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LIE ALGEBRAS OF TYPE D, OVER NUMBER FIELDS

B. N. ALLISON

In this paper we show how to construct all central simple Lie al-
gebras of type D, over an algebraic number field. The construc-
tion that we use is a special case of a modified version of a con-
struction due to G. B. Seligman. The starting point for the con-
struction is an 8-dimensional nonassociative algebra with involution
CD(% , u) that is obtained by the Cayley-Dickson doubling process
from a 4-dimensional separable commutative associative algebra %
and a nonzero scalar u. The algebra CD(Z, u) is used as the
coefficient algebra for a Lie algebra .7 (CD(%, u), y) that can be
roughly described as the Lie algebra of 3 x 3-skew hermitian matrices

with entries from CD(Z , u) relative to the involution X — y~'X 'y,
where y is an invertible diagonal matrix with scalar entries. We show
that any Lie algebra of type D, over a number field can be constructed
as 7 (CD(Z, u), y) for some choice of %, u and y. We also give
isomorphism conditions for two Lie algebras constructed in this way.

As background, we note that the problem of constructing all central
simple Lie algebras of a given type over a field of characteristic 0
has previously been solved for types 4, (n > 1), B, (n>2), C,
(n >3), D, (n>5), G, and F; by W. Landherr, N. Jacobson,
and M. L. Tomber ([JS, Chapter X], [F&F, Section 7]). Over number
fields, this problem has been solved for types E¢, E;7 and Eg by J. C.
Ferrar using the 2nd Lie algebra construction of J. Tits and the Galois
cohomological results of M. Kneser, G. Harder and V. 1. Cernousov
([F1], [F2], [F3]).

Our main tool in this paper will be an associative algebra invariant
& (Z), which we call the Allen invariant, that can be associated to
any Lie algebra .& of type D, over a field of characteristic 0. & (%)
was introduced for special D4’s by Jacobson [J2] and in general by
H. P. Allen [Alll]. Sections 2-6 of this paper are devoted to the
study of the invariant &(.%). The main result obtained in these
sections is a characterization, using the corestriction of algebras, of the
associative algebras that can arise as Allen invariants of Lie algebras
of type D4 over a number field. In §7 (and in an appendix—§12),
we use the cohomological results of Harder and Kneser to prove a
general isomorphism theorem for Lie algebras of type D4 over number
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fields. Section 8 then contains the proof of the main results mentioned
previously regarding the construction .7 (CD(% , u), y) over number
fields. In §§9 and 10, we apply our results to describe anisotropic and
Jordan Dj’s over number fields. In §9 we also obtain a local global
principle for strongly isotropic Dy4’s. Finally, in §11, we describe how
to use the construction 7 (CD(%, u), y) to obtain all Dy’s with a
given Allen invariant & over a number field ®. There are 2% such
Dy’s up to isomorphism, where k is the number of real primes p so
that &, is a full matrix algebra over its centre.

We wish to thank T. Tamagawa for helpful suggestions regarding
the Allen invariant and A. Weiss for providing a key step in the proof
of Lemma 12.6.

ASSUMPTIONS AND NOTATION. Throughout the paper we assume
that ® is a field of characteristic zero. With the exception of field
extensions, all algebras will be assumed to be finite dimensional. Also,
with the exception of Lie algebras, all algebras are assumed to be unital
(and hence subalgebra means subalgebra containing 1). If 2 is any
algebra we denote by 2" = Z @ --- ® £ the algebra direct sum
of n copies of 2 and by M,(Z°) the algebra of n x n-matrices
with entries from 2. If 2 is an associative algebra over @, then
t and ng (or iy/ep and ng,e) will denote respectively the generic

trace and norm on 2 [J3, Chapter VI]. We use the notation ® fora
fixed algebraic closure of ® and we let

G = Gal(®/D)

be the Galois group of if)/ ® regarded as a topological group using the
usual Krull topology. If s € G and a € @, we often write Sa := sa.
Also, if P/® is any field extension, we use the notation P (or P~)
for an algebraic closure of P, and we use P> for the multiplicative
group of P. Finally, if P/® is an extension and &#° is an algebra
over ®, 2% will denote the P-algebra P ¢ £ .

1. The Lie algebra .7 (CD(%, i), 7). Throughout this section,
we assume that &% is a 4-dimensional separable commutative as-
sociative algebra over ® (and so Fy = ®W), u # 0 € @, and
y = diag(y, 72, y3) is a 3 x 3-diagonal matrix with |, 72, y3 #:
0 € ®. In this section, we recall the definition of the Lie algebra
F(CD(Z , u), y) constructed from %, u and y. This construc-
tion is a modified version [A3] of a special case of a construction due
to Seligman [Sel2, §7.3].
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We first look at the nonassociative algebra CD(%, u) which is
constructed from % and u by the Cayley-Dickson process introduced
in [A&F1]. Let ¢tz be the generic trace on % . (So if we write %
as the direct sum of field extensions of ®, t5 is the direct sum
of the corresponding field extension traces.) Define 6: & — % by
b? := —b + Lt5(b). Now put

A =B & 5oF
where 50.% denotes another copy of the vector space % , and define
a product and involution on & by:
(b1 + S0b2) (b3 + s0ba) = bibs + u(b2b8)? + s50(b2bs + (5563)?)
and
b1 + S0b2 = bl - Sobze .
Then, (&, -) is an 8-dimensional algebra with involution which we
denote by CD(Z, u). We call CD(Z , u) the quartic Cayley algebra
determined by % and u .

We can now construct the Lie algebra Z(CD(Z, u), y) from
(& ,-)=CD(#,u) and y. For x,y € &, define Dy , € End &
by

Dx,yz = %[[xs y]+[xs 7]: Z]+[Z,y, .X]—[Z,jc_, 7],
where [x, y]:=xy—yx and [x, y, z]:= (xy)z—x(yz). Then, Dy ,
is a derivation of (&, =) for x,y € & and
Inder(& , -) :=span{Dx , : x,y € &}
is a 2-dimensional abelian Lie algebra under the commutator product
[, 1 ([A3, Theorem 7.2]). We next put
Pi={XeMX): J,(X)=-X, tr(X) =0},

where J, is the involution on M;(%/) defined by J,(X) = y~1X'y

and tr(X) = Y3_, x;; for X = (x;;) € M3(+). Finally, we put
FZ(CD(Z, u), 7):=Inder(& , -) & £,

and define a product [ , ] on Z(CD(Z, u), y) by

(1.1) [(D,X),(E,Y)]:=([D,El+Ax y,DY —EX+[X, Y)).

Here if X = (x;;), Y = (y;j) € & and D € Inder(% , -), we are
using the notation

3
AX,Y:=1 > D. ., , DX=(Dx;), and

[X,Y]o:=XY-YX— %tr(XY —YX)I.
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Then, under the product (1.1), Z(CD(%Z , u), y) is a central sim-
ple Lie algebra of type Dy over ® [A3, Theorem 7.2]. That is,
Z(CD(Z , u), y)q~) is the simple Lie algebra of type D4 over ®.
Our main goal in this paper is to show that if ® is a number field
then any Lie algebra of type D, over @ is obtained from the con-

struction just described.

2. The Lie algebra Z and its automorphisms. In preparation for
our investigation of Lie algebras of type D4 over ®, we need to recall
in this section some facts due to Jacobson about automorphisms of
the simple Lie algebra of type D4 over ®. We will use the specific
realization . of that Lie algebra that was introduced by Jacobson in
g2

Let (%, -) be the Cayley algebra over @ with its canonical involu-
tion. Let 7 and 7 be the norm and trace on & respectively. Define
a ®-trilinear form ( , ) on & by

(x, v, z) = 3i(x(yz)).
Then,
(x,y,z2)=(z,x,y)=({,X,Z) forx,y, ze?.
Denote by o(7) the orthogonal Lie algebra of 7 consisting of all skew-
symmetric elements of Enda(%) relative to 7. Put
§:= {(Ll > LZa L3) € O(fl)(3) : <L1X, YV, Z) + (xa LZya Z)
+(x,y,L3z)=0forx, y, ze‘?}.
Then, Zisa simple Lie algebra of type D4 over @, and the projection
mappings (L1, Ly, L3) — L;, i =1, 2, 3, give the three distinct 8-
dimensional irreducible representations of £ [L2, Lemmas 1 and 2].
Next put N _ L
&:=(Endz;®)V =L oKHeo&,
where
& ={(X,0,0): X €Endg(%)}, &={(0,X,0): X €Endg(%)}
and _ _
& ={(0,0, X): X € Endgx(%)},
and so & = Endz(%) = Myg(®P), i=1,2,3. Wethen have & C &,
and in fact & is the ®-associative algebra generated by . The
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centre Z of & is
Z = ®E, @ DE, @ DE;,
where E; = (1,0,0), E; = (0,1,0) and E; = (0,0,1). Let J

~

be the involution of & defined by J(X;, X,, X3) := (X}, X}, X3),
where X* denotes the adjoint of X relative to 7. Thus,

J(L)=-L

for Le Z. Also, J fixes the elements of Z.
The semi-linear automorphisms of . have the following descrip-
tion which follows easily from Jacobson’s description in [J2].

PROPOSITION 2.1. Let ¢ be an s-semilinear automorphism of Z,
where s € G. Then there exists a permutation p € Sy and a triple
U= (U, Uy, U3) of s-semilinear vector space automorphisms of €
so that

(2.2) aUx) = a(x) forxe¥, i=1,2,3,

(2‘3) (U1x9 Uzya U3Z)
B { x,y,z) ifpiseven

orx,y,ze¥,
y,x,z) ifpisodd J y

and
(2.4) ¢(Ly, Ly, L3) = (U1 Ly UL, ULpyUt, UsLysUsY)

for (Ly, Ly, L3) € Z. Moreover, p is uniquely determined and Uy,
U,, Uz are uniquely determined up to multiplication by three scalars
from {—1, 1} whose product is 1.

Proof. In [J2], Jacobson works with the split Lie algebra of type D
over a finite Galois extension of @ rather than .. The same argu-
ments work here. By [J2, p. 139] there exists s-semilinear automor-
phisms Ty, T,, T3 of & sothat n(T;x)=u; Si(x), (T1x, Try, Tz3z)
=v%x,y, z), and
¢(L1, Ly, Ly)=(Ty /Lyt T, Tht/ Lypv ™/ T, T3t/ Lyt T,
where 7= —, j =0 or 1 according as p is even or odd, u;, v €
O, p is uniquely determined and 7, 7>, T3 are determined up to
multiplication by scalars in o, Replacing 7; by a multiple, we can
assume u; = 1. But by [J2, Lemma 3] and the argument on p. 139
of [J2], it follows that (t77)(xy) = v~ 1(Thx)(T3y) for x,y € Z.
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Taking 7 of both sides yields v? = 1. Thus, replacing 73 by —T3
if necessary, we can assume v = 1. Finally, put U; = T;t/, i =
1,2,3. o

REMARK 2.5. (a) We denote the permutation p in Proposition 2.1
by p(¢) and call it the permutation in S5 determined by ¢ .

(b) Conversely, if p € S5 and U = (U;, U,, Us) is a triple of s-
semilinear vector space automorphisms of % so that (2.2) ) and (2.3)
hold, then (2.4) defines an s-semilinear automorphism of .# that we
call the semilinear automorphism determined by the pair (p, U).

