proof of (12.1), it suffices to show
that the map

(12.2) # 2 ( Φ , C) -> Π # 2 ( Φ P , C) is injective

and that the map

(12.3) Hι(Φ,C)-> Yl Hι(Φp, C)issurjective.
ρesR(Φ)

Now [Tl, §1.5], C(Φ) is a Klein 4-group. Thus,

C(Φ) = {1, ci, c 2 , c 3},

with cf = 1 and C\C2 = £3. Then, there exists a homomorphism
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s —> qs of G into S3 so that the action of G on C(Φ) is given by

sa = cqi for s G G, / = 1, 2, 3.

We put
77 := k e φ -> &) and Γ := Fix(//).

As in the proof of the /^-isomorphism theorem, it will be con-
venient to regard Φ, Φ p and Φ~ for p e S(Φ) as subfields of
some large algebraically closed extension Ω/Φ. If p e S(Φ), we
put Gp := Gal(ΦjjVΦp) and identify Gp as a subgroup of G (by the
restriction map). Also since C(Φ^) has order 4, we may identify:

We now prove (12.2) using work of K. Hoechsmann [Ho]:

LEMMA 12.4. The map # 2 ( Φ , C) -» Πp€s(Φ)^2(φp> c ) ^ inJec~
tive.

Proof. The character group Hom z(C(Φ), Φ x ) of C(Φ) is a G-
module with fixing group H. Thus, if Fix(H)/Φ is a cyclic Galois
extension, the required injectivity is a consequence of [Ho, 6.1 and
6.3]. So we may assume that [Γ : Φ] = 6. We now argue as in [F2, p.
205]. Let Λ/Φ be one of the degree 3 subextensions of Γ/Φ. Then,
we have the commutative diagram:

/ / 2 ( Φ , C ) > H2(A,C)

, C).

The top row is injective since [Λ : Φ] is relatively prime to the order
of C(Φ) [Serl, 1-11]. The vertical map on the right-hand side is
injective by the case considered previously. Thus, the vertical map on
the left-hand side is injective as required. D

So it remains to prove (12.3). We let pi, . . . , pn be the distinct
real primes of Φ labelled so that the primes of Γ lying above p; are
all real if 1 < / < m and all complex if m + I < i < n. (This is
possible since Γ/Φ is Galois.)

LEMMA \2.5. If 1 < i < m, then Gp acts trivially on C(Φ). //

m+l < i <n, then Gp acts nontrivially on C(Φ) and Hι(Φp , C) =

{1}.
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Proof, First if 1 < i < n, then Gp acts trivially on C(Φ) <* Gp c

ff^Γcφp o l < / < / n . So if m + 1 < / < n, Gp is a cyclic

group of order 2 acting nontrivially on the Klein 4-grouρ C(Φ), in

which case an easy calculation shows that Hι(GPi, C(Φ)) = {1}. D

LEMMA 12.6. The map Hι(Φ, C) —• UpeS {φ)H
ι{Φp, C) is sur-

jective.

Proof. In this proof, we identify C(Φ) with the multiplicative group
{(εi, β2, 63): βi: = ± 1 , e^2^3 = 1} by nieans of the identification

ci = ( 1 , - 1 , - 1 ) , c2 = ( - 1 , 1 , - 1 ) , c3 = ( - 1 , - 1 , 1 ) .

In that case the action of G on C(Φ) is given by

(12.7) s(εχ, ε 2 ? β3) = (eq-ιx, e^-i2, β^-i3) for 5 G G.

Suppose next that 1 < i < m. Then, Γ c Φp and we let φ,
be the real prime of Γ determined by the restriction of the absolute
value on Φp to Γ. Thus, the completions Γφ and Φp are equal.
Also, the distinct real primes of Γ lying above p^ are the primes sφi,
s G Gal(Γ/Φ). Finally, Gp. acts trivially on C(Φ) and so

where χij: Gp. -» C(Φ) is the group homomorphism so that
Cj 9 j = 1, 2, 3, and S; denotes the generator (of order 2) of Gp .