COROLLARY 2.6. The connected component of the algebraic group
Aut(.&) is given by

Aut(Z)° = {¢ € Aut(Z) : p(¢) = (1)}.

Proof. Let A be the right-hand side. Then A is the image of an
algebraic group under a morphism of algebraic groups and hence A
is closed in Aut(Z). Also, p(¢¢) = p({)p(¢) and so ¢ — p(¢)™"
defines a group homomorphism of Aut(¥) into S; with kernel 4.
This map is clearly onto and hence 4 has index 6 in Aut(,? ). Thus,
Aut(Z)° C 4 [B, p. 86]. But Aut(Z)° has index 6 in Aut(Z) [J5,
Remark on p. 281 and Exercise 9 on p. 287] and so we have the desired
equality. O

3. The Allen invariant. In this section, we suppose that . is a Lie
algebra of type D4 over ®. The basic tool used in the study of &
will be its Allen invariant & (). We recall here the definition and
some properties of & (%) due to Allen [Alll], and then prove that
the corestriction of & (%) over its centre is trivial.

We recall first the notion of a ®-form of an algebra over D. If z
is an algebra over D, a ®-form of Z isa ®-subalgebra 2 of Z 50
that the natural map f&fp ~ Z isa <I>-algebra isomorphism. In that

case, we usually identify 2%) and 2. Then, if P/® is a subextension

of d~>/<I), Zp is a P-fog of 2. Also Ende(Z”) naturally identifies
as a ®-form of Endz(2).
Now since & is a Lie algebra of type D4 over @, we have % ~

Z. Hence, we can and do identify & as a ®-form of Z. Then,
Ycrce.

We define the Allen invariant & (%) of & to be the associative ®-

algebra generated by . in g. & (Z) isa d-form of Z . (See [AllL,
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p. 255] or the proof of Proposition 3.3 below.) Thus, & (%) is a 192-
dimensional separable associative algebra over ®. It follows easily
from Proposition 2.1 (for automorphisms) that the isomorphism class
of &(Z’) is independent of our identification of % as a ®-form of
Z.

We denote by Z'(Z) the centre of &(Z’). Since &(Z) is a
®d-form of &, Z(¥) is a O-form of Z. Thus, Z(Z) is a 3-
dimensional separable commutative associative algebra.

Let J be the restriction of J to & (). Then, J is an involution
of £() that fixes the elements of .Z' (). Thus, each of the simple
summands of & (L) has exponent 1 or 2 in the Brauer group over its
centre. (In a separable associative algebra, the simple summands are
just the simple ideals.)

To prove the next property of &(.%), we will need the notion of
Dy-type [J2].

Let a = (as)seq be the Galois precocycle determined by the ®-
Jorm &£ of . Thus, by definition, for s € G, o5 is the unique
s-semilinear automorphism of % that fixes the elements of .. Let
Ds := p(as) be the permutation in S3 determined by a;. Since oy =
ooy , it follows that

(3.1) ps:=pips fors,ted.

Thus, {p;:s € G} is a subgroup of S3, We say that . has type Dy,
Dyy1, Damp or Dgyp according as this subgroup has order 1, 2, 3 or 6.
The Dy4-type of & is independent of our identification of .# in &
(by Proposition 2.1). Put

H:={seG:p;=(1)} and T :=Fix(H),

where Fix(H) := {o € ®:"a = o forall h € H}. Then, H is a
closed normal subgroup of G of index 1, 2, 3 or 6 and I'/® is a Galois
extension of degree 1, 2, 3 or 6 according to Dy-type. I'/® is called
the canonical Dgj-extension of ®. It is the smallest subextension of
/P so that A has type Dy [Alll, p. 256].

Finally, we need the notion of corestriction of associative algebras.
If P/® is a finite extension and 2 is a central simple associative
algebra over P, then the corestriction cp;p(2°) of 2 is a central
simple associative algebra over ® of dimension (dimp.2°):®!. The
reader is referred to [R] or [Tig] for the definition and main proper-
ties of this construction. The property that we will use in the next
proposition is the following. The assignment 2 — cp/q(2”) induces
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a homomorphism Br(P) LN Br(®) of Brauer groups so that if we

identify P/® in ®/® and set K := Gal(&)/P) then the diagram
Br(P) —— H*(K, ®)

(3.2) [<rre [ core
Br(®) —~— H2(G, ®)

commutes. Here the horizontal maps are the usual isomorphisms
[Ser2, p. 159], and corg/k is the corestriction map of group coho-
mology [Serl, p. I-11]. This property is Theorem 11 of [R]. We note
also that if P =@, then cp,q(Z) =2 .

More generally if 2 is a separable algebra over ® with centre .Z°,
we may write 2 =210 - &%, and Z = A1 & - - ® A, , where 27
is simple over ® with centre A;, i=1, ..., m. We then define

cz/0(Z) = cp jo(21) @ - O CA (L) -

We call cy/0(Z°) the corestriction of Z over its centre.

The following proposition was proved by Jacobson [J2, Theorem
4] for type D4 and by Tamagawa [Ta, Theorem 2] for type Dy .
For types D4p and Dgyy, the result was noticed first by Tamagawa
(unpublished). The proposition is now a consequence of more general
results on representations of algebraic groups due to Tits [T2, Corol-
laire 3.5 and Proposition 5.1]. Since we will need some of the notation
and arguments in the rest of the paper, we present here for the conve-
nience of the reader an elementary proof that generalizes Jacobson’s
argument in [J2].

PRrOPOSITION 3.3. Suppose & is a Lie algebra of type D4 over ®
with Allen invariant &(%). Then,

Cx )0 (Z)) ~ @,
where Z (L) is the centre of & (L) and ~ denotes similarity of
central simple algebras.

Proof. For s € G, there exists p; € S3 and a triple U(s) =
(Ui(s), Ua(s), Us(s)) of s-semilinear vector space automorphisms of

% so that
(3.4) A(Ui(s)x) = i(x) forxe?, i=1,2,3,
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(3.5) (Ui(s)x, Ux(s)y, Us(s)z)
s : .
(x,y,z) if psiseven ~
= f s b e g b
{s(y,x,z) if ps is odd orx.r.z
and
(3‘6) aS(Ll > LZ ’ L3)
= (Ui(8)Lp Ui(s)™", Ua(s)Lp 2 Us(s)™", Us(s)Ly 3Us(s)™")
for (Ly, Ly, Lj3) € Z. ps 1s uniquely determined and U, (s), U,(s),
Us(s) are uniquely determined up to multiplication by three scalars
from {-1, 1} whose product is 1. N _
Let # be a @-form of the algebra % . Since ®&(¥) = & and
®Endg(%) = &, we may choose a finite Galois extension P/® so
that ' C P C ® and

(3.7) P& (L) =Endp(%)?.

Let X := Gal(&D/ P). Then we can assume that the U;(s)’s were chosen
so that

(3.8) Ui(l)=1, i=1,2,3,
and
(3.9) s,t€G,s7'teK=U(s) 'Uit)lg, =1, i=1,2,3.
Then, enlarging P if necessary, we may assume that
(3.10) Ui(s)&p C %P,
for seG,i=1,2,3.
Next from the remark made above about the uniqueness of the
Ui(s)’s, we have
(3.11)  Ui(s)Up (1) = pUs(st),  i=1,2,3, where
(3.12) p==+1, i=1,2,3, and p{pZpP =1

for s, t € G. But then since U;((rs)t) = U;j(r(st)), we get using (3.1)
and (3.11) that

(3.13) PP =pR 00, i=1,2,3,

for r,s,t € G. Finally, using (3.8)-(3.13), one can show without

difficulty that pﬁ’;), is constant on cosets of K in G, and hence the
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map (s,t) — pﬁ’;), of G x G into ®* s continuous, i = 1,2,3.
(Here as usual ®* has the discrete topology.)
For s € G, define Bs: & — & by

Bs(X1, X2, X3)
= (U1(8)Xp 1 Ui(s)™1, Un(8)Xp2Un(s)™", Us(5) X 3Us(s)7").

Then, by (3.1) and (3.11), By = BB, 5,1 € G. Thus, by (3.8),
(3.9) and [B, AG.14.2], {Xeé’ BsX = X for seG} is a ®-form
of &. But this ®-form contains &(¥) and L (¥) = & . Thus,
& (<L) ={Xe&:BX =X for se G} and &(Z) is a D-form of
Z . Hence,

(3.14) &(Z)={(X1, X2, X3) € & : Uy(s)X,,, Ui(s) ™"
=X, forseG,i=1,2,3}.

We now consider cases. Suppose first that % has type D4 . So
H =G and I'=®. Then, p; = (1) for s € G, and so, by (3.14),

EZX)=&&H e &,

where & .= &(Z)N&; isa O-formof &, i=1,2,3. Thus, & isa
64-dimensional central simple algebra over ®, i =1, 2, 3. Also, by
(3.14), the projection maps for the decomposition & := & & & & &
restrict to isomorphisms

~~{XeEnd~( ):Ui($)XUi(s) ' =X forse G}, i=1,2,3.

By (3.13), (ps ,)S (cG 1S a continuous 2- cocycle in ®* which there-
fore determines an element p) of HXG,®>). Also, for s, €
G, U(sUi(t) = ps ) Ui(st). Hence, [£] maps to p() under the
isomorphism Br® — H2(G,®*), i = 1,2, 3. Thus, by (3.12),
&1 ®p & ®p &3 ~

Suppose next that . has type Dyyy. So (G: H)=2 and I' isa
quadratic extension of ®. We may assume that p, = (23) for some
t; € G. Then, by (3.14), we have

EL)=F 0%,

where & = &(Z) N& and & = &(ZL)n (é;z @ &) are ®-forms
of g] and é’& @ é% respectively. The projection maps onto the first
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and second factors in the decomposition g .= é;l &) g’g <) g% restrict to
isomorphisms

F = {X €Endz(%): Ui(s)XUy(s)"' = X fors€ G} and
Z = {X € Endg(%) : Us(s)XUp(s)™! = X for s € H}

respectively. Thus, . is a 64-dimensional central simple algebra over
® and Z is a 128-dimensional simple algebra over ® with centre
I'. As in the previous case, (pg),)s,,eG determines an element p(1)
of H2(G,®*) which is the image of [#] under the isomorphism
Br(®) — H*(G, &)X). Similarly, (p§2,),)s,,eH determines an element
p@ of H2(H, ®*) which is the image of [£’] under the isomorphism
Br(I') — H*(H, ®).

Now let B := Mg ((f)’() in the notation of [Serl, p. I-12]. Thus,
by definition, B is the G-module consisting of all continuous maps
a*: G — ®* so that a*(hs) = *a"(s) for h e H, s € G. The G-
action on B is given by (a*)(¢) = a*(¢s). If (o, B) € @< x &, then
there is a unique element a* of B so that a*(1) =« and a*(#;) = f.
Every element of B is of this form and so we have an identification
B = ®* x®* . If a, B ==+1 and h € H, the G-action on B satisfies

(315  Ma,B)=(a,p) and “i(a, B)=(B, ).
Now by [Serl, p. I-12 to I-13], the projection map B — ®* onto
the first factor induces an isomorphism H?(G, B) A H 2(H, X)),

while the map B — ®* defined by (a, ) — a( B) induces a
homomorphism H?(G, B) , H*(G, &)X). Then, by definition,

corg/m = ¢r0 97"

Define ng , := (pgz,),, pg),) € B for s,t € G. Then, it follows
from (3.13) and (3.15) that (7 ;)s e is a continuous 2-cocycle in
B which therefore determines an element n of H?(G, B). But,
¢1(m) = p@® and so corg/g(p®) = ¢y(n) is represented by the 2-
cocycle (pg%ipg?i)s,teG. Hence, by (3.2) and (3.12), & ®¢ crjo(¥) ~
D.

Finally, suppose - has type Dy or Dgyp. Choose sy € G so that
ps, = (123). If £ has type Duyp, choose ¢, € G so that p, = (23).
Put F = H in type Dy and F = (H, t;) in type Dgyy. Then, F
is a subgroup of G of index 3 with coset representatives 1, sg, 5(2,.
Put A = Fix(F). Then, [A: ®] = 3. In fact A =T in the case
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of type Daip, while A is one of the cubic subfields of I" in the case
of type Dgy1. Next the first projection map for the decomposition
& =& & & @ & restricts to an isomorphism

&(Z) = {X €Endg(%): Ui(s)XUy(s)~' = X for s € F}.

Thus, &(%) is a 192-dimensional simple algebra with centre A.
Moreover, (pgl,),)s,tep determines an element p() of H2(F, ®)
which is the image of [£(.%¥)] under the isomorphism Br(A) —
HX(F , ®).

Let B := MZ(®*). Then, for (a, 8, 7) € ®* x ®* x ®*, there
is a umque element a* of B so that a*(1) = a, a*(s) = B and
a*(s}) = y. This gives an identification B = O x O x *. If
a, ,B y ==1 and f € F, the action of G on B satisfies

Ha, B, 7)=(a, B,7), “(a,B,7)=(B,7,0)
and,int}’peD4VI, tl(aaﬂay)-:(asysﬂ)'
Again the projection map B — ®* onto the first factor induces
an isomorphism H2(G, B) —% H2(F, ®*), while the map B —

®* defined by (a, B,7) — a(® ‘/)’)(so y) induces a homomorphism
H*(G, B) Ny H*(G, ®). By definition, corg/y = ¢, 0¢;'. But

then =, ; := (pﬁl),, pﬁz),, p§3), s,t € G, defines a continuous 2-
cocycle which determines an element n€ H?(G, B) such that ¢;(n)=
pM. Thus, corg/r(p™")) = ¢y(m) is represented by the 2-cocycle

(P2 p); i - Hence, by (3.2) and (3.12), ca,0(&(Z)) ~®. O

REMARK 3.16. For convenient later reference, we summarize the
case-by-case information observed so far. (See also [J2], [Alll] and
[Ta].) If . has type Dy, then

gL =508,
where &, &, and &; are 64-dimensional central simple,
(3.17) [&l&I&]I=1 and [&F =[&) =[&) =1 in Br(®).
If .Z has type Dy, then
E)=F a7,
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where . is 64-dimensional central simple, £ is 128-dimensional
simple with centre I" of degree 2 over @,

(3.18) [Fllcrjo(@)]=1in Br(®), [F]*=1in Br(®) and
[£1? =11in Br(T).

If .Z has type D4y or D4y, then &(Z) is 192-dimensional simple
with centre A of degree 3 over @,

(3.19) [ca/0(&(Z))]=1in Br(®) and [&(Z)]* =1 in Br(A).

Here A =T in the case of type Dyyp, while A is one of the (isomor-
phic) cubic subfields of I' in the case of type Dgyp.

REMARK 3.20. Suppose .Z is a Lie algebra of type D4 over ®.
We call & orthogonal if £ is isomorphic to the orthogonal Lie
algebra o(g) of an 8-dimensional nondegenerate quadratic form g .
The following characterization of orthogonal D,’s holds:

(3.21) .2 is orthogonal < & (%) has a simple summand
isomorphic to Mg(®).

Indeed the implication “=-" follows from the fact that the projec-
tion mappings (L;, L, L3) — L; give all 3-distinct 8-dimensional
irreducible modules for .. Conversely, if & () has a simple sum-
mand % that is isomorphic to Mg(®), then % = &Nn&(Z) for
some I € {1, 2, 3}, and so the ith projection map Z é;j restricts
to an isomorphism of " onto (¥, Jy) :={X € ¥ : Jy X = - X},
where Jy = J|g . But then . is orthogonal [J1, §§6 and 7].

4. The Allen invariant of .7 (CD(% , u), 7). Suppose in this sec-
tion that &, u, y are as in §1 and Z = Z(CD(Z, u),y). In
this section we recall the results from [A2] and [A3] that we will need
regarding the Allen invariant of .# and its use in the description of
isotropic Dy’s.

Quaternion algebras will play a fundamental role in our discussion
here and in the rest of the paper. If .Z is a separable commutative
associative algebra over @, an algebra & over @ is called a quater-
nion algebra over Z if & has centre Z and I = (a, f/Z) as
Z -algebras for some units «, f of Z. Here, as is usual, (a, 8/2)
or (2_{#) denotes the associative Z -algebra Z'19.Zi0 Zjo.Z’ij that
is the free .Z’-module with Z'-basis 1, i, j, ij satisfying the relations
iZ=oal, j*=p1, ij = —ji. If we write Z =A, ®---® Ay, where
A; is a field, then the quaternion algebras over .Z are precisely the
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algebras of the form &, @ - - ©Y,,, where Z; is a quaternion algebra
over A; (in the usual sense), i=1, ..., m.

Let A\>.% be the second exterior power of .Z . For b € &, define
F: N°B — N*F by Fy(chnd)=(bc)Ad+cA(bd). Let @ be the
associative subalgebra of AM,(End /\2%’ ) generated by the matrices
(¢ 5], beF, and [94I7. The centre of & is {[§ 3] : R € #},
where % = span{F, F, : b, c € %} and By :={bec X :t5(b) =0}
[A3, Proposition 6.7]. We identify # with the centre of & by the map
R — [RO]. Z isa 3-dimensional separable commutative associative
algebra and € is a quaternion algebra over % (see Proposition 4.4
below). % is called the cubic resolvent algebra of % , and & is called
the quaternion algebra determined by % and u. These algebras are
important for our purposes because of the following result which is
Theorem 8.10 of [A3]:

ProrosITION 4.1. If # = Z (CD(F , u), y) then &(F) = My4(@Q)
and Z (%) = %, where @ is the quaternion algebra determined by
ZF and R is the cubic resolvent algebra of % .

We next describe generators and relations for &€ and &% . To do
this, we select a generator by for % with minimum polynomial f(x)
of the form

(4.2) f(x)=x*+ Box? + Bix + fo,
where f; € ® and B; # 0. (Such a choice is always possible.) Let
(4.3) h(x) := x3 + 2,x% + (B2 — 4B80)x — B7.

(The polynomial —A(—x) is classically called the cubic resolvent of
f(x).) If f(x) hasroots Ay, 4;, A3, 44 In ®, then A(x) has roots
(A + 44)%, (A + 40)2, (A3 + Ag)? in ®. In both cases the roots
are necessarily distinct. With this notation, we have the following
description of & and % which is part of Propositions 6.2 and 6.7 of
[A3].

PROPOSITION 4.4. % has a generator v with minimum polynomial
h(x) so that @ = (Z£).

In the following corollary of Propositions 4.1 and 4.4, we compute
the Dy4-type of Z and determine when % is orthogonal (see Remark
3.20). This last determination will be useful later in the description
of anisotropic D4’s over number fields. If K is a group, we use the
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term K-cubic (resp. K-quartic) to refer to a degree 3 (resp. degree
4) extension of ® whose minimum Galois splitting field has Galois
group isomorphic to K.

COROLLARY 4.5. Let # = #Z(CD(%, u), y). Then, the follow-
ing table gives the Dy-type of % and indicates whether or not % is
orthogonal for each possible choice of % (up to isomorphism):

B D,-type % orthogonal
(4) @ -
@ or E w%th D, Yes
E/® quadratic
a Z/(2)  Z/(2) quartic D, Yes iff 4 is a norm for one of

the quadratic subextensions of % /®
o? @ E with E/®

D Yes
quadratic 4
E, ® E, with E, /® and E,/®
1= .1/ .2/ D4y Yes
nonisomorphic quadratics
a Z/(4)-quartic or a D Yes iff 4 is a norm for
411

dihedral quartic the quadratic subextension of % /D

an A -quarticor @ E

with E/® a Z/(3)-cubic Dy No
an S,-quarticor ®® E
: . D N
with E/® an S;-cubic 4v1 o

Proof. Let Pz/® and Py /P denoteN respectively the minimum
Galois splitting field of % and % in ®/®. Then, by Proposition
4.4, since Y0 4, =0,

Pz =®(41, 42, 43, 44) and
Py = D((A + Ag) (A2 + 43), (A2 + Aa)(A1 + A3), (A3 + A4) (A1 +42)).

Put Gy := Gal(Pg/®) and G4 := Gal(P5/®P). Identifying G5 as
a subgroup of S4, we have

(4.6) Gz =2Ggz/Gz Ny,

where V; = {(1), (14)(23), (24)(13), (34)(12)}. But since # =
Z (%), it follows from Remark 3.16 that Z has type Da;, Dy,
Dy or D4y according as G4 has order 1, 2, 3 or 6.

The rest of the argument is a case-by-case check. We consider the
most complicated case and leave the others to the reader. Suppose %
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is a dihedral quartic. We may identify % = ®[4;] and relabel 4,,
A3, A4 if necessary so that % is the fixed field of (34) in Pg . In that
case, Gy = ((1324), (34)). Hence, by (4.6), G has order 2 and
so Z has type Dy . Also, v3 := (43 + A4)? is a root of A(x) in ®.
Thus, there is a homomorphism of % onto ® so that ¥ — v3, which
induces a homomorphism of & onto (v3, u/®). Since .Z has type
Dy and &(F) = My(@), (v3, u/P) is the unique 4-dimensional
simple summand of & . Hence, by Remark 3.20, . is orthogonal iff
(v3, u/®) splits, which holds iff x4 is a norm for ®[43 + 44] [Lam,
Theorem 2.7, p. 58]. O

Recall next that a Lie algebra & of type D4 over @ is said to be
isotropic if . has a nonzero element X so that ad(X) is diagonal-
izable over ®. Otherwise, .¥ is said to be anisotropic. We say that
Z is strongly isotropic if . is isotropic and . is not isomorphic to
the orthogonal Lie algebra o(g) of an 8-dimensional nondegenerate
quadratic form of Witt index 1. We now see using results from [A2]
and [A3] that the D,’s that are strongly isotropic all come from the
construction in §1, and that they are determined up to isomorphism
by their Allen invariants.

PrOPOSITION 4.7. Let yq := diag(l, —1,1). If &£ is a Lie al-
gebra of type D4y over ®, then £ is strongly isotropic if and only
if & = Z(CD(Z, u), yo) for some % ,u as in §1. Moreover, if
L =2FH(CD(ZF, un), y) and &' = % (CD(Z', '), yo), then

PP (P =E(FP el =g,

where & (resp. @') is the quaternion algebra determined by %, u
(resp. F', 1).