Now, by Lemma 12.5, we must show that the map

m

i=\

is surjective. Thus, with the above notation, it suffices to show that
(1, . . . , XiQjo, , . . . , 1) is in the image of this map for 1 < i0 < m,
1 < 7o ^ 3. So we fix 1 < i$ < m and 1 < y'o ^ 3. Suppose for the
moment that we have chosen a\, #2 > a3 ^ Γ x so that:

(12.9) s<*j = <*q,j for s eG, 7 = 1 , 2 , 3 ,

(12.10) α i α 2 α 3 G Φ x 2 ,

and

(12.11) if 1 < / < m a n d 1 <j < 3

then oίj <φ 0 <& i = /Q and 7 ^ JQ .
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W e t h e n c h o o s e βx, β2, fo G Φ x so t h a t βj = aJ9 j = 1,2,3. F o r
s G G, w e define

(12.12) ηs = {{sβCχ)βϊx, {sβCl)β^x, (^-i3)j»3-
1).

From (12.9) and (12.10) it follows that ^ G C(Φ) for s G G. Also,
using (12.7), one easily checks that (ηs)seG is a continuous 1-cocycle
of G in C(Φ). Denote the corresponding element of Hι(Φ, C) by
η. Observe that if 1 < / < m, we have qs = (1) and so ηs =

((Siβi)β 1, ( S / J W 1 , (Siβ2)β2

l) - But for 1 < < 3, faft)^7'1 =

I *> βj e Φp. <3> α, G Φp.2 <=> α/ G Γ^2 <=> α7- ><p. 0 ^ / Φ i0

or 7 = y'o (by (12.11)). Thus, under the map (12.8), η maps to

(1, . . . ,χioJQ9 . . . , 1) as required.
So it remains to show that given 1 < IQ < m and 1 < 70 < 3, we

may choose a.χ, α 2 , α 3 G Γ x satisfying (12.9)—(12.11). For conve-
nience, we may assume /0 = 1, 7o = 1 We consider cases for [Γ : Φ].
Suppose first that [Γ: Φ] = 1. Then, qs = (1) for all s G G. Choose
α2 G Φ x so that α 2 <<pi 0 and α 2 >φz 0 for i = 2, ... , m. Put
αi = 1 and α 3 = a2. Then, (12.9)-(12.11) hold. Suppose next that
[Γ : Φ] = 2. Choose reG so that qrφ{\). Then, Gal(Γ/Φ) = (r|Γ)
and so we may choose a e Γ x so that α >«p 0, ra <φι 0, α >φ 0,
and ra ><p 0 for / = 2, . . . , m. If qr = (12), we put a\ = α,
α 2 = rα and α 3 = α(rα) in which case (12.9)—(12.11) hold. Sim-
ilarly, if qr = (13), we put a\ = α, α 2 = α(rα) and α 3 = rα.
Finally, if qr = (23), we choose β G Γ x so that β <Vι 0, r^ <$Pi 0,
β >φ 0 and r)ff >φ 0 for / = 2, . . . , m, and put a\ = β(rβ),
a2 = β, a$ = rβ. Suppose next that [Γ : Φ] = 3. Choose s G G
so that & = (123). Then, Gal(Γ/Φ) = (s\γ) and so we may choose
a G Γ x so that a <φ 0, sα <φ 0, s2a >φ 0, and 5 J α >φ 0 for
/ = l , 2 , . . . , m , 7 = 0 , l , 2 . We put a\ = α(5α), α 2 = (ts

iα)(.si2α),
and α 3 = (4s

i2α)α and again we have (12.9)—(12.11). Suppose finally
that [Γ : Φ] = 6. Choose r,seG so that qr = (13) and qs = (123).
Then, Gal(Γ/Φ) consists of the restrictions of 1, s, s2, r, sr and
52r to Γ. This time, we choose a G Γ x so that s2a <φ i 0, ta ><pi 0
for ^ = 1, s, r, 5Γ, j 2 r , and ta >φ 0 for / = 2, . . . , m and nail
t G G. Then, we put αi = α(sα)(m)(,sm), α 2 = (5α)(52α)(4s

irα)(4s
 2 m )

and α 3 = ( ts
i2α)α(52m)(m), and again (112.9)—(12.11) hold. D

By the remarks at the beginning of the section, Lemmas 12.4 and
12.6 complete the proof of the injectivity theorem.
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