Proof. We use the fact that 7 (CD(Z , u), yo) = Z(CD(Z, u)),
where Z (CD(# , u)) is the Lie algebra constructed from CD(Z , u)
using I. L. Kantor’s Lie algebra construction [A3, Theorem 2.2]. With
that fact in mind, the present proposition is part of Theorems 5.1 and
8.1 of [A2]. m]

REMARK 4.8. Theorem 5.1 of [A2] (used above) is proved using the
description of finite dimensional central simple structurable algebras
given in [A1]. Recently O. N. Smirnov [Sm] has pointed out that there
is a missing class of 35-dimensional algebras in that description and
has corrected its proof. The proof of Theorem 5.1 of [A2] then goes
through without any changes. (See [A&F2, §5] for details.)
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5. Real and p-adic D,’s. The classification of real and p-adic Lie
algebras of type D, is well known ([Ve], [J2, §7], [All1, §4]). It is
important though for our purposes to understand those Lie algebras
in terms of the construction .7 (CD(% , u), 7).

If . is a Lie algebra of type D4 over R, we denote the signature
of the Killing form of & by sig(-¥’) and call it the signature of £ .

The first proposition computes the Allen invariant and signature of
the Lie algebra 7 (CD(Z, u), y) in the case when @ is the real field
R. In the table, C and H denote respectively the complex field and
the real quaternion division algebra. The top row lists the possibilities
for %, and the first column lists the possibilities for x and y. “y;
same sign” covers the cases when y;, y,, y3 are all positive or all
negative, while “y; diff. sign” covers the remaining cases.

ProPOSITION 5.1. Let ® = R and let # = FZ(CD(Z, u),7),
where B , u, y are as in §1. Then, the Allen invariant & (%) and the
signature of % are given in the following table:

RPecC c® R®
©>0 My(R) ® My(C), 2 My(R)P, 4 MR)P, 4
r<0,y @ 3)
R 2 - R
GE. sign My(R) ® My(C), MR & MH)?, -4  M;RD, 4
u<0, v @ ®
. M(R) ® M,(C), —14 MR & M,()?, -4 MR)D, —28
o s(R) © My (C) s(R) © M, (H) s®)

Proof. We use the notation of §4. Also, let B be the Killing form
of Z and let g, , denote the symmetric bilinear form with matrix
[% % ]. In [A3, Theorem 7.2], we calculated the following formula

for B:
2
(5:2) 3B =(-ditg) L (iutg) L (—daig) L (2ntzg) L (~dstzp)

1 (d3utz) L (ug1,0) L (utz),
where d; := 77", 6 =37t S3i=y05t.

Suppose first that & = R@ @ C. Let by = (0, =2, 1 + i), where
i?=-11in C. Then, f(x) hasroots 0, =2, 1+i, 1—i and so A(x)
has roots —2i, 2i, 4. By Proposition 4.4, there exists v € % with
minimum polynomial 4(x) so that # = ®[v]=Ca® R and

g =~ (Vﬁx#) ~ (‘% ”) ® (4];&”) = M,(C) ® My(R).
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Since & (%) = My(&€), we have the Allen invariants in the first col-
umn. Also, fp = g3 and ty = q3,;. If 4 > 0, we then get
B = qi5,13 (by (5.2)) and so B has signature 2. So suppose u < 0.
If the y; have different signs, then exactly two of the J;’s are negative
and we get B = g5, 13 again. Finally, if the y;’s have the same sign,
then the J;’s are all positive and so B = g7 »; .

If Z=C® or % =R®, wemay choose by = (1+1i, —1+2i) or
(1,2, =3, 0) respectively. The rest of the calculations are similar to
the ones just described and so we omit them. )

It follows from Propositions 4.7 and 5.1 that there are exactly 3 real
Lie algebras of type D4 that are strongly isotropic and these have the
distinct signatures 4, 2, —4 . But there is a unique anisotropic (=com-
pact [Sell, p. 292]) real D4 and it has signature —28. Also, there is a
unique 8-dimensional real nondegenerate quadartic form of Witt in-
dex 1. The corresponding orthogonal Lie algebra must have signature
—14 (since —14 occurs in Proposition 5.1). Thus, we recover the very
well known fact that there are exactly 5 real D4’s up to isomorphism
and these are distinguished by their signatures. We also obtain:

COROLLARY 5.3. Any Lie algebra of type D4 over R is isomorphic
to Z(CD(Z , u), y) forsome B, u,y.

We now look at p-adic D4’s. By a p-adic field we mean a completion
of a number field at a finite prime. If @ is a p-adic field, then by a
theorem of Kneser (see [Knl, Satz 3] or [B&T, Proposition 6]) any
Lie algebra of type D4 over ® is isotropic. Moreover, there are no
nondegenerate 8-dimensional quadratic forms of Witt index 1 over a
p-adic field [Lam, p. 156]. Thus, every Lie algebra of type D4 over a
p-adic field is strongly isotropic. Hence, by Proposition 4.7, we have
the following:

PRrROPOSITION 5.4. Suppose ® is a p-adic field and let yy :=
diag(l, —1,1). Then, any Lie algebra & of type D4 over ® is
isomorphic to # (CD(Z , 1), yo) for some F, u. Moreover, if &
and &' are Lie algebras of type D4 over ®, then

(5.5) 2L e&L)=2EL).
6. The Allen invariant over a number field. In this section, we char-

acterize the associative algebras that can occur as Allen invariants over
a number field ®.
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We recall some number theoretic notation that we will use here
and frequently in the rest of the paper. If ® is a number field we
denote by S(®) the set of all primes of @ (finite or infinite) and
by Sr(®P) the set of all real primes of ®. If p € S(P), P, will
denote the completion of ® at p and, if 2 is an algebra over @,
we write 2 1= %v =P, ®¢p 2. If pc Sg(P), we denote by o, an
embedding of ® into R which induces the prime p. Its extension
to an isomorphism ®, — R of valued fields will also be denoted by
o,. If p € Spr(P) and a € @, we say that a is positive at p (resp.
negative at p) if oy(a) > 0 (resp. if g,(a) < 0). This is written as
a >, 0 (resp. a <, 0).

PROPOSITION 6.1. Let ® be a number field. Suppose & is a quater-
nion algebra over a 3-dimensional separable algebra Z over ®. Then,
the following statements are equivalent:

(i) cz/0(D)~ D,
(i) D = (v, u/Z) for some generator v of Z so that nz(v) €
®*? and some u € ®*.
Moreover, in that case u can be chosen to be totally negative (i.e.
U <p 0 for all p € Sg(P)).

Proof. Write
D=0 -0, and Z =AND - -OAn,

where <; is a quaternion algebra over its centre A;, and A; is a field,
i=1,...,m.

“(i) = (ii)” For each i, Z; ®A Aip = M,(A;p) as A;p-algebras for
all but a finite number of primes P of A; [P, p. 358]. Here, Ay
denotes the completion of A; at 8. Thus, we may choose a finite

nonempty set {p;, ..., p;} of finite primes of ® so that
(6.2) i @p Aip = Mp(Aip)  as Ay -algebras
for i=1,..., m and all finite primes P of A; such that PND ¢
{p1,...,p}. Now for fixed je{l,...,[}, we have
m
zz [Alm :q)pI] = 33
i=1 P

where the inner sum runs over all finite primes P of A; so that BN
® = p;. Thus, at most one term [A;p : d>pj] in the double sum equals
2. Since (Dpj has more than one quadratic extension [Lam, Theorem
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2.22, p. 161], we may choose a quadratic extension dej(‘ /TE}) /<I>pj SO
that, as extensions of <I>pl ,

(6.3) ij(, /u;) is not isomorphic to A,
for i=1,..., m and all primes ‘P of A; such that PNP=yp;.

By the strong approximation theorem [C, p. 67] and the local square
theorem [Lam, Theorem 2.19, p. 160], we may choose u # 0 € ® so
that

(6.4) uujedD;‘jz,jzl,...,l, and u <, 0 for all p € Sr(®).

Then, u is totally negative.
Put K; = Ai(y/i), i =1,..., m. We next claim that for [ =
1,...,m

(6.5) 9; ®a Ki = My(K;) as K;- algebras.

To see this it suffices, by the Albert-Hasse-Brauer-Noether theorem [P,
p. 354], to show that

(6.6) 9; ®p Kig = M>(K;q) as K;q-algebras

for all primes Q of K;. If 9 is infinite, this is clear, since u is
totally negative. So suppose £ is finite and put ‘B = QN A;. Then,

(6.7) Z; @A, Kin = (Z; ®, Aigp) ®a, Kin as Kig-algebras.

Thus, by (6.2), we may assume that PN P = p; for some j €

{1,...,1}. But then K;q = A,'gp(\/— = ,c‘p(\/_ (by (6.4)) and

hence, by (6.3), Ko is a quadratic extension of A;p. But any qua-

dratic extension splits a quaternion algebra over a p-adic field [Lam,

Lemma 2.14, p. 517]. Thus, by (6.7), we have (6.6) and hence (6.5).
Since K; = A;(u) it follows from (6.5) that we may write

- aj, U
9,_( A, )

for some «a; # 0 € A; [P, Corollary on p. 241], i=1, ..., m. Then,
by the projection formula [Tig, Theorem 3.2], we have Ca, (i) ~
(ni(a;), p/®), where n; :=ny, , i =1,..., m. Hence, cz /(D) ~
(0, p/®), where 6 = [[2; ni(e;). Thus, by our hypothesis that
¢z /0(Z)~®, we have (5, u/®)~P. Hence, for each i, [(5, p/A;)]
=1 in Br(A;) and so

= (52)] 1 (50 - [(*54)]
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which implies that &; = («;0, u/A;) over A;. Since Y7 [A;: D] =
3, we may choose f; # 0 € A; so that v; := ;0 8} generates A; over
®,i=1,...,m,and, if m=3, vy, vy, v3 are distinct. Then,

giz(”i\’_"), i=1,..,m.
l

Thus, putting v = Y7, v, € &, we have & = (v, u/Z), v gener-
ates .Z , and

ne()®? = 1] n;v)®*?

s

.
Il

(nj(aj)d[Al :(D])q)xz — 54(sz — lq)XZ .

b

j=1
“(il) = (i)” Suppose & = (v, u/Z’) asin (ii). Write v = v, +---+

Vm,where v; € A;, i=1,...,m. Then, [, n;(v;) = nz(v) = n?
for some n € ®*. Also, &; = (v;, u/A;), and so, by the pro-
jection formula, cAl/q,(Q,-) ~ (ni(vi), u/®), i = 1,..., m. Thus,
cz (D) ~ (n*, p/®) ~ . o

The following lemma follows immediately from Propositions 4.1
and 4.4, and it is valid over any field of characteristic 0.

LEMMA 6.8 (FZ-construction lemma). Suppose Z is a 3-dimensional
separable commutative associative algebra and & = (v, u/Z), where
v is a generator of Z such that n(v) € ®2 and yp € ®* . Let

h(x) = x4+ arx? + ayx — n?

be the minimal polynomial of v over ®, where a,, a; € ®, n € P>
and n? = ny(v). Put
1
f(x)=x*+ %a2x2 +nx + R(a% —4ay) and B =[],

where by has minimum polynomial f(x) over ®. Then, & is iso-
morphic to the quaternion algebra determined by % and . Hence, for
any y = diag(y1, 72, 73), where yy, y2, 73 € ®*, Z(CD(Z, u), )
has Allen invariant isomorphic to M4(Z).

THEOREM 6.9. Let © be a number field. Suppose & is an associa-
tive algebra over ®. Then the following statements are equivalent:
(i) & is isomorphic to the Allen invariant of a Lie algebra of type
Dy over ®.
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(ii) & = Mg(®)3, the simple summands of & have exponent 1
or 2 in the Brauer groups over their centres, and cxp(&) ~ ®, where
Z is the centre of & .

(ili) & = My(Z), where & is a quaternion algebra over a 3-dimen-
sional separable algebra Z over ® and cy (D) ~ P.

Proof. (i) = (ii) follows from §3 (in particular Proposition 3.3).

“(ii) = (iil)” Z is 3-dimensional separable and we have & = & @
@&, and Z = A - ® A, where & is simple with centre
A; and dimAl & =64, i=1,...,m. Since index equals exponent
in the Brauer group over a number field [P, p. 359], & = My(<,),
where Z; is a quaternion algebra over A;. Then, & = My(2),
where &' = 2, ®--- & D, in which case ¢z /0(Z) ~ cz/0(&) ~ .

(ii1) = (i) follows from Proposition 6.1 ((i) = (ii)) and the .-
construction lemma. O

REMARKS 6.10. (a) The equivalence of (i) and (ii) in the theorem
answers, in the number field case, a question raised by T. Tamagawa
after a lecture on an earlier version of this work.

(b) Theorem 6.2 is also true if ® = R or a p-adic field. Indeed,
since index equals exponent in the Brauer group over those fields [P,
p. 339], the proofs of “(i) = (ii)” and “(ii) = (iii)” are the same as
above. If ® =R, “(iii) = (i)” follows from Proposition 5.1. Finally,
if ® is a p-adic field, then the implication “(i) = (ii)” in Proposition
6.1 follows from the “local part” of the argument given in the number
field case. Hence, the proof of “(iii) = (i)” in the Theorem is also
valid in the p-adic case.

(c) Suppose @ is a p-adic field. Then, it is an easy matter to list
the possible algebras & such that & is a quaternion algebra over a
3-dimensional separable algebra 2" and c3/p(Z) ~ 1. Indeed, let
D(E) denote the unique quaternion division algebra over E for each
finite extension E/®. If Z =P d P @ P, then we must have & =
My(®)3) or M,(®) @ D(P)? . Suppose next that Z = ® T, where
I'/® is a quadratic extension. Then & = M,(®) & M,(I') or & =
Z,eD(I), where Z; ~ cr;e(D(T)) . But D(I') cannot be obtained by
base field extension from a quaternion algebra over @ (since I' splits
any quaternion algebra over ®@). Hence, by the Albert-Riehm theorem
[Sch, Chapter 8, Theorems 9.5 and 11.2(ii)], cr/p(D(I')) is not similar
to ®. Thus, & = M(®) & My,(I') or & = D(®) e D(I'). Finally,
suppose that Z" = A, a cubic extension of ®. Then & = M,(A) or
D(A). But D(®), is a division algebra and so D(A) = D(®P), . Thus,
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[Tig, Theorem 2.5], cp;o(D(A)) = D(P)®9 D(P)®¢D(P) which is not
similar to ® and so & = M>,(A). Thus, the list of quaternion algebras
& over 3-dimensional separable algebras 2" so that ¢z /p(Z) ~ @
is:

(6.11) My @)®  and M,y (P) & D(P)?,
M@)o My(I') and D@)eDI) for[I':P]=2, and
M>(A) for [A:P]=3.

By remark (b) and (5.5), the Allen invariant induces a bijection from
the set of isomorphism classes of Dy’s over ® onto the set of algebras
My(Z), where & runs through the list (6.11). (Compare [J2, §7] and
[AllL, §4].)

7. Isomorphism of D,’s over number fields. Now that the possible
Allen invariants of Lie algebras of type D4 over number fields have
been identified, it is natural to ask how close the invariants come to de-
termining the Lie algebras. In this section, we prove an isomorphism
theorem that answers that question. We begin with some preliminary
results. _ .

If # is a semisimple Lie algebra over @, an automorphism of .#
is said to be inner if it lies in the connected component Aut(.#)° of

—_~

the algebraic group Aut(.#). Otherwise, the automorphism is said
to be outer. If ¥ is a Lie algebra of type D, over @, an automor-
phism of .# is called inner or outer according as its extension to an
automorphism of f% is inner or outer.

LEMMA 7.1. Suppose that ® =R, C or a p-adic field, and £ is a
Lie algebra of type D4y, 2y or Dy over ®. Then, £ has an outer
automorphism.

Proof. Suppose first that £ (%) has a simple summand that is iso-
morphic to Mg(®). Hence, by Remark 3.20, £ = o(q) for some
8-dimensional quadratic form ¢. Regarding this isomorphism as an
identification, we may take ¢ to be the automorphism of . defined
by #(X) = RXR!, where R is an orthogonal reflection (relative
to g) in a hyperplane. It follows from [J4, §4] that ¢ (extended to
,%) lies outside a proper closed subgroup of finite index in Aut(,%) .
Hence ¢ is outer.

This, by Proposition 5.1 and Corollary 5.3, completes the proof if
® = R or C. Suppose then that @ is a p-adic field. In that case
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Br(®) has exactly two elements of exponent 1 or 2, namely [®] and
[D], where D is the unique quaternion division algebra over @ [Lam,
Theorem 2.10, p. 154].

If £ has type Dgy, then & = Mg(®) for some i (by (3.17)) and
so we’re done by the above. Suppose next that . has type Dyy.
With the notation of Remark 3.16, % = Mg(®) or My(D). Thus,
we may assume that ¥ = My(D). But then, as in Remark 3.20,
L = A(F,Js). Hence, by [J1, §86 and 7], & = S (My(D), Js),
where Jg(X) = SX'S-! and S is an invertible 4 x 4-diagonal matrix
over D that is skew-hermitian with respect to the canonical involution
~ on D. Identify & = #(M4(D), Js). Let §®*2 be the discrimi-
nant of S, i.e. 6®*2 is the square class in ®>/®*? represented by
the reduced norm (=generic norm) of S in My(D). The reduced
norm #np on D is universal [Lam, Corollary 2.12, p. 156] and so we
may write 6 = np(x) for some x # 0 € D. Then, x = 515, for
some s;,s5; # 0 € #(D, 7). Hence, S has the same discriminant
as S’ = diag(s;, §1, 81, 52) and hence (My(D), Js) = (My(D), Jg)
[J1, Theorem 9]. Thus, we may assume that S = diag(s,, s, 51, $2) -
But since .& has type Dy, J is not a square. (See [T1, p. 57], or
use base field extension and argue using [J2, top of p. 145].) Hence,
np(s))®*2 # np(sy)®*%. Thus, putting P; := ®[s;], i = 1,2, P
and P, are not isomorphic. Thus, the norm groups np /o(P]) and
np, Jo(Py’) are distinct [Ser2, Chapter 14, §6]. But these norm groups
are subgroups of ®* of index 2 [Ser2, Proposition 9, p. 196]. Thus,
np jo(P{)np jo(Py) = ®*. Hence, np(P )np(P;) = ®*. Now fix
so # 0 € P+ (L with respect to np). Thus, we may choose g; € P
and gy € P, so that np(g1)nn(g) = —nn(so) . Put g =sog, ' . Then,
g1 € P, g €Pj and np(g)) = —np(g,) . Thus,

gi1s1 =518, &S =-%5g and np(g)=—np(g).

Put R = diag(g;, &1, &1, &). Then, (JsR)R = al, where a =
np(g1). Thus, the map w: My(D) — My(D) defined by w(X) =
RXR~! is an automorphism of (My(D), Js) which therefore restricts
to an automorphism ¢ of .%. But R has reduced norm —a* and
(JsR)R = ol . Thus, using [J4, §4] it follows that ¢ (extended to ,%)
lies outside a proper closed subgroup of finite index in Aut(f%) . So
¢ is outer.

Suppose finally that . has type Dyy. Then, by [Alll, p. 264
and Theorem 5], ¥ = Der(#/T"), where # is the (split) excep-
tional simple Jordan algebra, I" is a 3-dimensional subalgebra of _#
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which is a Galois cubic extension of ®, and Der((#/T) := {D €
Der # : D|r = 0}. Identify ¥ = Der(,# /T"). Let n be a generator
of Gal(I'/®). Then, as in the proof of [Alll, Corollary on p. 261],
can be extended to an automorphism R of _# . Define ¢: ¥ — &
by ¢(X) = RXR~!. Then, since R|r # 1, it follows from [Alll, proof
of Theorem 7 and the Note on p. 253] that ¢ (extended to %) lies
outside a proper closed subgroup of finite index in Aut(%) . Thus,
¢ is outer. 0

If % and .’ are ®-forms of & , we say that . are &’ are inner
isomorphic, written Z =y, if there is an inner automorphism ¢
of & sothat ¢.& = .£’. We say that the Allen invariants & (%) and
& (') are inner isomorphic, written~g (&) =y &(L"), if there is an
automorphism y of & so that w|Z =1 and y(& (X)) = &(Z").
It follows from Corollary 2.6 that

25> and & (&)= &Y.

We now see that the converse holds over R, C and p-adic fields.

PROPOSITION 7.2. Suppose ® =R, C or a p-adic field and Zz,
are O-forms of £ . Then,

PP o F2F and E(L)=E(F).

Proof. Suppose that Z =2 & and &(Z) =y &(Z'). Thus,
there exist ¢ € Aut(¥’) so that 9.2 = &’ and y € Aut(é; ) so
that w|.Z = I and y&(¥) = &(¥"). Then, ¢ is determined
by some pair (p, U) (see Remark 2.5) where p = p(¢) € S3 and
U = (U, Uz, U;) satisty (2.2)-(2.4) with s = 1. We now define
w € Aut(&) by

(X1, Xz, X3) = (U XU, UpXpaUs ', UsXp3Us ).
Then, w|°§Z = ¢ and hence w(& (X)) = &(<’). Moreover,

(7.3) w&) =&, i=1,2,3.
Also since y(E;) = E;, we have
(7.4) w& =&, i=1,2,3.

Now it suffices to find an automorphism 7 € Aut(Z) so that (de-

noting the extension of # to & by 7 as well) the permutation p(#)
in S3 determined by » is p. Indeed, in that case we would have
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(o~ H(L) = L' and ¢n~! € Aut(¥)° by Corollary 2.6. Thus, we
certainly may assume that p # (1). We now consider cases and use
the notation of Remark 3.16 for . and £’ (with primes in the lat-
ter case). We note that since & (%) = &(L’), £ and £’ have the
same Dy-type (by Remark 3.16).

Suppose first that . has type D4 . Then, by (7.3) and (7.4),

(7.5) w(é’i)=éif-.l. and & =¢&/, i=1,2,3.

Since p # (1), (7.5) forces two distinct &;’s to be isomorphic, say
& = &;. Thus, by (3.17), & ~ ®. Suppose now that & ~ ®. Then,
& =& =& ~ ®. Thus, by [J2, Theorem 7], £ isomorphic to
o(n), where n is the norm form of a Cayley algebra & over ®. We
may identify & as a ?:form of # . Then, o(n) is isomorphic to the

following ®-form of & :

"?” = {(Lls L29 L3) ea(n)(3) : (lea Y, Z)
+(x, Ly, z)+(x,y,L3z)=0forx,y,z€®}

[J2, Lemma 2]. Hence, .#” is isomorphic to & . It is clear from
Remark 2.5(b) that .#” has automorphisms which determine all 6
permutations in S3. Hence, the same is true of .’ and we’re done
in the case when & ~ ®. So suppose that & is not similar to
®. Then, by (7.5), p = (23). But by Lemma 7.1, & has an outer
automorphism 7. Extending #n to an automorphism v of & (just as
we extended ¢ at the beginning of the proof), we see that v&; = é’q_l i
i=1,2,3,where g =p(n). Hence, p(n) = (23).

Suppose next that . has type Dyp;. Then, by (7.4), we may assume
that &(¥) =F 0% and &(¥") = F'9%", where ¥ = &in&(Y),
g =(&5H0H)NE (L), F' =EN&E (L) and &' = (L0H)NE (L.
By (7.3), p =(23). But < has an outer automorphism 7, and again
extending 7 to &, we see that p(n) = (23). _

Suppose finally that . has type Dy or Dgyy. Since y|Z =1,
Z (&) =Z(Z"). Thus, by (7.3), w restricts to a nontrivial automor-
phism of Z'(¥’) whose order is the order of p. Hence, . has type
Dyyp and p = (123) or~(132). But . has an outer automorphism
n and extending 5 to & we see that p(n) = (123) or (132). Thus;
p(n)=p or p(n?)=p. O

If A is an algebraic group defined over @ (in the sense of [B])
and P/® is an extension, we denote by H'(P, A) the cohomology
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set H i(Gal(f/P), A(P)) whenever the latter makes sense. Here P is
an algebraic closure of P and A(P) is the group of P-points of A.
Then, H!(P, A) is functorial in P [Serl, p. II-3].

THEOREM 7.6 (Injectivity theorem). Suppose A is an almost simple
adjoint algebraic group of type D, defined over a number field ®.
Then, the map

HY(®, 4)— ] H (P, 4)
pES(P)
is injective.

The injectivity theorem will be proved using the corresponding re-
sult for simply connected groups due to Harder [Ha]. This involves
a short excursion into Galois cohomology that is independent of the
rest of the paper. We therefore postpone the proof until an appendix
(§12). For the terminology used in the statement of the theorem see
for example [T1].

We now use the injectivity theorem and Proposition 7.2 to prove
the following result:

THEOREM 7.7 (Dg4-isomorphism theorem). Suppose that & and &’
are Lie algebras of type D4 over a number field ®. Then,

2L & L)=2E(L)and L=2 for all real primes p.

Proof. We need only prove “<”.

Choose an algebraically closed extension Q/® of high enough tran-
scendency degree to contain copies of ®,/® for all p € S(P). We
identify ®,/® in Q/® for all p € S(P), and we take ® (resp. D7)
to be the algebraic closure of ® (resp. @) in Q.

We identify % .S” & and Z as well as D) ®5 i;” Dy @5 ,‘Z

<[>~®~c%” and @} ®z z as subalgebras of Q&g Z, Q® .S” Q® g

and Q ®F z respectlvely We note that @) ® 5” N ®3 & and
N ®~Z can be regarded as the algebras constructed from <I>~ ®3 &
exactly as ,5” & and Z were constructed from € in §2.

Now identify ¥ and £’ as ®-forms of Z. Since & (&) =

& (<'"), we have an 1somorph1sm w: & — & so that v(& (X)) =
&(Z"). Then, y(E;)=E,;, i=1,2,3, for some g €S3. But then

letting ¢ be any element of Aut(.,? ) so that p(¢) = q and extending
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¢ to an automorphism w of g (as in the proof of Proposition 7.2),
we see that wy|s = I. Thus, replacing < by ¢ and y by

wy , we may assume that there exists an isomorphism y: & & so
that y(&(Z)) = &(Z") and y|z =1I. That is E(L) =y &E(L).
Hence, since with our identifications we have & (%) = &(<),) and
& (L) =&(ZL")y, it follows that

(7.8) E(K) = E(F) forpeS(®).

Next let 4 = Aut(Q®g #)0. Tt is well known that A is an almost
simple adjoint algebraic group of type Dy. We give A4 the structure
of an algebralc group defined over @ using the ®-form Z of &Z.
Then, A(®) = Aut(¥ )0 and A(®;) = Aut(®y ®~Z )0 for p € S(P).

Now let (o5)seg and (of)seq be the Galois precocycles determined
by . and &’ respectively. Then, as in proof of Proposition 3.3,
as (resp. of) extends to an s-linear automorphism Bs (resp. Bi) of
& which maps E; to E o) (resp. E, ) ;) and fixes the elements
of Z(Z) (resp. 2’(3’)) But 2’(3) (SZ’) since ¥ (Z(Z)) =
Z(Z') and l//|§ = 1. Thus, B/(Bs)"! is a linear automorphism of
& which fixes the elements of .2 (-¥) and hence the elements of Z.
Hence, p(as) = p(a4). Thus, putting {s = o4a; !, we have p({;) = (1)
and hence

(7.9) {5 € A(D)

for s € G. Therefore, ({s)se¢ is a continuous 1-cocycle with values
in A(<f>) which therefore represents an element { € H!(®, 4). (This
is the standard assignment of a cohomology class to a ®-form relative
to .. Under this assignment .’ — { and & — 1. (7.9) says that
<" is an inner twist of £ .) But then { = 1 if and only if & =, %" .
Thus, the injectivity theorem tells us that

(7.10) Z=F forallpeS@) =L ="

So it suffices to verify that £ =, 7 for all p € S(®). But then by
(7.8) and Proposition 7.2, it is enough to show that _% = 7 for all
p € S(®). If p is real this is being assumed, if p is complex it 1is
trivial, and if p is finite it follows from (5.5) and (7.8). g

8. Construction of D,’s over number fields. This section contains the
main results of the paper. If ® is a number field, we show that the
construction in §1 is complete in the sense that it yields all Lie algebras
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of type D4 over ®. We also give necessary and sufficient conditions
for isomorphism of the Lie algebras obtained from the construction.

If ® is a number field and p € Sg(P), we may identify ®, and R
by means of o,. If £ is a Lie algebra of type D, and p € Sg(P),
we may then refer to the signature sig(-%) of % .

LEMMA 8.1. Suppose & is a Lie algebra of type D4 over a number
field ®. Suppose % is as in §1 and pu is a totally negative scalar
from ®* so that &(L) = My(&), where & is the quaternion algebra
determined by B and u. Then, there exists y, € ®* so that L =
F(CD(Z , u), y), where y = diag(1, y,, 1).

Proof. By Proposition 4.1, we have & () = & (% (CD(Z, u), 7))
for all choices of y as in §1. Thus, by the Dj-isomorphism theo-
rem, it suffices to show that we can choose y, € ®* so that .Z, =
F(CD(%# , u), y), forall p e Sg(®P), where y = diag(1, y,,1). So
let

S:={p e Sg(P): sig(-%) =—14 or —28}.

Choose, by the approximation theorem, y, € ®* so that

(8.2) 72>,0 forallpesS, and
72<p 0 forall p e Sg(P)-S.

Put y = diag(1, y,, 1) and Z = Z (CD(Z, u), 7).

Now let p € Sg(P). We want to show that sig(%,) = sig(-%). As
noted in the proof of the D4-isomorphism theorem, we have & (%) =
&(L)py. Thus, &(%) = &(%). Hence, if sig(4) = —4, we have
& (%) = &(%) = My(R) ®@ My(H)? and hence sig(.%) = —4, us-
ing Proposition 5.1. Suppose next that sig(-4;) = 2 or —14. Then,
arguing as above using Proposition 5.1, we see that sig(.%,) = 2

or —14. But in that case, sig(%) = -14 @ pe S & y» >, 0
(by (8.2)) & sig(#,) = —14 (since p <, 0). The argument when
sig(-%;) =4 or —28 is the same as for 2 or —14. O

THEOREM 8.3 (Completeness theorem for the construction). Let ®
be a number field and suppose . is a Lie algebra of type D4 over ®.
Then, there exist B, u, y asin§l so that

L= (CDEZE, 1), 7).
Moreover, u and y can be chosen with the additional properties that

u is totally negative and y = diag(1, y,, 1), wherey, #0€®.
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Proof. By Theorem 6.9, & (L) = M4(Z), where & is a quater-
nion algebra over a 3-dimensional separable algebra .Z° over ® and
cz/o(Z) ~ ®. Then, by Proposition 6.1 & = (v, u/Z) for some
generator v of Z so that ng(v) € ®*? and some totally negative
u € ®*. By the Z-construction lemma, we may choose % so that
Z is isomorphic to the quaternion algebra & determined by % and
u. Thus, &(F) = My(€) and the theorem follows from Lemma
8.1. ]

If # is as in §1, we say that &Z has a 1-dimensional summand
if % has a 1-dimensional simple ideal. We say that % is split if
B =¥ .

If & isa ®-form of Mn(é)(m) for some m, n, we say that 2 is
a full matrix algebra over its centre if 22 = M,(Z), where Z is the
centre of 2. Clearly, &2 is a full matrix algebra over its centre if and
only if each of the simple summands of &2 are full matrix algebras
over their centres. We say that 2 is split if 2 = M,(®)™) .

The following lemma follows immediately from Proposition 5.1:

LEMMA 8.4. Suppose ® is a number field, %, u,y are as in §1,
and u is totally negative. Let % = % (CD(Z, u), v). If p € Sr(P),
then

(8.5) B, has a 1-dimensional summand < sig(%,) # —4
& & (X )y is a full matrix algebra over its centre

Also,

(8.6) B, is split & sig(FZ,) =4 or — 28 & &(X), is split.

THEOREM 8.7 (Isomorphism theorem for the construction). Let ®
be a number field and %, u, y and F', u', y' are as in §1. Sup-
pose further that u, u' are totally negative and y, = diag(1, y2, 1),
Y = diag(1, y3, 1) where p,, 7, # 0€ ®. Let & (resp. &') be the
quaternion algebra determined by % and u (resp. %' and u'). Then,
Z(CD(% , u), y) = Z(CD(H', i), ') if and only if the following
conditions both hold: '

(a) @=a'.
(b) For each p € Sgr(®) such that B, has a 1-dimensional sum-
mand, we have >y, >, 0.
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Proof. Observe that if we assume (a), then the real primes p for
which %, has a 1-dimensional summand are the same as those for
which % has a 1-dimensional summand (by (8.5)).

Now put % = % (CD(%#, u), y) and %' = Z(CD(Z', u'), ).
By Proposition 4.1, we may assume that (a) holds. Thus, if p €
Sr(®P) is such that %, has no 1-dimensional summand, then %, = %/
automatically (by (8.5)). Thus, by the D4-isomorphism theorem, it
suffices to show that for p € Sg(®) such that %, has a 1-dimensional
summand, we have

Ty EFy & 273> 0.

Since %, also has a 1-dimensional summand and &(%,) = & (%)
and u, u' are negative at p, this follows from Proposition 5.1. O

9. Anisotropic D4’s over number fields. In this section, we identify
the anisotropic Dy4’s over a number field ®. The first lemma holds
over any field ® of characteristic zero.

LEMMA 9.1. Suppose &, u, y areasin§l. Let
F =F(CD(Z, un), 7).
Then,
FZ is strongly isotropic < % = % (CD(Z , u), ) -

Proof. “<” follows from Proposition 4.7. For “=”, suppose %
is strongly isotropic. By Proposition 4.7, % = % (CD(%’, 1), Yo)
for some %', u'. But then by Proposition 4.1, we have & = &',
where & (resp. &') is the quaternion algebra determined by %,
u (resp. &', u'). Thus, by Proposition 4.7, Z (CD(%’, I/'), vo) =
Z(CD(% , u), yo) and so Z = Z(CD(Z , 1), %) - O

THEOREM 9.2. Let ® be a number field. Suppose
F =F(CD(Z, u),y),

where %, u, y areasin§l, u istotally negative and y=diag(l, y;,1)
with y, € ®*.

(a) Z is strongly isotropic if and only if for each p € Sg(®) such
that %, has a 1-dimensional summand we have y; <, 0.

(b) If Z is orthogonal, then % is isotropic if and only if for each
p € Sr(®) so that B, is split we have y, <, 0.
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(c) If Z is not orthogonal, then % is isotropic if and only if for
each p € Sg(®) so that B, has a 1-dimensional summand we have
yz <p O .

Proof. (a) follows from Lemma 9.1 and the isomorphism theorem
for the construction, and (c) follows from (a). For (b), suppose .7 =
o(g) for some 8-dimensional nondegenerate quadratic form g. Now
it is well known that o(gq) is isotropic if and only if g is isotropic
(over any ®). (See for example [T1, 2.4].) Thus, by the local global
principle for isotropic quadratic forms [Lam, Corollary 3.5. p. 169],
Z is isotropic if and only if .%, is isotropic for all p € Sg(®P). But
if p € Sg(P), % is isotropic if and only if B, is not split or y; <, 0
(by Proposition 5.1). a

REMARK 9.3. The completeness theorem together with Theorem
9.2 (b) and (c) describes all anisotropic Lie algebras of type D4 over
a number field ®. Given %, u, y as in Theorem 9.2, one can use
Corollary 4.5 to determine which part of Theorem 9.2 ((b) or (c)) to
apply to test for anisotropicity.

As a consequence of Theorem 9.2, we obtain the following local
global principles:

COROLLARY 9.4. Suppose & is a Lie algebra of type D4 over a
number field ®.

(a) Z is strongly isotropic if and only if %, is strongly isotropic for
all (real) primes p of ®.

(b) If £ is orthogonal or has type D4y for Dy, then &£ is isotropic
if and only if & is isotropic for all (real) primes p of ®.

Proof. By the completeness theorem, we may assume that & =
F =% (CD(Z, u),y),with &, u, y asin Theorem 9.2.

(a) If p € S(P), then & is strongly isotropic if and only if p is
finite, p is complex or p is real and %4 has signature —4, 2 or 4 (see
§5). Thus, (a) follows From Theorem 9.2 (a) and Proposition 5.1.

(b) If £ is orthogonal, the claim follows from the argument in the
proof of Theorem 9.2(b). Suppose .# is not orthogonal and .¥ had
type D45 or Dyy. Then, & is isotropic iff & is strongly isotropic:
Also, Z(X) =2 PP ® or Z(¥) is a Z/(3)-cubic. Thus, if
p € Sr(®), Z (L), = O, ® P, d P, . Hence, by Proposition 5.1, %
is isotropic if and only if % is strongly isotropic. Thus, our claim
follows from (a). |
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REMARK 9.5. Kneser’s local global principle for isotropic quater-
nion skew-hermitian forms [Sch, Theorem 4.1, p. 366] in the rank 4
case is closely related to Proposition 9.3 in the case when £ has type
D4y or Dy .

REMARK 9.6. Part (b) of Corollary 9.4 is false for nonorthogo-
nal Dy’s and for Dgyr’s. Indeed, Example 11.8 will describe an
anisotropic Lie algebra . of type D4v1 over the field Q of rational
numbers so that %% is isotropic. An example of type Dy is obtained
by taking & = Z(CD(Z, —3), I) over Q, where % = ®[hy] and
by has minimal polynomial x* — 2. (See also Remark 9.5.)

10. Jordan D,’s over number fields. Recall that a Lie algebra & of
type D4 over @ is called a Jordan D4 if & = Der(f/Z):={D €
Der # : DZ = {0}} for some 27-dimensional exceptional central
simple Jordan algebra _# and some 3-dimensional separable associa-
tive subalgebra Z . Allen has shown that

(10.1) &£ is Jordan < & (%) is a full matrix algebra over its centre

[All1l, Theorem I]. As an application of our results and (10.1), we can
give a simple description of the Jordan D,’s over a number field. We
first need a lemma that holds over any field of characteristic 0.

LeEMMA 10.2. Suppose B = ® & Z, where Z is a 3-dimensional
separable associative commutative algebra over ®, and u € ®* . Then,
the quaternion algebra @ determined by % and u is isomorphic to
My(Z). Hence, forany y asin§l, Z(CD(Z, u), y) is aJordan D,
with Allen invariant isomorphic to Mg(Z).

Proof. We argue as in [A3, Corollary 6.6]. Let { be an invert-
ible generator of Z of trace 0 and let (x — A))(x — 42)(x — 43)
be its minimum polynomial over ®, where A;, 4,43 € ®. Put
bo = (0, {) € . Then, by is a generator of & with minimum poly-
nomial f(x) = (x — 4;)(x — 42)(x — A3)x. So the polynomial 4(x)
defined by (4.3) is (x —A2)(x —43)(x —43). This is the minimum poly-
nomial of ¢? over @ and (2 is therefore a generator of 2. Thus,
by Proposition 4.4, @ = ({?, u/Z) = My)(Z). a

REMARK 10.3. If & = ® @ .Z and u are as in Lemma 10.2 and
yo = diag(l, —1, 1), then Z(CD(Z, u), yo) is the quasi-split (or
Steinberg) D, with Allen invariant Mg(Z). (See [A2, Proposition
9.1].)



242 B. N. ALLISON

THEOREM 10.4. Suppose ® is a number field. If £ is a Jordan
D4 over ®, then there exists a 3-dimensional separable commu-
tative associative algebra Z and y, # 0 € ® so that & =
F(CD(Z#,-1),7), where Z = ®®Z and y = diag(l, 7, 1).
Moreover, if B =P Z, B' =00 Z', y = diag(l, y, 1) and
Y =diag(1, 75, 1), then

%(CD(‘@a _l)a J’) E‘%(CD(‘@Is _1)3 y/)
o Z=2Z" and y,95 >, 0 forall p € Sr(P).

Proof. By (10.1), &(L) = M3(Z), where Z =Z(Z). Let & =
®dZ and u=-1. By Lemma 10.2, & = M,(Z) and so &(¥) =
M4(@). Thus, by Lemma 8.1, we have the first statement. The final
statement follows from Lemma 10.2 and the isomorphism theorem
for the construction. O

REMARK 10.5. Although we haven’t checked this, a related descrip-
tion of the Jordan D,’s over a number field can likely also be obtained
using the work of Allen in [All1] and the Albert-Jacobson classification
of 27-dimensional exceptional central simple Jordan algebras over a
number field [A&J].

REMARK 10.6. Suppose .Z is a 3-dimensional separable associative
commutative algebra over a number field ®. By the approximation
theorem and Theorem 10.4, there are exactly 2" Jordan D,’s (up to
isomorphism) with Allen invariant isomorphic to Mg(Z'), where n
is the number of real primes of ®. By Theorem 9.2, if Z is a field or
Z = 0P, then exactly one of these Jordan Z,’s is isotropic (the
quasi-split one with y = yg). If Z° = ®@I", where I'/® is a quadratic
extension, then exactly 2”~! of these Jordan D,’s are isotropic, where
[ is the number of real primes p so that I', is split. We will see a
more general result of this type in the next section.

11. The classification problem for D,’s over a number field. Suppose
in this section that ® is a number field. We show how to construct the
distinct (isomorphism classes) of D,’s over ® with a specified Allen
invariant & . We begin by describing the construction.

Construction 11.1. Suppose & = My(Z), where & is a quaternion
algebra over a 3-dimensional separable algebra .2 over ® so that
¢z /o(Z) ~ ®. (This is a necessary assumption by Theorem 6.12.)
Choose a generatorv of Z° and u € ®* so that

(11.2) 9= (%&) , ng(v) € ®*? and u is totally negative..
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(See Proposition 6.1.) Let
h(x) = x3 + apx? + ayx — n?
be the minimum polynomial of v over @, where a;, a; € ®, n € ®*

and 7% = ny(v). Put

fx)=x*+ lazxz +nx + 11—6(a§ —40;) and P = d[by],

2
where by has minimum polynomial f(x) over ®. Let p;,..., px
be the distinct real primes of ® such that
(11.3) 9,,1 is a full matrix algebra over its centre, i=1,...,k.
Choose yél) yeens ygzk) € ®* (by the approximation theorem) so that
(11.4) every sign configuration at the real primes
P1, ..., px 1s achieved by some yg) .

Put y\) := diag(1, »{, 1) and
T = F(CD(ZB, u), D), i=1,...,2k.

THEOREM 11.5. Suppose ® is a number field and & = My(Z),
where ' is a quaternion algebra over a 3-dimensional separable alge-
bra Z over ® so that cyp(Z) ~ ®. Let k be the number of real
primes p so that &, is a full matrix algebra over its centre. Then,
the Lie algebras %D, i=1, ..., 2%, described in Construction 11.1
are the distinct Lie algebras of type D, up to isomorphism whose Allen
invariants are isomorphic to & .

Proof. By the Z-construction lemma &(Z )= &, i=1,..., 2k,
Also Z() is not isomorphic to Z ) for i # j, by the isomor-
phism theorem for the construction and (8.5). Suppose finally that
Z is a Lie algebra of type D4 so that &(¥) = &. By the Z-
construction lemma and Lemma 8.1, there exists y, € ®* so that
L = F(CD(Z, u), v), where y = diag(1l, y,, 1). But yzyg) >p, 0

for j=1,...,k andsome i €{1, ..., 2%}, by (11.4). Thus, by the
isomorphism theorem for the construction, (11.3) and (8.5), we have
L=z0, o

COROLLARY 11.6. Assume the hypotheses of Theorem 11.5.
(a) If & has a simple summand isomorphic to M,(®), then the
Lie algebras %W, i=1, ..., 2%, are orthogonal and exactly 2¥=! of



244 B. N. ALLISON

these Lie algebras are isotropic, where | is the number of real primes
p so that 2, is split.

(b) If @ has no simple summand isomorphic to M,(®), then the
Lie algebras XD, i=1, ..., 2k, are not orthogonal and exactly one
of these algebras is isotropic.

Proof. The statements about orthogonality follow from Remark
3.20. We need to prove the statements about the number of isotropic
F s, If & has a simple summand isomorphic to M,(®), we may
number the p;’s so that 9,,} is split if and only if j </, in which

case .Z () is isotropic if and only if ygi) <p, 0 for j=1,...,1 (by
Theorem 9.2(b) and (8.6)). If & has no simple summand isomor-
phic to M,(®), then Z') is isotropic if and only if ygi) <p, 0 for
j=1,...,k (by Theorem 9.2(c) and (8.5)). m]

REMARK 11.7. Theorem 11.5 reduces the classification problem for
Lie algebras of type D, over a given number field ® to two associative
problems:

(1) Classifying all associative algebras & up to isomorphism so that
< is a quaternion algebra over a 3-dimensional separable algebra Z
over ® and ¢z/p(Y) ~ D.

(2) Given & as in (1), expressing < in the form (11.2)

The remaining parts of Construction 11.1 are the comparatively
straightforward. In particular, choosing the real primes p;, ..., px
so that (11.3) holds is equivalent to determining the real primes p so
that the polynomial 4(x) does not have a negative root in @, .

ExaMPLE 11.8. Suppose ® =Q and & = (v, —3/A), where A =
®(v) and v has minimum polynomial A(x) = x3+2x—9 over ®. A
is an S3-cubic extension of @ and, by Proposition 6.1, cpp(Z) ~ @.
If we reduce mod 3, A(x) factors as x(x — 1)(x + 1). Thus, A(x)
has a root vy in the 3-adic integers so that the image of vy in Z/(3)
under the residue class map is a nonsquare. Hence, (vp, —3/®3)) isa
division algebra [Lam, Theorem 2.2, p. 149] and so &3, is not a full
matrix algebra over its centre. Therefore, & is a division algebra.
Finally, A(x) has one positive real root and two conjugate nonreal
roots. Thus, Zr = M>(R) ® M,(C). We now carry out Construction
11.1 starting with & . Let & = ®[by], where by has minimum
polynomial f(x) = x*+3x — 1. Let () = diag(1, -1, 1) and
72 = diag(1, 1, 1). Then, Z) := Z(CD(Z, -3),y¥), i=1, 2,
are the Lie algebras of type D4 with Allen invariant isomorphic to
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M4(2). These are non-Jordan Lie algebras of type Dgy;. Z(D is
isotropic and .# (@ is anisotropic.

ExAMPLE 11.9. Suppose ® =Q and & = (v, —1/A), where A =
®(v) and v has minimum polynomial A4(x) = x3—3x—1. Then, A is
a Z/(3)-cubic and ¢, (<) ~ ®. h(x) has 3 real roots exactly one of
which is positive. Thus, 2 = HOH® M,(R). Hence, < is a division
algebra. Applying Construction 11.1, we let & = ®[by], where by has
minimum polynomial f(x)=x*+x -3, and yV) = diag(1, -1, 1).
Then, Z(V) = F(CD(X, —1), y)) is the unique Lie algebra of
type D4 with Allen invariant isomorphic to & . Z( is an isotropic
non-Jordan Lie algebra of type Dy .

12. Appendix: Proof of the injectivity theorem. In this appendix, we
give the proof, postponed from §7, of the injectivity theorem (The-
orem 7.6). We assume throughout the section that 4 is an almost
simple adjoint algebraic group of type D4 over a number field ®.
Let B be the simply connected covering group defined over ® of A4
[T1, §2.6] and let C be the centre of 4.

We wish to prove that the map

(12.1) H' (@, 4)— [[ H'(®,, 4) is injective.
peS(P)

Now, by a theorem of Kneser, we have H'! (P, B) = {1} for all finite
primes p of @ (see [Knl, Satz 1] or [B&T, Proposition 7]). Also, by
a theorem of Harder [Ha], the map H'(®, B) — [I,c5@) H' (®y, B)
is injective. Using these two facts, a standard argument involving a
twist of the Galois action and a diagram chase (see for example [Kn2,
§5.1] or [F1, §2]) shows that, for the proof of (12.1), it suffices to show
that the map

(12.2) H*®,C)— [] H*®,, C) is injective
PES(®@)

and that the map

(12.3) H'@,C)— [[ H'®,, C) is surjective.
pESR(P)

Now [T1, §1.5), C(®) is a Klein 4-group. Thus,
C@®) ={1,c,,c3},

with cl-2 =1 and cjc; = c3. Then, there exists a homomorphism
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s — gs; of G into S3 so that the action of G on C(EIV>) is given by
SCi = Cq i forseG, i=1,2,3.

We put
H :=ker(s —¢q;) and I :=Fix(H).

As in the proof of the Dy-isomorphism theorem, it will be con-
venient to regard ®, ®, and ®; for p € S(P) as subfields of
some large algebraically closed extension Q/®. If p € S(P), we
put Gy := Gal(®}; /®,) and identify G, as a subgroup of G (by the
restriction map). Also since C(®;’) has order 4, we may identify:
C(@;) =C(P) ={1, c1, 2, c3}.

We now prove (12.2) using work of K. Hoechsmann [Ho]:

LemMaA 12.4. The map H*(®, C) — [l cs@) HX(®y, C) is injec-
tive.

Proof. The character group HomZ(C(&)), &JX) of C(&D) isa G-
module with fixing group H. Thus, if Fix(H)/® is a cyclic Galois
extension, the required injectivity is a consequence of [Ho, 6.1 and
6.3]. So we may assume that [I": ®] = 6. We now argue as in [F2, p.
205]. Let A/® be one of the degree 3 subextensions of I'/®. Then,
we have the commutative diagram:

HX(D,C) —— H2(A, C)

! !

oes@) H*(®y, C) —— Tlpesn) H*(Ag, C).

The top row is injective since [A : @] is relatively prime to the order
of C(®) [Serl, I-11]. The vertical map on the right-hand side is
injective by the case considered previously. Thus, the vertical map on
the left-hand side is injective as required. O

So it remains to prove (12.3). We let p;, ..., p, be the distinct
real primes of @ labelled so that the primes of I' lying above p; are
all real if 1 < i < m and all complex if m+1 < i < n. (This is
possible since I'/® is Galois.)

LEMMA 12.5. If 1 < i < m, then Gy acts trivially on C(®). If

m+1<i<n,then G, acts nontrivially on C(®) and H'(®, , C) =

{1}.
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Proof. First if 1 <i < n, then Gp‘ acts trivially on C (d~>) & G,,i -
HelC®, &1 <i<m. Soif m+1<i<n, Gy is acyclic
group of order 2 acting nontrivially on the Klein 4-group C(<T>) , In
which case an easy calculation shows that H ‘(Gpi ,C(®)={1}. O

LEMMA 12.6. The map H'(®, C) — HpeSR(d))Hl(q)P’ C) is sur-
Jective.

Proof. In this proof, we identify C (&D) with the multiplicative group
{(e1, &2, €3): & = £1, €16,63 = 1} by means of the identification

a=(1,-1,-1), c=(-1,1,-1), c=(-1,-1,1).
In that case the action of G on C(&J) is given by
(12.7) s(ey, &, €3) = (8q—11 s €412 sq_13) forseG.

Suppose next that 1 < i < m. Then, I' C ®, and we let P;
be the real prime of I' determined by the restriction of the absolute
value on @, to I'. Thus, the completions I'y and @, are equal.
Also, the distinct real primes of I' lying above p; are the primes s%;,
s € Gal(I'/®) . Finally, G, _acts trivially on C (<I>) and so

HY (®, , C)={1, xi1, Xi2> Xi3}»

where x;;: G, — C (ff)) is the group homomorphism so that x;;(s;) =
¢j, j=1,2,3,and s; denotes the generator (of order 2) of G, .
Now, by Lemma 12.5, we must show that the map

m
(12.8) H' (@, C)— [[H' (®,,, C)

i=1
is surjective. Thus, with the above notation, it suffices to show that
(1 ooy Xigjys > vve s 1) is in the image of this map for 1 < iy < m,
1<jo<3.Sowefix 1 <ipg<m andl < jj < 3. Suppose for the
moment that we have chosen a;, ay, a3 € I'* so that:

(12.9) saj=aq; forseG, j=1,2,3,
(12.10) ayayas € P2,

and

(12.11) ifl<i<mand1<;j<3

thenaj <¢pi0<=>i=io and j # jo.
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We then choose Bl,ﬂz,/ﬁe&)’( so that ﬁ}:aj, j=1,2,3. For
s € G, we define

(12.12) s = ((SB,-1)BT "> (sBy-12)B5 ", (sB,-13)B5 ).

~

From (12.9) and (12.10) it follows that n; € C(®) for s € G. Also,
using (12.7), one easily checks that (7s)scc is a continuous 1-cocycle

of G in C(®). Denote the corresponding element of H!(®, C) by
n. Observe that if 1 < i < m, we have ¢; = (1) and so 75 =
(siBUBT", (siB2)B5 ", (siB2)By ") Butfor 1< j <3, (siB)B;' =
1@ﬁje@ééajed)gzc»ajefg?@aj>g;310¢>i9éi0
or j = jo (by (12.11)). Thus, under the map (12.8), # maps to
(1, ..., Kigjy> -+ 1) as required.

So it remains to show that given 1 < iy < m and 1 < jj < 3, we
may choose a;, a;, az € I'* satisfying (12.9)-(12.11). For conve-
nience, we may assume iy = 1, jo = 1. We consider cases for [I": ®].
Suppose first that [I": @] = 1. Then, g; = (1) for all s € G. Choose
ap; € ®* so that ap <y, 0 and ay >p, 0 for i=2,...,m. Put
a; =1 and a3 = ap. Then, (12.9)-(12.11) hold. Suppose next that
[[:®]=2. Choose r € G so that g, # (1). Then, Gal(I'/®) = (r|r)
and so we may choose o € I'* so that a >g 0, ra<g 0, a>g 0,
and ra > 0 for i =2,...,m. If ¢, = (12), we put a; = a,
ay = ra and a3 = a(ra) in which case (12.9)-(12.11) hold. Sim-
ilarly, if ¢, = (13), we put a; = a, ay = a(ra) and a3 = ra.
Finally, if ¢, = (23), we choose g €I™ sothat f <g 0, rf <g O,
B >p 0 and rg >p 0 for i =2,...,m, and put o; = B(rB),
ay = f, a3 = rf. Suppose next that [I' : @] = 3. Choose s € G
so that g; = (123). Then, Gal(I'/®) = (s|r) and so we may choose
a € I so that a <p 0, sa <g 0, s?a >p 0, and s/a >g 0 for
i=1,2,...,m, j=0,1,2. We put a; = a(sa), a = (sa)(s?a),
and a3 = (s2a)a and again we have (12.9)-(12.11). Suppose finally
that [I": ®] = 6. Choose r, s € G so that g, = (13) and ¢; = (123).
Then, Gal(I'/®) consists of the restrictions of 1, s, s, r, sr and
s?r to I'. This time, we choose a € I'* so that s?a <y 0, ta>q 0

for t = 1,s,r,sr,s*, and ta >p 0 for i = 2,..., m and-all
t € G. Then, we put o) = a(sa)(ra)(sra), ay = (sa)(s?a)(sra)(s*ra)
and a3 = (s2a)a(s’ra)(ra), and again (112.9)-(12.11) hold. O

By the remarks at the beginning of the section, Lemmas 12.4 and
12.6 complete the proof of the injectivity theorem.
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